SÉMINAIRE HENRI CARTAN

CHRISTIAN HOUZEL

Géométrie analytique locale, IV

Séminaire Henri Cartan, tome 13, nº 2 (1960-1961), exp. nº 21, p. 1-15.

http://www.numdam.org/item?id=SHC_1960-1961__13_2_A8_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1960-1961, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

GÉOMÉTRIE ANALYTIQUE LOCALE, IV

par Christian HOUZEL

A. Algèbres analytiques intègres

PROPOSITION 1 (GROTHENDIECK). - Soit A une algèbre analytique intègre de dimension n , sur un corps k algébriquement clos. Considérons un idéal premier p de A . Pour que le localisé A soit régulier, il faut et il suffit qu'il existe une sous-algèbre régulière B $\stackrel{\sim}{}$ k $\{t_1$, ... , $t_n\}$ de A , telle que A soit finie sur B et étale sur B en p .

La condition est évidemment suffisante, car si B est régulière et si $q=B\cap p$, le localisé B_q est un anneau local régulier ; il en est donc de même de A_p si celui-ci est étale sur B_q .

Réciproquement, la condition est trivialement nécessaire si $\,n=0\,$, car on a alors $\,\Lambda\,=\,k\,$.

Examinons le cas où Λ est de dimension n=1. Les seuls idéaux premiers de Λ sont (0) et son idéal maximal m. Le cas de $\Lambda_m \stackrel{N}{\sim} \Lambda$ est trivial. Quant au localisé de Λ en (0), c'est son corps des fractions K qui est régulier; on va s'appuyer sur le lemme suivant.

IEMME 1. - Si Λ est une algèbre analytique intègre de dimension 1 , sa clôture intégrale $\widetilde{\Lambda}$ est finie sur Λ .

On verra plus loin, grâce à la proposition 1, que cet énoncé reste valable sans restriction sur la dimension de \dot{a} .

Le choix d'un paramètre de L détermine un homomorphisme injectif $k[t] \rightarrow A$ tel que L soit fini sur k[t]; le corps des fractions L de L est alors une extension finie du corps des fractions L de L on est ramené à prouver que la fermeture intégrale de L dans une extension finie de son corps des fractions est finie sur L comme ce résultat est conru pour une extension séparable, on peut se ramener au cas d'une extension purement inséparable, puis au cas d'une extension obtenue par adjonction d'une racine p-ième, où p est l'exposant caractéristique du corps de base L; en effet une algèbre intègre finie sur L est une algèbre analytique, d'après la propriété hensélienne (exposé 19,

n° 3, corollaire 2 de la proposition 6) ; si elle est intégralement close, elle est régulière (dimension 1), donc isomorphe à $k\{t\}$. Les extensions considérées sont de la forme $L(t^{r/p})$ avec r < p, et on vérifie que la fermeture intégrale de $k\{t\}$ dans $L(t^{r/p})$ est engendrée sur $k\{t\}$ par 1, $t^{r/p}$,..., $t^{(p-1)r/p}$, ce qui prouve le lemme.

De ce lemme, il résulte que \widetilde{A} est une algèbre analytique (propriété hensélienne) régulière (dimension 1), c'est-à-dire que \widetilde{A} \vee k $\{t\}$.

Soit s une uniformisante de \widetilde{A} . Il existe un dénominateur commun $g \in A$, $g \neq 0$ aux éléments de \widetilde{A} ; on peut supposer g de la forme $g = s^q$, de sorte que s^q $\widetilde{A} \subseteq A$, et on peut choisir q premier à la caractéristique p de k. Considérons alors l'homomorphisme ϕ : $k\{t\} \to A$ défini par $\phi(t) = s^q$; il est injectif, et A est fini sur $k\{t\}$, puisque \widetilde{A} lui-même est fini sur $k\{t\}$. De plus le corps des fractions K de A est obtenu à partir du corps des fractions L de $k\{t\}$ par l'adjonction de $s = t^{1/q}$; c'est donc une extension séparable de L, ce qui signifie que A est étale sur $k\{t\}$ en l'idéal premier (0).

Supposons maintenant l'anneau A de dimension $n \geqslant 2$, et supposons la proposition établie pour les ælgèbres analytiques de dimension < n. Nous allons d'abord montrer que la propriété est vraie pour un idéal premier $p \neq 0$ de A, tel que A soit régulier. Soient t_1 , ..., t_r des éléments de p dont les images dans A forment un système régulier de paramètres de cet anneau; on a

$$dim(A/(t_1, ..., t_r)) = dim(A/p) = n - r$$

D'après l'hypothèse de récurrence, il existe des éléments t_{r+1} , ..., t_n de Λ dont les images dans Λ/p forment un système de paramètres tel que le corps des fractions Λ_p/p Λ_p de Λ/p soit une extension séparable de celui de $k\{t_{r+1}$, ..., $t_n\}$ Cn vérifie alors que $(t_1$, ..., t_r , t_{r+1} , ..., $t_n)$ est un système de paramètres de Λ et flet clair que Λ est non ramifié sur $R = k\{t_1$, ..., $t_n\}$ en l'idéal premier P, donc il est étale (puisque R est normal et contenu dans R).

