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Introduction

Bert van Geemen and Duco van Straten introduced the subgroup Γn[2q, 4q, 8q]
of the Siegel modular group. It is a subgroup of index two of Igusa’s group
Γ[2q, 4q] where

Γn[q, 2q] :=
{
M ∈ Γn[q], (C tD)0 ≡ (A tB)0 ≡ 0 mod 2q

}
which is defined by the additional condition

tr(A) ≡ E mod 4q (E unit matrix).

The group Γn[2, 4, 8] can also be defined by the property that the theta series
of first kind

ϑ[m] =
∑
g∈Zn

eπi(Z[g+a/2]+ tb(g+a/2)), g =

(
a

b

)
∈ {0, 1}2n, tab ≡ 0 mod 2,

and those of second kind
fa(Z) := ϑ

[a
0

]
(2Z)

are modular forms on this group and all have the same multiplier system vϑ.
We recall the classical relations

ϑ
[a
b

]2
=

∑
x

(−1)
txbfafa+x.

Due to a result of van Geemen and van Straten [GS] a beautiful thing happens
in the case n = q = 2. The ring of all modular forms is generated by these
14 theta series and the 10 relations above are defining ones. Geometrically
this means that the Satake compactification of H2/Γ2[2, 4, 8] is a complete
intersection of ten quadrics.

In this paper we study the space M(r), r ∈ Z, of all vector valued modular
forms of the transformation type

f(MZ) = vϑ(M)r det(CZ+D)r/2(CZ+D)f(Z) t(CZ+D) (M ∈ Γ2[2, 4, 8]).

Here f is a symmetric 2×2-matrix of holomorphic functions on the Siegel upper
half plane H2. We collect these spaces to

M =
⊕
r∈Z

M(r)
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which is a module over the ring

C[. . . , ϑ[m], . . . , fa, . . .].

This module contains a submodule N which is generated by the 91 Cohen-
Rankin brackets {f, g} between the 14 generators of this ring. We will de-
termine generating relations betweem the 91 generators which enables us to
compute the Hilbert function of N (Theorem 1.4). Similar as in the Γ[4, 8]-
case the module M is the intersection of the localizations of N by 60 explicitly
described elements (Theorem 2.3). In principle this is a complete algebraic
description of M and the determination of a finite system of generators and
relations remains a computational problem. So far we could not solve this
problem.

Analogous results have been proved in [Wi] for the group Γ2[2, 4] and the
multiplier system vΘ that belongs to the thetas of second kind and in [FS1] for
the group Γ2[4, 8] and the multiplier system vϑ which belongs to the thetas of
first kind. Since both multipliers agree on Γ2[2, 4, 8], the results of this paper
can be considered as a common roof of the results in [Wi], [FS1].

As in [Wi] and [FS1] we use a geometric method. If r divides 6 the elements
of M(r) can be identified with certain holomorphic tensors on the regular
locus of the modular variety whose structure is simple enough to describe them
completely.

1. Defining relations

The space of scalar valued forms [Γ[2, 4, 8], r/2, vrϑ] consists of holomorphic
function f on the Siegel half plane with the property

f(MZ) = vϑ(M)r det(CZ +D)r/2f(Z) (M ∈ Γ2[2, 4, 8]).

The ring of modular forms is

A(Γ[2, 4, 8]) :=
⊕
r∈Z

[Γ[2, 4, 8], r/2, vrϑ].

The following result is essentially contained in [GS].

1.1 Theorem. The C-algebra A(Γ[2, 4, 8]) is generated by the 10 theta series
ϑ[m] of first kind and the 4 theta series fa of second kind. Defining relations
are the quadratic relations which we described in the introduction.



§1. Defining relations 3

Proof. In [GS] actually has been proved that the ring generated by the 14 theta
series gives an embedding of the Satake compactification of H2/Γ[2, 4, 8] into
the projective space. This implies that the ring of all modular forms is the
normalization of this subring. It is easy to show that this ring is normal.

⊔⊓
The easiest way to get vector valued modular forms is to consider brackets

{f, g} = g2d(f/g).

We write the three components of {f, g} into a symmetric 2 × 2-matrix with
the entries

{f, g}ij = eijg
2 ∂(f/g)

∂zij
, eij =

{
1 if i = j,
0 else.

If f, g are from [Γ2[4, 8], vϑ, 1/2], then {f, g} can be considered as element of
M(2).

