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Introduction

In the paper [FSM] we described some Siegel modular threefolds which admit
a Calabi-Yau model. Using a different approach, we give in this paper an
enlarged list of such varieties. Basic for the new approach is the paper [GN]
of van Geemen and Nygaard. In this paper they prove that the complete
intersection X in P 7(C), defined by the equations

X :

Y 2
0 = X2

0 +X2
1 +X2

2 +X2
3 ,

Y 2
1 = X2

0 −X2
1 +X2

2 −X2
3 ,

Y 2
2 = X2

0 +X2
1 −X2

2 −X2
3 ,

Y 2
3 = X2

0 −X2
1 −X2

2 +X2
3

is biholomorphic equivalent to the Satake compactification of H2/Γ
′ for a cer-

tain subgroup Γ′ ⊂ Sp(2, Z). This variety has 96 singularities which correspond
to certain zero-dimensional cusps and these singularities are ordinary double
points (nodes). In the paper [CM] it has been pointed out that the results
of [GN] imply that a (projective) small resolution of this variety is a rigid
Calabi-Yau manifold X̃ .

We describe the basic occurring groups: We use the standard notations,
M =

(
AB
C D

)
:

Γn[l] = kernel(Sp(n, Z) −→ Sp(n, Z/lZ)),
Γn[l, 2l] =

{
M ∈ Γn[l]; A tB/l and C tD/l have even diagonal

}
,

Γn,0[l] = {M ∈ Γn; C ≡ 0 mod l},
Γn,0,ϑ[l] = {M ∈ Γn; C ≡ 0 mod l, C tD/l has even diagonal}.

The group Γn,0[l] can be extended by the Fricke involution

J = Jl =

(
0 E/

√
l

−
√
lE 0

)
(JZ = −

(
lZ)−1

)
.
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We denote this extension (of index 2) by

Γ̂n,0[l] = Γn,0[l] ∪ JΓn,0[l].

The group Γ′, which belongs to van Geemen’s and Nygaard’s variety, is a
subgroup of index two of the group

Γ2[2, 4] ∩ Γ2,0,ϑ[4] = {M ∈ Γ2[2, 4]; C ≡ 0 mod 4, C/4 has even diagonal},

namely
Γ′ = {M ∈ Γ2[2, 4] ∩ Γ2,0,ϑ[4]; detD ≡ ±1 mod 8}.

In [FSM] we introduced a certain subgroup Γ2,0[2]n of index two of Γ2,0[2] as
kernel of a certain character χn. This character is the product of the unique
non-trivial character of the full Siegel modular group and the character

iα+β+γ , C tD =

(
α β
β γ

)
,

(
M =

(
A B
C D

)
∈ Γ2,0[2]

)
.

The group Γ′ is contained in Γ2,0[2]n as normal subgroup of index 6144 = 211 ·3.
The character χn extends to a character χ̂n of Γ̂2,0[2] by means of

χ̂n(J) = 1.

We denote its kernel by Γ̂2,0[2]n. This is an extension of index two of Γ2,0[2]n.

The group Γ′ is contained in Γ̂2,0[2]n as normal subgroup of index 12 288 =
212 · 3. The main result of this paper is:

Theorem. The Siegel modular threefold, which belongs to a group between Γ′

and Γ̂2,0[2]n, admits a Calabi-Yau model in the following weak sense: There
exists a desingularization in the category of complex spaces of the Satake com-
pactification which admits a holomorphic three-form without zeros and whose
first Betti number vanishes.

It has been pointed out to the authors by van Geemen that it is not always
possible to get a projective model. A positive result in this direction is:

Supplement. There exists a group Γ′′ between Γ̂2,0[2]n and Γ′ such that

[Γ′′ : Γ′] = 8 and such that X(Γ) admits for every Γ between Γ̂2,0[2]n and
Γ′′ a (projective) Calabi-Yau model. Actually we will obtain for each Γ a dis-
tinguished model by an explicit construction.

We shall describe Γ′′ in the last section. It is a subgroup of Γ2,0[4] ∩ Γ2[2] of
index 4. Hence the supplement extends results that have been proved in [FSM]
using different method. In [CFS] we show that the method of [FSM] can be
used to construct also an explicit projective Calabi-Yau model for all groups
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between Γ2,0[2]n and Γ2,0[4] ∩ Γ2[2]. So in this range we have two explicit
constructions for a Calabi-Yau model. We do not know whether these models
are isomorphic.

We shall develop a method to compute the divisor class number cl (rank of
the group of divisor classes) and the Euler number for the intermediate groups.
In the case of a projective manifold, they determine the Hodge numbers, the
Picard number and the Euler number are

pic = cl = h11, e = 2(h11 − h12).

For a small resolution X̃ of the variety of van Geemen and Nygaard X they
are known [GN], [CM], cl = 32, e = 64. To get it for other groups, one needs
the action of the group Γ̂2,0[2]n on the group of divisor classes of X . We will
determine this action in section 6. The result of this section allow in principle
to compute the numbers for all intermediate groups. There are thousands of
conjugacy classes of intermediate groups.

In section 7 we treat some simple examples, namely all subgroups of order
two of Γ̂2,0[2]n/Γ

′.

We are grateful for helpful disussions with Bert van Geemen and also for
useful comments to a preliminary version of our paper from Philip Candelas.
He brought our attention to the paper [BH] of Borisov and Hua, where other
examples of complete intersections of 4 quadrics in P 7(C) that lead to Calabi-
Yau manifolds with big fundamental groups are described.

1. Weak Calabi-Yau manifolds

Usually Calabi-Yau manifolds are assumed to be Kählerian. But in our context
this is too restrictive. So we introduce the following notion.

1.1 Definition. A weak Calabi-Yau threefold is a connected compact complex
manifold of dimension 3 that admits a holomorphic differential form of degree
three without zeros and such that the first Betti number is 0.

Two compact complex spaces X,Y are called bimeromorphic equivalent if there
exists a joint modification Z → X, Z → Y . It is known and easy to prove that
two bimoromorphic equivalent compact complex manifolds have the same first
Betti number. For weak Calabi-Yau manifolds there is a far better result.

1.2 Remark. Two bimeromorphic weak Calabi-Yau threefolds have the same
Betti numbers. If they are projective, even the Hodge numbers hpq coincide.
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This follows from the result of Kollar that two such manifolds are related by
flops and that the Betti numbers are invariant under flops. In the projective
case this is true also for the Hodge numbers. ([Ko], Theorem 4.9 and Corollary
4.12). ⊔⊓

We need the notion of a crepant resolution for certain normal three dimen-
sional complex spaces X.

1.3 Definition. Let X be a connected three dimensional normal complex
space with singular locus S. Assume that for each point a ∈ X there exists an
open neighborhood U and holomorphic three form α on U −S without zeros. A
crepant resolution f : X̃ → X is a holomorphic map of a connected (smooth)
complex manifold X̃ onto X, such that X̃ − f−1(S) → X −S is biholomorphic
and such that α extends to a holomorphic three form without zeros on the
inverse image Ũ = f−1(U).

