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Introduction

We consider Igusa’s group Γ2[4, 8] (see Sect. 2) which is a subgroup of the Siegel
modular group of degree 2. We want to study vector valued modular forms of
the transformation type

f(MZ) = vϑ(M)r det(CZ +D)r/2(CZ +D)f(Z) t(CZ +D) (M ∈ Γ2[4, 8]).

Here f should be a symmetric 2× 2-matrix of holomorphic functions. vϑ is the
theta-multiplier system. Its square is trivial on Γ2[4, 8]. We denote by M(r)
the vector space of all forms of the above transformation type.

The direct sum
M :=

⊕
r∈Z

M(r)

is a module over the ring of all modular forms with respect to the group Γ2[4, 8].
We are interested in its structure. By Igusa, the ring of modular forms is
generated by the ten classical theta constants ϑ[m]. The module M contains
a submodule N which is generated by 45 Cohen-Rankin brackets {ϑ[m], ϑ[n]}.
We determine defining relations for this submodule and compute its Hilbert
function (Theorem 2.4), i.e. the dimension formula for the spaces N (r). We
prove that M is the intersection of the localizations of N by 60 elements
(Theorem 5.4). This is a complete algebraic description of M and to get a
finite system of generators of M is a computational problem. At the moment
we cannot solve this problem. Examples of elements of M which are not
contained in N can be given.

Our method is a further development of Wieber’s geometric method [Wi]
which he used to solve the Γ2[2, 4]-case. Meanwhile there appeared several
papers with similar results using different methods, [Ao, CG, Do, Ib, Sa, Sat,
Wi]. We want to thank Wieber for fruitful discussion and for his help with
quite involved computer calculations.
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1. A differential module over graded algebras

Let A =
⊕∞

d=0 Ad be a finitely generated graded algebra over a field K of
characteristic 0. We assume that A is an integral domain and denote its field
of fractions by Q(A). We consider the Kähler differential module

Ω = Ω(Q(A)/K).

Recall that this is a Q(A)-vector space together with a K-linear derivation
d : Q(A) → Ω. The dimension of Ω equals the transcendental degree of Q(A)
and Ω is generated by the image of d. In the following, we denote by deg(f) the
degree of a non-zero homogeneous element of A. For two non-zero homogenous
elements of positive degree f, g ∈ A we define

{f, g} := deg(g)gdf − deg(f)fdg.

Another way to write this is

{f, g} =
gdeg(f)+1

fdeg(g)−1
d
(fdeg(g)

gdeg(f)

)
.

This is a skew-symmetric K-bilinear pairing and it satisfies the following rule

deg(h)h{f, g} = deg(g)g{f, h}+ deg(f)f{h, g}.

1.1 Definition. We denote by N the A-module that is generated by all {f, g}
where f, g are homogenous elements of positive degree of A.

We are interested in a finite presentation of N . There is no difficulty to get
a finite system of generators, Let A = K[f1, . . . , fm], (fi homogenous). Then
{fi, fj} are generators of N . It is more involved to get defining relations.

We use the notation di = deg(fi). A polynomial P ∈ K[X1, . . . , Xm] is
called isobaric of weight k (with respect to (d1, . . . , dm)) if it is of the form

P =
∑

d1ν1+···+dmνm=k

aν1,...,νmXν1
1 · · ·Xνm

m .

Then the Euler relation
m∑

ν=1

dν
∂P

∂Xν
Xν = kP

holds.

The ideal of relations between f1, . . . , fm is generated by isobaric polyno-
mials. Let R(f1, . . . , fm) = 0 be an isobaric relation. Differentiation gives

m∑
ν=1

(∂νR)dfν = 0 where ∂νR :=
∂R

∂Xν
(f1, . . . , fm).
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From this relation and the Euler relation we derive

m∑
ν=1

(∂νR){fν , fµ} = 0 (µ arbitrary).

We want to formalize this and introduce a module N ′ which is defined by the
so far known relations.

