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Introduction.
The Siegel modular variety

An = Hn/I'n P Pn = Spi{n,E) ,

Hn = Siegel upper half plane of genus n

is for sufficiently high genus n of general type. This
important result is due to Y. Tai [8]. His bound {(n > 9)

has been improved (see [3] for n > 8, [6] for n > 7).

It may be expected that similar structure theorems are true
for subvarieties of A, if they are not in too special po-
sition (in a sense which has to be made precise),

One promising method to investigate a subvariety Y c An is
to construct holomorphic tensors

ed 5
T EQ (An)

on a desingularization in of a compactification of An. The
restriction of such a tenser to Y extends to a holomorphic
tensgor on any nonsingular variety ¥ which is birationally
- equivalent to ¥, If the tensor T is a multicanonical form

Te W% A) ., w=nmn/2,

the restriction to any proper subvariety vanishes.

For this reason we have to consider more general types of
tensors. In this connection the following weakened form of

the notion "general type" seems to be natural.
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Definition: A nonsingular compact irreducible

algebraic variety X is of type G ("general") if there exist

n = dim X algebraically independent rational functions
f%""'f

and a holomorphic tensor
®d

n

T € Q Xy , d>0 , T#o0,

such that the tensors f1T,...,fnT are holemorphic on X.

This notion is of course birational invariant. We call an

arbitrary irreducible variety of type G if it is birational
equivalent to a nonsingular compact variety with this
property.

Of course varieties of type G are far away from being uni-
rational.

Our main result is the following

Theorem: There is a certain bound n, such that for

n * ng each irreducible subvariety

Yea =H/T,

of codimension 1 is of type G.

Let

~ M
An + An = An

be a desingularization of the Satake -compactification. By
means of the explicit construction of such an ﬁn [1l] we may

deduce:

In contrast to the above theorem no irreducible subvariety
¥ of codimension 1 which is contained in the inverse image
of the boundary

T(Y) < An\\ An
is of type G.

A remarkable consequence'of this observation and the above

theorem is the following {(compare [5], Satz 7).

Corollary 1. There is no birational automorphism of A .

n > n,, besides the identy.

J—



Equivalently: Each automorphism of the field K(?n) of

modiular functions which fixes € is trivial.

Another consequence of the theorem is the following mini-

mality property of A (compare [5], 8. 33, Folgerung).

Corollary 2. Let (An)reg (n > n,} be the regular locus
| of An and in a nonsingular compactification

An > (An)reg )

Let

n

be any birational everywhere helomeorphic map. The restric-

tion

T (2} X

=+
reg

‘ds an open embedding.
fﬁﬁe“tensors we are considering are of the form
1)

Here f is a usual scalar-valued Siegel modular form and
’d

T = fTo .

T
T € 2y

ﬁ'is the dual of the tangent space of H,, i.e. the

f symmetric n-rowed matrices,

e = 2,0
Zn = Symm” (C) .

tant tensor" T0 has to be invariant under the
detion of 8l(n,C). For a suitable chosen weight of
sd: T will then be invariant under the modular

[5] I used scalar-valued Hilbert-modular forms
.ar results for Hilbert-medular varieties of
uring_my stay at Harvard 1981 I had the chance
With-D- Mumford the possibility of constructing
jensors on a nonsingular compact model ﬂn of
gﬁhJ(the moduli variety of curves of genus n).

S

ﬁﬁe an example of a constant Sl(n,C)-invariant
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tensor TO whose restriction to Mn does not vanish. It is
possible to investigate the conditions which a modular form
f must satisfy so that

gp @M
o

defines a holomorphic tensor on ﬂn' It is further possible
to prove the existence of such f by means of the Mumford-
Hirzebruch-proportionality theorem. {This method has been
used by Tai [8] to prove the existence of many multicano-
nical tensors on ﬁn.) But it seems to be very hafd to get
concrete examples of such modular forms £ which do not
vanish identically on M.