The existence of a crepant desingularization is only a local question (in the
three-dimensional case). A lemma of Roan [Ro] states the following.

1.4 Lemma. Under the assumptions of 1.3 the following holds: The existence
of a crepant desingularization is granted if there exists an open covering Ui ⊂
X, such that each Ui admits a crepant desingularization.

We reproduce the argument of Roan. The singular locus is a curve S. Over
the generic point of S the crepant resolution is unique. For this reason one
can choose the crepant resolutions over the finitely many singular points of S
arbitrarily and glue them to a global resolution. Of course such a resolution
needs not to be projective even if X is projective.

We shall use a consequence of a general result about the existence of a
resolutions of quotient singularities:

1.5 Theorem. Let X be a complex threefold and let G be a finite group of
automorphisms of it. Assume that every point of X/G admits an open neigh-
borhood (in the analytic topology) such that on its regular locus there exists a
three-form without zeros. Then X/G admits a crepant desingularization.

We refer to [Re] (especially section 5) for historical comments and basic results.
Of course such a desingularization is not unique. Actually one can find for
quasiprojective X a quasiprojective resolution. Even more, there is canonical
construction using the G-Hilbert scheme. We refer to [BKR] and also to [FSM],
Theorem 2.6, for more details.
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2. The variety of van Geemen and Nygaard

We recall some basic facts about Siegel modular varieties. For details, we refer
to [Fr1]. The symplectic group Sp(n,R) acts on the Siegel upper half plane

Hn := {Z ∈ C(n,n); Z = tZ = X + iY, Y > 0 (positive definite)}

by means of the formula MZ = (AZ + B)(CZ + D)−1. For any subgroup
Γ ⊂ Sp(n,R) that is commensurable with Sp(n, Z), the quotient Hn/Γ carries
a natural structure as quasi projective algebraic variety. The Satake compacti-
fication Hn/Γ is a projective variety which is closely related to Siegel modular
forms. The Satake compactification can be identified with the projective va-
riety associated to a graded algebra of modular forms. We recall briefly its
definition. A modular form f of weight r/2, r ∈ Z, is a holomorphic function
f on Hn with the transformation property

f(MZ) = v(M)
√
det(CZ +D)

r
f(Z)

for all M ∈ Γ. In the case n = 1 a regularity condition at the cusps has to
be added. Here v(M) is system of complex numbers of absolute valued one,
called the multiplier system. It has to fulfil an obvious cocycle condition. We
denote this space by [Γ, r/2, v]. Fixing some starting weight r0 and a multiplier
system v for it, we define the ring

A(Γ) :=
⊕
r∈Z

[Γ, rr0/2, v
r].

This turns out to be a finitely generated graded algebra and its associated
projective variety projA(Γ) can be identified with the Satake compactification.
The ring depends on the starting weight and the multiplier system but the
associated projective variety does not. Usually, the Satake compactification is
a very singular variety. Of course there exist non-singular models.

2.1 Lemma. The first Betti number of a nonsingular model X of a Siegel
modular variety of genus ≥ 2 is 0.

Proof. By Hodge theory, one has to show that every holomorphic differential
form of degree 1 vanishes. Actually one knows that each Γ-invariant holomor-
phic differential form on Hn of degree 1 is 0. ⊔⊓

Basic examples of modular forms are given be theta series with respect to
characteristics. By definition, a theta characteristic is an element m =

(
a
b

)
from (Z/2Z)2n. Here a, b ∈ (Z/2Z)n are column vectors. The characteristic is
called even if tab = 0 and odd otherwise. The group Sp(n, Z/2Z) acts on the
set of characteristics by

M{m} := tM
−1

m+

(
(A tB)0
(C tD)0

)
.
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Here S0 denotes the column built of the diagonal of a square matrix S. It is
well-known that Sp(n, Z/2Z) acts transitively on the subsets of even and odd
characteristics. Recall that for any characteristic the theta function

ϑ[m] =
∑
g∈Zn

eπi(Z[g+a/2]+ tb(g+a/2)) (Z[g] = tgZg)

can be defined. Here we use the identification of Z/2Z with the subset {0, 1} ⊂
Z. It vanishes if and only if m is odd. Recall also that the formula

ϑ[M{m}](MZ) = v(M,m)
√
det(CZ +D)ϑ[m](Z)

holds for M ∈ Γn, where v(M,m) is a rather delicate 8th root of unity which
depends on the choice of the square root. Sometimes we will use the notation

ϑ[m] = ϑ
[a1a2
b1b2

]
for m =


a1
a2
b1
b2

 .

Following van Geemen and Nygaard, we consider the 8 functions

ϑ
[00
00

]
(Z), ϑ

[00
10

]
(Z), ϑ

[00
01

]
(Z), ϑ

[00
11

]
(Z),

ϑ
[00
00

]
(2Z), ϑ

[10
00

]
(2Z), ϑ

[01
00

]
(2Z), ϑ

[11
00

]
(2Z).

If we denote them by Y0, . . . , Y3, X0 . . . , X3, then classical theta relations show
that the relations listed at the beginning of the introduction hold. The classical
theta transformation formalism shows that the eight forms are modular forms
of weight 1/2 for the group Γ′ introduced in the introduction and that their
multipliers on this group agree. Since this is standard, we only give a short
sketch of the proof. The theta series Xi are the so-called theta series of second
kind. One knows classically that they have the same multipliers κ(M) on the
group Γ2[2, 4] (s. for example [Ru]). By conjugation with the transformation
Z 7→ 2Z one shows that the Yi have the same multipliers κ̃(M) on the group
Γ2,0,ϑ[2]. We have to find the subgroup Γ′ of Γ2[2, 4] ∩ Γ2,0,ϑ[2], where κ and
κ̃ agree. This just means that ϑ[0](Z)ϑ[0](2Z) and ϑ[0](2Z)2 have the same
multipliers. But these are the standard thetas series with respect to the binary
forms

(
1 0
0 2

)
and

(
2 0
0 2

)
. The advantage of binary forms is that they have an even

number of variables and standard formula can be used, for example [Fr2], 7.1.
⊔⊓

We can express this in saying that the Y0, . . . , X3 are contained in the ring

A(Γ′) :=
⊕
r∈Z

[Γ′, r/2, κr].

The precise result, slightly extending results of [GN], states:
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2.2 Proposition. Let be

Γ′ = {M ∈ Γ2[2, 4]; C ≡ 0 mod 4, diag C ≡ 0 mod 8, detD ≡ ±1 mod 8}.

The ring A(Γ′) is generated by the eight theta series above. The relations

Y 2
0 = X2

0 +X2
1 +X2

2 +X2
3 ,

Y 2
1 = X2

0 −X2
1 +X2

2 −X2
3 ,

Y 2
2 = X2

0 +X2
1 −X2

2 −X2
3 ,

Y 2
3 = X2

0 −X2
1 −X2

2 +X2
3

are defining relations. They define a subvariety X of P 7(C) which can be
identified with the Satake compactification of H2/Γ

′.

