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Abstract

The Hermitian modular groups of degree n > 1 and their subgroups of
finite index admit multiplier systems of weight r ∈ R only if 2r ∈ Z.
This follows from the corresponding result of Deligne [De, Hi] for the
Siegel modular group, since the Siegel modular group can be embed-
ded into the Hermitian modular groups. In this paper we will prove
that in the Hermitian case n > 2 only multiplier systems of integral
weight exist. The case n = 2 is exceptional. Haowu Wang [Wa] gave
a remarkable example of a modular form of half integral weight on a
certain congruence group Γ in a Hermitian modular group of degree 2.
Actually he constructs a Borcherds product of weight 23/2 for a group
of type O(2, 4). This group is isogenous to the group U(2, 2) that con-
tains the Hermitian modular groups of degree two. In this paper we
want to study such multiplier systems. If one restricts them to the
unimodular group

U =

{
U ;

(
Ū ′−1 0

0 U

)
∈ Γ

}
one obtains a usual character. Our main result states that the kernel of

this character is a non-congruence subgroup. Our method works also

in the case of the Siegel modular group. Here we obtain a new proof of

the mentioned result of Deligne.

Introduction

We fix a natural number g (which later will be 2). We denote by E = E(g) the
g × g-unit matrix and by

I = I(g) =

(
0 −E
E 0

)
the standard alternating matrix. The unitary group U(g, g) consists of all M ∈
GL(2g,C) with the property M̄ ′IM = I. The special unitary group SU(g, g) is
the subgroup of elements with determinant one. One has SU(1, 1) = SL(2,R).

From now on we fix an imaginary quadratic field F = Q(
√
d) of discriminant
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d < 0 and denote by

o = Z + Zω, ω =
δ +
√
δ

2
,

its ring of integers. The Hermitian modular group ΓF,g is the subgroup of
U(g, g) of matrices with entries in o. Let q ⊂ o be a non zero ideal. Then

ΓF,g[q] = kernel(ΓF,g −→ GL(2g, o/q))

is the (principal) congruence subgroup of level q. Since the field F is fixed, we
can omit the label F and write

Γg := ΓF,g and Γg[q] = ΓF,g[q].

For sufficiently small q the group Γg[q] is contained in SL(2g, o). Then the
group Γ1[q] is the usual principal congruence subgroup of the elliptic modular
group SL(2, Z) of level q ∩ Z.

1. Multiplier systems

We consider the usual action MZ = (AZ+B)(CZ+D)−1 of the unitary group
U(g, g) on the Hermitian upper half plane

Hg = {Z ∈ Cn×n; Z = X + iY, X = X̄ ′, Y = Ȳ ′ > 0 (positive definite)}.

This an open convex domain in Cn×n. The function

J(M,Z) = det(CZ +D)

has no zeros on the half plane. Since the half plane is convex, there exists a
continuous choice L(M,Z) = arg J(M,Z) of the argument. We normalize it
such that it is the principal value for Z = iE where E denotes the unit matrix.
Recall that the principal value Arg(a) is defined such that it is in the interval
(−π, π]. So we have

L(M, iE) = Arg(J(M, i)) ∈ (−π, π].

We consider

w(M,N) :=
1

2π

(
(L(MN,Z)− L(M,NZ)− L(N,Z)

)
.

Obviously,
e2πiw(M,N) = 1.

Hence w(M,N) is independent of Z and w(M,N) ∈ Z. Usually we will com-
pute w(M,N) by evaluation at Z = iE. Then L(MN, iE), J(N, iE) are given
by the principal values, but L(M,N(iE)) is obtained through continuous con-
tinuation of the principal value L(M, iE) along a path from iE to N(iE).
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Coc1.1 Remark. The function w : U(g, g) × U(g, g) → Z is a cocycle in the
following sense:

w(M1M2,M3) + w(M1,M2) = w(M1,M2M3) + w(M2,M3),

w(E,M) = w(M,E) = 0.

The computation of w(M,N) in genus 1 is easy for the following reason. From
the definition we have

2πw(M,N) = Arg((cα+ dγ)i + cβ + dγ)− arg(cN(i) + d)−Arg(γi + δ)

for

M =

(
a b
c d

)
, N =

(
α β
γ δ

)
where arg(cN(i)+d) is obtained from the principal value of arg(ci+d) through
continuous continuation. But cz+ d for z in the upper half plane never crosses
the real axis. Hence the result of the continuation is the principal value too.
So all three arguments in the definition of w(M,N) are the principal values (in
genus 1). This makes it easy to compute w. We rely on tables for the values
of w which have been derived by Petersson and reproduced by Maass [Ma],
Theorem 16.