La cas où l'idéal premier de Λ considéré est nul se ramène au précédent, car il existe un idéal premier $p \neq 0$ tel que Λ_p soit régulier (corollaire 2 du théorème d'Abhyankar, exposé 20, D). Il existe alors une sous-algèbre analytique régulière B de Λ telle que Λ soit finie sur B et étale sur B en p, ce qui entraîne que le corps des fractions de Λ (localisé de Λ en (0)) est une extension séparable de celui de B.

COROLIAIRE 1. - Si A est une algèbre analytique intègre sur un corps algébriquement clos, il existe une sous-algèbre analytique régulière B de A telle que A soit finie sur B et que le corps des fractions de A soit une extension séparable de celui de B.

COROLIAIRE 2. - Soit A une algèbre analytique réduite. Sa clôture intégrale \widetilde{A} est finie sur Λ .

 $\widetilde{\mathbf{A}}$ est par définition la fermeture intégrale de A dans son anneau total des fractions, isomorphe au produit des corps des fractions des anneaux intègres Λ/p_{α} ((p_{α}) famille des idéaux premiers minimaux de A). On peut donc se ramener au cas où Λ est intègre. On applique alors le corollaire 1 et le fait que la fermeture intégrale d'une algèbre analytique régulière B dans une extension finie et séparable de son corps des fractions est finie sur B, puisque B est intégralement close.

B. Théorèmes de Cartan-Oka.

1. Conditions de régularité.

Soient A un anneau local noethérien et n un entier positif; nous considérerons les conditions de régularité suivantes pour A:

(R_n) Pour tout idéal premier p de Λ de hauteur \leqslant n , le localisé $^{\Lambda}p$ est régulier.

(S_n) Pour tout idéal premier p de A , on a $prof(\Lambda_p) \geqslant inf(n , ht(p))$.

SERRE a établi les critères suivants (d'ailleurs élémentaires) :

Pour que Λ soit réduit, il faut et il suffit qu'il satisfasse aux conditions (R_0) et (S_1) .

Pour que Λ soit normal (i. e. intègre et intégralement clos), il faut et il suffit qu'il satisfasse aux conditions (R₁) et (S₂).

Nous allons en déduire les théorèmes de cohérence de Cartan-Oka, selon une idée de SERRE. Le corps de base k est supposé algébriquement clos.

PROPOSITION 2. - Soient X un espace analytique et n un entier positif. Pour que l'anneau local $Q_{X,X}$ d'un point $x \in X$ satisfasse à la condition (R_n) , il faut et il suffit que $\operatorname{codim}_X(S(X),X) > n$ (où S(X) désigne le lieu singulier de X).

Car en utilisant le théorème d'Abhyankar (exposé 20, D, théorème 3), on voit que la condition $\binom{R}{n}$ signifie que $S(X)_x$ se compose d'idéaux premiers de hauteur > n, c'est-à-dire que

$$codim_{\mathbf{x}}(S(X); X) = codim(S(X)_{\mathbf{x}}; Spec(O_{X,\mathbf{x}})) > n$$

(cf. exposé 20, A).

COROLLAIRE. - L'ensemble des points x d'un espace analytique X où $O_{X,x}$ satisfait à la condition (R_n) est le complémentaire d'un ensemble analytique fermé.

Car, avec la notation de l'exposé 20, A, les points x, tels que $\mathcal{O}_{X,x}$ ne satisfasse pas à (R_n) , sont ceux de l'ensemble analytique fermé $D_n(S(X))$.

2. Profondeur et coprofondeur.

La notion de profondeur d'un module de type fini sur un anneau local noethérien a été introduite par SERRE et AUSIANDER. Elle est appelée codimension homologique dans l'article de SERRE [3]; nous renvoyons à ce mémoire, ou au cours d'Algèbre locale [5], notes rédigées par GABRIEL; on pourra encore consulter le Séminaire de Géométrie algébrique de GROTHENDIECK [1] ou ses Eléments de Géométrie algébrique [2]. Rappelons seulement que la profondeur d'un module de type fini M , sur un anneau local noethérien $\mathbb A$ de corps résiduel k , est par définition la borne inférieure de l'ensemble des entiers n tels que $\operatorname{Ext}^n_\Lambda(k\ ,\ M)\neq 0$; c'est ancore la borne supérieure de l'ensemble des longueurs des M-suites (une M-suite est une suite $(f_1\ ,\ \dots\ ,\ f_n)$ d'éléments de l'idéal maximal de $\mathbb A$, telle que f_1 soit non diviseur de 0 dans le module quotient $\operatorname{M/(f_1}\ ,\ \dots\ ,\ f_{i-1})\operatorname{M}\ ,$ pour $i=1\ ,\ \dots\ ,\ n$) ou aussi bien la longueur d'une M-suite maximale. On pose

($\dim(M)$ est la dimension au sens de KRULL) ; ce nombre, appelé coprofondeur de M, est un entier positif. Si Λ est un anneau local régulier, on a

$$pref(M) + dh_{\Lambda}(M) = gldh(\Lambda) = dim(\Lambda)$$

en notant $\mathrm{dh}_{\Lambda}(M)$ la dimension homologique de M et $\mathrm{gldh}(\Lambda)$ la dimension homologique globale de Λ . Λ insi

$$coprof(M) = dh_{\Lambda}(M) - (dim(\Lambda) - dim(M)) = dh_{\Lambda}(M) - codim(Supp(M); Spec(A))$$

Considérons un espace annelé X qui est un espace analytique, ou bien le spectre premier d'une algèbre analytique. Si $\mathfrak F$ est un faisceau cohérent sur X, pour tout entier $n\geqslant 0$, nous désignerons par $Z_n(\mathfrak F)$ l'ensemble des points $x\in X$ tels que $coprof(\mathfrak F_x)>n$.

