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1 Introduction

In this note we present a few calculations concerning the Siegel modular variety of genus three
and level (2, 4). We obtain a new proof of the result of Runge about the structure of the ring
of modular forms. In very complicated papers Tsuymine found generators for the ring of Siegel
modular forms of genus 3 following a method proposed by Igusa. In a remarkable paper Runge
found a different much easier approach. He determined the structure of the ring of modular forms
even for the subgroup of level (2, 4) in the sense of Igusa. There are 8 theta constants

θa(Z) :=
∑
g∈Z3

exp(2πiZ[g + a/2]),

where a runs through the 8 elements of (Z/2Z)3. These theta constants define a map

Th : Γ3(2, 4)\S3 −→ P7(C).

The image is a hypersurface defined by a classical theta relation of degree 16. By a variant of the
so-called fundamental lemma of Igusa this map is birational. Runge proved that this hypersurface
is normal and deduced immediately from this result that the ring of modular form is generated
by those 8 thetas and that the theta relation is the defining relation of this ring. Using a method
different from that used by Runge we prove directly that the hypersurface defined by the theta
relation is normal. As we will see below it is sufficient to prove that the codimension of the singular
locus is greater or equal 2. It is sufficient to find a prime p such that this is true after reduction
mod p. The computer algebra program Macaulay delivers the tools to prove this by a computer
calculation.
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2 The hypersurface X

2.1 Equation

As in [2] we encode the 8 thetas and hence our coordinates in P7 by triples (a1, a2, a3), where the
components are 0 or 1. We write the coordinates (X0 : . . . : X7) on P7 in the following way. We
identify the 8 triples (a1, a2, a3) with the numbers {0, . . . , 7}by the correspondence given in the
table (this is the standard binary notation of the j ∈ {0, . . . , 7})

0↔ (0, 0, 0) 1↔ (0, 0, 1) 2↔ (0, 1, 0) 3↔ (0, 1, 1)

4↔ (1, 0, 0) 5↔ (1, 0, 1) 6↔ (1, 1, 0) 7↔ (1, 1, 1)

Then notations such as Xσ+ξ (σ, ξ ∈ F3
2) make sense. For x = (ξ, ξ′) ∈ F3

2 × F3
2 there is a quadric

Qx in the Xσ defined by
Q(ξ,ξ′) =

∑
σ

< σ, ξ′ > XσXσ+ξ, (1)

where < σ, ξ >:= exp(πitσξ) which is +1 (resp. −1) when tσξ = 0 (resp. 1). This quadric vanishes
identically for ξ · ξ′ = 1 (the odd thetas), and there are 36 non-vanishing Qx (even thetas). We
consider the following products

r1 = Q[
0 0 0
0 0 0

]Q[
0 0 0
1 0 0

]Q[
0 0 0
0 1 0

]Q[
0 0 0
1 1 0

]
r2 = Q[

0 0 1
0 0 0

]Q[
0 0 1
1 0 0

]Q[
0 0 1
0 1 0

]Q[
0 0 1
1 1 0

]
r3 = Q[

0 0 0
0 0 1

]Q[
0 0 0
1 0 1

]Q[
0 0 0
0 1 1

]Q[
0 0 0
1 1 1

]
The hypersurface X is defined by

X = {r21 + r22 + r23 − 2(r1r2 + r1r3 + r2r3) = 0}. (2)

This is a degree 16 hypersurface in P7. This hypersurface is the image of A3(2, 4) under the map
Th. More details can be found for example in loc. cit..

2.2 Automorphism group

The Heisenberg group in the present case is a group of order 28, which is given in [3] the following
projective representation. The group is

G = {(t, x)|t ∈ C, t4 = 1, x = (ξ, ξ′) ∈ F3
2 × F3

2},

with identity element (1, 0) and mulitiplication (t, (ξ, ξ′)) · (s, (η, η′)) = (ts(−1)ξη
′
, (ξ + η, ξ′ + η′)).

Letting V denote the vector space spanned by the Xσ above (so P(V ) = P7 into which Th maps),
the Heisenberg representation U of G (loc. cit., 4.2.2), is determined by its action on the Xσ, which
is given by

U((t, (ξ, ξ′))Xσ = t(−1)(σ+ξ)ξ
′
Xσ+ξ.