We number the 10 theta series of first kind as follows

ϑ1 = ϑ
[00
00

]
, ϑ2 = ϑ

[00
01

]
, ϑ3 = ϑ

[00
10

]
, ϑ4 = ϑ

[00
11

]
, ϑ5 = ϑ

[01
00

]
,

ϑ6 = ϑ
[01
10

]
, ϑ7 = ϑ

[10
00

]
, ϑ8 = ϑ

[10
01

]
, ϑ9 = ϑ

[11
00

]
, ϑ10 = ϑ

[11
11

]
.

and the theta series of second kind as

f0(Z) = ϑ
[00
00

]
(2Z), f1(Z) = ϑ

[01
00

]
(2Z),

f2(Z) = ϑ
[10
00

]
(2Z), f3(Z) = ϑ

[11
00

]
(2Z).

The explicit form of the quadratic relations is

ϑ2
1 = f2

0 + f2
1 + f2

2 + f2
3 ,

ϑ2
2 = f2

0 − f2
1 + f2

2 − f2
3 ,

ϑ2
3 = f2

0 + f2
1 − f2

2 − f2
3 ,

ϑ2
4 = f2

0 − f2
1 − f2

2 + f2
3 ,

ϑ2
5 = 2f1f0 + 2f3f2,

ϑ2
6 = 2f1f0 − 2f3f2,

ϑ2
7 = 2f2f0 + 2f3f1,

ϑ2
8 = 2f2f0 − 2f3f1,

ϑ2
9 = 2f3f0 + 2f2f1,

ϑ2
10 = 2f3f0 − 2f2f1,

We use the notation

ϑ11 = f0, ϑ12 = f1, ϑ13 = f2, ϑ14 = f3.

So we have
A(Γ[2, 4, 8]) = C[ϑ1, . . . , ϑ14].
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1.2 Definition. We denote by N the submodule of M that is generated by
the brackets {ϑi, ϑj}, 1 ≤ i, j ≤ 14.

We write the ten relations above in the form R(ϑ1, . . . , ϑ14) = 0 where R is a
quadratic polynomial. An example is

R = X2
1 − (X2

11 +X2
12 +X2

13 +X2
14).

Then we set

∂iR =
∂R

∂Xi
(ϑ1, . . . , ϑ14).

A basic result is that defining relations for the module N are known.

1.3 Proposition. Defining relations of the module N are

(1) ϑk{ϑi, ϑj} = ϑj{ϑk, ϑi} − ϑi{ϑk, ϑj}, {ϑi, ϑj}+ {ϑj , ϑi} = 0.

For each of the ten quadratic relations R one has

(2)
14∑
ν=1

(∂νR){ϑν , ϑµ} = 0 (1 ≤ µ ≤ m).

Proof. We have to use a general criterion [FS1], Proposition 1.4. This proposi-
tion says that it is enough to prove that the module N ′, that is defined through
these relations, is torsion free. Even more, it is enough to prove that multi-
plication by some special elements is injective on N ′. These special elements
depend on the choice of a transcendental basis. Here we take f0, . . . , f3. Then
this special elements turn out to be the generators ϑi, 1 ≤ i ≤ 14. It is easy
to implement this module in a computer algebra system as SINGULAR and to
verify this injectivity. ⊔⊓

The knowledge of the defining relations enables us to compute the Hilbert
function.

1.4 Theorem. The Hilbert function of the A(Γ[2, 4, 8])-module N which is
generated by the Cohen-Rankin brackets {f, g} where f, g is

H(t) =
t2P (t)

t4 − 4t3 + 6t2 − 4t+ 1

where
P (t) :=− 10t10 − 86t9 − 311t8 − 580t7 − 465t6 + 300t5

+ 1218t4 + 1488t3 + 1021t2 + 406t+ 91.

The first terms are given by

H(t) = 91t2 + 770t3 + 3555t4 + 11452t5 + 28685t6 + 59778t7 + 108790t8 + · · · .
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2. Holomorphic tensors

Elements of the module M (see introduction) can be obtained by invariant
holomorphic tensors

T = tr(fdZ)⊗ (dz11 ∧ dz12 ∧ dz22)
⊗k, dZ =

(
dz11 dz12
dz12 dz22

)
,

where f is a symmetric matrix of holomorphic functions. The invariance means
that f ∈ M(6k). For general reasons these tensors are rational on the algebraic
variety H2/Γ2[2, 4, 8]. By means of the transcendental basis a, b, c of the field
of modular functions they can be expressed in the form

T = (T1da+ T2db+ T3dc)⊗ (da ∧ db ∧ dc)⊗k.

Here Ti are modular functions (i.e. rational functions on H2/Γ2[2, 4, 8]). We
have to work out what it means that T is holomorphic on H2, equivalently on
H2/Γ2[2, 4, 8].

