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Abstract

We study a projective Calabi–Yau threefold Y+ which has been con-

structed in [FS]. It is rigid (h12 = 0) and has Picard number h
11 = 2.

We construct a pair of divisors D± which give a basis of Pic(Y+)⊗Z Q

and determine all intersection numbers D± · D± · D±.

We want to thank Sergey V. Ketov, who motivated us to determine the in-
tersection numbers which play a role in string theory [Al]. We are grateful to
S. Cynk who explained us several details about the resolution of nodes and we
thank also R. Salvati Manni for widespread discussions and suggestions.

Introduction

Basic for our example is a certain complete intersection X of four quadrics
introduced in the paper [GN] of van Geemen and Nygaard:

X :

Y 2
0 = X2

0 +X2
1 +X2

2 +X2
3 ,

Y 2
1 = X2

0 −X2
1 +X2

2 −X2
3 ,

Y 2
2 = X2

0 +X2
1 −X2

2 −X2
3 ,

Y 2
3 = X2

0 −X2
1 −X2

2 +X2
3 .

The variety X has 96 isolated singularities which are ordinary double points
(nodes).

In the paper [CM] it has been pointed out that the results of [GN] imply that
X admits a resolution that is a (projective) Calabi–Yau threefold. The basic
result – essentially due to van Geemen and Nygaard [GN] – is the following
theorem.

Theorem. The Hodge numbers of a Calabi–Yau desingularization of X are

h11 = 32, h12 = 0.

Hence this Calabi–Yau manifold is rigid.

In the paper [FS], we constructed a certain groupG of order 16 of biholomorphic
automorphisms of X that acts freely on X . The basic thing is that there exists
a projective small resolution X+ such that G extends as group of biholomorphic
mappings to X+. The quotient Y+ = X+/G then is a projective resolution of
Y := X /G in form of a rigid Calabi-Yau manifold whose Picard number is two.
The varieties X and Y are Siegel modular threefolds. But for this paper the
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modular background is not necessary. Everything can be done by using the
explicit equations.

We recall the definition of the group G. Let P1, . . . , P8 be homogenous
polynomials in C[Y0, . . . , Y3, X0, . . . , X3] of the same degree such that not all
of them vanish. Then we can consider the rational map from P 7 into itself,

(y0, . . . , y3, x0, . . . , x3) 7−→ (P1(y0, . . . , x3), . . . , P8(y0, . . . , x3)).

We denote this map symbolically by

(P1, . . . , P8).

Lemma. The two transformations

(−Y2, iY3, iY0, Y1,−iX3,−iX2, X1,−X0),

(iY1, Y0,−iY3, Y2, X1, iX0, X3,−iX2)

define biholomorphic transformations of X onto itself. The group G which is
generated by the two biholomorphic transformations is isomorphic to Z/4×Z/4
and acts freely on X .

We recall some facts about projective resolutions of threefolds X with nodal
singularities. Let D be an effective Weil divisor on X . Then we associate
the ideal sheaf I(D) of all holomorphic functions on open subsets that satisfy
(f) ≥ D on this subset. The blow up of D, by definition, is the blow up of
the ideal sheaf I(D). Let D,D′ be two divisors such that D −D′ is a Cartier
divisor, then the two blow ups agree. Since for every Weil divisor D there exists
a Cartier divisor D′ such that D+D′ is effective, we can define the blow up of
D for arbitrary Weil divisors. The blow ups of D and nD, n > 0, agree. With
the results of the paper [FS], where the divisor class group has been described
by means of explicit generators, one can check the following theorem.

Theorem. There exists an effective Weil divisor D on X whose class is G-
invariant and such that its blow up gives a projective resolution X+ of X with an
action of G. Moreover, the divisor −D will give a second projective resolution
X− with G-action. These two resolutions are unique in the following sense. If
D′ is any G-invariant Weil divisor whose blow up is a resolution, then there
exists an integer n 6= 0 such that D′ − nD is a Cartier divisor. The quotients
Y+ = X+/G and Y− = X−/G are projective resolutions of Y.

We will describe an explicit example for such a divisor in Theorem 4.1. Before
we continue, we must choose one of the two resolutions X+ and X−. They
are opposite resolutions in the sense that all nodes are flopped. To distin-
guish both, it is sufficient to fix the ruling of one node. We take the node
(
√
2, 0,

√
2, 0,−1, 0, 0, 1). It is contained in the following divisors D±. They are

cut out inside X by two equations.