Proof. Proposition 2.5 of [GN] says that this complete intersection is the Satake
compatification for some subgroup of Sp(2, Z). Necessarily this must be a
subgroup of what we called Γ′. An index computation gives that they agree.
The equality of the complete intersection and the Satake compactification shows
that A(Γ′) must be the normalization of the factor ring C[X0, . . . , Y3] by the
ideal generated by the above 4 relations. Using Serre’s criterion for normality,
it follows that this ring is normal. This proves 2.2. ⊔⊓

In [GN] the modular form of weight 3

T = ϑ
[10
00

]
(Z)ϑ

[10
01

]
(Z)ϑ

[01
00

]
(Z)ϑ

[01
10

]
(Z)ϑ

[11
00

]
(Z)ϑ

[11
11

]
(Z)

has been introduced. The differential form

ω = T dz0 ∧ dz1 ∧ dz2, Z =

(
z0 z1
z1 z2

)
,

is invariant under Γ̂2,0[2]n. (The invariance under Γ2,0[2]n has been proved
in [FSM]. The behavior under the Fricke involution can be derived from the
following explicit formula.)

2.3 Lemma. In terms of the coordinates X0, . . . X3, Y0 . . . , Y3 we have that,
up to a multiplicative constant, ω equals

X4
2

Y0Y1Y2Y3
d(X0/X2) ∧ d(X1/X2) ∧ d(X3/X2).

Proof. This is essentially the form of ω, which has been derived in [FSM] (see
Theorem 4.5 and the formulae before it). ⊔⊓

The invariance of the differential form ω implies its vanishing along the
ramification locus of H2 → H2/Γ̂2,0[2]n. From [FSM], we know that the zero
locus of ω in H2 consists of the fixed point sets of all M ∈ Γ2,0[2]n which are
conjugate inside Γ2,0[2]n to the diagonal matrix with diagonal (1,−1, 1,−1).
This matrix and hence the conjugates are contained in Γ′. Hence we obtain
the following result:
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2.4 Proposition. The differential form ω defines a holomorphic differential
form without zeros on the smooth variety H2/Γ

′. It is invariant under Γ̂2,0[2]n.

The natural projection X(Γ′) → X(Γ̂2,0[2]n) is unramified in codimension one.

Corollary. The differential form ω defines a holomorphic differential form
without zeros on the regular locus of X(Γ) for each group Γ between Γ′ and
Γ̂2,0[2]n.

3. Automorphisms of the variety of van Geemen and
Nygaard

We shall see that the group Γ′ is normal in Γ̂2,0[2]. Hence this group acts on
the variety of van Geemen and Nygaard. We want to describe this action. We
shall see that this action can be described by a linear action on the variables
Y0, . . . , X3, more precisely by a finite subgroup of PGL(8,C).

Recall that Γ2,0[2] is generated by the matrices of the form

(
E S
0 E

)
,

(
U ′ 0
0 U−1

)
,

(
E 0
2S E

)
(S = S′ integral).

Let M ∈ Γ̂2,0[2]. For f ∈ [Γ′, 1/2, vϑ] we set

f |M(Z) =
√
det(CZ +D)

−1/2
f(MZ).

The map f 7→ f |M is an automorphism φM of the 8-dimensional space spanned
by Y0, . . . , X3. It depends on the choice of a square root of det(CZ+D). Hence
±φM is well defined. Using standard theta transformation formulae we can
compute these automorphisms for the generators. It is sufficient to take the
following 4.

matrix corresponding transformation(
tU 0
0 U−1

)
, U =

(
1 1
0 1

)
(Y0, Y1, Y3, Y2, X0, X3, X2, X1)(

tU 0
0 U−1

)
, U =

(
1 0
1 1

)
(Y0, Y3, Y2, Y1, X0, X1, X3, X2)(

E 0
S E

)
, S =

(
2 0
0 0

)
(Y0,−iY1, Y2,−iY3, X1, X0, X3, X2)

J (Fricke involution)
√
2·(X0, X1, X2, X3, Y0/2, Y1/2, Y2/2, Y3/2)
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3.1 Lemma. The group Γ′ is normal in Γ2,0[2]. The group G generated by

the transformations ±φM , M ∈ Γ̂2,0[2], is already generated by the above four
transformations. It has order 98 304 = 215 · 3. The map M 7→ ±φM defines a
homomorphism

Γ̂2,0[2] −→ G/± .

The group G contains the subgroup Z of order 4 which is generated by multi-
plication with i. The above homomorphism induces an isomorphism

Γ̂2,0[2]/Γ
′ ∼−→ G/Z (order 24 576 = 213 · 3).

Proof. Since the generators of Γ2,0[2] act on X , the group Γ′ must be a normal
subgroup. The rest follows by comparing indices. ⊔⊓

4. The stabilizer of a node

The variety X has 96 singularities which all are ordinary double points (nodes).
They are zero dimensional boundary points, but not each zero dimensional
boundary is singular. In coordinates, the singularities can be described as
follows.

One node is given by

P = [
√
2, 0,

√
2, 0, 1, 1, 0, 0].

Changing signs, it produces 8 nodes which are characterized by the property
Y1 = Y3 = X2 = X3 = 0. Similarly, one gets 8 nodes with Y1 = Y3 = X0 =
X1 = 0. So one has 16 nodes with Y1 = Y3 = 0. In the same way one gets
16 nodes with the property Yi = Yj = 0 for each other pair 0 ≤ i < j ≤ 3.
This gives 96 = 6 · 16 nodes. It is easy to check by hand that they exhaust all
singular points. This description of the nodes also shows.

4.1 Lemma. The group Γ̂2,0[2] acts on the 96 nodes transitively.

The following matrices

M1 =


1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

 , M2 =


1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1

 ,

M3 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 , M4 =


1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

 ,



10 Some Siegel threefolds with a Calabi-Yau model II

M5 =


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 , M6 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ◦ J

are contained in Γ̂2,0[2] and stabilize the node P . We consider the group, which
is generated by them and Γ′. One can check that the factor group mod Γ′ has
order 128 = 27. Together with 4.1 we obtain:

4.2 Proposition. The stabilizer Γ̂2,0[2]P of the standard node P is generated
by Γ′ and the matrices M1,M2, . . . ,M6.

In a neighborhood of P we can use the affine coordinates

η0 = Y0/X1, η1 = Y1/X1, η2 = Y2/X1, η3 = Y3/X1,

ξ0 = X0/X1, ξ2 = X2/X1, ξ3 = X3/X1

Then substituting the affine version of the third equation in the fourth we get

η21 − η23 = 2(ξ22 − ξ23).