1.2 Definition. We denote by N ′ the A-module that is generated by symbols
[fi, fj ] with the following defining relations:

(1) dkfk[fi, fj ] = djfj [fi, fk] + difi[fk, fj ], [fi, fj ] + [fj , fi] = 0.

For each isobaric relation R between the f1, . . . , fm one has

(2)
m∑

ν=1

(∂νR)[fν , fµ] = 0 (µ arbitrary).

It is of course enough to take for R a system of generators of the ideal of all
relations.

There is a natural surjective homomorphism

N ′ −→ N , [fi, fj ] 7−→ {fi, fj}.

We notice that N is torsion free for trivial reason but for N ′ this is not clear.

Under certain circumstances, N ′ → N is an isomorphism. To work this out
we consider an arbitrary relation in N∑

i<j

Pij{fi, fj} = 0, Pij ∈ A.

We multiply this relation by d1f1 and insert

d1f1{fi, fj} = difi{f1, fj} − djfj{f1, fi}.

Then we obtain the relation ∑
j

Pj{f1, fj} = 0,

where the elements Pj ∈ A are defined as

Pj =
∑
i<j

difiPij −
∑
i>j

difiPji.
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Let n be the transcendental degree of Q(A). We can assume that f1, . . . , fn
are independent. Then each fk, k > n, satisfies an algebraic relation

Rk(f1, . . . , fn, fk) = 0.

Here Rk is an irreducible polynomial in the variables X1, . . . , Xn, Xk. Now we
make use of the relation

(∂kRk){f1, fk}+
n∑

ν=1

(∂νRk){f1, fν} = 0.

We have to use the elements (from the ring A)

Π :=

m∏
k=n+1

∂kRk, Π(k) :=
Π

∂kPk
.

We multiply the original relation also by Π:

Π
∑
j

Pj{f1, fj} = 0.

For k > n we have the formula

Π{f1, fk} = Π(k)(∂kRk){f1, fk} = −Π(k)
n∑

j=1

(∂jRk){f1, fj}.

Now we can eliminate the {f1, fk} for k > n to produce a relation between
the {f1, fi}, 2 ≤ i ≤ n. But these elements are independent. Hence the
coefficients of the relation must vanish. A simple calculation now gives the
following lemma.

1.3 Lemma. Let ∑
i<j

Pij{fi, fj} = 0, Pij ∈ A.

Then the elements
Pj =

∑
i<j

difiPij −
∑
i>j

difiPji

satisfy the following system of relations.

PjΠ =
m∑

k=n+1

(∂jRk)PkΠ
(k) (1 ≤ j ≤ n).

Supplement. Conversely these relations imply in N ′ the relation

f1Π
∑
i<j

Pij [fi, fj ] = 0.

For the proof of the supplement we just have to notice that the calculations
above only use the defining relations of N ′. ⊔⊓

Let us assume that multiplication by f1Π is injective on N ′. Then we
see that

∑
Pij{fi, fj} = 0 implies

∑
Pij [fi, fj ] = 0. Hence N ′ → N is an

isomorphism and N ′ must be torsion free. This gives the following result.
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1.4 Proposition. Assume that the f1, . . . , fn is a transcendental basis such
that each fk, n < k ≤ m, satisfies an irreducible algebraic relation

Rk(f1, . . . , fn, fk) = 0.

The homomorphism N ′ → N is an isomorphism if and only if N ′ is torsion
free. For this it suffices that multiplication by f1 and ∂kRk (n < k ≤ m) are
injective on N ′.

2. Siegel modular forms and theta relations

We consider the Siegel modular group Γn = Sp(n, Z), its principal congruence
subgroup

Γn[q] = kernel(Sp(n, Z) −→ Sp(n, Z/qZ)

and Igusa’s group

Γn[q, 2q] :=
{
M ∈ Γn[q], (C tD)0 ≡ (A tB)0 ≡ 0 mod 2q

}
.

Here S0 denotes the column built of the diagonal of a square matrix S. We are
particularly interested in the cases n = 2 and q = 4.