D± : X0 +X1 +X2 +X3 = Y1(X1 +X3)± (
√
2/2)Y2Y3 = 0.

To be precise, the ideals I(D±) of these divisors are given by the radical of the
ideals generated by the generating ideal I of X and these two elements.
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Definition. The desingularization X+ is chosen such that the ruling of the
node (

√
2, 0,

√
2, 0,−1, 0, 0, 1) is obtained by blowing up the divisor D+.

This means that the surface D+ is blown up in X+ over the node, but D−

remains unchanged.

The determination of the intersection numbers uses computer calculations.
For this one needs a base field. We take K = Q(ζ) where ζ is an 8th root
of unity. The varieties D± are irreducible over K. We think that they are
irreducible over C but it is not necessary to know this.

In particular, we have to use a program that decides whether for a given
g ∈ G and a given node a on g(D+) the surface g(D+) is blown up in X+ over
a or not. This program uses the description of the Picard group in [FS]. This
paper contains an appendix which contains a rather detailed description of the
way how the computer computations have been organized. In particular, there
have been constructed 32 divisors which give generators of the Picard group
(tensored with Q). This description includes the action of the automorphism
group on this Picard group.

1. Intersection numbers away from nodes

In the paper [FS], 188 two-dimensional subvarieties of X have been defined. We
use here two of them. They have been introduced already in the introduction.
They are components of the hyperplane section X0 + · · · + X3 = 0. One of
them is cut out by the equations

D+ : X0 +X1 +X2 +X3 = Y1(X1 +X3) + (
√
2/2)Y2Y3 = 0.

The vanishing ideal of this variety is the radical of the ideal generated by the
defining ideals of X and D+. It can be computed as

Y 2
0 − 2X2

1 − 2X1X2 − 2X1X3 − 2X2
2 − 2X2X3 − 2X2

3 ,

Y 2
1 − 2X1X2 − 2X1X3 − 2X2

2 − 2X2X3,

Y1Y2 +
√
2Y3X1 +

√
2Y3X2,

Y1Y3 +
√
2Y2X2 +

√
2Y2X3,

Y1X1 + Y1X3 + 1/2
√
2Y2Y3,

Y 2
2 − 2X2

1 − 2X1X2 − 2X1X3 − 2X2X3,

Y 2
3 − 2X1X2 − 2X1X3 − 2X2X3 − 2X2

3 ,

X0 +X1 +X2 +X3.

Replacing
√
2 by −

√
2 we get a complementary ideal

D− : X0 +X1 +X2 +X3 = Y1(X1 +X3)− (
√
2/2)Y2Y3 = 0.
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1.1 Lemma. The transformation σ that changes the signs of the xi and fixes
the yi is contained in the normalizer of the group G. It maps D+ to D− and
it induces biholomorphic maps

σ : X+ ∼−→ X−, Y+ ∼−→ Y−.

We recall some basics about divisors and their intersection numbers.

Let X be a normal irreducible algebraic variety of dimension n over C. A
divisor on X is a formal sum of irreducible closed subvarieties of codimension
one. Let Y ⊂ X be a subvariety of everywhere codimension 1. The associated
divisor is the sum of all irreducible components (with multiplicities 1). To
every rational function its principal divisor can be associated. Two divisors
are called equivalent if their difference is principal. Since the singular locus of
X has codimension ≥ 2, the divisors (divisor classes) on X are in one-to-one
correspondence with the divisors (divisor classes) on the regular locus. Let
π : X̃ → X be a small resolution. Small means that there exists a closed
subvariety T ⊂ X̃ of codimension ≥ 2 such that π defines a biholomorphic map
of X̃ − T onto the regular locus of X . The divisors (divisor classes) of X are
in one-to-one correspondence with those of X̃.

Now we assume thatX is projective and non-singular. Then the intersection
number D1 · · ·Dn of n divisors D1, . . .Dn can be defined. It is invariant under
equivalence and it is Z-multilinear. In the case that the divisors are effective
and intersect only in finitely many points P1, . . . , Pm, the intersection number
is the sum of the multiplicities of Pi in the scheme theoretic intersection D1 ∩
. . . ∩Dn. For details we refer to [Sh].