Setting

x1 = η1 − η3, x4 = η1 + η3, x2 =
√
2(ξ2 − ξ3), x3 =

√
2(ξ2 + ξ3),

the relation gets the simple form

x1x4 = x2x3.

So we have lead to consider the quadric

Q := {(x1, x2, x3, x4) ∈ C4; x1x4 = x2x3}.

This is a three dimensional affine variety with a unique singularity at the origin.
The above construction gives an étale map of germs

(X , P ) −→ (Q, 0).

Sometimes we write the elements of C4 as matrices

X =

(
x1 x2

x3 x4

)
.

Then Q is defined by detX = 0. The group GL(2,C) ×GL(2,C) acts on the
quadric by means of

X 7−→ AX tB.
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In this way we can consider (GL(2,C)×GL(2,C))/C∗ as subgroup of GL(4,C).
Another transformation, which leaves the quadric invariant, is X 7→ tX. We
also can consider it as element of GL(4,C).

We consider the transformations

m1

(
x1 x2

x3 x4

)
=

(
x4 x2

x3 x1

)
, m2

(
x1 x2

x3 x4

)
=

(
−ix1 −x2

x3 −ix4

)
,

m3

(
x1 x2

x3 x4

)
=

(
−x1 ix2

ix3 x4

)
, m4

(
x1 x2

x3 x4

)
=

(
−x1 −x2

x3 x4

)
,

m5

(
x1 x2

x3 x4

)
=

(
x1 x3

x2 x4

)
, m6

(
x1 x2

x3 x4

)
=

(
x2 x1

x4 x3

)
.

They are contained in the extension of index two of the image of the group
GL(2,C)×GL(2,C) which is generated by X 7→ tX. Hence this subgroup acts
on Q.

4.3 Lemma. The transformations

m1,m2,m3,m4,m5,m6

generate a group G of order 256 = 28. It contains the map X 7→ −X.

Since the proofs of this Lemma and the following Proposition can be given by
computation, we omit them. We just mention that m2

2m
2
3 acts as X 7→ −X.

4.4 Proposition. The assignment

Mi 7−→ mi (1 ≤ i ≤ 6)

induces an isomorphism
Γ̂2,0[2]P /Γ

′ ∼−→ G.

The described identification of germs (X(Γ′), P ) and (Q, 0) is equivariant.

We are interested in the subgroup of index two Γ̂2,0[2]n. We have to intersect
it with the stabilizer. It is easy to check that the elements

M2
2 , M2

3 , M2M1, M3M1, M4M1, M5M1, M6M1

are contained in Γ̂2,0[2]n. One also can check that the elements

m2
2, m2

3, m2m1, m3m1, m4m1, m5m1, m6m1.

generate a group H of order 128 = 27. In this way one obtains:

4.5 Proposition. The stabilizer of P in Γ̂2,0[2]n is a subgroup of index two

of Γ̂2,0[2]P . The restriction of 4.4 induces an isomorphism

(Γ̂2,0[2]P ∩ Γ̂2,0[2]n)/Γ
′ ∼−→ H.
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5. Quotients of an ordinary double point with a crepant
resolution

We will study the node (Q, 0) and some of its quotients. This is related to work
of Davis [Da], where also several quotients have been considered.

5.1 Lemma. The restriction of

α =
1

x2
1 − x2

4

(x1dx1 + x4dx4) ∧ dx2 ∧ dx3

is a holomorphic differential form of degree three on Q− {0} without zeros. If
one identifies a small neighborhood of the origin in Q with a small neighborhood
of P ∈ X(Γ′), we have ω = hα, where h is a holomorphic invertible function
on this neighborhood.

Proof. We cover Q by 4 charts corresponding to xi ̸= 0. For example the part
x1 ̸= 0 is the image of

{(x1, x2, x3) ∈ C3; x1 ̸= 0} −→ C4, (x1, x2, x3) 7−→ (x1, x2, x3, x2x3/x1).

Pulling back α we get

1

x2
1 − (x2x3/x1)2

(x1dx1 − x2
2x

2
3/x

3
1dx1) ∧ dx2 ∧ dx3 =

dx1 ∧ dx2 ∧ dx3

x1

This is holomorphic and without zeros on this chart. The other charts are
treated in a similar way.

Since α and ω both are 3-forms without zeros outside the singularity, we
get ω = hα, where h is a holomorphic function without zeros outside the
singularity. Since isolated singularities of analytic functions in more than one
variable cannot exist, h and h−1 are holomorphic also at the singularity.

⊔⊓
The following result can be found in [Fri], see also [Jo], 6.3.

5.2 Proposition. The quadric Q admits a small desingularization Q̃ →
Q. This means that Q̃ is a smooth connected variety, the inverse image of
the node 0 is a curve and the map from the complement of this curve maps
biholomorphically onto Q− {0}. Such a desingularization is crepant.

A small resolution is not unique. Actually there exist two different isomorphy
classes of such small resolutions. They can be obtained by blowing up the
ideals (x1, x3) or (x1, x4) in C[x1, x2, x3, x4]/(x1x4 − x2x3). From this explicit
description one can derive:
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5.3 Lemma. The elements of the image of GL(2,C) × GL(2,C) extend to
biholomorphic transformations of any small resolution, but the transformation

X 7−→ tX,

which is also an automorphism of Q, does not.

The group G (see 4.4) is not contained in the image of GL(2,C) × GL(2,C).
The intersection with this group defines a subgroup G0 ⊂ G of index two. It
is generated by the elements m1m5,m2,m3,m4,m6. One checks that these
elements have determinant 1 (considered in GL(4,C)). Hence G0 also can be
defined as intersection of G with SL(4,C). We denote by H0 the intersection
of H and G0. This is a group of order 64 = 26.

5.4 Lemma. The groups H and H0 have the same center. It is the group of
order 2 generated by the transformation X 7→ −X.

We omit the proof, since it can be done by simple computation.

5.5 Lemma. The differential form α on C4 (s. 5.1) is invariant under H.
Hence also the function h in 5.1 is H-invariant.

Proof. The invariance can be checked directly for the generators. ⊔⊓

5.6 Theorem. Let K be any subgroup of H. Then the quotient Q0 := Q/K
admits a crepant desingularization.

For the proof we have to differ between 4 types of subgroups K.

1) K is contained in the subgroup H0.
2) K contains the transformation X 7→ −X.

3) K contains one of the two transformations(
x1 x2

x3 x4

)
7−→

(
−x1 x2

x3 −x4

)
or

(
x1 −x2

−x3 x4

)
in its center.

4) K is a the cyclic subgroup of order 4 that is conjugated to one of the two
following (given by a generator of order 4):(

x1 x2

x3 x4

)
7−→

(
x2 x4

x1 x3

)
or

(
x2 ix4

−ix1 x3

)
.

These classes are not disjoint. But each subgroup of H is contained in at least
one of the 4 classes. This can be checked by hand or quicker by means of a
computer.

