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Introduction
Let g be a simple complex Lie-algebra of dimension d, ∆ its set of roots (with
respect to some Cartan algebra) and ∆+ the subset of positive roots (with
respect to an ordering),

% =
1
2

∑
α>0

α

half of the sum of the positive roots and

M :=
∑

α∈∆

α

〈α, α〉Z

the modified root lattice. We set

D(µ) :=
∏
α>0

〈µ, α〉
〈%, α〉 .

The Macdonald identity which we mean*) can be written in the form

∑

µ∈M

D(µ + %)X〈µ+%,µ+%〉 = X
d
24

∞∏
n=1

(1−Xn)d.

If we set X = e2πiτ it is an identity of modular forms

η(τ)d =
∑

µ∈M

D(µ + %)e2πi〈µ+%,µ+%〉τ .

The left hand side is the d-th power of the well-known Dedekind η-function
and the right hand side is a theta series with a polynomial coefficient. In the
theta transformation formalism on uses usually eπi instead of e2πi. Hence we
introduce

L :=
√

2M, a =
√

2%, P (z) = D(z/
√

2)

*) Affine Roots Systems and Dedekind’s η-function, Inv. Math. 15, 91–143 (1972)
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and rewrite the right hand side as

ϑL,P,a(τ) :=
∑

g∈L

P (g + a)eπi〈g+a,g+a〉τ .

We have to prove that this is a modular form of weight d/2 with respect to the
full modular group and that the vanishing order at ∞ measured in eπiτ/12 is (at
least) d. Then it can be divided by ηd. The quotient will be a modular form of
weight zero, hence constant. Comparing the first non-zero Fourier coefficient
one can see that the constant is 1.

In the next section we will give a general criterion under which ϑL,P,a is a
modular form with respect to the full modular group. In section 3 we will see
that this criterion applies to our situation.

1. Theta series with harmonic coefficients

Let L ∼= Zr be a lattice with a positive definit bilinear form

L× L −→ R, (a, b) 7−→ 〈a, b〉.

We set V = L⊗Z R and extend 〈·, ·〉 to an R-bilinear map. The dual lattice is

L′ =
{

a ∈ V ; 〈a, x〉 ∈ Z for all x ∈ L
}
.

We denote by v(L) the volume of V/L. A polynomial P : V → C is called
harmonic, if ∆P = 0. Here ∆ is the Laplace operator with respect to 〈·, ·〉.
The well-known theta inversion formula states:

1.1 Lemma. Let P : V → C a homogenous harmonic polynomial of degree
k. Then

∑

g∈L

P (g + a)eπi〈g+a,g+a〉(−1/τ) =
i−k

v(L)

√
τ

i

r+2k ∑

g∈L′
P (g)eπi{〈g,g〉τ+2〈g,a〉}.

We are interested in triples (L,P, a), such that the series ϑL,P,a equals η(τ)r+2k.

1.2 Lemma. The theta series

ϑL,P,a =
∑

g∈L

P (g + a)eπi〈g+a,g+a〉τ

equals η(τ)r+2k up to a constant factor if the following conditions are satisfied.
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1. P is a homogenous harmonic polynomial of degree k.
2. L is an even lattice of rank r (even means 〈x, x〉 ∈ 2Z for x ∈ L).
3. a ∈ L′, 〈a, a〉 = (r + 2k)/12 and 〈g + a, g + a〉 ≥ 〈a, a〉 for g ∈ L.
4. There exist a group of isometries G of L and a character det : G → C∗

with the property P (σz) = det(σ)P (z) for σ ∈ G and such that for every
element b ∈ L′/L, which is not in the G-orbit of the image of a in L′/L,
there exists σ ∈ G such that σ(b) = b and det(σ) 6= 1.

Remark. The constant factor is one if P (a) = 1 and if 〈g + a, g + a〉 = 〈a, a〉
only for g = 0.

Proof. From 2) and 3) we see

ϑL,P,a(τ + 1) = eπi〈a,a〉ϑL,P,a(τ).