A scalar valued modular form f of weight r/2, r ∈ Z, for a subgroup
Γ ⊂ Sp(n, Z) is a holomorphic function f on Hn with the transformation
property

f(MZ) = v(M)
√
det(CZ +D)

r
f(Z)

for all M ∈ Γ. In the case n = 1 a regularity condition at the cusps has to be
added. Here v(M) is system of complex numbers of absolute valued one, called
the multiplier system. It depends on the choice of the holomorphic square root.
It has to fulfil an obvious cocycle condition. We denote this space by [Γ, r/2, v].
Fixing some starting weight r0 and a multiplier system v for it, we define the
ring

A(Γ) = A(Γ, (r0, v)) :=
⊕
r∈Z

[Γ, rr0/2, v
r].

This turns out to be a finitely generated graded algebra and its associated
projective variety projA(Γ) can be identified with the Satake compactification
of Hn/Γ. The ring depends on the starting weight and the multiplier system
but the associated projective variety does not.

Basic examples of modular forms are given be theta series with characteris-
tics. By definition, a theta characteristic is an elementm =

(
a
b

)
from (Z/2Z)2n.

Here a, b ∈ (Z/2Z)n are column vectors. The characteristic is called even if
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tab = 0 and odd otherwise. The group Sp(n, Z/2Z) acts on the set of charac-
teristics by

M{m} := tM
−1

m+

(
(C tD)0
(A tB)0

)
.

It is well-known that Sp(n, Z/2Z) acts transitively on the subsets of even and
odd characteristics. Recall that for any characteristic the theta function

ϑ[m] =
∑
g∈Zn

eπi(Z[g+a/2]+ tb(g+a/2)) (Z[g] = tgZg)

can be defined. Here we use the identification of Z/2Z with the subset {0, 1} ⊂
Z. It vanishes if and only if m is odd. Recall also that the formula

ϑ[M{m}](MZ) = v(M,m)
√
det(CZ +D)ϑ[m](Z)

holds for M ∈ Γn where v(M,m) is a 8th root of unity. From these formulas
one can derive that the theta series are all modular form on the group Γn[4, 8]
and all with the same muliplier system vϑ. The square of this multiplier is
trivial on Γn[4, 8]. We call this the theta multiplier system.

From now on we assume n = 2. In this case we will use the notation

ϑ[m] = ϑ
[a1a2
b1b2

]
for m =


a1
a2
b1
b2

 .

There are ten even characteristics. We will order them as follows:

(m1, . . . ,m10) =


0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 1 0 0 0 1
0 1 0 1 0 0 0 1 0 1


The associated theta series are

ϑ1 = ϑ
[00
00

]
, ϑ2 = ϑ

[00
01

]
, ϑ3 = ϑ

[00
10

]
, ϑ4 = ϑ

[00
11

]
, ϑ5 = ϑ

[01
00

]
,

ϑ6 = ϑ
[01
10

]
, ϑ7 = ϑ

[10
00

]
, ϑ8 = ϑ

[10
01

]
, ϑ9 = ϑ

[11
00

]
, ϑ10 = ϑ

[11
11

]
.

They satisfy the quartic Riemann relations:
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ϑ2
6ϑ