We are going to discuss the 4 cases. We begin with the
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First type. Because of 5.3 in this case the action of K extends to a small resolu-
tion Q̃ → Q. The differential form α extends to a holomorphic differential form
without zeros on Q̃, since singularities or zeros can only occur in codimension
one on a smooth variety. By 1.5 the variety Q̃/K admits a crepant resolution.
Hence Q/K also admits one.

Second type. We start to blow up the origin of C4. The group K still acts
biholomorphically on this blow up. A typical chart of the blow up is the C4

with the coordinates

(t1, t2, t3, x4) = (x1/x4, x2/x4, x3/x4, x4).

We consider in the blow up of C4 the closed smooth subvariety Q̃, which is
defined in this chart by t1 = t2t3. Its image in C4 is Q. Hence Q̃ → Q is
just a desingularization of Q. (Actually it is the blow-up of Q at the origin.)
The chart of Q̃, which we consider, is a C3 with the coordinates t2, t3, x4. The
differential form α in these coordinates can be computed. Up to a constant
factor it is

x4 dt2 ∧ dt3 ∧ dx4.

So it gets a zero of order one along x4 = 0. The transformation x → −x just
changes the sign of each variable xi. Hence it acts on t2, t3, x4 as reflection,
which changes the sign of the third variable only. The quotient is a C3 with
the coordinates

(t2, t3, t4) = (x2/x4, x3/x4, x
2
4).

Hence Q̃/± is a smooth variety, the affine piece in consideration a C3 with
coordinates t2, t3, t4. In these coordinates α appears as holomorphic differential
form without zeros. By the general theorem 1.5, the quotient Q̃/K and hence
Q/K admits a crepant resolution.

Third type. The two cases are equivalent, hence we can assume that

σ(x1, x2, x3, x4) = (x1,−x2,−x3, x4)

is in the center of K. The ideal (x2, x3) is invariant under K, since it describes
the fixed point locus of σ which is in the center of K. Hence the action of
K extends to an action by biholomorphic transformations on the blow up C
of C4 along this ideal. The manifold C can be covered by two C4 using the
coordinates (x1, x2/x3, x3, x4) and (x1, x2, x3/x2, x4). We take the quotient of
C by σ. The quotient C/σ is covered by two C4 with coordinates

(u1, u2, u3, u4) = (x1, x2/x3, x
2
3, x4) and (v1, v2, v3, v4) = (x1, x

2
2, x3/x2, x4).

We consider the subvariety Q′ ⊂ C/σ that in the two affine pieces is given
by u1u4 = u2u3 and v1v4 = v2v3. This variety has two singular points which
correspond to the origins of the affine pieces and which are ordinary double
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points. There is a natural projection Q′ → Q/σ. The group K acts on Q′. We
need the stabilizers of the two singularities.

Claim. The stabilizer of the singularity u1 = . . . = u4 = 0 acts by substitutions
of the form

U 7−→ CU tD, where U =

(
u1 u2

u3 u4

)
.

Proof of the Claim. We consider an element of the stabilizer. It might be of
the form

X 7−→ X 7−→ AX tB or X 7−→ A tX tB.

We have to use now that this transformation commutes with σ. In each case
this means that A and B both are of the form

(∗ 0
0 ∗
)
or both are of the form(

0 ∗
∗ 0

)
. Both cases are similar. For simplicity we take the case A =

(
a 0
0 d

)
and

B =
(
α 0
0 δ

)
. Then the transformation AX tB corresponds to CU tD, where

C =

(
1 0
0 d2α/a

)
, D =

(
aα 0
0 aδ/dα

)
.

But the transformation A tX tB interchanges the u- and v-chart and especially
the two singularities are interchanged. Hence this transformation is not con-
tained in the stabilizer.

Now we consider the holomorphic map

Q′/K −→ Q/K

which is induced by Q′ → Q/σ. The differential form α can be considered
as meromorphic differential form on C/σ. One checks that in the coordinates
u1, u2, u3, u4 it is given by the same equation as the original α, just replacing
the letters x by u. The same is true for the coordinates v1, v2, v3, v4. Hence α
gives a holomorphic differential form without zeros on the regular locus of Q′.
The claim shows that K extends to a suitable chosen small resolution Q̃′ of Q′.
To be concrete one can blow up the irreducible surface, which is defined in the
u-coordinates by the ideal (u2, u3) and in the v-coordinates by (v2, v3). Then
the group K acts on Q̃′. The differential form α extends to a holomorphic
differential form on Q̃′ without zeros and is invariant under K.

Fourth type. We consider the first case, σ(x1, x2, x3, x4) = (x2, x4, x1, x3), the
second is similar. It is better then to use the coordinates

y1 = x1 + x4, y2 = x1 − x4, y3 = x2 + x3, y4 = x2 − x3.

The quadric then takes the equation y21 + y24 = y22 + y23 . We blow up the ideal
(y2, y4). We denote by C the blow up of C4 along this ideal. One chart of the
blow up is (y1, y2, y3, y4/y2). Taking quotient by σ2 gives the chart

(u1, u2, u3, u4) = (y1, y
2
2 , y3, y4/y2).
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Now the the quadric y21 + y24 = y22 + y23 gets the form

u2
1 + u2(u

2
4 − 1)− u2

3 = 0.

This 3-fold has two singular points, (0, 0, 0, 1) and (0, 0, 0,−1). Take the first
one. For this point one can take as local parameter

v4 := u2
4 − 1 (= (u4 − 1)(u4 + 1)).

Now the 3-fold is given by u2
1 + u2v4 − u2

3 = 0. Hence the singularity is an
ordinary double point. This consideration shows that the transform of the
quadric appears in C/σ2 as 3-fold with two singular points, which are nodes.
The transformation σ interchanges the two nodes and hence acts without fixed
points. The rest of the proof is analogously to the third case.

Now the general result 1.5 shows that Q̃′/K admits a crepant resolution.
This gives a crepant resolution of Q/K. ⊔⊓

We recall that we defined a local étale map

(X(Γ′), P ) = (X , P ) −→ (Q, 0).

If Γ is a group between Γ′ and Γ̂2,0[2]n and K the corresponding subgroup of
G, we still get a local étale map

(X(Γ), P ) −→ (Q/K, 0).

Now we can prove the a basic result of this paper, formulated already in the
introduction:

5.7 Theorem. The Siegel modular threefold which belongs to a group between
Γ′ and Γ̂2,0[2]n admits a Calabi-Yau model in the following weak sense: There
exists a desingularization in the category of complex spaces of the Satake com-
pactification which admits a holomorphic three-form without zeros and whose
first Betti number vanishes.

Proof. By 1.5 there exists a crepant resolution of the complement of the (images
of the) nodes in X(Γ). As we have just seen (5.6), for each node there exists
an open neighborhood which admits a crepant resolution. Hence we can apply
1.4 to obtain a (not necessarily projective) crepant resolution of X(Γ).