PROPOSITION 3. - Soient X un espace analytique, 3 un faisceau cohérent sur X et n un entier positif. L'ensemble $Z_n(\mathfrak{F}) = \{x \in X \mid \text{coprof}(\mathfrak{F}_x) > n\}$ est un ensemble analytique fermé. Pour tout $x \in X$, on a $Z_n(\mathfrak{F})_x = Z_n(\mathfrak{F}_x)$ dans $Spec(\mathfrak{O}_{X,x})$.

La question étant locale, on peut se ramener au cas où les anneaux locaux $\mathcal{O}_{X,x}$ sont réguliers, en tenant compte du fait que si un anneau local Λ est quotient d'un anneau local Λ et si Λ est un Λ -module de type fini, sa dimension est la même comme Λ -module ou comme Λ -module ; de même pour sa profondeur, donc pour sa coprofondeur:

$$coprof_{\Lambda}(M) = coprof_{R}(M)$$

En supposant donc $\mathcal{O}_{X,x}$ régulier pour tout $x \in X$, la condition coprof(x) > n équivaut à

$$dh(\mathfrak{T}_{\mathbf{X}}) < n + codim(Supp(\mathfrak{T}_{\mathbf{X}}) ; Spec(\mathfrak{O}_{\mathbf{X}_{\bullet}\mathbf{X}})) = n + codim_{\mathbf{X}}(Supp(\mathfrak{T}) ; X)$$

en utilisant les résultats de l'exposé 20, B et A. Or cette condition revient à l'existence d'un entier $r > n + codim_{\mathbf{x}}(Supp(\mathfrak{F}); X)$ tel que

$$\underline{\underline{\mathrm{Ext}}}_{Q_{X}}^{\mathbf{r}}(\mathfrak{F}, \mathcal{O}_{X})_{\mathbf{x}} = \underline{\mathrm{Ext}}_{Q_{X,\mathbf{x}}}^{\mathbf{r}}(\mathfrak{F}_{\mathbf{x}}, \mathcal{O}_{X,\mathbf{x}}) \neq 0$$

en vertu du lemme suivant.

IEMME 2. - Soient A un anneau local régulier et M un h-module de type fini. Pour tout entier p > 0, les conditions suivantes sont équivalentes :

a.
$$dh_{\Lambda}(M) < p$$
;

b. Four tout
$$r > p$$
, on a $Ext^{\mathbf{r}}_{\Lambda}(i:, \Lambda) = 0$.

(cf. SERRE [4], chapitre III, § 5, p. 269; on raisonne par récurrence descendante sur p).

Nous introduirons donc, pour tout entier r > 0, le faisceau cohérent

$$\mathcal{E}^{\mathbf{r}}(\mathfrak{F}) = \underbrace{\operatorname{Ext}}_{\mathcal{O}_{X}}^{\mathbf{r}}(\mathfrak{F}, \mathcal{O}_{X})$$

et pour p > 0 l'ensemble analytique

$$T_{p}(\mathfrak{F}) = \bigcup_{r > p} \operatorname{Supp}(\mathfrak{E}^{r}(\mathfrak{F}))$$

Avec ces notations et celles de l'exposé 20, A, on voit que

$$Z_{\mathbf{n}}(\mathfrak{F}) = \bigcup_{\mathbf{s} \geqslant 0} (T_{\mathbf{n}+\mathbf{s}}(\mathfrak{F}) \cap D_{\mathbf{s}}(\operatorname{Supp}(\mathfrak{F})))$$

c'est un ensemble analytique fermé, comme T $_{n+s}$ et D $_{s}$. De plus, si $x\in X$, on a pour $p\geqslant 0$

$$\mathbf{T}_{\mathbf{p}}(\mathfrak{F})_{\mathbf{x}} = \bigcup_{\mathbf{r} > \mathbf{p}} \mathbf{Supp}(\boldsymbol{\varepsilon}^{\mathbf{r}}(\mathfrak{F}))_{\mathbf{x}} = \bigcup_{\mathbf{r} > \mathbf{p}} \mathbf{Supp}(\boldsymbol{\varepsilon}^{\mathbf{r}}(\mathfrak{F})_{\mathbf{x}}) = \bigcup_{\mathbf{r} > \mathbf{p}} \mathbf{Supp}(\boldsymbol{\varepsilon}^{\mathbf{r}}(\widetilde{\mathfrak{F}}_{\mathbf{x}})) = \mathbf{T}_{\mathbf{p}}(\widetilde{\mathfrak{F}}_{\mathbf{x}})$$