We can consider divisors D1, D2, D3 on X as divisors on X+ (also on X−)
and then study intersection numbers of three divisors. These numbers may be
different for X+ or X−. If one of the three divisors is equivalent to a divisor
which avoids all nodes, then the intersection is independent on the choice of
X+ or X−. For example, this is the case for hyperplane sections. They are all
equivalent and there is one which avoids a finite number of given points.

In the following, the notation D1 · D2 · D3 means the intersection number
in X+ if not something else is stated. We have

D1 ·D2 ·D3 = g(D1) · g(D2) · g(D3) for all g ∈ G.

We consider the divisors D+ and D− on X . Their sum H is the divisor of
a hyperplane section. In this section we want to compute the intersection
numbers of three of the divisors H,D+, D− where one of them must be H. As
we explained, they to not depend on the choice of the small resolution.
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1.2 Proposition. Let H be a divisor on X that represents a hyperplane
section, i.e. H ∼ (X0). Then

H ·H ·H = 16.

(This is the degree of the complete intersection X .)

Proof. The hyperplane sections (X0), (X1), (X2) have (on X ) 16 intersection
points,

(±1,±i,±i,±1, 0, 0, 0, 1).

None of them is a node. Their multiplicity is one. ⊔⊓

1.3 Proposition. Let H be a divisor on X that represents a hyperplane
section, i.e. H ∼ (X0). Then

H ·H ·D+ = H ·H ·D− = 8.

Proof. The biholomorphic transformation σ of X fixes the divisor class of H
and D+ and D− are interchanged. Hence H · H · D+ = H · H · D−. Their
sum is 16 by Proposition 1.2. (We should mention that the biholomorphic
transformation σ extends to a biholomorphic map X+ → X−. This shows that
H · H · D+, computed on X+, equals H · H · D−, computed on X−. But as
we noted already these intersection numbers are independent of the choice of
a small resolution, since one of them is a hyperplane section.) ⊔⊓

1.4 Proposition. Let H be a hyperplane section, i.e. H ∼ (Y0). Then

H ·D+ ·D− = 12, H ·D+ ·D+ = H ·D− ·D− = −4.

Proof. The divisors (Y0), D
+, D− have 12 intersection points. None of them is a

node. The multiplicities are 1. The rest follows with the help of Proposition 1.3.
⊔⊓
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2. Intersections in exceptional fibres

We have to recall some details about the resolutions of a node. First, one
can consider the blow up of a node. The exceptional fibre is biholomorphic
equivalent to a P 1 × P 1. After a biholomorphic map has been chosen, we can
talk about horizontal lines P 1 × {a2} and vertical lines {a1} × P 1. A different
choice of the biholomorphic map can preserve “horizontal” and “vertical” or
exchanges them. One can contract one of the two types of lines to obtain a
small resolution with exceptional fibre P 1. Hence there exist two essentially
different small resolutions. The choice of the small resolution is called a ruling
of the node. We recall the following fact. Let Y ⊂ X be a pure two dimensional
subvariety which is smooth at a node. Then the blow-up of Y gives one of the
two small resolutions. The strict transform in the blow up of the node is a
horizontal or vertical line.

The following Lemma has been communicated to us by S. Cynk. It follows
from the detailed description of the blow up of nodes in [Cl]. Let C be a smooth
surface through a three dimensional node. Then the strict transform of C in
the blow up of a is the blow up of C at a. From this one can deduce the
following lemma.

2.1 Lemma. Assume that a is a node in X and that Y1, Y2 are two smooth
surfaces which contain a. In the case that the node a is not a (maybe embedded)
component of the scheme theoretic intersection Y1 ∩Y2, the corresponding lines
in P 1 × P 1 must be parallel (including equal), i.e. both horizontal, or both
vertical. In the other cases the two lines intersect properly (one horizontal, one
vertical).

Additional Remark. In the case of parallel lines, the two lines are equal if
and only if the tangent planes of Y1, Y2 at a are the same.

Assume that we have three surfaces Y1, Y2, Y3 which have the node a as isolated
intersection point and which are smooth at a. We consider their strict trans-
forms in the exceptional fibre P 1 × P 1 of the blow up of the node. These can
be three parallel lines (equal lines are considered to be parallel) or two parallel
lines and a further line intersecting them.

