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Introduction

In his paper [Bo1], at the end of Sect. 4, Borcherds mentions without proof a
beautiful formula for dimensions of vector valued modular forms of weight ≥ 2
with respect to the full modular group (here reproduced as Theorem 6.1).

Skoruppa informed me that he derived already 1985 in his Ph.D. thesis [Sk]
these dimension formulas for all weights by means of the Shimura trace formula.

More general results, including arbitrary Fuchsian groups, can be found in
the paper [Bo2] of Borcherds, Sect. 7. Most of them have been proved by the
Selberg trace formula, see [Iv] and also [Fi]. The Selberg trace formula in its
standard form causes the restriction that the weight is > 2. Borcherds mentions
that “with a bit more care this also works for weight 2”. As we mentioned,
this bit more care was taken already 1985 in the thesis of Skoruppa.

The purpose of this paper is to produce the dimension formula in all weights,
for general Fuchsian groups and for arbitrary rational weights.

We consider arbitrary discrete subgroups Γ ⊂ SL(2,R)/± with finite volume
of the fundamental domain. For them we consider vector valued modular forms
of a rational weight r. They have the transformation property

f(γτ) = γ′(τ)−r/2ϱ(γ)f(τ),

where ϱ(γ) is matrix valued. We assume that all ϱ(γ) are of finite order and
that the can be diagonalized simultaneously for all γ in a subgroup of finite
index Γ0. We make some further weak assumption for ϱ (see Assumption 3.3)
which is fulfilled at least for arithmetic groups. These assumptions are not
really necessary. In principle, one could consider arbitrary real weights r and
we could take arbitrary unitary multiplier systems in the sense of [Fi]. But
we found that these restrictions are convenient and they cover all cases which
occur usually in the theory of modular forms.

Since we allow arbitrary rational weights, there is an ambiguity in the def-
inition of γ′(τ)−r/2. One standard way to overcome this, is, to use covering



groups of SL(2,R). Instead of this we found it convenient to use the old-
fashioned method of multiplier systems, here in a matrix-valued sense. They
could be also called “projective representations”. In Sect. 6 we reformulate the
results for representations of the two-fold metaplectic covering of SL(2, Z) and
reproduce Borcherds’ formula in [Bo1].

Our proof rests on the Riemann–Roch formula for vector bundles (and not
on the Selberg trace formula). The idea is to use a sufficiently small normal
subgroup Γ0 for which the vector bundle splits into a sum of line bundles. This
gives a reduction to the well-known case of scalar valued modular forms.

1. Riemann–Roch for vector bundles

Riemann surfaces are always assumed to be connected. We need the notion of
the degree of a coherent sheaf. It can be characterized as follows:

1.1 Theorem. Let X be a compact Riemann surface. There exists a unique
function which associates to an arbitrary coherent sheaf M on X a non-negative
integer degM such that the following properties are satisfied:

1) degM depends only on the isomorphy class of M.
2) For a skyscraper sheaf W

deg(W) =
∑
a∈X

dimWa.

3) If D is a divisor and OD the associated line-bundle then

deg(OD) = degD.

4) For a short exact sequence of coherent sheaves

0 −→ M1 −→ M2 −→ M3 −→ 0

one has
deg(M2) = deg(M1) + deg(M3).

5) If : X → Y is non-constant holomorphic map between compact Riemann
surfaces, then

deg(f∗M) = deg(X/Y ) deg(M).

Here deg(X/Y ) denotes the covering degree of X → Y .

We also need the rank of a coherent sheaf. If M is a coherent sheaf on a
compact Riemann surface then there exists a finite set such the restriction of
M to X − S is a vector bundle. By definition, Rank(M) is the rank of this
vector bundle.



1.2 Theorem (Riemann-Roch Theorem). Let M be a coherent sheaf on
a compact Riemann surface X. Then

dimH0(X,M)− dimH0(X,HomOX
(M,Ω)) = deg(M) + Rank(M)(1− g).

Here Ω denotes the canonical sheaf (sheaf of holomorphic differentials).

We mention that this theorem can be reduced to the classical one for divi-
sors. First one defines the degree by means of the formula

χ(M) = deg(M) + Rank(M)(1− g)

where
χ(M) = dimH0(X,M)− dimH1(X,M)

is the Euler–Poincarè-characteristic of M. The conditions 1) and 2) then
are trivial, 3) is the classical Riemann–Roch and 4) is true since χ(M) and
Rank(M) are additive in this sense. 5) also can easily be reduced to divisors.
What remains to be done is the construction of the duality pairing

H1(X,M)×H0(X,HomOX (M,Ω)) −→ OX

and the proof that it is non-degenerate.