2
8 − ϑ2

4ϑ
2
9 + ϑ2

1ϑ
2
10 = 0,

ϑ2
5ϑ

2
8 − ϑ2

2ϑ
2
9 + ϑ2

3ϑ
2
10 = 0,

ϑ4
7 − ϑ4

8 − ϑ4
9 + ϑ4

10 = 0,

ϑ2
6ϑ

2
7 − ϑ2

3ϑ
2
9 + ϑ2

2ϑ
2
10 = 0,

ϑ2
5ϑ

2
7 − ϑ2

1ϑ
2
9 + ϑ2

4ϑ
2
10 = 0,

ϑ2
4ϑ

2
7 − ϑ2

3ϑ
2
8 − ϑ2

5ϑ
2
10 = 0,

ϑ2
3ϑ

2
7 − ϑ2

4ϑ
2
8 − ϑ2

6ϑ
2
9 = 0,

ϑ2
2ϑ

2
7 − ϑ2

1ϑ
2
8 − ϑ2

6ϑ
2
10 = 0,

ϑ2
1ϑ

2
7 − ϑ2

2ϑ
2
8 − ϑ2

5ϑ
2
9 = 0,

ϑ4
5 − ϑ4

6 − ϑ4
9 + ϑ4

10 = 0,

ϑ2
4ϑ

2
5 − ϑ2

2ϑ
2
6 − ϑ2

7ϑ
2
10 = 0,

ϑ2
3ϑ

2
5 − ϑ2

1ϑ
2
6 − ϑ2

8ϑ
2
10 = 0,

ϑ2
2ϑ

2
5 − ϑ2

4ϑ
2
6 − ϑ2

8ϑ
2
9 = 0,

ϑ2
1ϑ

2
5 − ϑ2

3ϑ
2
6 − ϑ2

7ϑ
2
9 = 0,

ϑ4
3 − ϑ4

4 − ϑ4
6 + ϑ4

10 = 0,

ϑ2
2ϑ

2
3 − ϑ2

1ϑ
2
4 + ϑ2

9ϑ
2
10 = 0,

ϑ2
1ϑ

2
3 − ϑ2

2ϑ
2
4 − ϑ2

5ϑ
2
6 = 0,

ϑ4
2 − ϑ4

4 − ϑ4
8 + ϑ4

10 = 0,

ϑ2
1ϑ

2
2 − ϑ2

3ϑ
2
4 − ϑ2

7ϑ
2
8 = 0,

ϑ4
1 − ϑ4

2 − ϑ4
6 − ϑ4

9 = 0.

2.1 Theorem (Igusa). The algebra

A(Γ2[4, 8]) =
⊕

[Γ2[4, 8], r/2, v
r
ϑ]

is generated by the 10 theta series. Defining relations are the Riemann quartic
relations.

A set m of three even characteristics is called syzygetic if their sum is even.
Otherwise it is called azygetic. A system of more than three is called syzygetic
if every subsystem of three has this property.

2.2 Lemma. Let m = {m1,m2,m3,m4} be a syzygetic system. Then the
4 theta series ϑ[mi] are algebraically independent and they have no joint zero.
There are 15 syzygetic quadruples. The full modular group acts transitively on
them.

An example of an syzygetic system is[00
00

]
,

[01
00

]
,

[10
00

]
,

[11
00

]
.

We call it the standard syzygetic quadruple and denote it by mstandard. In our
numbering the corresponding theta series are

ϑ1, ϑ5, ϑ7, ϑ9.

The algebraic relations Rk (relations between ϑ1, ϑ5, ϑ7, ϑ9 and one of the 6
remaining theta series ϑk) can be computed from the Riemann relation as
follows.
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R2 =

X4
1X

4
7 −X4

1X
4
2 − 2X2

1X
2
5X

2
7X

2
9 +X4

5X
4
9 +X4

5X
4
2 −X4

7X
4
2 +X4

9X
4
2 +X8

2 ,

R3 =

X4
1X

4
5 −X4

1X
4
3 − 2X2

1X
2
5X

2
7X

2
9 −X4

5X
4
3 +X4

7X
4
9 +X4

7X
4
3 +X4

9X
4
3 +X8

3 ,

R4 =

X4
1X

4
9 −X4

1X
4
4 − 2X2

1X
2
5X

2
7X

2
9 +X4

5X
4
7 +X4

5X
4
4 +X4

7X
4
4 −X4

9X
4
4 +X8

4 ,

R6 =

X4
1X

4
5 −X4

1X
4
6 − 2X2

1X
2
5X

2
7X

2
9 −X4

5X
4
6 +X4

7X
4
9 +X4

7X
4
6 +X4

9X
4
6 +X8

6 ,

R8 =

X4
1X

4
7 −X4

1X
4
8 − 2X2

1X
2
5X

2
7X

2
9 +X4

5X
4
9 +X4

5X
4
8 −X4

7X
4
8 +X4

9X
4
8 +X8

8 ,

R10 =

X4
1X

4
9 −X4

1X
4
10 − 2X2

1X
2
5X

2
7X

2
9 +X4

5X
4
7 +X4

5X
4
10 +X4

7X
4
10 −X4

9X
4
10 +X8

10.