It is a natural question whether a group Γ extends to a group of biholomor-
phic maps of a crepant resolution X̃ . Such a resolution is not unique. There
exists a projective one but there also exist some which are not projective. A
necessary condition of Γ to extend is that the stabilizers of the nodes extend
as described in 5.3. This is a condition which can be checked. Assume that
it is satisfied. Then we can choose one node a and desingularization of this
node. We can extend Γa to this desingularization. Let now g ∈ Γ. The choice
of the resolution of a dictates us the choice of the resolution at g(a) and the
assumption about Ga makes this choice independent of the choice of g. In this
way we resolve the whole orbit of a and then in the same way the other orbits.
In this way we obtain:
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5.8 Lemma. Let Γ be a group between Γ′ and Γ̂2,0[2]n. Assume that the
stabilizer at an arbitrary node satisfies the local condition 5.3. Then there
exists a (not necessarily projective) crepant resolution X̃ → X in the category
of complex spaces such that Γ extends biholomorphically to X̃ .

6. The Picard numbers

Since we have to consider also compact complex manifolds which are not pro-
jective, we have to be careful with the definition of the Picard number.

Let X be an irreducible normal complex space. A divisor in X is a closed
analytic subset of everywhere codimension one and such that additionally every
irreducible component carries a multiplicity (a non-zero integer). The analytic
set itself is called the support of the divisor. Every meromorphic function
defines a divisor. The group of all divisor classes is denoted by Cl(X). Its rank
is denoted by cl(X). If X is a projective manifold, then Cl(X) is isomorphic
to the Picard group (group of line bundles) and cl(x) = pic(X) is the Picard
number. Let A ⊂ X be a closed analytic subset of codimension ≥ 2. Then
cl(X) = cl(X −A).

6.1 Lemma. Two bimeromorphic equivalent weak Calabi-Yau manifolds have
the same divisor class number.

This also follows from the fact that the two are related by flops [Ko]. ⊔⊓
We also mention the following simple result.

6.2 Lemma. Let X be an irreducible compact complex space and X̃ → X a
desingularization. Then

cl(X̃) = cl(X) +m,

where m denotes the number of exceptional divisors.

In the following we consider a group Γ between Γ′ and Γ̂2,0[2]n. We denote by
X(Γ) the Satake compactification of H2/Γ. We want to compute the divisor
class number cl(Γ) := cl(X(Γ)) of this variety. From 2.4 we know

Cl(X(Γ)⊗Z Q = Cl(X(Γ′)Γ ⊗Z Q.

in [GN] the divisor class number has been computed for Γ′:

cl(Γ′) = 32.

The proof of van Geemen and Nygaard rests on counting numbers of points with
values in some finite fields and making use of the Weil conjectures. Therefore it
may be difficult to get from these computations the action of Γ̂2,0[2] on Cl(X ).
For this reason we need some explicit description of generating divisors.

We use Igusa’s cusp form χ35 of weight 35 for the full Siegel modular group.
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6.3 Theorem. The group Cl(X ) is generated by the irreducible components
of the zero divisor of χ35.

The proof needs some computer calculation which rests on the following infor-
mations about the structure of χ35. First we recall that χ35 is the product

χ35 = χ5 · χ30

of two forms of weight 5 and 30, also for the full modular group but with respect
to its non-trivial character. The form χ5 can be defined as the product of the
ten theta constants. They can be produced as follows: One starts with the
most trivial theta constant

ϑ[0](Z) =
∑
g∈Z2

eπiZ[g]

and applies the full modular group to it. This gives 10 modular forms. Their
product is χ5 (up to a constant factor). It can be checked that all 10 theta
constants are modular forms for Γ′ (with multipliers). Therefore their zero sets
define divisors in X .

The form χ30 can be constructed in a similar way.

6.4 Lemma. If on applies the full modular group to X0 = ϑ[0](2Z), on gets
(up to constant factors) 60 modular forms (living on Γ2[2, 4], all with the same
multipliers). Their product up to a constant is χ30. Examples of forms in the
orbit are

ϑ[0](Z/2) and X0, X1, X2, X3.

The 60 modular forms can be written as linear combinations of X0, . . . , X3.

The last statement is true, since the full modular group acts on the space
generated by X0, . . . , X3. This action has been studied in detail by Runge
[Ru].

So far we have seen that the zero locus of χ35, considered on X , splits into
the sum of 70 pairwise different divisors. But these 70 divisors need not to be
irreducible.

Now computer algebra comes into the game. Since we know the equations
of the 70 divisors in P 7(C), we can decompose them into irreducibles by using
the facility of computer algebra to compute the primary decomposition of an
ideal. We have to be a little careful, since computer algebra works well not
over C but only over a finitely generated field. Hence we have to use a number
field K. We use K = Q(ζ8), where ζ8 is a primitive 8th root of unity. We got
the following result using MAGMA [BMP]:
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6.5 Proposition. We consider X as variety over K = Q(ζ8) (using the
equations of van Geemen and Nygaard). The zero locus of χ35 is defined over
this field. It splits over K into 132 irreducible components. More precisely we
have:

1) The theta constants Y0, Y1, Y2, Y3 have irreducible divisors. The zero locus of
each of the remaining 6 theta constants decompose into two irreducibles. Hence
χ5 contributes with 16 = 4 + 2 · 6 irreducible components.

2) The forms X0, X1, X2, X3 have irreducible divisors. The other 56 factors
of χ30 decompose into pairs of irreducibles. Hence χ30 contributes with 116 =
4 + 2 · 56 irreducible components.

We conjecture that these 132 components are irreducible over C. But there
was no need for us to check this.

The proof of 6.3 now can be given as follows. Using Poincarè duality it is
sufficient to construct a system of curves C1, . . . , Cm, which are complete and
contained in the regular locus of X (i.e. they don’t contain one of the 96 nodes)
and such that the intersection matrix between the 132 divisors and these curves
has rank 32. The construction of these curves can be given (again by means of
a computer) as follows: Take pairwise intersections of the 132 divisors above,
decompose them into irreducibles and single out those components, which don’t
contain nodes.

In this way 6.3 can be proved. This explicit description of the divisor class
group allows us to describe the action of the group Γ̂2,0[2] on it. The group G
acts in a natural way on the ring C[Y0, . . . , Y3, X0, . . . , X4] and on its ideals.
Hence we can describe the action of G on Cl(X ) explicitly. Of course Z acts
trivially. Using the ismomorphism Γ̂2,0[2]/Γ

′ ∼= G/Z we get the action of

Γ̂2,0[2] on Cl(X ). Using the character table for G/Z which can be produced by
computer algebra, we get the decomposition into irreducibles.

6.6 Theorem. The space Cl(X ) ⊗Z Q decomposes under Γ̂2,0[2] into four
irreducible components of dimensions 1, 3, 12, 16.

These numbers can be explained as follows:

1) The 1-dimensional component comes from the divisor of a modular form.

2) The 3-dimensional space comes from the components of the 6 theta con-
stants, which are different from Y0, . . . , Y3.