2. Vector valued modular forms

Let α : D → D′ be a biholomorphic mapping between two domains in the
complex plane. Once for ever we choose a holomorphic logarithm logα′(z) and
define then

jr(α, z) := α′(z)−r/2 := e−r logα′(z)/2

for an arbitrary rational number r. (This definition is possible for arbitrary real
and even more complex r. For sake of simplicity we restrict here to automorphic
forms of rational weight.)

There holds a kind of chain rule for two biholomorphic mappings α : D →
D′, β : D′ → D′′:

jr(βα, z) = wr(α, β)
−1jr(β, αz)jr(αz).

Here wr(α, β) is a certain root of unity. For even r it is one.

Let f be a function on D′. We define the function f |α on D as

(f |α)(z) = (f |
r
α)(z) = f(α(z))jr(α, z).



Then the chain rule reads as

f |(βα) = wr(α, β)(f |β)|α.

2.1 Definition. Let D ⊂ C be a domain and Γ a group of biholomorphic
transformations of D. By a (vector valued) multiplier system of weight r ∈ Q
with values in a finite dimensional complex vector space V we understand a
map

ϱ : Γ −→ GL(V )

with the following properties:

1) ϱ(γ1γ2) = wr(γ1, γ2)ϱ(γ1)ϱ(γ2).
2) The matrices ϱ(γ) are of finite order.
3) There exists a subgroup Γ0 ⊂ Γ of finite index such that ϱ(γ) can be simul-
taneously diagonalized for γ ∈ Γ0,

Property 1) means that
J(γ, z) = jr(γ, z)ϱ(γ)

is a (vector valued) factor of automorphy, i.e.

J(βα, τ) = J(β, ατ)J(α, τ).

So it makes sense to consider functions f : D → V with the transformation
property

f(γz) = J(γ, z)f(z).

2.2 Lemma. Let α : D → D̃ be a biholomorphic map of domains and Γ a
group of biholomorphic transformations of D. Then Γ̃ = αΓα−1 is a group of
biholomorphic transformations of D̃. Let ϱ be a multiplier system of weight r
for (D,Γ) then

ϱ̃(γ) = ϱ(α−1γα)wr(α
−1, γ)wr(α

−1γα, α−1)

is a multiplier system for (D̃, Γ̃) with corresponding automorphy factor

J̃(γ,w) = J(α−1γα, α−1w) = ϱ̃(γ)jr(γ,w)
−1.

Let f : D → V be a function with the property f(γz) = J(γ, z)f(z) for γ ∈
Γ then the transformed function f̃ = f |α−1 has the transformation property
f̃(γw) = J̃(γ,w)f(w) for γ ∈ Γ̃.

From now on Γ denotes a group of biholomorphic transformations of the upper
half plane H. We assume that Γ acts properly discontinuously. We denote by
S ⊂ R ∪ {∞} the set of cusps and by H∗ = H ∪ S the extended upper half
plane. The quotient

X = XΓ := H∗/Γ



carries a structure as Riemann surface. We assume that this surface is compact.

In the following we fix a group Γ, a rational number r and a multiplier
system ϱ : Γ → GL(V ) of weight r for Γ. Let n be the dimension of V . We
want to define for each point a ∈ H∗ an unordered n-tuple of numbers

x1, . . . , xn, 0 ≤ xi < 1 (n = dimV ).

We will call them the characteristic numbers of a (with respect to Γ, ϱ, r).

We start with the case where a ∈ H is an inner point. We transform it to
the origin of the unit disk E by means of the transformation

α(τ) =
τ − a

τ − ā
.

We consider the conjugate group Γ̃ = αΓα−1. We also consider the conjugate
multiplier system ϱ̃ and corresponding automorphy factor J̃ in the sense of
Lemma 2.2.

2.3 Remark and Definition. For a point a ∈ H we consider the conjugate
group

Γ̃ = αΓα−1, α(τ) =
τ − a

τ − ā
,

and the transformed automorphy factor J̃(γ,w). The stabilizer of the origin in
Γ̃ is generated by the transformation re(w) = e2πi/ew where e is the order of
the stabilizer Γa. The transformation R = J̃(re, w) is independent of w and
has the property Re = id. We define the characteristic numbers

x1 . . . , xn, 0 ≤ xi < 1,

such that e2πixν are the eigenvalues of R. The numbers exν are integral.

The proof is rather trivial. Every element γ ∈ Γ̃ which stabilizes the origin
must be of the form w 7→ ζw where ζ is a complex number of absolute number
one. The only subgroup of order e of the multiplicative group of complex
numbers is the group generated by e2πi/e. Since the derivative of γ is constant,
J̃(γ,w) is independent of w. The automorphy property implies that it is a
homomorphism. The image is a group of some order that divides e. ⊔⊓

Another way to describe the characteristic numbers is as follows (use
Lemma 2.2).