I still believe that the indicated method is good enough to
prove structure theorems for M, and for many subvarieties
of M.

The present paper is of course highly influernced by many

conversations with D. Mumford.

§ 1. Pn-invariant tensors.

The symplectic¢ group Sp(n,R} acts on the 8iegel upper half
plane H, by means of the well known formula

1

(3) 7 +mz = (az +BY(CZ +D)" ', m=(* B

cC D) '
The derivative of M at a point Z0 E_Hn is given by

(4) (amy(z) = 2, + 7,

--1 -
1
W (czg + cyrTlWcz, + D) .
Hereby I, denotes the tangent space of'Hn,
-z =2 =2

z
n
There is a natural action of Gl(n,C) on an namely

h W+ p(A)W=A'WA , A€ GL(n,€) .

The representation (Zn,p) is isomcrphxc with the natural
representation of Gl(n,C)} on Symm {¢®). we denote by

25 = Hom(zn,m) the dual space of Zn and by p' the contra-

gredient representation.
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A holomorphic tensor on Hn is a holomorphic map
. lsd-- 1 1
T : Hn -+ Zn = Zn ac P @C Zn .
The tensor T is invariant under a symplectic substitution M

if and only if

®d

(5) T(MZ) = o’ (CZ + D)T(Z) .

We are interested in tensors T which are invariant under
some subgroup I' € Sp(n,R), commensurable with the mocdular
group Fn = Sp(n,Z). We want to construct such tensors by
means of usual (scalar-valued) Siegel modular forms. A
modular form of weight r € £ is a holomorphic function

£ : Hn +

_ with the transformation property

(6) £(Mz) = det(CZz + D)"£(2) , MeT .

If n = 1 a well known growth condition at infinity has to
be added.

lie Jacobian determinant of a symplectic substitution is

det(cz + py~ Pt

{(nr £ 0 mod 2)

 Sbiny€)~invariant tensor and £ a modular form of

”'gﬁth respect to I'. The tensor

T = fT,

r=invariant.
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Proof. The Sl{n,C)-invariance of To implies

L8nr/2

- = m
T°|A (:=p T, (det a)'T_ .

The exponent m can be determined if one specializes A = aE
{(E = unit matrix). One cobtaings m = r.

Some examples of tensors To'

1) A symmetric tensor.

ed

Symmetric tensors in Zﬁ can be identified with polyno-

mials on Zn. Let T, be the 51(n,C)-invariant polynomial

Zn + C

W+ det W .

If £ is any modular form of even weight 2r with respect to
T then

f-To

is a holomorphic I'~invariant symmetric tensor on Hn.

2} Multicanonical tensors.

If £ is modular form of weight r{n+1), the tensor

(8) f-Tg , T.= A daz

©  <i<k<n ¥

is T-invariant,

3) To get more complicated examples we consider polynomials
P(W.r...,W) on Zn x ... x I, with the property

dq ak
a) (9) PUEW e W) = £ ool £ 5P W)

There exists a unique multilinear form oﬁ Zéd1+°"+dk)

(1 (d1) (1) (ax)
MW, e W e W W )

with the property

d1 dk

———, et ———
i} P(W1,...,Wk) = M(W1,...,W1,..., ey k)

ii) M is symmetric in each (W$1),a..,WédV)). -

We identify P with the tensor M

Fooat
pEI ol %! .
n
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We impose on P a further condition:

b} P(W1,...,wk) depends only on the Pliicker-coordinates
pf (W1,...,Wk), i.e. on

k
W1 Aee. AW E A Zn .
It is easy to be seen that this is equivalent with
P e sym?(A¥2 ) = symn® (A¥ (symm® (€™))) ,
d = d1 = .. = dk .
As we already mentioned we are interested in Sl (n,C)-inva-
riant polynomials P:
c) P(A'W,A,...,A'WA) = P(W;,...,W) , A € S1(n,C)

which implies

2kd/n

(10} <) P(A'W1A,...,A‘WkA) = (det A) P(W1,...,Wk) .