MP1.2 Lemma. Let M =
( ∗ ∗
m1m2

)
, S =

(
a b
c d

)
be two real matrices with determi-

nant 1 and (m′1,m
′
2) the second row of the matrix MS. Then

4w(M,S) =


sgn c+ sgnm1 − sgnm′1 − sgn(m1cm

′
1) if m1cm

′
1 6= 0,

−(1− sgn c)(1− sgnm1) if cm1 6= 0,m′1 = 0,
(1 + sgn c)(1− sgnm2) if cm′1 6= 0,m1 = 0,
(1− sgn a)(1 + sgnm1) if m1m

′
1 6= 0, c = 0,

(1− sgn a)(1− sgnm2) if c = m1 = m′1 = 0.

Corollary. Assume that m1cm
′
1 6= 0 and that m1m

′
1 > 0 or m1c < 0. Then

w(M,S) = 0.

We give an example.

raTr1.3 Lemma. We have

w

((
a b
c d

)
,

(
1 x
0 1

))
= w

((
1 x
0 1

)
,

(
a b
c d

))
= 0.
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2. Some special values of the cocycle

We give some examples for values of w in genus g > 1.

LTra2.1 Lemma. One has

w

((
E S
0 E

)
,M

)
= 0.

The proof is trivial and can be omitted. tu

Pval2.2 Lemma. Let

P =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

We have

w(P,M) = w(M,P ) =

{
0 if Im det(iC +D) < 0,
−1 if Im det(iC +D) > 0.

Proof. Let z := det(iC +D). One computes

2πw(P,M) = 2πw(M,P ) = Arg(−z)−Arg(z)−Arg(−1). tu

DefSK2.3 Definition. The Siegel parabolic group consists of all elements from
SU(g, g) of the form (

A B
0 D

)
.

There is a character on the Siegel parabolic group

ε

(
A B
0 D

)
= det(D).

For an element M of the Siegel parabolic group, the expression det(CZ+D) =
det(D) is independent of Z. Hence

L(M,Z) = 0 if ε(M) = 1.

An immediate consequence is the following lemma.
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ParM2.4 Lemma. For two elements P,Q of the Siegel parabolic group we have
w(P,Q) = 0 if ε(P ) = 1.

We have to consider two embeddings ι1, ι2 : SL(2,R)→ SU(2, 2), namely

ι1

(
a b
c d

)
=


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 , ι2

(
a b
c d

)
=


1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d

 .

KSz2.5 Lemma. Let M be in the image of one of the embeddings ιν and N a
Siegel parabolic matrix with ε(N) = 1. Then w(M,N) = 0.

Proof. Since L(N, iE) = 0, we have to show that the arguments of J(MN, iE)
and of J(M,N(iE)) are the same. Both determinants are equal. But the
argument of the first is the principal part and that of the second is defined
by continuation from the argument of L(M, iE). Hence it is sufficient to show
that the principal part of the argument of L(M,Z) is continuous. This is the
case if ImL(M,Z) is always ≥ 0 or always ≤ 0. Actually,

ImL(M,Z) = c Im z0 where Z =

(
z0 ∗
∗ ∗

)
.

This proves the lemma. tu

ITra2.6 Lemma. Assume g = 2. Let

M =

(
E S
0 E

)
, S = S̄′.

Then

w(I,M) =

{
0 if tr(S) ≥ 0,
−1 else.

Proof. From the definition we have

2πw(I,M) = Arg det(iE + S)−Arg det(E)− arg det(iE + S).

The third argument is defined through continuation along det(iE+ tS), begin-
ning from t = 0 to t = 1. For t = 0 we have to take the principal value which is
π. The imaginary part of det(iE + tS) equals ttr(S). In the case tr(S) ≥ 0 we
keep the principal value. But if it is negative we make a jump by −2π. tu

TraI2.7 Lemma. Assume g = 2. Let

M =

(
E 0
S E

)
, S = S̄′.

Then

w(M, I) =
{−1 if tr(S) ≥ 0,

0 else.

Proof. Let z = det(iS + E). One computes w(M, I) = Arg(−z)− π − Arg(z).
This depends on the imaginary part of z which is tr(S). tu
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3. Multipliers

TriVw3.1 Definition. Let Γ ⊂ U(g, g) be an arbitrary subgroup and let r be a real
number. A system v(M), M ∈ Γ, of complex numbers of absolute value 1 is
called a multiplier system of weight r if

v(MN) ≡ v(M)v(N)σ(M,N)

where

σ(M,N) = σr(M,N) := e2πirw(M,N).