2.4 Remark. (Notations as in Remark and Definition 2.3.) Consider in the
stabilizer Γa the generator γ that corresponds to the element re in the unit-disk.
Then the characteristic numbers xν are defined such that 0 ≤ xν < 1 and that
e2πixν are the eigen values of J(γ, a).



Next we define the characteristic numbers in the case where a is the cusp ∞.
The stabilizer Γ∞ is generated by a translation

tN (τ) := τ +N, N > 0.

The matrix
R = J(tN , τ)

is independent of τ and has finite order. The characteristic numbers are defined
such that e2πixν are the eigenvalues of R.

Next we treat the case where a is an arbitrary cusp. We choose a trans-
formation α ∈ Aut(H) with the property α(a) = ∞. We can consider the
conjugate group Γ̃ = αΓα−1 and the conjugate multiplier system ϱ̃ (and of
course the same r). The group Γ̃ has the cusp ∞. We want to define the char-
acteristic numbers of (Γ, r, ϱ) at the cusp a to be the characteristic numbers of
(Γ̃, r, ϱ̃) at ∞. It is easy to prove that this definition does not depend on the
choice of α.

2.5 Lemma. Let a be a cusp and α ∈ Aut(H) be a transformation with
the property α(a) = ∞. We consider the conjugate group Γ̃ = αΓα−1 and the
conjugate multiplier system ϱ̃. The characteristic numbers of (Γ̃, r, ϱ̃) at ∞ are
independent of the choice of α.

Proof. We can assume that a = ∞. Then α is of the form α(τ) = uτ + v.

Let tN (τ) = τ + N be the generator of Γ∞. We set Ñ = uN . Then tÑ =
αtNα−1 and this is the generator of Γ̃∞. Taking a suitable basis of V we can
assume that the matrix of R = J(tN , ·) is diagonal. Then we can assume that
V has dimension one and that R acts by multiplication by e2πix where x is
the characteristic number. The function f(τ) = e2πixτ then has the property
f(τ +N) = J(tN , τ)f(τ). From the second part of Lemma 2.2 follows that the
function f̃(τ) = f(uτ + v) has the property

f̃(τ + Ñ) = J̃(tÑ , τ)f̃(τ).

This formula implies that J(tÑ , τ) is also the multiplication by e2πix. ⊔⊓

2.6 Lemma. The characteristic numbers depend only on the Γ-orbit of a
point a ∈ H∗. Hence the can be considered for points x ∈ XΓ. They can be
different from (0, . . . , 0) only for cusps or elliptic fixed pints.

We want to introduce local automorphic forms. Let U ⊂ XΓ be an open subset.
We denote its inverse image in H∗ by Ũ . This is a Γ-invariant subset. Hence we
can consider all holomorphic functions f : Ũ −S → C with the transformation
property

f(γτ) = J(γ, τ)f(τ), γ ∈ Γ.



Assume that Γ has cusp ∞ and that it is contained in Ũ . Then Ũ contains
some upper half plane Im τ > C > 0 and f has the transformation property
f(τ + N) = Rf(τ). Since R has finite order, f has some multiple of N as
period. We call f regular at ∞ if f is bounded for Im τ → ∞ and cuspidal if
it tends to 0. We can diagonalize R and describe f by components

fν(τ +N) = e2πixνfν(τ).

The function gν(τ) = fν(τ)e
−2πixντ/N has period N . Hence we have a Fourier

expansion

fν(τ) = e
2πi
N xντ

∞∑
m=−∞

aν(m)e
2πi
N mτ .

The function f is regular at ∞ if aν(m) ̸= 0 implies xν +m ≥ 0 and cuspidal if
it implies xν +m > 0. Since 0 ≤ xν < 1 the condition xν +m ≥ 0 is equivalent
to m ≥ 0.

Using “transformation to ∞” one can define the notions “regular” and “cus-
pidal” also for other cusps. It is clear that this notion does not depend on the
choice of the transformation. It is also clear that this notion depends only on
the Γ-orbit of a cusp.

We define a certain sheaf M = MΓ(r, ϱ) on XΓ. For open U in X = XΓ

the space M(U) consists of all local automorphic forms f : Ũ − S → V which
are regular at the cusps. This defines a sheaf and even more an OX -module.
For even r and the trivial one-dimensional representation ϱ we write M(r)
instead of M(r, ϱ). We also can consider the subsheaf Mcusp = Mcusp

Γ (r, ϱ) of
all cuspidal local automorphic forms. This is also an OX -module.

2.7 Lemma. The sheafs M = MΓ(r, ϱ), Mcusp = Mcusp
Γ (r, ϱ) are vector

bundles of rank n = dimV , hence coherent.

Proof. We have to show that Mx is a free OX,x-module for each x ∈ XΓ. Let
a ∈ H∗ be a representant of x. We have to treat two cases. The first case is
that a is a cusp. We can assume that a = ∞. As explained above, the elements
of Mx can be considered as Fourier series of the kind

fν(τ) =
∑

m+xν≥0

aν(m)e
2πi
N (m+xν)τ .

