Reprinted from the Proceedings of the International Colloquium on

Discrete Subgroups of Lie Groups and Applications to Moduli Bombay, January 1973

AUTOMORPHY FACTORS OF HILBERT'S MODULAR GROUP

By EBERHARD FREITAG

Introduction. Let Γ be a group of analytic automorphisms of a domain $D \subset \mathbb{C}^n$. By an automorphy factor of Γ we understand a family of functions $I(z, \gamma)$, $z \in D$, $\gamma \in \Gamma$ holomorphic on D and without zeros, which satisfy the condition

$$I(z, \gamma' \gamma) = I(z, \gamma) I(\gamma z, \gamma').$$

The most-occurring factors are the following ones

1) The trivial factors

1.

$$I(z, \gamma) = \frac{h(\gamma z)}{h(z)}$$
.

Here h is a holomorphic function on D without zeros.

- 2) The powers of the complex functional determinant (Jacobian).
- 3) The abelian characters v of Γ

$$I(z, \gamma) = v(\gamma).$$

The determination of all automorphy factors belonging to a discontinuous group is a difficult problem in general. It is roughly equivalent to the calculation of

Pic D/Γ = group of analytic line bundles on D/Γ .

More precisely, if I operates without fixed points, we have

Pic
$$D/\Gamma = \frac{\text{group of automorphy factors}}{\text{subgroup of trivial factors}}$$

There is a well-known isomorphism

Pic
$$D/\Gamma = H^1(D/\Gamma, \mathcal{O}^*)$$

(0 = sheaf of automorphic functions,

O* == sheaf of invertible automorphic functions).

By means of the exact sequence

$$0 \to Z \to 0 \xrightarrow{\exp} 0^* \to 0,$$

we reduce the original problem to the calculation of

- a) the singular cohomology of D/Γ
- b) the analytical cohomology $H^{\bullet}(D/\Gamma, \mathcal{O})$.

This program could be carried out almost completely for the domain

$$D = H^* = H \times ... \times H$$
, H the usual upper halt-plane.

Matsushima and Shimura succeeded in calculating those groups in case of a compact quotient by means of the Hodge theory [3]. As for the non-compact quotients D/Γ (Hilbert's modular groups) similar complete results have been found.

a) The singular cohomology was investigated by G. Harder [2].

Let us give a very brief indication of the specific problems arising in the non-compact case.

By "cutting off cusps" of D/Γ one gets a manifold with boundary.

There is a natural mapping from the cohomology of the whole space D/Γ to the (well-known) cohomology of the boundary. In the mentioned paper, Harder determined the image and the kernel of this map. His detailed study of this problem leads into the theory of non-analytic modular forms, especially into the theory of Eisenstein series.

b) The analytical cohomology was determined in [1].

To overcome the discrepancy between the standard compactification of D/Γ and a non-singular model, we had to carry out a thorough investigation of the algebraic nature of the cusps. But it was not necessary to get a concrete resolution of the cusps.

1. The main result. In the following let I be a group of simultaneously fractional linear substitutions

$$M(z_1, ..., z_n) = \left(\frac{a_1 z_1 + b_1}{c_1 z_1 + d_1}, ..., \frac{a_n z_n + b_n}{c_n z_n + d_n}\right)$$

of the half space

$$H^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n ; \text{ Im } z_n > 0 \text{ for } 1 < \nu < n\}.$$

We are only interested in the case in which Γ is commensurable with Hilbert's modular group of a totally real number field. We define the complex power

$$a^b = e^{b \log a}$$
, $a \neq 0$

by the principal branch of the logarithm.

THEOREM 1. In case of n > 3 the only automorphy factors of Γ are:

$$I(z, M) = v(M) \prod_{r=1}^{n} (c, z, +d_r)^{2r}, \frac{h(Mz)}{h(z)}$$

where

- a) $r = (r_1, ..., r_n)$ is a vector of rational numbers;
- b) {v(M)} Mer is a system of complex numbers of absolute value one;
- c) h is a holomorphic invertible function on H*.

This factorisation of I is unique.

By a system of multipliers of weight $r=(r_1,...,r_n)$ we understand a family $\{v(M)\}_{M\in\Gamma}$ of complex numbers of absolute value one, such that

$$I(z, M) = v(M) \prod_{r=1}^{n} (c_r z_r + d_r)^{2r_r}$$

is a factor of automorphy.

AMENDMENT TO THEOREM 1.

- 1) The group of abelian characters of Γ is finite.[‡]
- 2) If $r = (r_1, ..., r_n)$ is the weight of a multiplier system, the components r_n have to be rational and their denominators are bounded (by a number which may depend on the group).

The method used for the proof is valid also in case of n < 3. But one has to carry out some separate investigations because in this case the first cohomology groups are not trivial.

1A more general result has been proved by Serre [4].