3) The 56 factors of χ30, which are different from X0, . . . , X3 decompose under
Γ̂2,0[2] into two orbits of 24 and 32 elements. Their irreducible components
produce the spaces of dimension 12 and 16.

This explicit picture of the action of Γ̂2,0[2] on Cl(X ) allows to compute the

number cl(Γ) for every group Γ between Γ′ and Γ̂2,0[2] and this can be done
by means of a program.
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7. Involutions

As we have seen, the group Γ̂2,0[2]/Γ
′ ∼= G/Z has order 24 576 = 213 ·3. We are

interested in its subgroups of order two. One can compute that there are 18
conjugacy classes of such subgroups, and one can show that 10 of them are in
the image of Γ̂2,0[2]n. In the following we list them. There are two possibilities

to define such a group. We could describe it by an element M ∈ Γ̂2,0[2], such

that the image of M in Γ̂2,0[2]/Γ
′ generates the group. In the case M ∈ Γ2,0[2]

it is enough to consider its image in Sp(2, Z/8Z), since Γ′ contains Γ2[8]. The
other possibility is to give a matrix g ∈ G such that its image in G/Z generates
the subgroup of G/Z. Such a g is determined up to a power of i. We give the
10 groups the names G2 i, 1 ≤ i ≤ 10.

Group G2 1


3 0 4 0
0 1 0 0
0 0 3 0
0 0 0 1

 (Y0, Y1, Y2, Y3,−X0,−X1,−X2,−X3)

Group G2 2


5 2 6 2
2 1 2 6
4 4 1 6
4 4 6 5

 (Y0,−Y1,−Y2, Y3, X0,−X1,−X2, X3)

Group G2 3


1 0 2 6
2 1 2 6
0 0 1 6
0 0 0 1

 (Y0, Y1, Y2, Y3, X0,−X1,−X2, X3)

Group G2 4


3 6 4 2
4 7 6 2
0 0 3 4
0 4 2 7

 (−Y0,−Y1, Y2, Y3, X0, X1,−X2,−X3)

Group G2 5


3 2 6 7
2 3 7 2
4 2 1 2
2 4 2 1

 (−Y0,−Y1,−Y2, Y3, X0, X1, X2,−X3)

Group G2 6


5 2 6 7
0 3 1 0
0 2 3 0
6 4 6 5

 (−Y0,−Y1,−Y2, Y3,−X0,−X1,−X2, X3)

Group G2 7


7 4 7 6
0 7 2 3
6 4 5 0
4 6 4 5

 (−Y3,−iY2,−iY1, Y0, X3, iX2, iX1,−X0)
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Group G2 8


3 7 5 2
6 1 2 6
0 6 1 6
2 0 7 3

 (−Y1, Y0,−iY2,−iY3, X2,−iX1,−X0, iX3)

Group G2 9


1 0 7 0
0 7 0 0
2 0 7 0
0 0 0 7

 (−iY1, Y0,−iY3, Y2, X1,−iX0, X3,−iX2)

Group G2 10 Fricke involution
√
2·(X0, X1, X2, X3, Y0/2, Y1/2, Y2/2, Y3/2)

7.1 Proposition. The following table gives the divisor class numbers cl(Γ) for
the groups Γ corresponding to the groups G2 i, 1 ≤ i ≤ 10, and the dimension
of the fixed point locus of the generating involution in each case. (Dimension
-1 means that the locus is empty.)

divisor class number 16 24 16 16 16 20 20 16 16 18
dimension -1 0 1 -1 -1 1 1 1 1 1

We want to compute the divisor class and Euler number for a crepant resolution.
The numbers of a small resolution X̃ of X are [GN], [CM]

e = 64, cl = 32.

As we mentioned, there exist projective and non-projective resolutions. Each
projective resolution is a rigid Calabi-Yau manifold.

7.2 Lemma. The action of the groups G2 i extends to a suitable crepant
desingularization X̃ (which needs not to be projective and may depend on i).

The proof rests on Lemma 5.8. We omit details. ⊔⊓
Each of the groups G2 i is generated by an involution σi. We need infor-

mation by the fixed point locus. It can be checked that there is no component
of dimension two. We also know that the Calabi-Yau 3-form is invariant under
σi. This implies that the action of σi on the tangent space of a fixed point can
be diagonalized with diagonal (−1,−1, 1). Since X̃ → X̃/G2 i is a covering of
degree two, we obtain that the irreducible components of the singular locus of
X̃/G2 i are one-to-one correspondence with the irreducible components of the
fix point set of σi, acting on X̃ .

7.3 Lemma. The fixed point locus of σi on X̃ is the disjoint union of smooth
curves. They are in one to one correspondence with the irreducible components
of the fixed point locus on X̃ .

The fixed point locus on X consists of curves and isolated points which are
nodes. If a node occurs as isolated fixed point, then the exceptional line over
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it is in the fixed point locus on X̃ . As a consequence the number of irreducible
components of the fixed point locus of σi acting on X and X̃ is the same.

We claim that in a crepant resolution over each component of the singular
locus of X̃/G2 i there is only one exceptional divisor. This follows from the local
description of the involution. Locally around a fixed point, it can be described
by (w1, w2, w3) 7→ (−w1,−w2, w3). The crepant resolution of the quotient of
C3 by this involution is easy to describe (we did it in [FSM]) and one sees from
this description that the exceptional divisor is smooth and connected.

From 6.2 we obtain the following lemma.

7.4 Lemma. The divisor class number of a crepant resolution of X/G2 i
equals the sum of the divisor class number of X/G2 i (see 7.1) and the number
of irreducible components of the fixed point locus of σi (considered in X is
enough).

We also have to compute the Euler number of a crepant resolution of X/G2 i.
This is given by the string theoretic Euler number e(X̃ ,G2 i). We refer to [Ro,
Re] for some comments about this. We recall the definition of e(M,G). Here
G is a finite group acting on a compact differentiable manifold M . One has
to consider the subset of G×G of all commuting pairs (g, h). Then the string
theoretic Euler number is defined as

e(M,G) =
1

#G

∑
gh=hg

e(M ⟨g,h⟩).

Here M ⟨g,h⟩ denotes the common fixed point set of g, h. The string theoretic
Euler number has the following basic property. Assume that M is a weak
Calabi Yau manifold and that G acts by biholomorphic transformations which
leave the Calabi-Yau 3-form invariant. Assume that for a ∈ M the stabilizer Ga

acts on the tangent space as subgroup of the special linear group. Then there
exists a crepant desingularization of M/G and for each such desingularization
its usual Euler number is e(M,G).

We apply this formula in the case, where the order of G is two. There are
4 commuting pairs (e, e), (σ, e), (e, σ), (σ, σ).

7.5 Lemma. The Euler number of a crepant resolution of X̃/G2 i is

e = 32 +
3

2

∑
C

e(C),

where C runs through the components of the fixed point locus of σi in X̃ .