Let now Γ is a normal subgroup of finite index of Γg, g ≥ 2. Since the congru-
ence subgroup has been solved we know that Γ contains a congruence subgroup
Γn[q]. It is easy to show that weights r of multiplier systems are rational [Ch].
Hence a sutable power of v is trivial on some congruence subgroup. This shows
that there exists a natural number l such the all values of v are lth roots of
unity.

For any L ∈ Γg we can consider a conjugate multiplier system on Γ that is
defined by

ṽ(M) = v(LML−1)
σ(LML−1, L))

σ(L,M)
.

It is easy to check that this is a multiplier system and that this defines an
action of Γn on the set of all multiplier systems on Γ. The quotient of two
multiplier systems of the same weight is a homomorphism, as we know into
a finite group. Since the congruence subgroup problem has been solved for
the Hermitian modular group, we obtain ṽ(M) = v(M) on some congruence
subgroup. Since the Hermitian modular group is finitely generated, we can find
a joint congruence subgroup

EleO3.2 Lemma. Let v be a multiplier system on a subgroup Γ ⊂ Γn of finite
index. In the case n ≥ 2 there exists an ideal q 6= 0 such that Γ[q] ⊂ Γ and
such that

v(M) = v(LML−1)
σ(LML−1, L)

σ(L,M)
(M ∈ Γ[q])

for all L ∈ Γg.

Several times we will replace by q by a smaller ideal. We then just say “for
suitable q”.
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ProOe3.3 Proposition. Let v be a multiplier system on a subgroup Γ ⊂ Γ2 of finite
index. For suitable q the group Γ2[q] is contained in Γ and for each matrix M
from Γ2[q] of the form

M =

(
E 0
∗ E

)
.

we have v(M) = 1.

Proof. Due to Lemma 3.2 it is sufficient to prove σ(IMI−1, I) = σ(I,M) for
translation matrices M . This follows from the Lemmas 2.6 and 2.7. tu

ProOz3.4 Proposition. Let v be a multiplier system on a subgroup Γ ⊂ Γ2 of finite
index. For suitable q we have Γ2[q] ⊂ Γ and such the following holds. Let U be
an element from the subgroup that is generated by the matrices

(
1 q
0 1

)
and

(
1 0
q 1

)
for q ∈ q and let

M =

(
Ū ′−1 ∗

0 U

)
.

Then v(M) = 1.

Proof. The matrices of this type generate a finitely generated group. The
number of generators is independent of q. It is enough to prove v(M) = 1 for
the generators, since w(M,N) = 0 for all M,N in this group. We also have
v(M)n = v(Mn). Since the values of v are contained in a finite group, we find
an n such that v(Mn) = 1 for all of the generators.

4. Embedded subgroups

Besides the embeddings ι1, ι2 we have to consider the embedding

ι : GL(2,C) −→ U(2, 2), ι(U) =

(
Ū ′−1 0

0 U

)
.

This gives us an embedding GL(2, o) ↪→ Γ2. We use the notation

SL(2, o)[q] = kernel(SL(2, o) −→ SL(2, o/q)).

We have w(ι(U), ι(V )) = 1. Hence, for suitable q

SL(2, o)[q] −→ S1, U 7−→ v(ι(U)),

is a homomorphism. We mentioned that the values of v are lth roots of unity.
Hence the kernel is a subgroup of finite index in SL(2, o).
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Our method depends on some game between the embeddings ι1, ι2 and ι.
We have

Pι1(M)P−1 = ι2(M), P =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

From Lemma 2.2 follows w(ι2(M), P ) = w(P, ι1(M)). Hence we obtain from
Lemma 3.2 the following result.

iEiZ4.1 Lemma. Let v be a multiplier system on a subgroup Γ ⊂ Γ2 of finite
index. For suitable q we have Γ2[q] ⊂ Γ and

v(ι1(M)) = v(ι2(M))

for M ∈ Γ1[q].

For sake of simplicity we write

v(M) = v(ι1(M)) = v(ι2(M)).

This is a multiplier system in genus 1. We have

w(M,N) = w(ιν(M), ιν(N)), for ν = 1, 2.

SRd4.2 Lemma. Let v be a multiplier system on a subgroup Γ ⊂ Γ2 of finite
index. For suitable q the value v(M), M ∈ Γ1[q], depends only on the second
row of M .