We now discuss an application of the main theorem.

A meromorphic modular form with respect to Γ is a meromorphic function on H^* satisfying the functional equations:

$$f(Mz) = v(M) \prod_{r=1}^{n} (c_r z_r + d_r)^{2r_r} f(z) \text{ for } M \in \Gamma.$$

We call $r = (r_1, ..., r_n)$ the weight and v(M) the multiplier system of f.

We are interested in the zeros and poles of f which we describe by a divisor (f) as usual.

By a divisor we understand a formal and locally finite sum

$$D = \sum_{Y} n_{Y} Y, \ n_{Y} \in \mathbb{Z}$$

the summation being taken over irreducible closed analytic subvarieties of codimension one.

THEOREM 2. Let \mathcal{D} be a Γ -invariant divisor on H^n , n > 3. There exists a meromorphic modular form f with the property

$$\mathscr{D}=(f).$$

PROOF. The space H^* is a topologically trivial Stein-space. Therefore we can find a meromorphic function g on H^* with

$$\mathcal{D}=(g).$$

The function

$$I(z, M) = \frac{g(Mz)}{g(z)}, M \in \Gamma$$

is without poles and zeros because D is Γ-invariant. We therefore can apply Theorem 1. Put

$$f=\frac{g}{h}.$$

2. Sketch of proof. The group Γ operates in a natural way on the multiplicative group $H^0(D, \mathcal{O}^*)$ of holomorphic invertible functions on $D = H^*$.

The automorphy factors are nothing else but the 1-cocycles with regard to the standard complex and the trivial factors $h(\gamma z)/h(z)$ are the 1-coboundaries, i.e.

$$H^1(\Gamma, H^0(D, \mathcal{O}^*)) = \frac{\text{group of automorphy factors}}{\text{subgroup of trivial factors}}$$

Theorem 1 may thus be formulated as follows

THEOREM 3. The group $H^1(\Gamma, H^0(D, O^*))$ is finitely generated and of free rank n.

We now want to pass on a subgroup $\Gamma_{\bullet} \subset \Gamma$ of finite index in order to eliminate the elements of finite order. Let $\Gamma_{\bullet} \subset \Gamma$ be a normal subgroup of finite index. Putting

$$A=H^0(D,\mathcal{O}^*)$$

we obtain by means of the Hochschild-Serre sequence

$$0 \to H^1(\Gamma/\Gamma_\bullet, \mathbb{C}^*) \to H^1(\Gamma, A) \to H^1(\Gamma_\bullet, A)^{\Gamma/\Gamma_\bullet} \to H^2(\Gamma/\Gamma_\bullet, \mathbb{C}^*).$$

(Since every holomorphic modular function is constant, we have

$$A^{\Gamma_{\bullet}}=\mathbf{C}^{*}.$$

The groups $H^*(\Gamma/\Gamma_0, \mathbb{C}^*)$ are finite. This is proved by means of the sequence

$$0 \rightarrow Z \rightarrow C \rightarrow C^* \rightarrow 0$$
.

In general, the cohomology groups of a finite group which acts trivially on Z, are finite.

We therefore can assume without loss of generality:

The group Γ is a congruence-subgroup of Hilbert's modular group without torsion.

In the case at hand it is easy to be seen

$$H^{1}(\Gamma, H^{0}(D, \mathcal{O}^{*})) = H^{1}(D/\Gamma, \mathcal{O}^{*}),$$

i.e. there is a one-to-one correspondence between the factor classes and the classes of isomorphic analytical line bundles on $X_{\bullet} = D/\Gamma$.

We now treat the group

Pic
$$X_{\bullet} = H^1(X_{\bullet}, \mathcal{O}^{\bullet}), X_{\bullet} = D/\Gamma$$

by means of the sequence

$$0 \to Z \to 0 \xrightarrow{\exp} 0^* \to 0.$$

Hereby \mathcal{O} is the sheaf of holomorphic functions on X_{\bullet} . From the long cohomology sequence results

$$H^1(X_0, \mathcal{O}) \to \operatorname{Pic} X_0 \to H^2(X_0, \mathbb{Z}).$$

We thus have to calculate the groups $H^1(X_0, \mathcal{O})$ and $H^2(X_0, \mathbb{Z})$.

THEOREM 4. The groups $H'(X_0, 0)$ vanish for $1 < \nu < n-2$.

PROOF. Let S be the finite set of cusp classes of Γ and

$$X = X_{\bullet} \cup S$$

the standard compactification of $X_0 = D/\Gamma$. There is a long exact sequence, which combines the cohomology with supports in S with the usual cohomology of sheafs

$$H_{\mathcal{S}}^{r}(X,\mathcal{O}) \to H^{r}(X,\mathcal{O}) \to H^{r}(X_{\bullet},\mathcal{O}) \to H^{r+1}(X,\mathcal{O}) \to H^{r+1}(X,\mathcal{O}).$$

From my paper [1] the result (Theorem 7.1)

$$H_S^*(X, \mathcal{O}) \simeq H^*(X, \mathcal{O})$$
 for $1 < \nu < n$

is taken.

