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Introduction

Let g be a simple complex Lie-algebra of dimension d, A its set of roots (with
respect to some Cartan algebra) and AT the subset of positive roots (with

respect to an ordering),
1
0=75 E o

a>0

half of the sum of the positive roots and

o
M = Z Z
= (a, @)

the modified root lattice. We set

The Macdonald identity which we mean™) can be written in the form

ST D(p+ o)X rerte = xi [T - xm)?.
neM n=1

If we set X = e?™7 it is an identity of modular forms

n(r)! = 3 Dl gemikrertor,
pneEM

The left hand side is the d-th power of the well-known Dedekind n-function
and the right hand side is a theta series with a polynomial coefficient. In the
theta transformation formalism on uses usually e™ instead of e?™'. Hence we
introduce

L:=V2M, a=+V20, P(z)=D(z/V?2)

*) Affine Roots Systems and Dedekind’s n-function, Inv. Math. 15, 91-143 (1972)
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and rewrite the right hand side as

19L,P,a<7') = Z P(g + a)ewi<g+a,g+a>7-.
geL

We have to prove that this is a modular form of weight d/2 with respect to the
full modular group and that the vanishing order at oo measured in e™7/12 is (at
least) d. Then it can be divided by n¢. The quotient will be a modular form of
weight zero, hence constant. Comparing the first non-zero Fourier coefficient
one can see that the constant is 1.

In the next section we will give a general criterion under which ¥, p, is a
modular form with respect to the full modular group. In section 3 we will see
that this criterion applies to our situation.

1. Theta series with harmonic coefficients

Let L = Z" be a lattice with a positive definit bilinear form
LxL—R, (a,b)— (a,b).
We set V = L ®yz R and extend (-, ) to an R-bilinear map. The dual lattice is
L'={a€V; (az)eZforallzeL}.

We denote by v(L) the volume of V/L. A polynomial P : V — C is called
harmonic, if AP = 0. Here A is the Laplace operator with respect to (-, ).
The well-known theta inversion formula states:

1.1 Lemma. Let P:V — C a homogenous harmonic polynomial of degree
k. Then

i a a)(—=1/7 i_k TT+2k i T a
> " P(g+ a)emotnata (=1 - @\/; 3 P(g)emitloai2iga),

geL geL’

We are interested in triples (L, P, a), such that the series V7, p, equals n(7) 2.

1.2 Lemma. The theta series

Vr.pa = Z P(g + a)emoFaotar
geL

equals n(7)"T2* up to a constant factor if the following conditions are satisfied.
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P is a homogenous harmonic polynomial of degree k.

L is an even lattice of rank r (even means (x,x) € 27 for x € L).

ac Ll (a,a) = (r+2k)/12 and (g9 + a,g+ a) > {(a,a) for g € L.

There exist a group of isometries G of L and a character det : G — C*
with the property P(oz) = det(o)P(z) for o € G and such that for every
element b € L'/L, which is not in the G-orbit of the image of a in L'/L,
there exists 0 € G such that o(b) = b and det(o) # 1.

Remark. The constant factor is one if P(a) =1 and if (9 + a,g9 + a) = {a,a)
only for g = 0.

L=

Proof. From 2) and 3) we see
ﬁL,p,a(T + 1) = 67ri<a’a>79L,p,a(T).

The essential point is the transformation formula under 7 — —1/7. In the
theta transformation formula occurs the series

Z P(g 7rl{ 9,9)7+2(g,a)} _ Z e2mi(a,b) Z P(g+ b)eﬂi<g+b,g+b>7.
gelL’ beLl’/L geL

The conditions 1) and 4) show that only the b which are in the G-orbit of
(the image of) a give a non-zero contribution. Hence the right hand side is a
constant multiple of ¥, p (7). We obtain

7_1’+2k
19L,P,a(_1/7') 28\/; ﬁL,P,a(T)

with some constant e. We can assume that 97 p, is different from zero.
Since 7 +— —1/7 is an involution we must have ¢ = +1. Now we see that
91.p.a/n(7) T2 is an entire modular form of weight zero. Because of condition
3) it is regular at the cusp and hence a constant. (As a consequence € = 1.)
This completes the proof of 1.2. O

2. The proof

We have to show that
L:=V2M, a=+v2, P(z)=D(z/V2)

(notations as in section 1) satisfy the assumptions of 1.2.
Proof of 1. We use Weyl’s formula

eQH 1—60‘ Zdet

a>0 oceW
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where W denotes the Weyl group. An immediate consequence is
H (6t<a/2,ﬂ> a/27u Z det(o t(ﬁe,w'
a>0 oceW

Expanding the exponential function and comparing coefficients one obtains

. (0 for [ < k,
[Tosolo,p) forl=m,

where k denotes the numbers of positive roots. (This equals the degree of P.)
It follows that the function f(u) = [],{(c, 1) is harmonic, since

9,0 —
AF) = 22 S det(o) oo, =0, :
(k—2)!
oeW
Proof of 2. One has to use that (o, a)~! is integral for every root. O

Proof of 3. Since reflexion with respect to a simple root o maps ¢ to o — «,
we have 2(«, 9)/{a, a) = 1 for simple roots and therefore o € L’.