Proof. When M,N have the same second row, then
(
1 x
0 1

)
M = N . We know

w
((

1 x
0 1

)
,M
)

= 0 and v
(
1 x
0 1

)
= 1 (Proposition 3.3). tu

ZweiV4.3 Lemma. Let v be a multiplier system on a subgroup Γ ⊂ Γ2 of finite
index. For suitable q we have Γ2[q] ⊂ Γ and for any

M1 ∈
(
a b1
c1 d1

)
∈ SL(2, o)[q] and M2 =

(
a b2
c2 d2

)
∈ Γ1[q]

(in particular a ∈ Z) the relation

v


d̄1 −c̄1 0 0
−b̄1 a 0 0

0 0 a b1
0 0 c1 d1

 · v

a 0 b2 0
0 1 0 0
c2 0 d2 0
0 0 0 1

 = v


1 0 0 0
0 a 0 b1b̄1b2
0 0 1 0
0 c1c̄1c2 0 y


holds (where y = d2 − b2c2d̄1 + b̄1b2c̄1c2d1).
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Proof. The proof depends on a certain relation which occurs in [BMS] during
the proof of Lemma 13.3. We reproduce it here. We set

H1 =


d̄1 −c̄1 0 0
−b̄1 a 0 0

0 0 a b1
0 0 c1 d1

 , H2 =


a 0 b2 0
0 1 0 0
c2 0 d2 0
0 0 0 1

 ,

H3 =


1 0 0 0
0 a 0 b1b̄1b2
0 0 1 0
0 c1c̄1c2 0 y

 .

We consider the matrices

R1 =


1 0 0 0
b̄1 1 0 0
0 0 1 −b1
0 0 0 1

 , R2 =


1 0 0 0
0 1 0 0
ac2 c̄1c2 1 0
c1c2 0 0 1



R3 =


1 c̄1 0 0
0 1 0 0
0 0 1 0
0 0 −c1 1

 , R4 =


1 0 −ad1d̄1b2 b1b2d̄1
0 1 b̄1b2d1 0
0 0 1 0
0 0 0 1

 .

Now direct computations give

R2H3 = H1H2R1R3R4.

We have to compute w-values. We assume that c1c2 6= 0. First we treat
w(R2, H3). We have

R2H3 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
ac2 ac̄1c2 1 b1b̄1b2c̄1c2
c1c2 c1c̄1c2 0 y

 .

We are going to compute w(R2, H3). A direct computation gives

Im J(R2H3, iE) = c2(1 + c1c̄1).

Next we treat J(R2, H3(iE)). Here the argument has to be defined by contin-
uation from the principal value of the argument of J(R2, iE). We can do this
along the straight line from iE to H3(iE)). The points on this line are of the
form

(
i 0
0 τ

)
where τ is in the upper half plane. One computes

J
(
R2,

(
i 0

0 τ

))
= det

(
1 + ac2i c̄1c2τ
c1c2i 1

)
.
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The real part is 1 + c1c̄1c
2
2 Im τ which is positive. Hence the principal value of

the argument is continuous along the line. So we see

L(R2, H3(iE)) ∈ (−π, π].

Finally we compute
Im J(H3, iE) = c1c̄1c2.

Now we see that the imaginary part of J(R2H3, iE) and J(H3, iE) have the
same sign (namely the sign of c2). Hence their arguments are both contained
in (0, π) or in (−π, 0). This means that 2πw(R2, H3) is contained in (0, π) −
(−π, π] − (0, π) or in (−π, 0) − (−π, π] − (−π, 0). This is (−2π, 2π) in both
cases. We obtain

w(R2, H3) = 0.

The case c1c2 = 0 is easy and can be omitted.

From Lemma 2.5 we can take w(H2, R1R3R4) = 0. SinceH1 is a unimodular
transformation with ε(H1) > 0 we have w(H1, H2R1R3R4) = 0. Now we
evaluate

v(R2H3) = v(H1H2R1R3R4).

The left hand side is

v(R2) + v(H3) + w(R2, H3) = v(R2) + v(H3).

But v(R2) = 0 (Proposition 3.3). Hence the left hand side is just v(H3). The
right hand side is

v(H1) + v(H2R1R3R4) + w(H1, H2R1R3R4) = v(H1) + v(H2R1R3R4).

Similarly we see

v(H2R1R2R3) = v(H2)+v(R1R2R3)+w(H2, R1R3R4) = v(H2)+v(R1R3R4).

From Proposition 3.4 we know v(R1R3R4) = 0. Hence we get v(H3) =
v(H1)v(H2). tu

Now we assume that the multiplier system is of half integral weight. We
can restrict it to a subgroup of finite index of the Siegel modular group. Since
this group has the congruence subgroup property v must agree with the theta
multiplier system on a suitable congruence subgroup. We obtain the existence
of a natural number q ≡ 0 mod 4 such that q ∈ q and such that

v(ι1M) = v(ι2M) =
( c
d

)
for M ∈ Γ1[q].