An analysis of the proof shows that this isomorphism is induced by the natural mapping

$$H_{\mathcal{B}}(X, \mathcal{O}) \to H'(X, \mathcal{O}).$$

In case of n > 3 we now obtain the exact sequence

$$0 \rightarrow \text{Pic } X_{\bullet} \rightarrow H^1(X_{\bullet}, \mathbb{Z}).$$

Obviously the free rank of Pic X_0 is not smaller than n because the automorphy factors

$$I_{\nu}(z, M) = (c, z, +d_{\nu})^{2}$$
 (1 < ν < n)

are independent of each other.

Therefore Theorem 3 has been proved if one knows that $H^2(X_0, \mathbb{Z})$ is of free rank n. That means

THEOREM 5. In case of n > 3 we have

$$\dim_{\mathbb{C}} H^2(X_0, \mathbb{C}) = n, X_0 = D/\Gamma.$$

Proof. We derive the calculation of the 2nd Betti number of X, from Harder's investigations on the singular cohomology of $X_* = D/\Gamma$ [2].

This will be explained briefly in the following.

By cutting off cusps we obtain a bounded manifold X^* which is homotopically equivalent to X_0 . (The boundary component at the cusp is given by

$$\prod_{r=1}^{n} \text{Im } z_{r} = C; \quad C \gg 0.)$$

In the paper quoted above, Harder gives a decomposition of the singular cohomology of X_0

$$H^{\bullet}(X_{\bullet}, \mathbb{C}) = H^{\bullet}(X^{*}, \mathbb{C})$$

$$= H^{\bullet}_{inf}(X^{*}, \mathbb{C}) \oplus H^{\bullet}_{univ}(X^{*}, \mathbb{C}) \oplus H^{\bullet}_{eusp}(X^{*}, \mathbb{C}).$$

This decomposition has the following properties:

(1) The canonical mapping

$$\zeta^*: H^*(X^*, \mathbb{C}) \to H^*(\partial X^*, \mathbb{C})$$

defines an isomorphism of $H_{inf}(X_0, \mathbb{C})$ onto the image of ζ^* .

(2) H_{univ}(X₀, C) is a subring, generated by the cohomologyclasses attached to the universal harmonic forms

$$\frac{dx_{,} \wedge dy_{,}}{y_{,}^{2}}, 1 < \nu < n.$$

(3) The cohomology classes in $H_{\text{cusp}}^{\bullet}(X_{\bullet}, \mathbb{C})$ can be represented by harmonic cusp-forms (which are rapidly decreasing at infinity).

The image of (* can be represented by means of the theory of Eisenstein series. One has

$$H_{inf}^{\nu}(X_0, \mathbb{C}) = 0$$
 for $1 < \nu < n-1$.

For the subspace of cusp forms $H_{\text{cusp}}^{\bullet}(X_{\bullet}, \mathbb{C})$ one has a Hodge decomposition

$$H_{\text{cusp}}^r = \bigoplus_{p+q=r} H_{\text{cusp}}^{p,q}$$

This part of the theory coincides with the investigations of Matsushima and Shimura [3] who treated the case of a compact quotient D/Γ . One has

$$H_{\text{cusp}}^{\nu}(X_0, \mathbb{C}) = 0$$
 for $\nu \neq n$ and therefore $H^2(D/\Gamma, \mathbb{C}) = H^2_{\text{univ}}(X_0, \mathbb{C})$ $(n > 3)$.

A basis of this vector space is represented by the harmonic forms

$$\frac{dx_{*} \wedge dy_{*}}{y_{*}^{2}} \quad 1 < \nu < n.$$

Remark. The dimension of $H_{\text{cusp}}^{p,q}$ can be calculated explicitly using the methods of [1]. One obtains an expression in terms of Shimizu's rank polynomials.

3. Line bundles on the standard compactification D/Γ . Every Γ -invariant divisor \mathcal{D} on $H^n(n > 3)$ can be represented by a modular form of a certain weight $r = (r_1, ..., r_n)$ according to Theorem 2.

Finally we investigate the problem in which case the weight r satisfies the condition

$$r_1 = \ldots = r_n$$

Firstly, \mathcal{D} defines a divisor on $X_0 = H^n/\Gamma$ which can be continued to a divisor on the standard compactification $X = D/\Gamma$ due to a well-known theorem of Remmert.

Then, we call \mathcal{D} a Cartier divisor, if the associated divisorial sheaf on X is a line bundle, i.e. for each point $x \in X$ (even if it is a cusp) exists an open neighbourhood U and a meromorphic function $f: U \to \mathbb{C}$ which represents \mathcal{D} :

$$(f)=\mathscr{D}/U.$$

At the regular points, this is automatically the case.