2.2 Definition. Let Y1, Y2, Y3 be three surfaces in X which have the node a as
isolated intersection point and which are smooth at a. They are called in good

position (at a) if their strict transform in the blow up of the node consists of
two different parallel lines and one which intersects them.

We contract this figure in horizontal and vertical direction.
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horizontal vertical

b

b

b

In the horizontal direction we see one line and two points on it. The intersection
of these three is empty. In the vertical direction we see one line and one point
on it. The intersection is one point.

Next we want to compute D+ · D+ · D−. We replace D+, D+, D− by lin-
early equivalent divisors D1, D2, D3 which intersect in only finitely many points
(moving lemma). Let µ be the number of intersection points in regular points.
We notice that each node that is contained in D+ is also contained in D−, The
reason is that D+ + D− is locally principal close to a node, but D+ is not.
The same argument gives that D1, D2, D3 meet in all the 24 nodes which are
contained in D+. The computation of the intersection number can be done
analytically, (see [FS] for the description of the local Picard group at a node.)
One can assume thatD1, D2, D3 are smooth surfaces which are in good position
in the sense of Definition 2.2. Now we can use Lemma 2.1 to prove

D+ ·D+ ·D− = µ+ 18.

The same argument gives

D+ ·D− ·D− = ν + 6.

Since the number of interior points agree, µ = ν (use σ), we get for the difference

D+ ·D+ ·D− −D+ ·D− ·D− = 12.

From Proposition 1.4 we get

D+ ·D+ ·D− +D+ ·D− ·D− = 12.

Summing up the two equations and taking the difference we get

D+ ·D+ ·D− = 12, D+ ·D− ·D− = 0.

We also have

D+ ·D+ ·D+ = D+ · D+ ·H −D+ ·D+ · D− = −16,

D− ·D− ·D− = D− · D− ·H −D+ ·D− · D− = −4.

So we have proved the following result.

2.3 Proposition. We have

D+ ·D+ ·D+ = −16, D− ·D− ·D− = −4,

D+ ·D+ ·D− = 12, D+ ·D− ·D− = 0.
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3. Intersection numbers between translates

We want to determine all intersection numbers g1(D
±) · g2(D±) · g3(D±) for

gi ∈ G.

3.1 Proposition. We have

H ·H · g(D+) = H ·H · g(D−) = 8.

This follows from Proposition 1.3. ⊔⊓

3.2 Proposition. We have

H · g(D+) · g(D−) = 12, H · g(D+) · g(D+) = H · g(D−) · g(D−) = −4.

This follows from Proposition 1.4. ⊔⊓

3.3 Proposition. We have

H · g(D+) · h(D+) = H · g(D+) · h(D−) = H · g(D−) · h(D−) = 4

for all g 6= h in G.

Proof. We can assume that h but not g is the identity element. The intersection
of Y0 = 0, D+ and g(D+) consists of 4 points as a computation shows. For
each g they belong to the following list of 12 points.

(0, 0, 0,−2,−1,−i, i, 1),

(0, 0, 2i, 0, i,−i,−1, 1),

(0, 0, 2i, 0,−i, i,−1, 1),

(0, 2i, 0, 0,−i,−1, i, 1),

(0, 0,−2i, 0, i,−i,−1, 1),

(0, 2i, 0, 0, i,−1,−i, 1),

(0,−2i, 0, 0,−i,−1, i, 1),

(0, 0, 0,−2,−1, i,−i, 1),

(0, 0,−2i, 0,−i, i,−1, 1),

(0, 0, 0, 2,−1,−i, i, 1),

(0, 0, 0, 2,−1, i,−i, 1),

(0,−2i, 0, 0, i,−1,−i, 1).

None of them is a node. They have multiplicity one. This shows H · g(D+) ·
h(D+) = 4. The rest follows from Proposition 3.1. ⊔⊓

3.4 Lemma. Let g ∈ G be different from the unit element. We denote
by α(g) the contribution of the nodes to the intersection number of D+, D−,
g(D+) and similarly by β(g) the contribution of D+, D−, g(D−). We have

(α(g), β(g)) =







(2, 2) for 6 choices,
(4, 0) for 6 choices,
(6, 2) for 3 choices (of g).
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The proof rests on the computation of the rulings of all nodes which uses the
program mentioned at the end of the introduction. ⊔⊓

Sinc g(H) is equivalent to H, from Proposition 1.4 we get

D+ ·D− · g(D+) +D+ ·D− · g(D−) = 12.