Here the symbol (·) means the Kronecker symbol. We refer to [Di] for it. Next
we assume that v is trivial on a congruence subgroup inside U . So we can
v(H2) = 1. From Lemma 4.3 we get the following result.
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There exists a natural number q ≡ 0 mod 4 such that for

a ∈ Z, c1 ∈ o, c2 ∈ Z,
a ≡ 1 mod q, c1 ≡ 0 mod q, c2 ≡ 0 mod q,

ao + c1o = o, aZ + c2Z = Z

the relation (c2
a

)
=
(c1c̄1c2

a

)
holds. This implies(cc̄

a

)
= 1 for a ∈ 1 + qZ, c ∈ qo, (a, c) = 1.

One can apply this relation to qc for an arbitrary c ∈ o to obtain(cc̄
a

)
= 1 for a ∈ 1 + qZ, c ∈ o, (a, c) = 1.

It is known that there are infinitely many primes of the form p = cc̄ [Co]. We
choose one such that p and q are coprime. Then we have(p

a

)
= (−1)

p−1
2

(a
p

)
.

Since a = 1 + xq meets every coset mod p we can find a such that(a
p

)
= −(−1)

p−1
2

or (cc̄
p

)
= −1.

This is contradiction. This gives one of our main results.

ThDz4.4 Theorem. Let Γ ⊂ Γ2 be any subgroup of finite index of a Hermitian
modular group of degree two. Let v be a multiplier system of half integral weight.
The restriction of v to the subgroup

U =

{
U ;

(
Ū ′−1 0

0 U

)
∈ Γ

}
is a usual character. Its kernel is a non-congruence subgroup of finite index.

Now we consider arbitrary g ≥ 2. There is a standard embedding Γ2[o] into
Γg[q]. We can restrict a multiplier system to the case g = 2. Since the congru-
ence group property holds for SL(3, o) we can apply Theorem 4.4 to obtain the
following result.

ThD4.5 Theorem. Let n > 2 and let Γ ⊂ Γg be any subgroup of finite index of
the Hermitian modular group. Multiplier systems of weight r can only exist if
r is integral.

In the next section we investigate the non-congruence subgroup of U in the
case n = 2 in more detail.
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5. Mennicke symbol

We recall the notion of a Mennicke symbol. Let R be a commutative ring with
unity and q ⊂ R a non-zero ideal. We introduce the set

C(R, q) :=
{

(a, b) ∈ R×R; Ra+Rb = R, a ≡ 1 mod q, b ≡ 0 mod q
}
.

MenS5.1 Definition. A Mennicke symbol mod q is a map

C(R, q) −→ G, (a, b) 7−→
[ b
a

]
,

into some group G such that the following properties hold.

MS1 It is invariant under the transformations (a, b) 7→ (a+ xb, b) and (a, b) 7→
(a, b+ qay) for integral x, y.

MS2 It satisfies the rule [b1b2
a

]
=
[b1
a

][b2
a

]
.

In our context, the group G will be the group of complex numbers of absolute
value one. Mennicke symbols have been classified in [BSM] for Dedekind do-
mains of arithmetic type. If R is the ring of algebraic integers in a number
field that is not totally imaginary, then the Mennicke symbols are trivial. In
the case of a totally imaginary field they can be described explicitly by means
of power residue symbols.

The main result of this section is

PisM5.2 Theorem. Let v be a multiplier system of half integral weight on a
subgroup of finite index of a Hermitian modular group of degree two. Then
there exists a non-zero ideal q ⊂ o with the following properties.

1) Γ2[q] ⊂ Γ.

2) There exists a Mennicke symbol [·] for (o, q) such that for all M ∈ SL(2, o)[q]
one has [ c

a

]
= v

(
Ū ′−1 0

0 U

)
, U =

(
a b
c d

)
.

Proof. The proof is given during the rest of this section.

We have to consider also the embeddings ι1, ι2 : Γ1[q] −→ Γ2[q]. As in
the Hermitian case we have v(i1(M)) = v(i2(M)) an this depends only on the
second row of M ∈ Γ1[q]. Hence we can define

{ c
d

}
= v


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


−1

= v


1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d


−1

.
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The elements of C(o, q) are the second columns of the matrices in GL(2, o)[q].
Hence [ b

d

]
=

(
ι

(
a b
c d

))
is well-defined on C(o, q). We claim that this symbol satisfies MS1. We notice
that w is trivial on the image of ι. Hence v is a character on this group. The
invariance under (a, b) 7→ (a, b+ qay) follows from the equation(

a b
c d

)(
1 qy
0 1

)
=

(
a b+ qay
∗ ∗

)
.