car

$$\varepsilon^{\mathbf{r}}(\mathfrak{F})_{\mathbf{x}} = \underbrace{\operatorname{Ext}}_{\mathfrak{O}_{\mathbf{X}}}^{\mathbf{r}}(\mathfrak{F}, \mathfrak{O}_{\mathbf{X}})_{\mathbf{x}} = \operatorname{Ext}_{\mathfrak{O}_{\mathbf{X},\mathbf{x}}}^{\mathbf{r}}(\mathfrak{F}, \mathfrak{O}_{\mathbf{X},\mathbf{x}})$$

a pour faisceau associé

$$\varepsilon^{\mathbf{r}}(\widehat{\mathfrak{F}}_{\mathbf{x}}) = \underbrace{\mathbb{E}_{\mathbf{x}}}_{\widehat{\mathfrak{O}}_{\mathbf{x},\mathbf{x}}}^{\mathbf{r}} (\widehat{\mathfrak{F}}_{\mathbf{x}},\widehat{\mathfrak{O}}_{\mathbf{x},\mathbf{x}})$$

sur Spec(${}^{\circ}_{X_{\bullet }x}$) (formule de localisation des Ext). On sait d'autre part que

$$D_s(Supp(\mathfrak{F}))_x = D_s(Supp(\mathfrak{F})_x) = D_s(Supp(\mathfrak{F}_x))$$
 (exposé 20, A)

d'eù

$$\mathbf{Z}_{\mathbf{n}}(\mathfrak{F})_{\mathbf{x}} = \mathbf{U}_{\mathbf{n+s}}(\mathfrak{F})_{\mathbf{x}} \cap \mathbf{D}_{\mathbf{s}}(\mathbf{Supp}(\mathfrak{F}))_{\mathbf{x}} = \mathbf{U}_{\mathbf{s}}(\mathbf{T}_{\mathbf{n+s}}(\widetilde{\mathfrak{F}}_{\mathbf{x}}) \cap \mathbf{D}_{\mathbf{s}}(\mathbf{Supp}(\mathfrak{F}_{\mathbf{x}})))$$

et ce dernier ensemble est précisément $Z_n(\widehat{\mathfrak{T}}_x)$ (le raisonnement qui conduit à la formule (1) s'applique aussi bien au cas où X est le spectre premier d'une algèbre analytique). Pour être complet, on rappelle que la formule $Z_n(\mathfrak{F})_x = Z_n(\mathfrak{F}_x)$ signifie que pour tout idéal premier p de $\mathfrak{O}_{X,x}$, les conditions suivantes sont équivalentes :

- (i) $W(p) \subset (Z_n(F), x)$;
- (ii) coprof($(\mathfrak{F}_{\mathbf{x}})_{p}$) > n.

PROPOSITION 4. - Soient X un espace analytique et q un entier positif. L'ensemble des points $x \in X$ où $\mathcal{O}_{X,x}$ satisfait à la condition (S_q) est le complémentaire de l'ensemble analytique fermé $\bigcup_{n>0} \mathcal{O}_{q+n}(Z_n(\mathcal{O}_X))$.

Ceci repose sur le lemme suivant.

IEMME 3. - Pour qu'un anneau local noethérien A satisfasse à la condition (Sq) il faut et il suffit que, pour tout entier n > 0, on ait

$$codim(Z_n(A); Spec(A)) > q + n$$

c'est-à-dire que si p est un idéal pramier de A ,

$$coprof(A_p) > n$$
 entraine $ht(p) = dim(A_p) > q + n$

 $\operatorname{Car}(S_q)$ signifie que pour tout idéal premier p de A on a

$$coprof(A_p) \leq (ht(p) - q)^+$$
;

le lecteur en déduira la démonstration.

Appliquant de lemme à $Q_{x,x}$, on voit que l'ensemble des $x \in X$ où Q_q est vérifié est caractérisé par

$$\begin{split} \operatorname{\operatorname{\operatorname{codim}}}_{\boldsymbol{x}}(\boldsymbol{Z}_{\boldsymbol{n}}(\boldsymbol{Q}_{\boldsymbol{X}}) \; ; \; \boldsymbol{X}) &= \operatorname{\operatorname{\operatorname{codim}}}(\boldsymbol{Z}_{\boldsymbol{n}}(\boldsymbol{Q}_{\boldsymbol{X}})_{\boldsymbol{x}} \; ; \; \operatorname{Spec}(\boldsymbol{Q}_{\boldsymbol{X},\boldsymbol{x}})) \\ &= \operatorname{\operatorname{\operatorname{\operatorname{codim}}}}(\boldsymbol{Z}_{\boldsymbol{n}}(\boldsymbol{Q}_{\boldsymbol{X},\boldsymbol{x}}) \; ; \; \operatorname{Spec}(\boldsymbol{Q}_{\boldsymbol{X},\boldsymbol{x}})) > q + n \end{split}$$

pour tout n > 0. D'où la proposition.

N. B. - Dans les démonstrations précédentes, le lecteur aura remarqué de luimême que les réunions d'ensembles analytiques qui interviennent sont toujours localement finies de sorte que les raisonnement tenus sont corrects.

3. Espaces analytiques réduits.

THÉORÈME 1. - Soit X un espace analytique. L'ensemble des points x \in X tels

que 0
X,x

soit réduit est le complémentaire d'un ensemble analytique fermé.