It is easy to check with the help of a computer that multiplication by ϑ1 and
by the ∂kRk are injective on the module N ′. (The MAGMA computation is
performed over the field of rational numbers. Since tensoring with C is exact
it follows then over C.) This gives the following result.

2.3 Proposition. The following relations are defining relations for the
A(Γ2[4, 8])-module

N :=
∑

1≤i<j≤10

A(Γ[4, 8]){ϑi, ϑj}.

(1) ϑk{ϑi, ϑj} = ϑj{ϑk, ϑi} − ϑi{ϑk, ϑj}, {ϑi, ϑj}+ {ϑj , ϑi} = 0.

For each Riemann relation R one has

(2)
10∑
ν=1

(∂νR){ϑν , ϑµ} = 0 (1 ≤ µ ≤ m).

As an application, we can compute the Hilbert series of N .

2.4 Theorem. The Hilbert function of N is

H(t) =
t2P (t)

t4 − 4t3 + 6t2 − 4t+ 1

where

P (t) :=− 6t14 − 36t13 − 66t12 + 24t11 + 224t10 + 178t9 − 297t8

− 692t7 − 427t6 + 328t5 + 868t4 + 808t3 + 435t2 + 150t+ 45.

The first terms are given by

H(t) = 45t2 + 330t3 + 1485t4 + 4948t5 + 13025t6 + 28350t7 + 53130t8 + · · · .



§4. Holomorphic tensors 9

3. Vector valued modular forms

As mentioned already in the introduction, the space M(r) consists of all mod-
ular forms of the type

f(MZ) = vϑ(M)r det(CZ +D)r/2(CZ +D)f(Z) t(CZ +D) (M ∈ Γ2[4, 8]).

Here f should be a symmetric 2× 2-matrix of holomorphic functions. We take
the direct sum

M :=
⊕
r∈Z

M(r).

These is a module over the ring A(Γ2[4, 8]) = C[ϑ1, . . . , ϑ10].

Examples of elements of this module come from Γ2[4, 8]-invariant holomor-
phic tensors

T = tr(fdZ)⊗ (dz11 ∧ dz12 ∧ dz22)
⊗k, dZ =

(
dz11 dz12
dz12 dz22

)
,

where f is a symmetric matrix of holomorphic functions. This tensor is invari-
ant if and only if f has the transformation property

f(MZ) = det(CZ +D)3k(CZ +D)f(Z) t(CZ +D) (M ∈ Γn[2, 4]).

This is an element of M(6k).

The elements of the quotient field Q(A(Γ2[4, 8]) can be considered as mero-
morphic functions on the half plane H2. For such a meromorphic function φ, we
can consider the meromorphic differential dφ on H2. These differentials gener-
ate a 4-dimensional vector space Ω over Q(A(Γ2[4, 8]) which is a realization of
the Kähler differential module. The following constructions are constructions
inside Ω.

The easiest way to get vector valued modular forms is to consider brackets

{f, g} = g2d(f/g).

We write the three components of {f, g} into a symmetric 2 × 2-matrix with
the entries

{f, g}ij = eijg
2 ∂(f/g)

∂zij
, eij =

{
1 if i = j,
0 else.

If f, g are from [Γ2[4, 8], vϑ, 1/2], then {f, g} can be considered as element of
M(2). Hence we can consider

N =
∑

1≤i<j≤10

C[ϑ1, . . . , ϑ10] {ϑi, ϑj}

as sub-module of M.
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4. Holomorphic tensors

We study invariant tensors

T = tr(fdZ)⊗ (dz11 ∧ dz12 ∧ dz22)
⊗k

in more detail. For general reasons they are rational on the algebraic variety
H2/Γ2[4, 8]. By means of the transcendental basis

a = ϑ5/ϑ1, b = ϑ7/ϑ1, c = ϑ9/ϑ1.

they can be expressed in the form

T = (T1da+ T2db+ T3dc)⊗ (da ∧ db ∧ dc)⊗k.