Generators are given by taking (ξ, ξ′) = (ξ, 0) and (0, ξ′), respectively; the former elements give
pure permutations (for t = 1), while the latter are pure sign-changes. The subgroup A(G) ⊂ G is
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defined as the subgroup consisting of elements acting trivially on the center of G. By loc. cit. 4.2.3
there is an extension

1 −→ F6
2 −→ A(G) −→ Sp(6,F2) −→ 1, (3)

and a projective representation
T̃ : A(G) −→ PGL(V ),

which induces an action of A(G) on P7. The elements of PGL(V ) corresponding to F6
2 are given

by: for x ∈ F6
2 − {0}, choose (tx, x) ∈ G of order 2, and set

Ux := U(tx, x).

Theorem 4.2.6 of loc. cit. describes elements not in the kernel of A(G) −→ Sp(6,F2): for x ∈
F6
2 − {0}, set

T̃x := Ux + iI.

This element is a “square root” of Ux in the sense that T̃ 2
x = Intx. It is easy now to identify the

sequence (3) with the sequence

1 −→ H2,4 −→ Γ2,4 −→ Sp(6,F2) −→ 1,

where H2,4 = Γ(2)/Γ(2, 4), Γ2,4 = Γ/Γ(2, 4), thus describing the automorphism group of X.

2.3 Subloci

A glance at the equation (2) shows that the ideal which is generated by any three of the quadrics,
one of each in the definition of the ri, is completely contained in X. A computer calculation shows
that this ideal defines a locus which is of dimension four and degree eight. If we adjoin to this
ideal one further of the quadrics (1), then either the dimension drops by one, or the dimension
remains the same and the degree drops to four. In this case the ideal is now the ideal defining a
Segre embedded copy of P1 × P3. The original ideal was then the ideal of the union of two such
varieties. This fits in with the modular interpretation of X by the general fact that the Siegel
modular variety of level (2, 4) always contains a Segre embedded image of Siegel varieties of level
(2, 4) of lower dimension (see [4], II, §6); in the case at hand, the varieties of degrees one and
two are P1 and P3, respectively. It is known that these images define the reducibility locus, i.e.,
the set of moduli points corresponding to abelian varieties which are reducible (cf. .loc. cit. I,
p. 81), where the locus of irreducible varieties is denoted A◦. As an example, we consider the ideal

generated by the Qx, where x =
[

0 0 0
0 0 0

]
,
[

0 0 1
0 0 0

]
,
[

0 0 0
0 0 1

]
, and

[
1 1 1
0 1 1

]
. Then it is

easily verified that this ideal also contains the two quadrics Qx for x =
[

0 1 1
1 1 1

]
,
[

1 0 1
0 1 0

]
.

The ideal generated by the first three of these four quadrics is the ideal of the union of two such
Segre embedded products, as just mentioned. The other copy of Segre embedded product has the

ideal generated by the quadrics for x =
[

1 1 1
1 0 1

]
,
[

1 0 1
1 1 1

]
,
[

0 1 1
0 1 1

]
in addition to the

first three mentioned above.
In addition to these loci, there are 126 special P3’s, which are eigenspaces of the Heisenberg

group. These turn out to be contained in the Segre-embedded products just discussed, in the
following way. There are, on each copy of P1, six cusps (recall that Γ1(2, 4) ∼= Γ1(4)), and for each
such the image of {cusp}×P3 is one of these linear P3’s. These loci correspond to the real “cusps”
of the Siegel modular variety of degree three, i.e., they are the (compactifications of) boundary
components of maximal dimension.
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3 Determination of the singular locus

3.1 Method

We will compute the singular locus of X with the computer algebra system Macaulay, and in this
section we provide the mathematical basis for its use, stating that for the information we desire
(dimension and degree of the singular locus) one can apply characteristic p results to a certain
extent.