To prove the invariance under (a, b) 7→ (a+ xb, b), we consider(
1 0
−x 1

)(
a b
c d

)(
1 0
x 1

)
=

(
a+ xb b
∗ ∗

)
.

Due to Lemma 3.2 we can assume that v(ι(M))) is invariant under conjugation
with ι

(
1 0
x 1

)
. This proves MS1.

We would like to have also MS2. To get a result in this direction, we make
use of

v(ιν(M−1)) = v(ιν(M))−1, ν = 1, 2.

This is true since in genus 1 one has w(M,M−1) = 0. (This is a general rule
for c 6= 0 and also for c = 0 and a > 0. But in our case c = 0 implies a = 1
since we assume q > 2.) From Lemma 4.3 we get the general rule (compare
Lemma 13.3 in [BMS].) [c1

a

]{c2
a

}
=
{c1c̄1c2

a

}
.

We insert c2 = 1− a.

emaA5.3 Lemma. We have {1− a
a

}
= 1

for a ≡ 1 mod q.

Proof. We use(
1 1
0 1

)(
1 0

a− 1 1

)(
1 −1
0 1

)
=

(
2− a a− 1
1− a a

)
. tu

Now we obtain [ c
a

]
=
{c2(1− a)

a

}
.

Before we continue, we mention that {} is not a Mennicke symbol. It does not
satisfy MS1. Nevertheless it is closely related to [·].
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GnM5.4 Lemma. We have { c
d

}
=
{ c

d+ yc

}
and {c+ xqd

d

}
=
{ c
d

}
e2πirs where s = w

((
∗ ∗
c d

)
,

(
1 0
qx 1

))
.

Proof. The first relation can be derived from(
1 −y
0 1

)(
∗ ∗
c d

)(
1 y
0 1

)
=

(
∗ ∗
c d+ cy

)
.

To derive the second one we consider the relation(
∗ ∗
c d

)(
1 0
qx 1

)
=

(
∗ ∗

c+ dxq d

)
.

It shows {c+ dxq

b

}
=
{ c
d

}
e2πirs.

The w-value s is usually not zero. tu
But from the corollary of the table of Maass in the introduction we get

w

((
∗ ∗
cc̄ a

)
,

(
1 0
−qcc̄ 1

))
= 0.

Using this, we get {cc̄(1− a)

a

}
=
{cc̄
a

}
.

So we obtain [ c
a

]
=
{cc̄
a

}
and moreover [c1c2

a

]
=
{c1c̄1c2c̄2

a

}
=
[c1
a

]{c2c̄2
a

}
=
[c1
a

][c2
a

]
.

This is part of the condition MS2. (We assume up to now a ∈ Z).

abX5.5 Lemma. Let (a, b) be two elements of o such that (a, b) = o. Then there
exists x ∈ o such that a+ xb is not divisible by any natural number > 1.
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Proof. We write an element a ∈ o in the form

a = ȧ+ äω, ω =
δ +
√
d

2
.

We will use
ω2 = −N(ω) + dω.

From a solution ax+ by = 1 we derive that the 4 integers

ȧ, ḃ, äN(ω), b̈N(ω)

are coprime. We have to find x ∈ o such that

ȧ+ ẋḃ− ẍb̈N(ω), ä+ ẋb̈+ ẍ(ḃ+ b̈d)

are coprime. We consider the greatest common divisors

d = ggT(ä, ḃ, b̈)

By Dirichlet’s prime number theorem we can find y ∈ o such that

ä+ ẏb̈+ ÿ(ḃ+ b̈d) = dp

where p is a prime number. There are infinitely many choices for p. Hence we
can get that p is coprime to b̈2(d2 − d)/4 + ḃ2 + ḃb̈d. (This expression equals
(b̈d/2 + ḃ)2 − b̈2d/4 which is positive.) Now we set

ẋ = ẏ + t(ḃ+ b̈d), ẍ = ÿ − tb̈ (t ∈ Z).

Then we have still
ä+ ẋb̈+ ẍ(ḃ+ b̈d) = dp

but
ȧ+ ẋḃ− ẍb̈N(ω) = ȧ+ ẏḃ− ÿb̈N(ω) + t(ḃ2 + ḃb̈d+ b̈2N(ω)).