The contribution of the interior points (away from the nodes) toD+ ·D− ·g(D+)
and D+ ·D− · g(D−) is the same number µ (use σ). Hence we get

D+ ·D− · g(D+)−D+ ·D− · g(D−) = α(g)− β(g).

By means of the values of Lemma 3.4 and Proposition 3.3 we get the following
result.

3.5 Proposition. Let g ∈ G be different from the unit element. We have

D+ ·D− · g(D+) = 6, D+ ·D− · g(D−) = 6,6 cases:

D+ ·D+ · g(D+) = −2, D+ ·D+ · g(D−) = −2,6 cases:

D− ·D− · g(D+) = −2, D− ·D− · g(D−) = −2,6 cases:

D+ ·D− · g(D+) = 8, D+ ·D− · g(D−) = 4,9 cases:

D+ ·D+ · g(D+) = −4, D+ ·D+ · g(D−) = 0,9 cases:

D− ·D− · g(D+) = −4, D− ·D− · g(D−) = 0,9 cases:

.

Next we intersect D± and g(D±) and h(D±) where g 6= h and where both are
different from the unit element.

3.6 Proposition. Let (g, h) be two different elements of G. Both are assumed
to be different from the unit element. There are 15 · 14 = 210 choices. In 174
cases the intersection points are not nodes. For them

D± · g(D±) · h(D±) = 2.

In the remaining 36 cases there are 4 intersection points in X which all are
nodes. In these cases the intersection numbers in X+ are as follows.

D± · g(D±) · h(D±) = 2 in 18 cases.

In the remaining 18 cases the situation is as follows.

D± · g(D±) · h(D±) =

{

4 if the number of plus signs is odd,
0 if the number of plus signs is even.
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Proof. There have to be treated the following cases. Let F be the subgroup of
G that is generated by g and h.

1) The order of F is 16. There are 96 pairs with this property. There are two
subcases:

a) In 48 cases the intersection of D±, g(D±), h(D±) consists of two points
which are not nodes and which have multiplicity one and which both are
defined over K.

b) In 48 cases the intersection of D±, g(D±), h(D±) consists of two points
which are not nodes and which have multiplicity one and which both are
not defined over K.

2) The order of F is 8. There are 72 pairs with this property. There are two
subcases:

a) In 36 cases there are two intersection points which are defined over Q(i).
None of them is a node and the multiplicity is in each case 1.

b) In 36 cases there are 4 intersection points in X . They are all nodes.
One has to take the intersection numbers in the small resolution X+.
Here D+, g(D+), h(D+) have intersection number 2 in 18 cases and 4
in 18 cases. The other intersection numbers D+ · g(D+) · h(D+) can be
determined with the help of Proposition 3.3.

3) The order of F is 4. There are 42 cases. In all of them there are 2 intersection
points which are defined over Q(i). They are not nodes and they have
multiplicity 1.

In each of the cases only one sign combination, for example three plus signs,
have to be treated. The other combinations then one can obtain with the help
of Proposition 3.3.

The only really difficult case is 2b). In all other cases we have intersection
points only outside of the nodes and we can work with the variety X and have
not to desingularize it. As in Sect. 2, the intersection points can be computed
in each case explicitly and after that one can compute their multiplicities.

We explain case 2b) for the rest of this section. We will consider two typical
examples. The first example is

g : = (−Y0, Y1,−Y2, Y3, X0,−X1,−X2, X3),

h : = (iY3,−iY2,−Y1,−Y0, X2,−iX3, iX0, X1).

Recall thatD+ is a component of the hyperplane sectionX0+X1+X2+X3 = 0.
The intersection of the three divisors

D+, g(D+), h(D+),
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considered in X , consists of 4 nodes.

a1 :=(
√
2, 0, 0,−i

√
2, 0,−1, 1, 0),

a2 :=(
√
2, 0, 0, i

√
2, 0,−1, 1, 0),

a3 :=(−
√
2, 0, 0,−i

√
2, 0,−1, 1, 0),

a4 :=(−
√
2, 0, 0, i

√
2, 0,−1, 1, 0).