The fixed point sets are easy to determine. The involution can be considered
as a linear transformation A : C8 → C8, where A2 = aE. We want to consider
the fixed point locus of A on P 7(C). It corresponds to the eigenspaces of A.
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The possible eigenvalues are the two square roots of a. We denote the two
eigenspaces by V + and V −. Hence C8 = V + ⊕ V −. The projective spaces
P (V +) and P (V −) are two disjoint linear subspaces of P 7(C) = P (C8). To
get the fixed point set of A inside the variety X we have to intersect this variety
with the two linear subspaces. Hence the fixed point set inside X is the disjoint
union of two parts, where each of the parts can be empty of course.

Following these lines one gets:

7.6 Proposition. The following table describes fixed point sets of the involu-
tions σi, i ≤ i ≤ 11, on X and the divisor class and Euler numbers of a weak
Calabi-Yau model of the quotient X/G2 i.

fixed points cl e

σ1: empty set 16 32
σ2: 16 nodes 40 80
σ3: 4 elliptic curves 20 32
σ4: empty set 16 32
σ5: empty set 16 32
σ6: 8 conics in planes (∼= P 1) 28 56
σ7: 8 lines (∼= P 1) 28 56
σ8: 2 elliptic curves 18 32
σ9: 2 elliptic curves 18 32
σ10: 4 conics in planes (∼= P 1) 22 44

The equations for the fixed point loci can be given explicitly. We just give as an
example the 4 elliptic curves which describe the fixed point locus of σ3: They
are described by the following 4 ideals:

(Y0 + Y1, Y2 + Y3, X1, X3, Y 2
1 −X2

0 −X2
2 , Y 2

3 −X2
0 +X2

2 ),

(Y0 + Y1, Y2 − Y3, X1, X3, Y 2
1 −X2

0 −X2
2 , Y 2

3 −X2
0 +X2

2 ),

(Y0 − Y1, Y2 + Y3, X1, X3, Y 2
1 −X2

0 −X2
2 , Y 2

3 −X2
0 +X2

2 ),

(Y0 − Y1, Y2 − Y3, X1, X3, Y 2
1 −X2

0 −X2
2 , Y 2

3 −X2
0 +X2

2 ).

8. Projectivity

It is usually not possible to get a projective Calabi-Yau model for X(Γ). For ex-
ample one can show that there are groups Γ such that G = Γ/Γ′ acts freely and
has order 32. As van Geemen pointed out to the authors, it is not possible to get
a projective Calabi-Yau model in this case. We sketch the proof. Since X/G has
only 3 nodes as singularities, the only way to produce a projective Calabi-Yau
model is to blow up a suitable divisor in X/G. This divisor defines an G-
invariant element of Cl(X ). But it can be shown that dimCl(X )G ⊗Z Q = 1.
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This implies that a multiple of this divisor is Cartier close to each node. But
then the blow up would be trivial.

In 3.1 we introduced the group G which can be considered as a subgroup of
GL(8,C). Its image in PGL(8,C) is denoted by Ḡ. It can be identified with the
group G/Z where Z is the group of order 4 generated by multiplication with i.
We have subgroups H ⊂ G and H̄ ⊂ Ḡ of index 2 that correspond to the group
Γ̂2,0[2]n. The Calabi-Yau three form is invariant under H̄. The transformation

(Y0, . . . , X3) 7−→ (Y0,−Y1, Y2,−Y3, X0 −X1,−X2,−X3)

is contained in H. It has the property that it fixes the standard node and that
that it acts in the introduced coordinates x = (x1, . . . , x4) (introduced after
4.2) just by changing the sign. We consider the smallest normal subgroup C of
H that contains this element and Z. We denote it in image in H̄ by C̄.

8.1 Lemma. The group C̄ is isomorphic to (Z/2Z)3. It is generated by the
(images of) the sign changes of the variables (Y0, . . . , X3) by the following three
sign vectors:

+ + + + − − − −
− + + − + − − +
− + − + − − + +

For six elements g ∈ C̄ the fixed point set of g consist of 16 nodes. These sets
of 16 nodes are pairwise disjoint. Hence every node occurs once. One element
of C̄ (given by the first one of the above three) has no fixed point at all. Hence
the order of the stabilizer in C̄ of any node is two.

The proof is given by an easy calculation and omitted. Now we consider the
blow up of the nodes of X (not a minimal resolution)

X̂ −→ X .

So X̂ has 96 exceptional divisors that are biholomorphic equivalent to P 1C ×
P 1C. This is not a Calabi-Yau manifold since the Calabi-Yau three form gets
a zero (of order 1) along each exceptional divisor.

The action of Ḡ extends to X̂ . The group C̄ acts fixed point free outside the
exceptional divisors. The action on the exceptional divisors is easy to describe.
We did it already during the proof of 5.6 (case 2). The fact is that an element
g ∈ C̄ which fixes a node acts as identity on the exceptional divisor. Hence
the quotient X̂/C̄ is smooth and the zero of the three form disappears on the
quotient. So we get:

8.2 Theorem. The quotient variety X̂/C̄ is a (smooth projective) Calabi-Yau
manifold.
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We also can consider the corresponding modular group Γ′′.

Γ′ ⊂ Γ′′ ⊂ Γ̂2,0[2]n.

The index of Γ′ in Γ′′ is 8. Actually one has

Γ2,0,ϑ[4] ∩ Γ2[2, 4] ⊂ Γ′′ ⊂ Γ2,0[4] ∩ Γ2[2]

and both indexes are 4. One can check:

8.3 Remark. The group Γ′′ is generated by Γ2,0,ϑ[4]∩Γ2[2, 4] and by the two
elements 

1 0 2 0
0 1 0 0
0 0 1 0
0 4 0 1

 ,


1 0 0 0
0 1 0 2
4 0 1 0
0 0 0 1

 .

Using the theory of crepant resolutions of quotient singularities, we get.

8.4 Corollary. For any group Γ between Γ′′ and Γ̂2,0[2]n the variety X(Γ)
admits a projective Calabi-Yau model.

We compute the Hodge numbers of X̂/C̄. Using the decomposition described
in 6.6 one gets 16 as the divisor class number of the complement of the nodes
of X/C̄. There are 96/4 exceptional divisors. Therefore we get 16 + 96/4 = 40
as the Picard number of the Calabi-Yau manifold X̂/C̄. To compute the Euler
number we start with the Euler number of X . This −32 by [GN]. Hence the
Euler number of the complement of the 96 nodes is −128. The quotient of
the complement by the freely acting C̄ has Euler number −128/8 = −16. We
have to add 96/4 = 24 exceptional divisors of type P 1 × P 1. Hence the Euler
number of X̂/C̄ computes as −16 + 24 · 4 = 80. So we get:

8.5 Proposition. The Siegel modular variety X(Γ′′) has a projective Calabi-
Yau model X̂/C̄ that is rigid and has Hodge numbers h11 = 40, h12 = 0 (e =
80).
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