En effet, d'après le critère de SERRE, dire que ${}^{\circ}_{X,x}$ n'est pas réduit, c'est dire qu'il ne vérifie pas l'une des conditions (R_0) ou (S_1) ; ceci signifie, que

$$\mathbf{x} \in D_{\mathbf{o}}(S(X)) \cup \bigcup_{\mathbf{n} \geq 0} D_{\mathbf{n}+1}(Z_{\mathbf{n}}(\mathcal{O}_{X}))$$
 (corollaire de la prop. 2 et prop. 4)

COROLLAIRE 1. - L'ensemble des points $x \in X$ où $Q_{X,x}$ est réduit est ouvert.

COROLIAIRE 2. - Le Nilradical $\pi_{\overline{X}}$ de $\sigma_{\overline{X}}$ est cohérent et l'espace annelé réduit $\sigma_{\overline{X}}$ red est un espace analytique.

Rappelons que le Nilradical d'un faisceau d'anneaux Q_X est le faisceau associé au préfaisceau qui à un ouvert U fait correspondre le nilradical de $\Gamma(U$, $Q_X)$; c'est donc l'Idéal de Q_X dont les sections sont les sections localement nilpotentes de Q_X . L'espace annelé $X_{\rm red}$ est par définition le sousespace annelé de X défini par le faisceau d'idéaux X_X ; il a même espace topologique sous-jacent que X et son faisceau structural est Q_X/X_X ; c'est évidemment un espace réduit.

Il est clair que les deux assertions du corollaire 2 sont équivalentes. Nous allons prouver la cohérence de \mathcal{N}_X à partir du corollaire 1. La question étant locale, on se place au voisinage d'un point $x \in X$; il existe un voisinage ouvert U de x et une \mathcal{N}_X Algèbre finie \mathcal{N}_X telle que \mathcal{N}_X \mathcal{N}_X , comme \mathcal{N}_X est surjectif, on peut supposer que \mathcal{N}_X est quotient de \mathcal{N}_X , soit \mathcal{N}_X où 3 est un Idéal de type fini, dont la fibre en x \mathcal{N}_X est nilpotente. Il existe un voisinage ouvert \mathcal{N}_X U de x tel que \mathcal{N}_X soit nilpotent, ce qui entraîne \mathcal{N}_X Inversement, considérons \mathcal{N}_X = Specan(\mathcal{N}_X); c'est le sous-espace analytique fermé de \mathcal{N}_X défini par l'Idéal 3. L'anneau local \mathcal{N}_X \mathcal{N}_X est réduit, donc \mathcal{N}_X reste réduit en tout point d'un voisinage \mathcal{N}_X de x d'après le corollaire 1. Si \mathcal{N}_X l'anneau local

 $\mathcal{O}_{X_0,y} \xrightarrow{\mathcal{O}_{X,y}} \mathcal{O}_{y}$ est réduit, donc $\mathcal{O}_{y} \supset \mathcal{N}_{X,y}$ ce qui prouve que $\mathcal{N}_{x} | W = \mathcal{O}_{x} | W$

COROLLAIRE 3 (CARTAN-OKA). - Soit U un ouvert d'un espace analytique X et soit Y un sous-ensemble analytique fermé de U . Considérons l'Idéal 3_Y de 0_U dont les sections sont les sections f de 0_U qui s'annulent sur Y , c'està-dire telles que f(y) = 0 pour $y \in Y$. C'est un faisceau cohérent.

Car, d'après le Mullstellensatz (exposé 19, n° 4), le Milradical de Q est l'Idéal de Q dont les sections sont celles de Q qui s'annulent en tout point de Y; on en déduit que l'énoncé du corollaire 3 est équivalent à celui du corollaire 2.

4. Espaces analytiques normaux.

THEORÈME 2. - Soit X un espace analytique. L'ensemble des points $x \in X$, tels que 0 soit normal, est le complémentaire d'un ensemble analytique fermé.

En effet, d'après le critère de SERRE, dire que $\mathcal{O}_{X,x}$ n'est pas normal, c'est dire qu'il ne vérifie pas l'une des conditions (R_1) ou (S_2) ; ceci signifie que

$$x \in D_1(S(X)) \cup \bigcup_{n \geqslant 0} D_{n+2}(Z_n(\mathcal{O}_X))$$
 (corollaire de la prop. 2 et prop. 4)

COROLLAIRE 1. L'ensemble des points $x \in X$ où $O_{X,x}$ est normal est ouvert.

COROLIATRE 2 (CARTAN-OKA). - Soit X un espace analytique réduit. Il existe une ${}^{\circ}_{X}$ -Algèbre finie ${}^{\circ}_{X}$ telle que pour tout $x \in X$, la fibre ${}^{\circ}_{X}$, soit ${}^{\circ}_{X}$, -isomorphe à la cloture intégrale de ${}^{\circ}_{X}$, Le faisceau ${}^{\circ}_{X}$ est déterminé par ces conditions à un ${}^{\circ}_{X}$ -isomorphisme unique près.