Such pelynomials arise in the theory of Chow forms [7]. The
idea to use Chow forms and especially the following example
is due to Mumford.

The set of matrices

(11) Zn[h] = {w € Zn, rank(W) <hl , 0<hz<n

is an irreducible algebraic variety, invariant under the
action of Gl{(n,C). Each W € Zn[h] can be written in the
form

w=aa , a=athm

A is unique up to left multiplication with an orthogonal
matrix. The dimension of the orthogonal group O(h,C} is
hih-1)/2. We therefore obtain

{(12) k := dim Znih] = hn -~ h(h-1}/2 .

To compute the Chow form of ZnEh] {more precisely of the
corresponding projective variety in the projective space

‘of Zn) one has to consider intersections with hyperplanes.
Any hyperplane can be written in the form

£13) Hg = {w € Zn, o(W8) = 0}, 8 € zn\{o} (¢ = trace).

The Chow form is - up to a constant factor - the unique
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irreducible polynomial P(W1,..., ) such that

(14)  ®H, n ... H%k Nz [h] # {0} = P(W,,....W)} =0 .
1

1.2 Lemma: There exists (up to a constant factor) a

unigque irreducible polynomial

P(WT""’Wk) r k =nh -~ h(h-1}/2 (0O < h < n)

such that the following two conditions are equivalent:

a) P(W1,...,Wk) = 0.

b) There exists a matrix § € Zn[h], S # 0, with the property

G(W1S) = ., = c(wks) =0 .

This polynomial defines a tensor

P € Symmd(ﬂkln)

which is invariant under S$1(n,C).

A dual construction yields

1.3 Lemma: There exists (up to a constant factor) a

unigue irreducible polynomial

P(W1,...,Wk) r Kk = n{n+l)/2 - nh + h(h=1)/2

such that the following two conditions are equivalent:

a) P(W1,...,Wk) = 0,

b) (€W, + ... + cw, ) n Z [(h] # {o}.

This polynomial defines a tensor

P € Symmd(Aan)

which ig invariant under Sl {n,C).

Let H < Zn be a linear subspace. By means of the natural
map Zﬁ + H' we obtain a restriction map
2,84 » go®a

T+ T|H .
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1.4 Lemma: Let H < 2n be any linear subspace of co-
dimension 1. Let P = Py be the tensor defimed in 1.3.
Assume

- Then
PlH# 0.

Proof. Let

H={we€l ,h6 o{WS) =0} , 8=85"#0.

nl
The invariancé of P under S1(n,€)} allows us to replace
§ + s{al =A'sa , A € Gl(n,C) .

-Therefore we may assume

The:space

W=w,w,=...=w =0}

is contained in H. Its dimension is n{n-1)/2. Take any
;bas;s W1""'Wn(n-1)/2 of this space. We claim

P(Wypeee Wy gy /g) #0 .

This means precisely that no non trivial linear combination
- of the W,~s has rank < 1 and this follows from the simple
fact that no symmetric matrix with zero-diagonal is of

rank 1.

- Let. Y c_Hn/T_be an algebraic subvariety, T a tensor on H,.
' We say. that T vanishes on Y if

(15) ™ 01, =0 .

Here [p—1(Y)]reg is the regular locus of the inverse image

of ¥ under the natural projection p : Hy +.Hn/r.

~From 1.1 and 1.4 we obtain
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1.5 Lemma: Let

a) P=P, € Symmd(An(n_1)/2ZA)

be the tensor defined in 1.3 (h = 1),

b) f a scalar-valued modular form of an arbitrary weightr,

c) Y Hn/F an irreducible subvariety of codimension 1,

d) m a natural number such that m' = mr/d(n-1) is integral.

L}
The F-invariant tensor f":P™ vanishes on Y if and only if

the modular form £ vanishes (as a function) on ¥ (i.e. on
-1
po{¥)).

§ 2. Extension of holomorphic tensors to smooth

compactifications.