Lemma 3.1 Let f ∈ Z[x1, . . . , xn] be a homogenous polynomial with coprime coefficients, and let
X ⊂ PZ

n−1 be the projective hypersurface defined by f , i.e. X = Proj(Z[x1, . . . , xn]/(f)). For
an algebraically closed field F let XF = X ⊗ F denote the fibre over F , and let ΣF ⊂ XF be the
singular locus. Then for any algebraically closed field L of characteristic 0 we have

dimΣL ≤ dimΣF .

Proof: There exists a closed subscheme Σ ⊂ X, whose fibers over an algebraically closed field F
coincide with the singular locus ΣF . Let Σi be an irreducible component of Σ which meets XL in
a non-empty set. The subscheme Σi is flat over Z. The inequality

dim(Σi)L ≤ dim(Σi)F

is then a consequence of the semicontinuity of fiber dimension. This proves the lemma. 2

It follows from this result that a computation of the dimension (and degree) of the singular
locus in finite characteristic gives an upper bound for the (actual) result in characteristic 0.

3.2 Description

The computer algebra program Macaulay computes a Gröbner basis of a homogenous ideal I. It is
possible from the properties of the Gröbner basis to compute the Hilbert function of the ideal, and
in particular the dimension and degree can be calculated in this manner. This computation, which
was carried out in the Macaulay default characteristic 31991, together with the Lemma above, yield

Proposition 3.2 The singular locus of X has dimension at most four and degree at most 1344.
In particular, X is normal.

In fact, the singular locus has exactly dimension four: the Segre embedded products described in
section 1.3 are of dimension four, and are contained in that singular locus (see below).

3.3 New proof of Runge’s theorem

Theorem 3.3 ([4], 2.8) Let ⊕k[Γ3(2, 4), k] denote the ring of modular forms for Γ3(2, 4). Then

⊕k[Γ3(2, 4), k] = C[XσXτ ].

Proof: As we have mentioned, it is sufficient to show that X is normal. But a hypersurface is
normal if and only if the dimemsion of the singular locus has codimension at least two. 2

Remark: Runge’s original proof is based on Sasaki’s result [5], which implies that X is smooth
outside the reducible locus, which as we have seen consists of components of dimension 4. We will
show below that in fact each such component is simply contained (i.e., with multiplicity one) in
that singular locus.
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4 Other calculations

4.1 Cusp forms of weight 6

By the fact that X is a projective hypersurface, it follows that the sections of the canonical bundle
are given by the set of octics with certain vanishing properties. These sections correspond to cusp
forms of weight 6. The condition on the octics is that they vanish at the 126 P3’s described in
section 1.3, i.e., that these octics are in the ideal of the 126 P3’s. To check whether there are any
such octics, we calculated the ideal of the 126 P3’s up to degree 9. While there are elements of
degree 9, there are no octics. This gives

Proposition 4.1 There are no cusp forms of weight ≤ 6 for Γ3(2, 4).

Remark: R. Salvati-Manni has proved that X is not rational. For example a modification of
the proof of III.5.29 in [1] shows that X is of general type. Salvati-Manni also constructed a
holomorphic differential form of degree three.

4.2 Multiplicity of the singular locus

First we checked, using the Macaulay reduce command, whether the Segre embedded products are
contained in the singular locus; they are (note that it suffices to check this for one such, since
the automorphism group acts transitively on these components). However, there is a priori the
possibility that these components may have higher multiplicity in the singular locus. To exclude
this possibility, we proceeded as follows. It turned out not to be feasible to use the Macaulay
quotient command to divide out a component of the singular locus. Instead, we considered the
following sublocus. Let Hσ denote the hyperplane {Xσ = 0}; we checked that the singular locus
of Hσ ∩X still has degree 1344, but now only dimension 3. Then we intersected with another Hτ

such that the dimension was still 3 but the degree dropped to 72. It is easy to see that this is the
union of Segre embedded P1 ×P2’s (setting a coordinate in P3 to zero), each of which has degree
3. Here we were able to use the quotient command; a given component was contained simply in
Hσ ∩Hτ ∩Σ. The same then clearly holds for the components of Σ. Since the total degree is 1344
and each component has degree 4, it follows from this:

Proposition 4.2 The singular locus consists of 336 Segre embedded copies of P1 ×P3’s of degree
four (and possibly components of lower dimension).

If we use Sasaki’s result, then there are no lower-dimensional components.
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