Rappelons que la clôture intégrale d'un anneau réduit $\mathcal{O}_{X,x}$ est sa fermeture intégrale dans son anneau total des fractions qui est isomorphe au produit des corps des fractions des anneaux intègres $\mathcal{O}_{X,x}/\mathcal{P}_i$, où (\mathcal{P}_i) est la famille des idéaux premiers minimaux de $\mathcal{O}_{X,x}$. Par suite la clôture intégrale de $\mathcal{O}_{X,x}$ est isomorphe au produit de celles des $\mathcal{O}_{X,x}/\mathcal{P}_i$; c'est donc une $\mathcal{O}_{X,x}$ -algèbre finie (A, corollaire 2 de la proposition 1).

L'assertion d'unicité est immédiate (en tenant compte du fait que $\mathcal{O}_{X,x}$ n'a pas d' $\mathcal{O}_{X,x}$ -automorphisme distinct de l'identité). On en déduit que la question est locale. Plaçons-nous donc au voisinage d'un point $x \in X$; il existe un voisinage

ouvert U de x et une \mathcal{O}_U -Algèbre finie \mathcal{A} dont la fibre \mathcal{A}_x est $\mathcal{O}_{X,x}$ isomorphe à la clôture intégrale de $\mathcal{O}_{X,x}$ (puisque celle-ci est finie sur $\mathcal{O}_{X,x}$; exposé 19, lemme 1), soit

$$\alpha_{\mathbf{x}} \stackrel{\text{D}}{\sim} \left(\alpha_{\mathbf{X},\mathbf{x}} / p_{\mathbf{i}} \right)^{\sim}$$
.

Introduisons le spectre analytique X' \Rightarrow Specan(α); comme les composants locaux de α sont les algèbres analytiques normales $(\alpha_{X,x}/p_i)^{\sim}$, la fibre de X' au-dessus de x est en correspondance bijective avec l'ensemble $\{p_i\}$ des idéaux premiers minimaux de $\alpha_{X,x}$, et X' est normal en tout point x_i^* de cette fibre :

$${}^{\circ}_{X^{i},x^{i}_{i}} \cong ({}^{\circ}_{X,x}/p_{i})^{\sim}$$
 (exposé 19, n° 3, proposition 6)

Il résult e alors du corollaire 1 qu'il existe un voisinage de la fibre en question en tout point duquel X' reste normal; un tel voisinage peut être choisi de la forme $p^{-1}(V)$, eù V est un voisinage ouvert de x contenu dans U (p désigne le morphisme structural de X' dans U; c'est une application fermée). En un point $y \in V$ on a

$$\alpha_{\mathbf{y}} \stackrel{\text{o}}{=} \prod_{\mathbf{j}} \alpha_{\mathbf{X}^{\dagger}, \mathbf{y}_{\mathbf{j}}^{\dagger}}$$
,

composé d'anneaux normaux \mathcal{Q}_{X^i,y^i_j} (y^i_j = points de la fibre de X^i au-dessus de y); donc \mathcal{Q}_y est intégralement clos.

Il existe un élément $f_{\mathbf{x}}$ de $f_{\mathbf{x},\mathbf{x}}$, non diviseur de 0 dans $f_{\mathbf{x}}$, tel que $f_{\mathbf{x}}$ $f_{\mathbf{x}}$ $f_{\mathbf{x}}$. Donc on peut trouver un voisinage $\mathbf{x} \in \mathbf{x}$ de \mathbf{x} et une section $f_{\mathbf{x}}$ dans \mathbf{x} , de germe $f_{\mathbf{x}}$ en \mathbf{x} , tels que l'on ait un homomorphisme injectif

$$f \alpha | W \rightarrow Q_W$$
;

on peut de plus supposer l'homomorphisme : $Q_W \to Q_W$ injectif (il l'est en x). En composant la multiplication par f

avec la multiplication par 1/f:

$$Q_{W} \rightarrow Q_{W}\left[\frac{1}{T}\right]$$

$$\alpha \rightarrow \mathbb{Q}\left[\frac{1}{f}\right]$$

qui donne en un point $y \in W$ un homomorphisme

$$\alpha_{\mathbf{y}} \rightarrow \mathcal{O}_{\mathbf{X},\mathbf{y}}[\frac{1}{f_{\mathbf{y}}}]$$

injectif. Du fait que α_y est intégralement clos et fini sur $\alpha_{X,y}$, on déduit alors qu'il est $\alpha_{X,y}$ -isomorphe à la clôture intégrale de $\alpha_{X,y}$, ce qui établit le résultat.

COROLIATRE 3. - Soit X un espace analytique réduit. Il existe un espace analytique normal \widetilde{X} , un morphisme $p:\widetilde{X}\to X$ fini et surjectif, et un sous-ensemble analytique fermé rare Y de X tel que $p^{-1}(Y)$ soit rare dans \widetilde{X} et que la restriction de p à $\widetilde{X}-p^{-1}(Y)$ soit un isomorphisme sur X-Y. L'espace \widetilde{X} est déterminé à un X-isomorphisme près par ces conditions.