Recall that m+ xν ≥ 0 means the same as m ≥ 0. If we map fν(τ) to∑
m≥0

aν(m)e
2πi
N mτ

we get an isomorphism from Mx to On
X,x. This shows that Mx is free. The

case Mcusp is similar.



Next we consider the case where a is an interior point. In this case we can
identify Mx with holomorphic functions f in a small disc around w = 0 which
transform as

f(e2πi/ew) = Rf(w), Re = id .

The components of f with respect to a basis of eigenvectors satisfy

fν(e
2πi/ew) = e2πixνfν(w).

From the Taylor expansion one can derive that fν(w) = wexνgν(w
e). The local

ring OX,x can be identified with the ring of power series C{we}. The map
fν 7→ gν gives an OX,x-linear isomorphism from Mx to On

X,x. ⊔⊓
For a multiplier system ϱ of weight r with values in the vector space V one

can define the dual multiplier system ϱ′. It is realized on HomC (V,C). By
definition ϱ′(γ) is the transposed of ϱ(γ−1). It is easy to check that this is a
multiplier system of weight −r. We mention that a multiplier system of weight
r can be considered as multiplier system of weight r′ for each r′ ≡ r mod 2.

As in the case of the sheaf M, we write Mcusp(r) instead of Mcusp(r, ϱ) for
even r and the trivial one-dimensional representation ϱ.

2.8 Lemma. The sheaf Mcusp(2) is a canonical sheaf. The dual sheaf of
M(r, ϱ) is isomorphic to Mcusp(2− r, ϱ′), where ϱ′ denotes the dual multiplier
system.

Proof. The canonical sheaf on a compact Riemann surface is the sheaf of
holomorphic differentials. Let ω be a holomorphic differential on an open subset
U ⊂ XΓ. Its inverse image on Ũ − S is of the form f(τ)dτ . The function
f transforms like an automorphic form of weight two (and trivial multiplier
system). Using the formula

2πidz = dq/q for q = e2πiτ

it is easy to show that the regularity of ω at the cusp classes means that f
is cuspidal. For the elliptic fixed points a similar argument works. We omit
it. ⊔⊓

Next we define a pairing

M(r, ϱ)×Mcusp(2− r, ϱ′) −→ Mcusp(2).

For this we use the natural pairing

V ×Hom(V,C) −→ C, ⟨v, L⟩ = L(v).

Let f ∈ M(r, ϱ) and g ∈ Mcusp(2− r, ϱ′) be local automorphic forms on some
U ⊂ XΓ. Then ⟨f, g⟩ transforms like an automorphic form of weight 2 with
respect to the trivial multiplier system. It is clear that it is cuspidal. So the



pairing has been defined. It has to be checked that it is non-degenerated. This
can be done by a local computation at points x ∈ XΓ. We restrict to the case
where x is the image of the cusp ∞. Recall that – using a suitable basis of V –
the elements of M(r, ϱ)x can be identified with Fourier series

fν(τ) =

∞∑
m+xν≥0

aν(m)e
2πi
N (m+xν)τ .

The characteristic numbers yν of the dual multiplier system have the property
xν + yν ≡ 0 mod 1. Hence – using the dual basis – the elements of Mcusp(2−
r, ϱ′)x can be identified with Fourier series

gν(τ) =

∞∑
m−xν>0

bν(m)e
2πi
N (m−xν)τ

and the pairing is just
∑

fνgν . The condition m + xν ≥ 0 is equivalent to
m ≥ 0 and the condition m − xν > 0 is equivalent to m ≥ 1. Finally M(2)x
can be identified with all Fourier series

h(τ) =
∑
m≥1

c(m)e
2πi
N mτ .

Let q = e
2πi
N τ . Using the isomorphisms

M(r, ϱ)x
∼−→ C{q}n, f 7−→

(∑
aν(m)qm

)
,

Mcusp(2− r, ϱ′)x
∼−→ C{q}n, f 7−→

(∑
bν(m)qm−1

)
,

M(2)x
∼−→ C{q}n, h 7−→

(∑
cν(m)qm−1

)
,

the pairing gets equivalent to the standard pairing

C{q}n × C{q}n −→ C{q}, ⟨P,Q⟩ =
∑
ν

PνQµ,

which is obviously non-degenerated. ⊔⊓

3. The computation of the degree

We consider a subgroup Γ0 ⊂ Γ of finite index. We restrict ϱ to Γ0 and consider
the sheaf

M0 = MΓ0(r, ϱ)



on the Riemann surface XΓ0 . We want to compare the degrees of M and M0.
Let

π : XΓ0 −→ XΓ

be the natural covering. We know degM∗ = deg(X0/X) degM. There is an
obvious inclusion of sheaves M ↪→ π∗M0. By functoriality this induces a map

π∗M −→ M0.