Now we consider the greatest common divisor

d′ = (ȧ+ ẏḃ− ÿb̈N(ω), ḃ2 + ḃb̈d+ b̈2N(ω)).

We can choose t such that

ȧ+ ẋḃ− ẍb̈N(ω) = d′p′

where p′ is a prime. We can choose p′ coprime to dp. Our goal was to get dp
and d′p′ coprime. This means that d, d′ are coprime. But

ggT(d, d′) = ggT(ä, ḃ, b̈, ȧ+ẏḃ−ÿb̈N(ω), ḃ2+ḃb̈d+b̈2N(ω)) = ggT(ȧ, ḃ, ä, b̈) = 1.



16 Multiplier systems

This proves Lemma 5.5. tu
Now we investigate the equation

[q2b1b2
a

]
=
[qb1
a

][qb2
a

]
.

It is invariant under the replacement b1 7→ b1 + xa. By Lemma 5.5 we can
assume that b1 is not divisible by any natural number. We also want to make
an replacement for b2. For this we consider the ray class of the principal ideal
(b2) mod the ideal (a). (Recall that two ideals b1, b2 are in the same ray class
mod an ideal a if there exist β1 ≡ β2 ≡ 1 mod a such that β1b1 = β2b2.) Our
product formula does not change if one replaces b2 by βb2 for β ≡ 1 mod (a).
Hence we may replace (b2) by any other (b′2) in the same ray class. In each ray
class there are infinitely many primes. Hence we can assume that b2 is coprime
to N(b1). Now we make the replacement b2 + xaN(b1). Again we make use
of Lemma 5.5 to reduce to the case where b2 is not divisible by any natural
number, and, in addition, is coprime to b2 and to b̄2. Then b1b2 is also not
divisible by any natural number.

Now we make the stronger assumption a ≡ 1 mod q2. Then ä ≡ 0 mod q2.
We can make the replacement a 7→ a+a+xq2b1b2 without changing the product
formula. This means that we replace ä 7−→ q2(ä/q2 + ÿ) where y = xb1b2 Since
b1b2 is not divisible by any natural number, we can choose x such that ÿ runs
through all integers. This shows that we can assume a ∈ Z. But then the
product formula has been proved. Now we replace q by q2 to obtain Theorem
5.2. tu

6. Multiplier systems for the Siegel modular group

In our proof we used the result of Deligne about the multiplier systems of
subgroups of finite index of the Siegel modular group. Our methods are suf-
ficient to give a new short proof for this result. In this section we denote by
Γg = Sp(g, Z) the Siegel modular group and by Γg[q] the principal congruence
subgroup of level q.It is clear how to define the notion of a multiplier system
in this case. So let v be a multiplier system of weight r ∈ R on Γg[q]. We
consider the embedding

ι : Γ1[q] −→ Γ2[q], M 7−→
(
M ′−1 0

0 M

)
and we define [ c

a

]
= v(ι(M)), M =

(
a b
c d

)
.
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It is rather clear that this is independent on the choice of b, d. Each coprime
pair (a, b), a ≡ 1 mod q, b ≡ 0 mod q is part of a matrix M ∈ Γ1[q]. Hence we
have constructed a function on C(Z, qZ).

The same proof as in the case of the Hermitian modular group shows that
[·] is Mennicke symbol. Now, in contrast to the Hermitian case we can use
the basic result ([BMS], Theorem 3.6) that Mennicke symbols on C(Z, qZ) are
trivial! This gives the following result.

Triio6.1 Proposition. The multiplier system v is identically one on all(
M 0
0 M ′−1

)
for M ∈ Γ1[q].

As in the Hermitian case we can define in the Siegel case

{ c
d

}
= v


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


−1

= v


1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d


−1

.

From the basic relations follows now{c2
d

}
= 1 and

{c1
d

}
=
{c1c22

d

}
for c ≡ c1 ≡ c2 ≡ 0 mod q and d ≡ 1 mod q. This can be generalized. Again
we have to consider the Kronecker symbol

(
c
d

)
(see [Di]). We will need it only

for c 6= 0 and for odd d. We collect some properties (always assuming this
condition) (c1c2

d

)
=
(c1
d

)(c2
d

)
,
( c

d1d2

)
=
( c
d1

)( c
d2

)
.

Assume d > 0 or c1c2 > 0. Then(c1
d

)
=
(c2
d

)
if c1 ≡ c2 mod d.

Also the relation( c
d1

)
=
( c
d2

)
if

{
d1 ≡ d2 mod c and c ≡ 0 mod 4,
d1 ≡ d2 mod c and c ≡ 2 mod 4

is valid. Finally we mention( c

−1

)
=
{

1 for c > 0,
−1 for c < 0.