Unfortunately the three divisors are not in good position with respect to all
nodes a1, . . . , a4 in the sense of Definition 2.2. For example, at the second
node a2 the following happens. The curves D+ ∩ h(D+) and g(D+) ∩ h(D+)
have a2 as isolated point. But the intersection of D+ and h(D+) in X is set
theoretically an elliptic curve, cut out in X by the linear equations

Y1 = Y2 = X0 +X3 = X1 +X2.

But there are four embedded components in this curve, namely the 4 nodes.
Hence the three lines in the exceptional P 1 × P 1 of the node are parallel.

To remedy this situation, we replace the divisor D+ by the other component
D−. From Proposition 3.3 we see that

D+ · g(D+) · h(D+) +D− · g(D+) · h(D+) = 4.

Hence we see

D+ · g(D+) · h(D+) = 2 ⇐⇒ D− · g(D+) · h(D+) = 2.

We use now the notation

D1 = D−, D2 = g(D+), D3 = h(D+).

a) The intersection of D1 ∩D2 ∩D3 consists of the same 4 nodes a1, . . . , a4.
b) The three divisors D1, D2, D3 are in good position at all 4 nodes. We have

to compare the rulings of the nodes a1, a2, a3, a4. One checks

a2 = g(a1), a4 = g(a3).

We want to compare the number of intersection points of D1, D2, D3 over the
node a1 with those over a2. Instead of this we can compare

the number of intersection points of D1, D2, D3 over the node a1,
the number of intersection points of g−1(D1), g

−1(D2), g
−1(D2) over a1.

One can compute the positions of the corresponding line diagrams. It turns
out that the two diagrams are different. So we obtain the following result.
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The divisors D1, D2, D3 have an intersection point in the small resolution
over a1 or a2 but not over both. The same argument works for the pair a3, a4.
Hence we get

D1 ·D2 ·D3 = 2.

We give a second example.

g : = (iY3, iY2,−Y1, Y0,−X2,−iX3, iX0,−X1),

h : = (iY3,−iY2,−Y1,−Y0, X2,−iX3, iX0, X1).

In this case one checks that D+, g(D+), h(D+) are in good position at all
4 nodes in their intersection. We can check that in X+ over each node an
intersection point survives. Hence we get

D+ · g(D+) · h(D+) = 4

It follows (or can be computed in the same way)

D− · g(D+) · h(D+) = 0

We settled two examples. Each other case can be treated in the same manner.
This completes the proof of Proposition 3.6, 2b). ⊔⊓

4. Intersection numbers in the quotient

We recall from the paper [FS].

4.1 Theorem. The orbit of the subvariety D+ (the same is true for D−)
under the group G consists of 16 subvarieties of X . They are non-singular.
Each of the 96 nodes is contained in 4 of the 16 subvarieties. The blow up
along the union of the 16 subvarieties (considered as reduced subvariety) is a
smooth projective variety X+ with a free G-action. The quotient Y+ = X+/G
is a (projective) rigid Calabi-Yau manifold with h11 = 2 (e = 4).

From [FS] we know the following result.

4.2 Proposition. We denote by D± the image of D± in X+/G. The two
divisors give a Q-basis of

Pic(X+/G)⊗Z Q.
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We want to compute the intersection numbers D± · D± · D±. These are es-
sentially 4 cases, depending on the number of the plus (or minus) signs. Let
π : X → X /G be the canonical projection. We use the formula

16D± · D± · D± = π∗(π
∗D± · π∗D± · π∗D±).

It implies
16D± · D± · D± = π∗D± · π∗D± · π∗D±.

We have
π∗D± =

∑

g∈G

g(D±).

We get

D± · D± · D± =
1

16

∑

g1,g2,g3

g1(D
±) · g2(D±) · g3(D±) =

∑

(g,h)∈G×G

D± · g(D±) · h(D±).

With the results of the previous section we can derive now our main result.

4.3 Theorem. The two divisors D± of the rigid Calabi-Yau manifold Y+ :=
X+/G give a basis of PicY+ ⊗Z Q. Their intersection numbers are

D+ · D+ · D+ = 296, D− · D− · D− = 344,

D+ · D+ · D− = 600, D+ · D− · D− = 552.

We recall that Y− is biholomorph equivalent to Y+. The biholomorphic map σ
between both interchanges D+ and D−.
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