Let x ∈ XΓ0 . The stalk of π∗M is

(π∗M)a ∼= Mπ(x) ⊗OXΓ,π(x)
OXΓ0,x .

Since OXΓ0,x is a free OXΓ,π(x)
-module we see that

(π∗M)π(x) −→ (M0)x

is injective. Outside a finite set (images of cusps and of elliptic fixed points of
Γ) it is an isomorphism. So we get an exact sequence

0 −→ π∗M −→ M0 −→ K −→ 0

with a skyscraper sheaf K. We have to compute its degree

degK =
∑

x∈XΓ0

dimKx.

We compute
Kx = (M0)x / (Mπ(x) ⊗OXΓ,π(x)

OXΓ0,x)

first in the case where x comes from an inner point a ∈ H. Let w = (τ −
a)/(τ −a). For sake of simplicity we assume that a is not an elliptic fixed point
of Γ0. Then the local ring OXΓ0,x can be identified with the ring of power
series C{w}. The ring OXΓ,π(x)

can be identified with C{we}. As in section
two we take a basis of V such that all ϱ(γ) are diagonal. Then we have natural
isomorphisms

(M0)x ∼= C{w}n.

and

Mπ(x) =

n∏
ν=1

wexνC{we}.

If we tensor this with C{w} we get

Mπ(x) ⊗OXΓ,π(x)
OXΓ0,x =

n∏
ν=1

wexνC{w}.

This shows the following result.



3.1 Lemma. Let Γ0 ⊂ Γ be a subgroup of finite index and let π : XΓ0 → XΓ

be the natural projection. We consider a point x ∈ XΓ0 which is the image of
an inner point a ∈ H. We assume that a is no fixed point of Γ0. Let ϱ be a
multiplier system of weight r for Γ. We denote by

σ(a) = x1 + · · ·+ xn

the sum of the characteristic numbers at a. Then the formula

dimKx = eσ(a), K = MΓ0(ϱ, r)/π
∗MΓ(ϱ, r),

holds.

Now we consider the case that x ∈ XΓ0 is the image of the cusp∞. Analogously
to N for Γ, we denote by N0 the smallest positive number such that τ 7→ τ+N0

is in Γ0. The number N0/N is integral. We set

q = e
2πi
N0

τ .

Then the local ring of XΓ0 at x is C{q} and the local ring of XΓ at π(x) is
C{qN0/N}. The stalk of M = MΓ(ϱ, r) at π(x) is (after diagonalization)

Mπ(x) =
n∏

ν=1

e
2πi
N xντC{qN0/N}.

We get

Mπ(x) ⊗OΓ,π(x)
OXΓ0,x =

n∏
ν=1

e
2πi
N xντC{q}.

The characteristic numbers y1, . . . , yn of with respect to Γ0 are defined by

yν ≡ (N0/N)xν mod 1, 0 ≤ yν < 1,

or, using the Gauss bracket,

yν = (N0/N)xν − [(N0/N)xν ].

Hence the stalk of M0 = MΓ0(ϱ, r) at x is

M0,x =
n∏

ν=1

e
2πi
N0

yντC{q}.

This shows

dimKx =
n∑

ν=1

[(N0/N)xν ].

For sake of simplicity we assume that the characteristic numbers of the cusp
∞ with respect to Γ0 are zero. Then (N0/N)xν is integral. We also mention
that N0/N is the index of Γ0,∞ in Γ∞. Hence we get

dimKx =

n∑
ν=1

[Γ∞ : Γ0,∞]xν .

We recall that the characteristic numbers for a point x ∈ XΓ depend on
(ϱ, r). To point out the r-dependency we will write frequently xν = xν(r)
and σ(x, r) = σ(x) for their sum.



3.2 Lemma. Let Γ0 ⊂ Γ be a subgroup of finite index and let π : XΓ0 → XΓ

be the natural projection. We consider a point x ∈ XΓ0 which is the image of a
cusp a. Let ϱ be a multiplier system of weight r for Γ. We denote by σ(a, r) the
sum of the characteristic numbers. We assume that the characteristic numbers
of the cusps with respect to Γ0 are zero. Then the formula

dimKx = [Γa : Γ0,a]σ(a, r), K = MΓ0(ϱ, r)/π
∗MΓ(ϱ, r),

holds.

For the rest of this paper we make the following assumption.

3.3 Assumption. The triple Γ, ϱ, r has the following property. There exists
a subgroup of finite index Γ0 ⊂ Γ such that Γ0 acts fixed point free on H and
that the characteristic numbers of all cusps with respect to Γ0 are zero.