Since one of the rules demands c ≡ 0 mod 4, we will from now on assume that
q ≡ 0 mod 4.
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KronS6.2 Proposition. Let q be a suitable multiple of q′ and let

M =

(
a b
c d

)
∈ Γ1[q],

( c
d

)
= 1.

Then v(M) = 1.

Proof. We use the invariance under (c, d) 7→ (c, d+xc). We can apply Dirichlet’s
prime number theorem and therefore assume that d = p is a (positive) prime.
But then the Kronecker symbol is the usual Legendre symbol. Since d ≡
1 mod q we have

(
q
d

)
= 1. This implies

( c/q
d

)
= 1. Since d is a prime, we get a

solution of c/q = x2 + dy or c = qx2 + dqy. Now use(
∗ ∗
qx2 d

)(
1 0
qy 1

)
=

(
∗ ∗
c d

)
.

In the case c > 0 the w-value is zero. This follows from the corollary in the
table of Maass in the introduction. In the case c < 0 we must have y < 0 and
again from this corollary follows that the w-value is zero. (In the notation of
the table the sign distribution of (m1, c,m

′
1) is (+, ∗,+) or (+,−, ∗).) Now we

get

v(M) = v

(
∗ ∗
c d

)
= v

(
∗ ∗
qx2 d

)
=
{qx2
d

}
.

The basic relation now gives

{x2q
d

}
=
{x2q3

d

}{q(qx)2

d

}
=
{ q
d

}
= 1. tu

zPir6.3 Lemma. Assume that the matrix M =
(
a b
c d

)
is contained in Γ1[q] and

has the following properties. All entries are positive and dq < c(q − 1). Then

v(M) = e−2πir if
( c
d

)
= −1.

Proof. We consider(
a b
c d

)(
1− q −q
q 1 + q

)
=

(
∗ ∗

c− qc+ dq −cq + d+ dq

)
.

Clearly
(

q
1+q

)
= 1. We also claim

( c− qc+ dq

−cq + d+ dq

)
= 1.
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To prove this, we observe( c− qc+ dq

−cq + d+ dq

)
=
(c− qc+ dq

d− c

)
=
(c− qc+ dq

−1

)(c− qc+ dq

c− d

)
Now we use c− qc+ dq < 0. It follows c− d > 0. Hence we get

= −
( c

c− d

)
= −

( c

−d

)
= −

( c
d

)
= −(−1) = 1.

Now we have proved

v

((
a b
c d

)(
1− q −q
q 1 + q

))
= 1.

The left hand side equals

v(

(
a b
c d

)
exp

{
2πirw

((
a b
c d

)
,

(
1− q −q
q 1 + q

))}
= 1.

From Maass’ table in the introduction follows that the w-value is 1. (The sign
distribution of (m1, c,m

′
1) is (+,+,−).) This proves Lemma 6.3. tu

There exist two coprime natural numbers c, d such that c ≡ 0 mod q and
d ≡ 1 mod q and such that

{
c
d

}
= −1. We also can assume dq < c(q − 1).

The pair (c, d) is the second row of a matrix M =
(
a b
b d

)
∈ Γ1[q]. We want to

compute v(M). Since we can add a multiple of the second row to the first
one, we can assume that a and b are also positive. From Lemma 6.3 we know
v(M) = e−2πir. Now we consider

v(M2) = v(M)2e2πirw(M,M).

Since all entries from M are positive, we have w(M,M) = 0. So we get

v(M2) = e−4πir.

We compute
(
γ
δ

)
for the matrix

N = M2 =

(
α β
γ δ

)
We get (γ

δ

)
=
(c(a+ d)

cb+ d2

)
=
( c

cb+ d2

)( a+ d

cb+ d2

)
.

We have ( c

cb+ d2

)
=
( c
d2

)
= 1
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and ( a+ d

cb+ d2

)
=
( a+ d

d(a+ d)− 1

)
.

Since a+d ≡ 2 mod 4 we only can change the denominator mod 4(a+d). Since
d ≡ 1 mod 4 we see( a+ d

d(a+ d)− 1

)
=
( a+ d

a+ d− 1

)
=
( 1

a+ d− 1

)
= 1.

This shows v(N) = 1 and we get the relation

e−4πir = 1

which implies that 2r is integral. In this way we obtain Delignes result.

TD6.4 Theorem. The weight r of a multiplier system on a subgroup of finite
index of the Siegel modular subgroup of degree > 1 is integral or half integral.
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