The essential point is the transformation formula under τ 7→ −1/τ . In the
theta transformation formula occurs the series

∑

g∈L′
P (g)eπi{〈g,g〉τ+2〈g,a〉} =

∑

b∈L′/L

e2πi〈a,b〉 ∑

g∈L

P (g + b)eπi〈g+b,g+b〉τ .

The conditions 1) and 4) show that only the b which are in the G-orbit of
(the image of) a give a non-zero contribution. Hence the right hand side is a
constant multiple of ϑL,P,a(τ). We obtain

ϑL,P,a(−1/τ) = ε

√
τ

i

r+2k

ϑL,P,a(τ)

with some constant ε. We can assume that ϑL,P,a is different from zero.
Since τ 7→ −1/τ is an involution we must have ε = ±1. Now we see that
ϑL,P,a/η(τ)r+2k is an entire modular form of weight zero. Because of condition
3) it is regular at the cusp and hence a constant. (As a consequence ε = 1.)
This completes the proof of 1.2. tu

2. The proof

We have to show that

L :=
√

2M, a =
√

2%, P (z) = D(z/
√

2)

(notations as in section 1) satisfy the assumptions of 1.2.
Proof of 1. We use Weyl’s formula

e%
∏
α>0

(
1− e−α

)
=

∑

σ∈W

det(σ) eσ%,
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where W denotes the Weyl group. An immediate consequence is
∏
α>0

(
et〈α/2,µ〉 − e−t〈α/2,µ〉) =

∑

σ∈W

det(σ) et〈σ%,µ〉.

Expanding the exponential function and comparing coefficients one obtains

1
l!

∑

σ∈W

det(σ)〈σ%, µ〉l =
{

0 for l < k,∏
α>0〈α, µ〉 for l = m,

where k denotes the numbers of positive roots. (This equals the degree of P .)
It follows that the function f(µ) =

∏
α>0〈α, µ〉 is harmonic, since

∆f(µ) =
〈%, %〉

(k − 2)!

∑

σ∈W

det(σ)〈σ%, µ〉k−2 = 0. tu

Proof of 2. One has to use that 〈α, α〉−1 is integral for every root. tu
Proof of 3. Since reflexion with respect to a simple root α maps % to % − α,
we have 2〈α, %〉/〈α, α〉 = 1 for simple roots and therefore α ∈ L′.

The assumption 〈a, a〉 = (r + 2k)/12 is a consequence of Freudenthals for-
mula dim g = 24〈%, %〉.

The assumption 〈g + a, g + a〉 ≥ 〈a, a〉 for g ∈ L follows from the identity

〈µ, µ〉 =
∑

α∈∆

〈µ, α〉2,

which es evident from the definition of the Killing form and which implies

〈µ + %, µ + %〉 − 〈%, %〉 = 2
∑

β>0

{(
〈µ, β〉+

1
4

)2

− 1
16

}
.

Since 〈µ, β〉 is an integral multiple of 1/2 for µ ∈ M and roots β, we obtain
that the sum is non-negative.
Proof of 4. For the group G we take the Weyl group W and for the character
det the determinant. The formula P (σz) = det σP (z) is obvious. We use now
the lattice

Λ = 2M =
√

2L =
∑

α∈∆

Z α̌ where α̌ =
2

〈α, α〉α.

It is known that this lattice is generated by the α̌ for simple α. We recall
〈%, α̌〉 = 1 for simple α.

We will work with the affine Weyl group W aff = W · Λ which acts on
V = Λ⊗Z R by wx = σx + λ. We set ε(w) = det(σ). The following Lemma is
equivalent to condition 4 in 1.2.
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2.1 Lemma. Let b ∈ Λ′ an element such that 2b is not in the W aff-orbit of
2%. Then there exists w ∈ W aff such that w(2b) = 2b and ε(w) = −1.

Proof. We denote by α1, . . . , αr the simple roots and by δ the highest root
(the dominant weight of the adjoint representation). Since the eigenvalue of
the Casimir operator for the adjoint representation is one, we have

〈% + δ, % + δ〉 − 〈%, %〉 = 1.