This assumption is harmless. It is fulfilled for arithmetic groups since there are
many subgroups of finite index in form of congruence subgroups.

We use the notation
π : XΓ0 −→ XΓ

for the canonical map. We get a formula for the degree of K.

3.4 Proposition. The formula

degK = [Γ : Γ0]
∑
x∈XΓ

σ(x, r)

holds. Here σ(x, r) is the sum of the characterstic numbers at (a representative
of) x.

We now get the link between the degrees of MΓ(ϱ, r) and MΓ0(ϱ, r). The
covering degree of π : XΓ0

→ XΓ equals the index [Γ : Γ0]. Using 5) from
Theorem 1.1 we get the following formula.

[Γ : Γ0] degMΓ(ϱ, r) = degMΓ0(ϱ, r)− [Γ : Γ0]
∑
x∈XΓ

σ(x, r).

The group Γ0 can be chosen small enough such that the multiplier system is
diagonal, that it acts fixed point free on H and that the characteristic numbers
of the cusps are zero. Then MΓ0(ϱ, r) is a direct sum of line bundles and we
are reduced to the well-known case V = C which has been treated at various
places in the literature. For sake of completeness we repeat shortly the argu-
ment. Since every line-bundle has a meromorphic section (i.e. a mermorphic
automorphic form) f . We associate to f a divisor D = (f). such that OD is
isomorphic to MΓ0(ϱ, r). If x ∈ XΓ0 is the image of an inner point a ∈ H, then
D(x) is the usual order of f at a. Let a be the cusp ∞. Since the characteristic



number are zero, we can consider f as a holomorphic function in q = e
2πi
N0

τ and
we define D(x) to be the order of this function at q = 0. For an arbitrary cusp
we use “transformation to ∞”. It is easy to check that the order is independent
of the choice of the transformation and even more that it depends only one the
Γ0-orbit of a. Let m be a natural number. Then on has (fm) = m(f) (since
the characteristic numbers of the cusps vanish). We can take m such that mr
is even and such the multiplier system of f is trivial. Now we can compare
with modular forms of weight two.

degMΓ0(ϱ, r) =
r

2
degM(2).

We use thatMcusp(2) is a canonical bundle and that the degree of the canonical
bundle is 2g0 − 2. We obtain that the degree of M(2) is 2g0 − 2 + h0 where
h0 denotes the number of cusp classes of Γ0. Collecting together we obtain the
following formula.

3.5 Proposition. The formula

degMΓ(ϱ, r) =
rn

2[Γ : Γ0]
(2g0 − 2 + h0)−

∑
x∈XΓ

σ(x, r).

holds. Here g0 denotes the genus of XΓ0 . The rank of ϱ is denoted by n and
h0 denotes the number of cusp classes of Γ0.

We want to express the formula above in data of the group Γ alone. For this
we have to use the Riemann–Hurwitz ramification formula. Let π : X0 → X a
holomorphic non-constant map between compact Riemann surfaces. Let g be
the genus of X and g0 the genus of X0. For a ∈ X0 we denote by Ord(π, a) the
order of π at a. That the order is m means that f looks locally around a like
z 7→ zm. The ramification formula states

g0 − 1 = deg(f)(g − 1) +
1

2

∑
a∈X

(Ord(f, a)− 1).

We assume that f : X0 → X is Galois. This means that there is a finite group
G of biholomorphic transformations of X0 such that two points in X0 are G-
equivalent if and only if they have the same image in X. In the Galois case the
order at a point a ∈ X0 depends only on its image b ∈ X. Hence we can define

e(f, b) := Ord(f, a) (b ∈ X).

The number of points a ∈ X0 over b ∈ X is deg f/e(f, b). So the ramification
formula can be written as

g0 − 1

deg f
= (g − 1) +

1

2

∑
b∈Y

(
1− 1

e(f, b)

)



in this case. We want to use to reformulate the degree formula in Proposi-
tion 3.5. We notice that the degree of π : XΓ0 → XΓ equals the index [Γ : Γ0].
The number of inverse points of a given cusp class b ∈ XΓ is [Γ0 : Γ]/e(π, b).
Hence we have

h0 =
∑

b∈XΓ cusp

[Γ0 : Γ]

e(π, b)
.

Now we obtain the following result.

3.6 Proposition. Assume in addition to the conditions of Proposition 3.5
that Γ0 is normal in Γ. Then the degree formula can be rewritten as

degMΓ(ϱ, r) = rn
(
g − 1 +

h

2
+

1

2

∑
b∈XΓ not cusp

(
1− 1

e(π, b)

))
−

∑
x∈XΓ

σ(x, r).

4. The dimension formula

The Riemann-Roch formula states

χ(MΓ(ϱ, r)) = deg(MΓ(ϱ, r)) + Rank(MΓ(ϱ, r))(1− g).