In this section we assume n > 3. The set of elliptic fixed
points Fix(rn) of the modular group L= Sp(n,&) is of co-
dimension > 2. Therefore

o o . _ s
(16} Hn/rn . Hn 1= Hn F:Lx(I‘n)

is the regular locus of Hn/Fn. We denote by é;7?n a smooth
compactification of Hg/Tn which lies over the Satake-
compactification Hn/Pn,

(17) Bo/r. <~ 4_JT
n n I1 n

N/
Hn/I'n .

It is possible to investigate the conditions that a holo-
morphic tensor on Hﬁ/rn extends holomorphically to ﬁ;7f;
without making use of an explicit construction of a smooth
compactification. The method is described in detail in [3],
[4] for the main-congruence-subgroup of level 1 > 3 (in
this case no elliptic fixed-points occur) and rather sketch-
ily for Pn and multicancnical tensors in [3], pp. 195.

We now give the calculations in some detail for tensors of
the type

T=fr , Pesymd*@y) .
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We have to consider commutative diagrams of holomorphic
maps

v
(18) (z,w) gx g to3 uS
¥ s v
2ri ) SO
(e2™2 uy B ox gV % HO/T
n n
o ~ H /T, (satake-

compactification)

o iy - S
A holomorphic tensor T on Hn/I‘n extends to Hn/I'n iff for
each such diagram y*{T) extends to EN. A suitable 1lift ¥ of
Y is of the form

2riz/m
m - € / !

o 0
o~ (o s(“‘j’)

where m is a natural number and To is holomorphic in gqn=0
_jcompare {31, 11X 5.7, 5.8 and the remarks on p. 199).

{(19) ¥(z,w) = $52 + To(qm,w) r g

)

We define 2z, = z{1) = 7. (w) by

. Zq1 =

(20 ¥ (0w = ( ) .
* *

The imaginary part of Z1 is positive definite and not only
semipositive! This follows from the fact that each holo-
morphic map ¢ ¢ E + Z, with the property

¢(®) o, , ©(E) noE, # 0
#s.conetant. The point Z1 € Hj represents the limit point

lim ¥ (q,w}
q+0

in the Satake-compactification. We further know
(21} ¥(z+1,w) = M¥(z,w) .

Hereby M is contained in the subgroup rn 3 < Fn’
r
a; o By By Cy ©
a ae () e e (00,
o A3 A4 Bz Bg o 0

D D
D = ( 1 2)
0 Dy
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The image of M = (2 g) under the natural homomorphism
A1 B1
(23) T . +T. , M>M, = ( )
n,Jj 3 1 C1 D1

fixes Z1, M1Z1 = 21 and therefore is of finite order. A
suitable power of M is of the form

1 _ % *
Mm=1(y 4 + 1>0.
But then it follows easily [3], III 5.8
Mh = (g ;) + h > O suitable multiple of m .
From (19), (21) we obtain
h _ E hSo _ 0 ©
(24) M = (0 E ) ’ So = (o S} N

We now distinguish two cases:

Case I.

_ E T
(25) M = i(o E) N
We obtain

Solz+1) + ¥ (e*™ /My ) =5 2 4y (q) + T

and therefore

S° =T {(integrall}
(26) WO depends only on q = qg .
So we may write (new notation)
¥i{z,w) = Soz + ?o(q,w) + S, integral

We now consider a Pn-invariant tensor of the form fP, where
f iz a meodular form of weight r and

P e synm® (A%71) , 2ak = nr
is a polynomial with the properties a) - c)‘(§ 1}. We
compute
¥*(fP) = (fo ¥)-¥*(P) ,
vee) (21,2 ®y Cpavz My, L ar W)

The differential d¥ of ¥ (in a point (z,w)) is a linear map

1) . N
a¥y : € - Zn .
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If we denote by z = (g,nz,...,nN) the cocordinates of CN we
have
(27) av(z) = ¥ &+ ? v
3z e Wy, Ny -
We .obtain

(28) v*@) (21, ..., 2%

pis e w5 g ® xw @,

Wj(q-W) = Wj(q:W;Em) -

N1

Thig tensor on H x E is invariant under (z,w) » (2+1,w}.