THEOREM 6. In the case of n > 3 the following two conditions are equivalent for a Γ -invariant divisor:

1) The divisor D is defined by a meromorphic modular form of the type

$$f(Mz) = v(M) \left[\prod_{r=1}^{n} (c, z, +d_r)^2 \right]^r f(z) \quad \text{for } M \in \Gamma$$

$$(|v(M)| = 1; r \in \mathbb{Q}).$$

ii) A suitable multiple $k\mathcal{D}$, $k \in \mathbb{Z}$, of \mathcal{D} is a Cartier divisor.

PROOF. The condition ii) is only relevant in the case of cusps. One has to observe that in H^n/Γ only a finite number of quotient singularities occur.

Firstly we show i) => ii).

We may assume that r is integer because we can replace f by a mitable power. In that case v has to be an abelian character.

This character has — owing to amendment 2 of Theorem 1 — finite order. Therefore we may assume v = 1.

Let co be a cusp of I.

The form f is invariant by the affine substitutions of I

$$z \rightarrow \epsilon z + \alpha$$

and therefore induces a meromorphic function in a neighbourhood of the cusp, which obviously represents the divisor D.

We may assume that 9 is a Cartier divisor. This means for the cusp: There exists a meromorphic function

$$g: U_C \to C; U_C = \{z \in H^n; N(\operatorname{Im} z) > C\}$$

with the properties

a) g is Prinverient,

b)
$$(g) = 9$$
 in U_c .

The function $h=rac{f}{g}$ is holomorphic and without zeros. The transformation law

$$h(\epsilon z + \alpha) = v \begin{bmatrix} \epsilon^{1/2} & \epsilon^{-1/2} \alpha \\ 0 & \epsilon^{-1/2} \end{bmatrix} \prod_{\nu=1}^{n} \epsilon_{\nu}^{\nu} h(z)$$

is valid. By means of a variant of Koecher's principle one sees, that the limit value

$$\lim_{N(\text{Im }s)\to\infty}h(z)=C$$

exists and is finite.

The same argument also holds for the function $\frac{1}{h}$ instead of h.

Therefore C has to be different from zero. It follows that

$$v \begin{bmatrix} \epsilon^{1/2} & \epsilon^{-1/2} \alpha \\ 0 & \epsilon^{-1/2} \end{bmatrix} \prod_{r=1}^{n} \epsilon_r r = 1$$

and therefore

$$r_1 = \dots = r_n$$

Finally we mention an interesting application without supplying the proof.

CONCLUSION TO THEOREM 4. In case of n > 3 we have

Pic
$$X = \mathbb{Z}$$
, $X = \overline{H^*/\Gamma}$ (standard-compactification).

We also have got some information about a generator of Pic X. Choose a natural number e, such that

$$\gamma^{\circ} = id$$
 for $\gamma \in \Gamma$.

Then $\mathcal{K}^{\circ}(\mathcal{K} = \text{canonical divisor})$ defines a line-bundle on X.

This bundle generates a subgroup of finite index in Pic X

$$N = [\operatorname{Pic} X : \{ \mathscr{X}, \nu \equiv 0 \bmod e \}].$$

It is possible to calculate the Chern-class of a generator of Pic X

$$c(\mathcal{K}^{e/N}) = \frac{1}{2\pi i} \frac{e}{N} \sum_{r=1}^{n} \frac{dz_r \wedge d\bar{z}_r}{y_r^2}$$

This defines in fact a cohomology class on X.

We now make use of the fact that Chern-classes are always integral, i.e.

$$\int\limits_{\mathcal{X}}c(\mathcal{K}^{e/N})\in\mathbf{Z},$$

where γ is a two-dimensional cycle on X. Such cycles can be constructed by means of certain specializations. The simplest case is

$$z_1 = \ldots = z_n$$

If one carries out the integration, one obtains conditions for N.

EXAMPLE. If I is the full Hilbert-modular group, then

$$\int_{z_1-\cdots-z_n}c(\mathscr{K}^{e/N})=\frac{en}{3N}\in\mathbf{Z}.$$

REFERENCES

- L. E. Frankag: Lokale und globale Invarianten der Hilbertschen Modulgruppe, Invent. math. 17, (1972) 106-134.
- 2. G. HARDED: On the cohomology of Sl (2, 0) (preprint).
- 3. Y. MATSUSHIMA and G. SHIMURA: On the cohomology groups attached to certain vector-valued differential forms on the product of the upper half planes. Ann. of Math. 78, (1963), 417-449.
- J. P. SERRE: Le problème des groupes de congruence pour Sl₂.

 Ann. of Math., 92 (1970), 489-527.