We are more interested in the spaces of automorphic forms

[Γ, ϱ, r] := H0(XΓ,MΓ(ϱ, r)).

The Serre dual space is the subspace of cusp forms of [Γ, ϱ′, 2− r]. In the case
r > 2 this space vanishes. In the case r = 2 there is a difference depending on
the fact whether Γ has a cusp or not. Modular forms of weight 0 are constants.
Hence [Γ, ϱ′, 0] is just the space of ϱ′-invariants of V . This is ismorphic to the
space of ϱ-invariants of V . Since constant cusp forms are zero if there is a cusp,
we obtain the following dimension formula.

4.1 Theorem. In the case r > 2 we have

dim[Γ, ϱ, r] =rn
(
g − 1 +

h

2
+

1

2

∑
b∈XΓ not cusp

(
1− 1

e(b)

))
+ n(1− g)−

∑
x∈XΓ

σ(x, r).

Here g is the genus of XΓ, the number of cusps is denoted by h. The order of
the stabilizer of a representant of b is denoted by e(b). The dimension of V is
n and x1(r), . . . , xn(r) are the characteristic numbers. (They depend on r.)

Supplement. When Γ has a cusp then this formula remains true in the case
r = 2. Otherwise one has to add dimV ϱ to the right hand side.



We denote by [Γ, ϱ, r]0 the subspace of cusp forms of [Γ, ϱ, r]. This is the space
of global sections of the sheaf Mcusp = Mcusp(Γ, ϱ, r). Since the quotient
M/Mcusp is a skyscraper sheaf we have

χ(M)− χ(Mcusp) =
∑

x∈XΓ, cusp

dim(Mx/Mcusp
x ).

Recall that Mx is given by Fourier series with summation over integers m such
that m+ xν(r) ≥ 0 and in the subspace Mcusp

x the summation is restricted to
m + xν(r) > 0. There is only a difference if the characteristic number xν is
zero. We see

χ(Mcusp) = χ(M)−
∑

x∈XΓ, cusp

#{ν; xν(r) = 0}.

4.2 Remark. Assume that Γ has cusp ∞. The number

#{ν; xν = 0}

equals the dimension of the subspace of invariants of V under the transforma-
tions J(γ, τ), γ ∈ Γ∞. (These transformations do not depend on τ .)

Finally we formulate the dimension formula for the space of cusp forms. In the
case of weight 2 we have to be careful, since

χ(Mcusp(Γ, ϱ, 2)) = dim[Γ, ϱ, 2]0 − dim[Γ, ϱ′, 0].

In the case of an even weight, ϱ is a representation and [Γ, ϱ′, 0] can be identified
with the space of invariants of ϱ′. We obtain the following result.

4.3 Theorem. Assume that Γ has at least one cusp. In the case r > 0 the
dimension of the space of cusp forms is

dim[Γ, ϱ, r]0 = dim[Γ, ϱ, r]−
∑

x∈XΓ, cusp

#{ν; xν(r) = 0}.

In the case r = 2 we have to add dimV ϱ to the right hand side.



5. The full modular group

We specialize the dimension formula to the group Γ = SL(2, Z)/±. As usual
it acts on the upper half plane by (aτ + b)(cτ + d)−1. In this case g = 0 and
h = 1. We have two classes of elliptic fixed points of order e = 2 resp. e = 3.
In the dimension formula we get

∑
b∈XΓ not cusp

(
1− 1

e(b)

)
=

(
1− 1

2

)
+
(
1− 1

3

)
=

7

6
.

So the dimension formula gives

dim[Γ, ϱ, r] =
rn

12
+ n−

∑
x∈XΓ

σ(x, r).

We use the usual generators

T =

(
1 1
0 1

)
,

(
0 −1
1 0

)
.

Representatives of the elliptic fixed points are i and ζ3 = −1/2 + i
√
3/2. The

elements in their stabilizers which correspond to the rotation with factor e2πi/e

can be computed easily as S resp. (ST )−1.

Let A be a complex matrix of finite order. The eigenvalues are roots of
unity which we can write in the form

λ = exp(2πiα) with 0 ≤ α < 1.

We use the notation

α(A) =
∑
λ

α,

where λ runs through all eigenvalues (counted with multiplicity).

The contributions of the characteristic numbers in the dimension formula
can be written as∑

x∈XΓ

(x1(r) + · · ·+ xn(r)) = α(J(S, i)) + α(J((ST )−1, ζ3)) + α(J(T, ·)).

(The function J(T, τ) is independent of τ .)



5.1 Theorem. In case of the full modular group the dimension formula is
valid for r ≥ 2 (including r = 2) and reads as

dim[Γ, ϱ, r] =
rn

12
+ n− α(J(S, i))− α(J((ST )−1, ζ3))− α(J(T, ·)).