Recall that the affine Weyl-group W aff acts simply transitive on the affine Weyl
chambers, which are the connected components of the complement of the union
of the affine spaces 〈α, x〉 = n, where α is a root and n an integer. The standard
Weyl-chamber is

C =
{

x ∈ V ; 〈x, αi〉 > 0 for 1 ≤ i ≤ r and 〈x, δ〉 < 1
}
.

Now we take b ∈ Λ′ such such that 2b is not in the W aff -orbit of 2%. We will
prove that 2b is on the boundary of a Weyl chamber. Since the reflection along
a wall is contained in W aff , this will prove 2.1.

We argue by contradiction and assume that 2b is in the interior of the
standard Weyl chamber C, especially 〈2b, αi〉 > 0. Since 〈b, α̌〉 ∈ Z, we get

〈2b, α̌i〉 = 2ki, ki ≥ 1 (integer).

Since 〈%, α̌i〉 = 1 and since b is different from %, there exists an index l ∈
{1, . . . , r} with kl ≥ 2.

Next we use that the highest root δ is of the form

δ =
r∑

i=1

miαi, mi ≥ 1 (integer).

We will need a little more. If there are roots of different length (types Bn, Cn,
F4, G2), then mi ≥ 2 for all short roots αi and even more mi ≥ 3 for the type
G2. We obtain

〈2b, δ〉 =
r∑

i=1

mi
〈αi, αi〉

2
2ki ≥ ml〈αl, αl〉+

r∑

i=1

mi〈αi, αi〉

= ml〈αl, αl〉+ 2〈%, δ〉
= ml〈αl, αl〉+ 1− 〈δ, δ〉.

By the above remark about the mi we get 〈2b, δ〉 ≥ 1 in all cases. This implies
that 2b is not in the interior of the standard affine Weyl chamber, which con-
tradicts to our assumption. This completes the proof of 1.2. tu

Finally we have to show the assumption of the remark in 1.2. We have to
show that ∑

β>0

{(
〈α, β〉+

1
4

)2

− 1
16

}
= 0 (α ∈ M)

implies α = 0. Since 2〈α, β〉 ∈ Z, the sum is 0 if and only if 〈α, β〉 is contained
in {0,−1/2} for all β > 0. We have to show α = 0. This follows from the
following lemma applied to λ = −2α ∈ Λ.
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2.2 Lemma. Let λ ∈ Λ and 〈λ, α〉 ∈ {0, 1} for all positive roots α. Then
λ = 0.

Proof. It is sufficient to show that 〈λ, α〉 = 0 for all simple α. We argue by
contradiction and assume 〈λ, α〉 = 1 for some simple root α. Since the relation
〈λ, δ〉 ∈ {0, 1} holds also for the highest root

δ =
r∑

i=1

miαi, mi ≥ 1 (integer),

we obtain that 〈λ, δ〉 = 1 and 〈λ, αi〉 = 1 for precisely one simple root αi (with
corresponding mi = 1) and 〈λ, αj〉 = 0 for the others. Hence λ is a vertex of
the standard affine Weyl chamber C. The translation Tx = x − λ belongs to
the affine Weyl group W aff . Hence Tλ = 0 is a vertex of the chamber TC. We
consider the (unbounded) standard Weyl chamber of the finite Weyl group W

C̃ =
{

x ∈ V ; 〈x, αi〉 > 0 for 1 ≤ i ≤ r
}
.

We choose an element σ from the (finite) Weyl group W , which transforms TC
into C̃. So σTC is one of the affine Weyl chambers chambers contained in C̃.
The only affine Weyl chamber in C̃, which contains 0 in its closure, is the affine
standard chamber C. Since σTλ = σ0 = 0, we must have σTC = C. This
implies σT = id, which is not possible. tu
Final remark. The formula 〈% + δ, % + δ〉 − 〈%, %〉 = 1 shows that 2% lies in
the interior of the chamber C. Hence the conjugates of 2% under W aff are all
different. Therefore the sum

∑
b∈L′/L in the proof of lemma 1.2, where only

the b in the orbit of 2% survive, can be written as a sum over the Weyl group
W . The equality ε = 1 at the end of section one now implies the formula

∑

σ∈W

det σ · e4πi〈σ%,%〉 =
√

2
r
ikv(M).