N-1

It therefore defines a tensor on E x E namely

- = _ 1
+ Wk(q;W)) s S —m SO .

o] o

(29) PG By + Wot@w, ..y 8
. This function has in g = 0 a pole of order < d. Herebhy we
make usge of the fact that P(W1,...,Wk) depends only on the
Pl xker~coordinates of W1,...,Wk. {Otherwise we would

tain only the estimate "< kd".) The tensor Y*(fP) is

iglomorphic in g = O if either S, = O or if the function

0) E£(S_z + ¥o(q,w)) , S, #0, S, > 0, S, integral ,

o
filghes in g = 0 of order > d.

le. express this as a condition for the Fourier-coefficients

of

£(z) = ] a(me™9HD
H=H'>0
(H even, i.e. H is integral with even diagonal). We

obviously have to demand
1
a(H) # 0 = 5 o (HS,) > d
8, = 8§ > O integral, # 0 .
By a result of Barnes and Cohn [2]

min U(HSO) = min g'Hg =: min(H) .
gezn~{0}
The minimum min{H) is invariant under H - U'HU, U € 51l(n,%)
as well as a(H). Each unimodular class {U'HU, U € 81(n,z)}}
- contains a representative H with the property

min H = h11 .
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2.1 Definition: The vanishing order of a modular form
(at_infinity}

£(z) = ) a(H)e
H=H'>0,integral

7io (HZ)

relative to its weight r is greater or equal than a certain
number ¢ if

a(H) # 0 = h > or

1M -

o=

2.2 Résumé of the first case: If the vanishing order

of the modular form f (relative to its weight) is greater
or equal than
n/2k ,

the tengor f£-P has the desired extension-property.

Case II.

(32) M # :(g b (s. (21)) .

We transform the fixed point Z1 = 21(w) of M1 {23) into the
generalized unit disc

(33) By = {2 = z3) =3, 5 - 27 > 0}

by means of a complex symplectic substitution

A B
( ° °) € sp(j,c) .
CO DO

N, : H. +E, , N_ =

After a suitable choice of N, we have

NO(Z1) =0
|
|
|
I
1
- 1
(34) N M. N =] -——mw———— L
1
1
1
i
;

We now introduce a partial Cayley-transform of Hn‘ The
{complex) symplectic substitution
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- replace m by h and therefore assume m = h. We diagonalize U

e21Tia1/m 0

(43} A'Ua = : .

o o2Mian/m

o< a, < m (1 <v <) .

The polynomial P(Wg,...,wk) is - up to a constant factor -
invariant under W, + A'WyA. We therefore may assume

3 e21ria1/m

o)

U = ..
o e21r1an/m

- The most general solution of (42} is of the form
' W)
e Wold) = (wij (qm))

(v}

= faitajl/m (V)
wiy (qp) =4 AP CY

(ﬁé;)(q) holomorphic in |q| < 1, g = q$ = 2Tz

re fa; + aj] = la; + a;1  is defined by

Ay > POW () re e Wy (g))
W“(gm) as in (42)

9y = 0 is of order > md, the tensor f.P has the desired
ttengion~property.

. This vanishing order of course depends on the polynomial P.
In the next section we give a very rough estimate which

depends only on n and k and ByyesnsBy.
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§ 3. Estimations for vanishing orders.