Démontrons l'existence de \widehat{X} , p, Y; on prend pour Y l'ensemble des points $x \in X$ où $\mathcal{O}_{X,x}$ n'est pas normal. Cet ensemble est analytique fermé d'après le théorème 2, et il est rare, car il est contenu dans le lieu singulier S(X) qui est lui-même rare puisque X est réduit (conséquence immédiate du théorème d'Abhyankar, exposé 20, D, théorème 3, puisque les localisés d'un anneau réduit en ses idéaux premiers minimaux sont des corps). On pose d'autre part $\widehat{X} = \operatorname{Specan}(\widehat{\mathcal{O}}_{X})$, et on désigne par p son morphisme structural, en utilisant le faisceau cohérent $\widehat{\mathcal{O}}_{X}$ du corollaire 2; p est un morphisme fini, et il est surjectif car $\mathcal{O}_{X} \to \widehat{\mathcal{O}}_{X}$ est injectif. Pour montrer que $p^{-1}(Y)$ est rare, plaçonsnous au voisinage du point x_i de la fibre de \widehat{X} au-dessus d'un point $x \in X$, qui correspond à un idéal premier minimal p_i de $\mathcal{O}_{X,x}$; l'anneau local \mathcal{O}_{X} est isomorphe à la clôture intégrale de $\mathcal{O}_{X,x}/p_i$, et le morphisme $(\widehat{X}, x_i) \to (X, x)$ se factorise à travers la composante irréductible (X_i, x) de (X, x) dont l'anneau local est $\mathcal{O}_{X,x}/p_i$; d'où un morphisme $(\widehat{X}, x_i) \to (X_i, x)$

qui est fini et surjectif (car $\mathcal{O}_{X,x}/p_i \to \mathcal{O}_{X,x}$ est injectif). Si $p^{-1}(Y)$ était

un voisinage de x_i , on en déduirait que Y est un voisinage de x dans X_i , ce qui est absurde, car Y est rare dans X et l'intérieur de X, par rapport à X, est dense dans X, .

Reste à prouver l'unicité de (X , p) soumis aux conditions de l'énoncé. Il suffit pour cela d'établir que $p_*(0)$ est nécessairement isomorphe au faisce au $\widetilde{\mathfrak{O}}_{\widetilde{X}}$ du corollaire précédent, car pétant fini, on sait que \widetilde{X} est isomorphe au spectre analytique de $p_*(0)$. La question est locale sur X; on se place au voisinage d'un point $x \in X^{\widetilde{X}}$. Comme $p^{-1}(Y)$ est rare, il existe une section f de Q_{X} dans un voisinage U de x, telle que f(y) = 0 pour tout $\mathbf{y} \in \mathbf{Y} \cap \mathbf{U}$, ettelle que $\mathbf{f}_{\mathbf{x}} \in \mathcal{O}_{\mathbf{x},\mathbf{x}}$ soit non diviseur de 0 dans $\mathbf{p}_{\mathbf{x}}(\mathcal{O}_{\mathbf{x}})_{\mathbf{x}}$; on peut choisir U assez petit pour que $f_{x^!} \in O_{X,x^!}$ soit encore non diviseur de 0 dans $p_*(Q_{\widetilde{Y}})_{X^!}$ pour tout $X^! \in U$.

Du fait que $\widetilde{X} - p^{-1}(Y)$ est isomorphe à X - Y, on déduit que

$$p_*(o_{\widetilde{X}}) \mid (X - Y) \approx o_{\widetilde{X}} \mid (X - Y)$$

alors on a un homomorphisme injectif : $f \cdot p_*(\mathbb{Q}_{\widetilde{V}}) | U \to \mathbb{Q}_U$, puisque f s'annule sur Y n U . Comme dans la démonstration du corollaire 2, on construit à partir de là un homomorphisme injectif

$$p_*(0_{\widehat{Y}}) \mid U \rightarrow 0_U[\frac{1}{f}]$$

qui donne, en un point $z \in U$, un homomorphisme

$$p_*(0_{\widetilde{X}})_z \hookrightarrow 0_{X,z}[\frac{1}{f_z}] \qquad ;$$

comme $p_*(0_v)_z$ est intégralement clos, on en déduit qu'il est $0_{X,z}$ -isomorphe à la clôture intégrale de Ox.z. Donc

$$b^*(o^X)$$
 in $\gtrsim g^X$ in

(grace à l'assertion d'unicité du corollaire 2).

Définition. — On dit que l'espace \widetilde{X} , muni de son morphisme structural p est le normalisé de X.

On a déjà noté que la fibre en un point $x \in X$ du normalisé X est en correspondance bijective avec l'ensemble des composantes irréductibles de X en x.

C. Complétés des algèbres analytiques.

THÉORÈME 3. - Soit A une algèbre analytique sur un corps valué complet non discret et algébriquement clos k, et soit le complété de A.

- a. Pour que A soit réduit, il faut et il suffit que le soit.
- b. Pour que A soit intègre, il faut et il suffit que A le soit.
- c. Pour que A soit normal, il faut et il suffit que A le soit.

Notons d'abord que l'assertion (b) résulte de (c). En effet, supposons (c) établi, et considérons une algèbre analytique intègre A; il faut prouver que \hat{A} est intègre. Or la clôture intégrale A' de A est intègre et finie sur A; c'est donc une algèbre analytique normale (propriété hensélienne de A) et d'après (c) son complété \hat{A}' est encore normal, et en particulier intègre ; comme $\hat{A} \subset \hat{A}'$, on en déduit que \hat{A} est intègre.