Here Ti are modular functions (i.e. rational functions on H2/Γ2[4, 8]). We
have to work out what it means that T is holomorphic on H2, equivalently on
H2/Γ2[4, 8]. (We use the known fact that Γ2[4, 8] acts fixed point free.)

Assume that Z ∈ H2 is a point such that the a, b, c are holomorphic at a
and such that they define a local coordinate system there. The holomorphicity
of T at Z then means that the modular functions Ti are holomorphic there.
Hence it is of interests to determine this locus.

We have to make use of Igusa’s modular form χ5 which, up to a constant
factor, can be defined as the product of the 10 theta series.

4.1 Proposition. Let Z ∈ H2 be a point such that the modular forms

ϑ
[00
00

]
and χ5(Z/2)

are different from 0. Then the functions a, b, c are holomorphic at Z and the
Jacobian determinant is different from zero there.

Proof. The first of the two forms gives the denominator of a, b, c. They are
holomorphic outside the zero locus of it. The second form gives the functional
determinant in its projective form. Recall that for forms f = (f0, f1, f2, f3) this
version is the determinant of the matrix whose rows are f and the 3 derivatives
of f . This determinant is known for the theta series of second kind

ϑ
[00
00

]
(2Z), ϑ

[01
00

]
(2Z), ϑ

[10
00

]
(2Z), ϑ

[11
00

]
(2Z).

We remind that the determinant is a modular form of weight 5 with respect to
the full modular group. The reason is that the full modular group acts on the
space generated by the 4 theta series of second kind. Hence the determinant is
a modular form of weight 5 with respect to the full modular group an therefore
a multiple of χ5. Replacing the variable Z by Z/2, we complete the proof of
Proposition 4.1. ⊔⊓
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4.2 Lemma. The modular form χ5(Z/2) is contained in the algebra
A(Γ2[4, 8]). Up to to a constant factor it equals

ϑ2ϑ3ϑ4ϑ6ϑ8ϑ10(ϑ
4
4 − ϑ4

10).

Proof. Classical doubling formulae gives expressions of ϑ[m](Z)2 as polynomials
in ϑ[n](2Z). Using them, χ5(Z/2)

2 can be expressed explicitly as polynomial
in ϑ[n](Z). We omit this calculation. It is easy to check that the square of the
expression in Lemma 4.2 is contained in the ideal generated by χ5(Z/2)

2 and
by the Riemann relations. ⊔⊓

We can express now the forms d(a), . . . by brackets {ϑ1, ϑ2}, . . .. Then we
can express the tensor T in the form∑

i<j

fij{fi, fj}

with meromorphic modular forms fij . Their poles are located at the zeros of
ϑ1(Z)χ5(Z/2). They disappear if we multiply fij by a suitable power of this
modular form. We obtain the following lemma.

4.3 Lemma. Any Γ2[4, 8]-invariant tensor

T = tr(fdZ)⊗ (dz11 ∧ dz12 ∧ dz22)
⊗k

is contained in the localization of the module
∑

1≤i<j≤10 C[ϑ1, . . . , ϑ10] {ϑi, ϑj}
by the element

ϑ
[00
00

]
χ5(Z/2).

5. Change of the syzygetic system

The Hecke group Γ0
2[2] is defined by the condition B ≡ 0 mod 2. It is the

stabilizer of the standard syzygetic quadruple in the full modular group there.
Hence it has index 15. It is also easy to check that χ5(Z/2) is a modular form
of weight 5 on Γ0

2[2] with respect to some character. Let now m be an arbitrary
syzygetic quadruple. There exists an M in the full modular group such that m
agrees with M{mstandard}. Then we can use M to transform χ5(Z/2):

Xm(Z) := det(CZ +D)−5χ5((MZ)/2).