For the subspace of cusp forms one has

dim[Γ, ϱ, r]0 = dim[Γ, ϱ, r]− dimV J(T,·) +

{
0 if r > 2,
dimV ϱ if r = 2.

We treat a simple example just to get a feeling how the formula works. The
weight r is assumed to be even and we consider the case of a trivial multiplier
system. This means J(γ, τ) = (cτ + d)r/2. So we get

J(S, i) = e2πir/4

and

J((ST )−1, ζ3) = e2πir/6.

The sum of both is 

0 for r ≡ 0 mod 12,
7/6 for r ≡ 2 mod 12,
1/3 for r ≡ 4 mod 12,
1/2 for r ≡ 6 mod 12,
2/3 for r ≡ 8 mod 12,
5/6 for r ≡ 10 mod 12.

Using the table above, one gets
[

r
12

]
if r ≡ 2 mod 12,[

r
12

]
+ 1 else.

This formula is true for all even r > 0 (also for r = 2).

6. The metaplectic group

There is a different way to express multiplier systems using the metaplectic
group. We recall this concept briefly in the case of half-integral weight The
metaplectic group

Mp(2,R) −→ SL(2,R)



can be described as the set of all pairs (M,J), where M =
(
a b
c d

)
∈ SL(2,R) and

where J =
√
cτ + d is one of the two holomorphic square roots of the function

cτ + d on the upper half plane H. The group law is

(M,
√
cτ + d)(M ′,

√
c′τ + d′) = (MM ′,

√
c′τ + d′

√
cM ′τ + d).

One knows that Mp(2, Z) is generated by

T =
((

1 1
0 1

)
, 1
)
, S =

((
0 −1
1 0

)
,
√
τ
)
, Re τ > 0,

and that the relations

S2 = (ST )3 = Z, Z =

((
−1 0
0 −1

)
, i

)
, Z4 = 1

are defining ones.

Let
ϱ : Mp(2, Z) −→ GL(V )

a representation of Mp(2, Z) on some finite dimensional complex vector space.
Let r be an integer or a half integer (2r ∈ Z). An (entire) modular form
of weight r with respect to ϱ is holomorphic function f : H → V with the
transformation law

f(Mτ) =
√
cτ + d

2r
ϱ(M)f(τ) for all (M,

√
cτ + d) ∈ Mp(2, Z)

and such that f is bounded for Im τ ≥ 1.

We denote by [Mp(2, Z), r, ϱ] the space of all entire modular forms. Let

ϱ : Mp(2, Z) −→ GL(V )

a representation of Mp(2, Z) on some finite dimensional complex vector space.
We assume that it is trivial on a subgroup of finite index. Let r be an integer
or a half integer (2r ∈ Z).

Let V0 ⊂ V be the subspace on which ϱ(−E, i) (E denotes the unit matrix)
acts by multiplication with e−πir = i−2r. It is quite clear that the values of f are
contained in V0 and that V0 is invariant under Mp(2, Z). Let γ ∈ SL(2, Z)/±
a modular transformation. We choose a pre-image (M,

√
cτ + d) ∈ Mp(2,C)

and define the operator

J(γ, τ)a =
√
cτ + d

2r
ϱ(M)a for a ∈ V0.

This is independent of the choice of the pre-image (since we restrict to V0). By
trivial reason

J(γ, τ)α′(τ)r/2

is a V0-valued multiplier system and Assumption 3.3 is satisfied. The space
of modular forms of weight r with respect to this multiplier coincides with
[Mp(2, Z), ϱ, r]. Hence the dimension formula gives the following result.



6.1 Theorem. Let ϱ : Mp(2, Z) → GL(V ) be a representation on a finite
dimensional vector whose image is finite. Let V0 be the biggest subspace of V
where ϱ(−E, i) acts by multiplication with e−πir. We denote by d the dimension
of V0. Then one has for r ≥ 2 (including r = 2)

dim[Mp(2, Z), ϱ, r] =
rd

12
+ d−α(eπir/2ϱ(S))−α

((
eπir/3ϱ(ST )

)−1
)
−α(ϱ(T )).

The invariants α have to be taken with respect to the action on V0.

For the subspace of cusp forms one has

dim[Γ, ϱ, r]0 = dim[Γ, ϱ, r]− dimV
ϱ(T )
0 +

{
0 if r > 2,
dimV ϱ

0 if r = 2.

The operator eπir/2ϱ(S) (considered on V0) has order 2 and
(
eπir/3ϱ(ST )

)−1

has order 3. Their α-invariants can be computed very easily be means of the
following lemma.

6.2 Lemma. Let A be a d× d-matrix. We have

α(A) =


d
4 − tr(A)

4 if A2 = E

d
3 − 1

3 Re(tr(A−1)) + 1
3
√
3
Im(tr(A−1)) if A3 = E.
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