We have to consider certain roots of unity

51 - e2'rr1a1/m eZﬂian/m

:--'rgn =

0 < a, < m , (a1,...,an) # (0;...,0)

The only information we want to use is that
51,...,En,ET,...,§; are the eigenvalues of an integral
matrix (namely M (21)). This has the following consequence:

Denote by P; the set of primitive roots of unity of order 1.
If {51,...,En} contains one element of P, (especially 1|m),
then

I PPN S SIS S I
A complete half-system of primitive roots of unity of order
1l is a set of representatives

n1----pﬁt
of Py mod n + n. We have

1 if 1 =1,2
(46} t = {
w(l)/2 41if 1 > 2

With this notation we obtain: The system
{92w1a1/m'_

.,ezﬂia"/m} is a disjoint union of complete

half-systems.
We now estimate the zero-order (in g, = 0) of the function

q, * P(W, (qm)..-.,wk(qm)) .

Here P(W1,...,Wk) is a polynomial as in § 1, i.e.

"p € symn? (a¥z1)"
the functionsg Wv(qm) are as described in (42), (44). Ob-
viously such a function W(qm} = Wv(qm) can be written in

the fellowing manner

a
! o

(47) Wig ) = Wa .

an

© In
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Ao 0 | Bo
o ¢ Et 0 O
-{35) N = —m————— L € Spin,C)
' Cq © : D ©
o 0 0 E
maps Hn'onto a domain Hn,j
{36) _ N :H > Hn’j <,
= Ep) -
w N1
Y = ¥ : HXE H .
Ne *n,j

ead of ¥. We have
Y(z+1,w) = MY (z,w) .

M is of the form

- _JE T, U'

M= (0 E)(O U--) ; U # B
we deduce

e—h_ E *

M= (G B

of finite order! We have
f(z,w) = 8,2 + ﬁotqm,w) , 8. =

{the same 8, @as in (24)1)

a¥(z+1,w) = u'a¥(z,w)u .

consider the pullback ¥*(p) (z‘1},...,z K}
mE-CN) as a function of z. A similar consideration as
he first case shows that this function is of the form

) G IR (W, (@) /e n Wy (Q)

Here ‘Wylgy,) (1 < v < k) are holomorphic functions in
Iqml ¢ 1. with the property

sz
(423 W, (e ™ q,) = U'W, (g U .

£ U #£ tE the function P(w1(qm),...,wk(qm)} will have a
k6. 6f a certain order at qp = O. We want to estimate this
iw The matrix U is of finite order h, mlh. We may
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is also > 1/(n~-1)} if m is big enough!

Thig simple observation completes the proof of our theorem,

Construction of f1""'ft‘
We use the wellknown "Thetanullwerte"

. 1
Ti{Z{ig+xal+b'g)
9 2

zy =} e
geen

a,b € {0,711 , a'b = O mod 2 .

a,b(

The functions
£,= 1 K Soo@¥ =12,
{a,B) {a,b)#(u,B) !
are modular forms with respect to the full modular group.
Their vanishing order (relative to the weight) has been

computed (3], p. 204. One obtains the value

, _{n+1) (22¢r=1)_q)

= 8127 (M) - 1)
So the vanishing order of f1 (1 =1,2,...}) is sufficiently

1

> 2
n«1

if n> 10 .

high. But we still have to show that the set of common zeros
of all fl’ i.e. the union of the sets
{z; &, o2} =&, 4(2) =0; (a,b) # (4,8)}

ig of codimengion > 2. It is easy to see that two Theta-
nullwerte are linearly independent if their characteristics
are different. The assertion (and therefore our theorem) -
now follows from

3.3 Propogition: Let f be a modular form of weight 1/2

(and some multiplier system) with respect to some subgroup

' =T, of finite index. Assume n > 4. The zero-divisor of f

in Hn/P is irreducible.

Proof. If n > 4 each divisor in H_ /T is the zero divisor of
a meodular form. It is therefore sufficient to prove:

Assume n > 2, There is no nonvanishing modular form of
weight

r , 0<r«< % .

Such a modular form has to be singular (this follows from
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[3], A'4.1%2). But the weight of a nonvanishing singular
mqéular form is always a multiple of % (this shows the
proof of A 4.1 in [3]1). Hence proposition 3.3 and there-
fore our theorem has been proved. '
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