This is a modular form of weight 5 with respect to some conjugate group of
Γ0
2[2]. Up to a constant factor it is independent of the choice of M .

We need an explicit formula for Xm.
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5.1 Definition. A set {{m1, n1}, {m2, n2}, {m3, n3}} of three unordered pairs
of even characteristics is called compatible if the involved 6 characteristics are
pairwise different, if the complement of the 6 is a syzygetic quadruple and if
the union of any two pairs is an azygetic quadruple.

An example of a compatible triple is{{[00
11

]
,
[11
11

]}
,

{[00
01

]
,
[10
01

]}
,

{[00
10

]
,
[01
10

]}}
.

It corresponds to the standard syzygetic quadruple.

5.2 Lemma. There is a one to one correspondence between syzygetic quadru-
ples and compatible triples. Let m be a syzygetic quadruple and {m,n} on of
the three members of the associated compatible triple. Then up to a constant
factor Xm agrees with

(ϑ[m]4 ± ϑ[n]4)
∏
x ̸∈m

ϑ[x]

where the sign has to be chosen properly.

Here is a complete list with the correct signs.

ϑ5ϑ6ϑ7ϑ8ϑ9ϑ10(ϑ
4
7 − ϑ4

8),

ϑ3ϑ4ϑ5ϑ6ϑ9ϑ10(ϑ
4
3 − ϑ4

4),

ϑ2ϑ4ϑ7ϑ8ϑ9ϑ10(ϑ
4
8 − ϑ4

10),

ϑ2ϑ3ϑ5ϑ6ϑ7ϑ8(ϑ
4
5 − ϑ4

7),

ϑ2ϑ3ϑ4ϑ6ϑ8ϑ10(ϑ
4
2 − ϑ4

8),

ϑ2ϑ3ϑ4ϑ5ϑ7ϑ9(ϑ
4
4 − ϑ4

9),

ϑ1ϑ4ϑ5ϑ6ϑ7ϑ8(ϑ
4
6 + ϑ4

7),

ϑ1ϑ3ϑ7ϑ8ϑ9ϑ10(ϑ
4
7 + ϑ4

10),

ϑ1ϑ3ϑ4ϑ6ϑ7ϑ10(ϑ
4
1 − ϑ4

7),

ϑ1ϑ3ϑ4ϑ5ϑ8ϑ9(ϑ4 + ϑ4
5),

ϑ1ϑ2ϑ5ϑ6ϑ9ϑ10(ϑ
4
1 − ϑ4

2),

ϑ1ϑ2ϑ4ϑ6ϑ7ϑ9(ϑ4 + ϑ4
7),

ϑ1ϑ2ϑ4ϑ5ϑ8ϑ10(ϑ
4
1 − ϑ4

5),

ϑ1ϑ2ϑ3ϑ6ϑ8ϑ9(ϑ
4
3 + ϑ4

8),

ϑ1ϑ2ϑ3ϑ5ϑ7ϑ10(ϑ
4
2 + ϑ4

5).

5.3 Lemma. Any Γ2[4, 8]-invariant tensor

T = tr(fdZ)⊗ (dz11 ∧ dz12 ∧ dz22)
⊗k

is contained in the intersection of the localizations of the modules∑
1≤i<j≤10

C[ϑ1, . . . , ϑ10] {ϑi, ϑj}

by the 60 elements ϑ[m]Xm where m runs through the 15 syzygetic quadruples
and m runs through the 4 members of m.

This Lemma carries over to an arbitrary modular form of M(r) since we can
multiply such a form by a suitable power of ϑi to get a form of tensorial type
(r = 6k). Hence we obtain as an immediate consequence the following result.
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5.4 Theorem. Lemma 5.3 implies

M =
∩
m

∩
m∈m

( ∑
1≤i<j≤10

C[ϑ1, . . . , ϑ10] {ϑi, ϑj}
)
Xmϑ[m]

.
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