Assume that Z ∈ H2 is a point such that the a, b, c are holomorphic at a
and such that they define a local coordinate system there. The holomorphicity
of T at Z then means that the modular functions Ti are holomorphic there.
Hence it is of interests to find transcendental bases a, b, c where this locus can
be determined.

We can use here the same transcendental bases as in the paper [FS1]. Recall
that a characteristic n =

(
a
b

)
is called even if tab ≡ 0 mod 2. A set of 4 even

characteristics m = {m1,m2,m3,m4} is called syzygetic if the sum of three of
them is even. There are 15 syzygetic quadruples. For a syzygetic quadruple
we consider

a =
ϑ[m2]

ϑ[m1]
, b =

ϑ[m3]

ϑ[m1]
, b =

ϑ[m4]

ϑ[m1]
.

This is a transcendental basis of the field of modular functions.

ϑ5ϑ6ϑ7ϑ8ϑ9ϑ10(ϑ
4
7 − ϑ4

8),

ϑ3ϑ4ϑ5ϑ6ϑ9ϑ10(ϑ
4
3 − ϑ4

4),

ϑ2ϑ4ϑ7ϑ8ϑ9ϑ10(ϑ
4
8 − ϑ4

10),

ϑ2ϑ3ϑ5ϑ6ϑ7ϑ8(ϑ
4
5 − ϑ4

7),

ϑ2ϑ3ϑ4ϑ6ϑ8ϑ10(ϑ
4
2 − ϑ4

8),

ϑ2ϑ3ϑ4ϑ5ϑ7ϑ9(ϑ
4
4 − ϑ4

9),

ϑ1ϑ4ϑ5ϑ6ϑ7ϑ8(ϑ
4
6 + ϑ4

7),

ϑ1ϑ3ϑ7ϑ8ϑ9ϑ10(ϑ
4
7 + ϑ4

10),

ϑ1ϑ3ϑ4ϑ6ϑ7ϑ10(ϑ
4
1 − ϑ4

7),

ϑ1ϑ3ϑ4ϑ5ϑ8ϑ9(ϑ
4
4 + ϑ4

5),

ϑ1ϑ2ϑ5ϑ6ϑ9ϑ10(ϑ
4
1 − ϑ4

2),

ϑ1ϑ2ϑ4ϑ6ϑ7ϑ9(ϑ
4
4 + ϑ4

7),

ϑ1ϑ2ϑ4ϑ5ϑ8ϑ10(ϑ
4
1 − ϑ4

5),

ϑ1ϑ2ϑ3ϑ6ϑ8ϑ9(ϑ
4
3 + ϑ4

8),

ϑ1ϑ2ϑ3ϑ5ϑ7ϑ10(ϑ
4
2 + ϑ4

5).

It seems to be worth while to point out the following by-product.
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2.1 Remark. The function ϑ4
7−ϑ4

8 has (up to constant factors 15 transformed
functions of the form ϑ4

i ±ϑ4
j . The product of these forms is a constant multiple

of Igusa’s modular form χ30.

Recall that χ30 is a modular form of weight 30 which generates the space of all
modular forms of this weight which belong to the non-trivial character of the
full modular group. In [FS2] a similar result has been proved. The function
ϑ1(Z/2) has 60 transformed function (the forms fa belong to them) and their
product gives χ30. So there are two different ways to write χ30 as product of
60 forms.

2.2 Lemma. There is one-to-one correspondence between the 15 syzygetic
quadruples and the 15 modular forms above. We denote by Xm the modular
form in this list that corresponds to m. Then the transcendental basis

a =
ϑ[m2]

ϑ[m1]
, b =

ϑ[m3]

ϑ[m1]
, b =

ϑ[m4]

ϑ[m1]

defines a local analytic chart outside the zero locus of ϑ[m1]Xm.

This means that the components Ti of a holomorphic tensor

T = (T1da+ T2db+ T3dc)⊗ (da ∧ db ∧ dc)⊗k.

are holomorphic outside this zero locus. If one multiplies them with a suitable
power of ϑ[m1]Xm one gets holomorphic functions on the upper half-plane.
This implies that T is contained in∩

m

∩
m∈m

NXmϑ[m].

But since we can multiply an arbitrary element from M(r) by a suitable power
of any of the ϑ[m] to obtain a tensorial form, this result extends to the full
module M.

2.3 Theorem. We have

M =
∩
m

∩
m∈m

( ∑
1≤i<j≤10

C[ϑ1, . . . , ϑ14] {ϑi, ϑj}
)
Xmϑ[m]

.
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