The assumption (a,a) = (r + 2k)/12 is a consequence of Freudenthals for-
mula dim g = 24(p, 0).

The assumption (g + a,g + a) > (a,a) for g € L follows from the identity

() =D (),

acEA

which es evident from the definition of the Killing form and which implies

(u+o0,n+0) — —2Z{< )2—1—16}.

B>0

Since (i, 3) is an integral multiple of 1/2 for p € M and roots [3, we obtain
that the sum is non-negative.

Proof of 4. For the group G we take the Weyl group W and for the character
det the determinant. The formula P(cz) = det 0 P(z) is obvious. We use now
the lattice

A:2M:\/§L:ZZQ where & =

aEA <Oé, a>

It is known that this lattice is generated by the & for simple a. We recall
(0,c) =1 for simple a.

We will work with the affine Weyl group W2 = W . A which acts on
V =A®z R by wr = oz + X\. We set ¢(w) = det(c). The following Lemma is
equivalent to condition 4 in 1.2.
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2.1 Lemma. Letb e A an element such that 2b is not in the Wt -orbit of
20. Then there exists w € W such that w(2b) = 2b and e(w) = —1.

Proof. We denote by ag,...,q, the simple roots and by ¢ the highest root
(the dominant weight of the adjoint representation). Since the eigenvalue of
the Casimir operator for the adjoint representation is one, we have

Recall that the affine Weyl-group W2 acts simply transitive on the affine Weyl
chambers, which are the connected components of the complement of the union
of the affine spaces (a, ) = n, where « is a root and n an integer. The standard
Weyl-chamber is

C={zeV; (z,a;)>0for1<i<r and (z,0)<1}.

Now we take b € A’ such such that 2b is not in the W#f-orbit of 2p. We will
prove that 2b is on the boundary of a Weyl chamber. Since the reflection along
a wall is contained in W%, this will prove 2.1.

We argue by contradiction and assume that 2b is in the interior of the
standard Weyl chamber C| especially (2b, a;) > 0. Since (b, &) € Z, we get
(2b, &) = 2k;, k; > 1 (integer).
Since (p,&;) = 1 and since b is different from p, there exists an index [ €
{1,...,r} with k > 2.
Next we use that the highest root ¢ is of the form

-
0= Zmiai, m; > 1 (integer).
i=1
We will need a little more. If there are roots of different length (types By, C,,

Fy, G3), then m; > 2 for all short roots «; and even more m; > 3 for the type
G5. We obtain

T

(2b,0) = Zmi <ai’2ai> 2k; > my{ay, q) + Z’”M(Oéi, a;)

=1 =1
= my(au, az) + 2(o, )
= ml<al,al) +1— <5, (5>

By the above remark about the m; we get (2b,0) > 1 in all cases. This implies
that 2b is not in the interior of the standard affine Weyl chamber, which con-
tradicts to our assumption. This completes the proof of 1.2. a

Finally we have to show the assumption of the remark in 1.2. We have to

show that )
Z{((a,@—i—i) —%}: (€ M)

B>0

implies &« = 0. Since 2{«, 3) € Z, the sum is 0 if and only if («, 3) is contained
in {0,—1/2} for all 8 > 0. We have to show a = 0. This follows from the
following lemma applied to A = —2a € A.
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2.2 Lemma. Let A € A and (\,a) € {0,1} for all positive roots . Then
A=0.

Proof. 1t is sufficient to show that (A\,a) = 0 for all simple a. We argue by
contradiction and assume (\, &) = 1 for some simple root «.. Since the relation

(A, 6) € {0,1} holds also for the highest root

-
0= Zmiai, m; > 1 (integer),
i=1

we obtain that (\,d) =1 and (\, ;) = 1 for precisely one simple root a; (with
corresponding m; = 1) and (), ;) = 0 for the others. Hence X\ is a vertex of
the standard affine Weyl chamber C'. The translation Tx = x — X belongs to
the affine Weyl group W2, Hence TA = 0 is a vertex of the chamber T'C. We
consider the (unbounded) standard Weyl chamber of the finite Weyl group W

C':{scEV; <x,ai>>0for1§i§r}.

We choose an element o from the (finite) Weyl group W, which transforms 7'C’
into C. So oT'C is one of the affine Weyl chambers chambers contained in C.
The only affine Weyl chamber in C, which contains 0 in its closure, is the affine
standard chamber C. Since ¢TA = ¢0 = 0, we must have ¢TC = (. This
implies ¢T" = id, which is not possible. O
Final remark. The formula (o + d, 0 + ) — (0,0) = 1 shows that 2p lies in
the interior of the chamber C. Hence the conjugates of 20 under W2 are all
different. Therefore the sum ), /L in the proof of lemma 1.2, where only
the b in the orbit of 2p survive, can be written as a sum over the Weyl group
W. The equality € = 1 at the end of section one now implies the formula

Z det o - etmi(00:0) — 2Tikv(M).
oceW