La démonstration de (a) et (b) repose sur les critères de SERRE rappelés plus haut et sur deux lemmes.

régulier et n un entier. Pour que A vérifie la condition (S_n), il faut et il suffit que son complété À la vérifie.

IEMÆ 5. - Soit A une algèbre analytique et soit son complété. Considérons un idéal premier q de Â, et posons $p = q \cap A$. Pour que Â, soit régulier, il faut et il suffit que A_p soit régulier.

Autrement dit, le lieu singulier $S(\hat{L})$ de $Spec(\hat{L})$ est l'image réciproque de celui de $Spec(\hat{L})$ par le morphisme canonique $f: Spec(\hat{L}) \to Spec(\hat{L})$.

Supposons $B = \hat{\Lambda}_q$ régulier. Il est plat, donc fidèlement plat sur $C = \hat{\Lambda}_p$. Il en résulte que C est aussi régulier, car on a

$$\operatorname{Tor}_{\mathbf{i}}^{\mathbb{C}}(\mathtt{k}_{\mathbb{C}}^{\mathsf{c}}, \mathtt{k}_{\mathbb{C}}^{\mathsf{c}}) \otimes_{\mathbb{C}} \mathbb{E} \underline{\vee} \operatorname{Tor}_{\mathbf{i}}^{\mathbb{B}}(\mathtt{B} \otimes_{\mathbb{C}}^{\mathsf{c}} \mathtt{k}_{\mathbb{C}}^{\mathsf{c}}, \mathtt{B} \otimes_{\mathbb{C}}^{\mathsf{c}} \mathtt{k}_{\mathbb{C}}^{\mathsf{c}})$$

en vertu de la platitude (on a désigné par $k_{\mathbb{C}}$ le corps résiduel de \mathbb{C}). Si $i > \dim(\mathbb{B})$, le second membre est nul (théorème des syzygies), et comme \mathbb{B} est fidèlement plat, on en déduit

$$Tor_{i}^{C}(k_{C}, k_{C}) = 0$$

d'où

$$gldh(C) \leqslant dim(B) < + \infty$$

ce qui prouve que C est régulier ([3], théorème 3).

Réciproquement, supposons A_p régulier. Alors il existe une sous-algèbre analytique régulière B de A telle que A soit finie sur B et étale sur B en p (proposition 1). On voit alors que est finie sur B et étale sur B en q (par extension de la base); comme B est régulière, il en est de même de son localisé en $q \cap B$, et par suite A_q est régulière.

COROLIAIRE. - Pour qu'une algèbre analytique A vérifie la condition (R_n), il faut et il suffit que son complété À la vérifie.

Avec le lemme 4 et les critères de SERRE, ce corollaire donne la démonstration du théorème 3.

Application aux produits d'espaces analytiques.

THÉORÈME 4. - Soient X et Y deux espaces analytiques (k algébriquement clos). Considérons leur produit X x Y .

- a. Le lieu singulier $S(X \times Y)$ de $X \times Y$ est $(S(X) \times Y) \cup (X \times S(Y))$.
- b. Si X est réduit (resp. intègre, normal) en un point x et Y réduit (resp. intègre, normal) en un point y, le produit X x Y est réduit (resp. intègre, normal) en (x, y).

Le raisonnement est analogue à celui du théorème 3. Il repose sur deux lemmes :

IEMME 6. - Si A et B sont des algèbres analytiques vérifiant la condition (S_n) , A $\hat{\omega}_k$ B vérifie la condition (S_n) .

IEMME 7. - Soient A et B des algèbres analytiques, et soit p un idéal premier de $C = A \hat{e}_k$ B; posons $q = p \cap A$ et $r = p \cap B$. Pour que C_p soit

régulier, il faut et il suffit que Aq et Br soient réguliers.

La condition est nécessaire d'après un lemme général sur les anneaux locaux noethériens. Réciproquement, si A_q et B_r sont réguliers, il existe des sous-algèbres analytiques régulières $A_o \subset A$ et $B_o \subset B$ telles que A (resp. B) soit finie sur A_o (resp. B_o) et étale sur A_o (resp. B_o) en Q (resp. Q) en déduit que Q Q0 est finie sur Q0 et étale dessus en Q0 (en faisant l'extension de la base en deux temps); comme Q0 est régulier, le lemme en résulte.

BIBLIOGRAPHIE

- [1] GROTHENDIECK (Alexander). Séminaire de Géométrie algébrique, 1961/62. Paris, Institut des hautes Etudes scientifiques, 1962.
- [2] GROTHENDIECK (A.) et DIEUDONE (J.). Eléments de géométrie algébrique, IV. Paris, Presses universitaires de France (à paraître) (Institut des hautes Etudes scientifiques, Publications mathématiques).
- [3] SERRE (Jean-Pierre). Sur la dimension homologique des anneaux et des modules noethériens, Proceedings of the international symposium on algebraic number theory [1955. Tokyo and Nikko]; p. 175-189. Tokyo, Science Council of Japan, 1956.
- [4] SERRE (Jean-Pierre). Faisceaux algébriques cohérents, Annals of Math., Series 2, t. 61, 1955, p. 197-278.
- [5] SERRE (Jean-Pierre). Algèbre locale et multiplicités. Cours au Collège de France, 1957/58 (multigraphié).