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Introduction

We consider the graded algebra (the generators have weight one)

B = Q[Z1, Z2, Z3,W1,W2,W3, C]

with defining relations
W 2

1 +W 2
2 = Z2

3 ,

W 2
1 +W 2

3 = Z2
2 ,

W 2
2 +W 2

3 = Z2
1 ,

W 2
1 +W 2

2 +W 2
3 = C2.

This is a normal graded algebra. The associated projective variety proj(B) is
called the box variety or variety of cuboids. It is absolutely irreducible. We
denote its complexification by

B := proj(B ⊗Q C).

It is a surface that characterizes cuboids. The variables Wi give the edges of
the cuboid, the variables Zi the diagonals of the faces and C the long diagonal.
We mention that there is an unsolved problem, raised by Euler, whether the
box variety contains non-trivial rational points or not. For more details on the
box variety we refer to [vL] and [ST].

In this note we describe a parametrization of the box variety by theta func-
tions. This will imply that it is a quotient of the product H/Γ[8] × H/Γ[8]
of two modular curves of level 8 by a group of order 8 which comes from the
diagonal action of Γ[4]. Actually this parametrization can be defined over the
cyclotomic field K = Q(ζ8) = Q(i,

√
2). We found this parametrization from

an observation of D. Testa that the box variety can be embedded into a certain
Siegel modular variety which has been described by van Geemen and Nygaard.



2 The box variety

This background is not necessary for our note and we will not describe it here.
But we want to point out that the still unpublished work [ST] is behind the
scenes and we are very grateful that he explained to us details of this work.

This parametrization can be used to derive quickly known properties and
also some new ones of the box variety. For example, we give in Sect. 2 a modular
description of the automorphism group. It can be realized as a subgroup of
SL(2, Z)×SL(2, Z). In [ST], [vL] 140 rational and elliptic curves on the minimal
model of the box variety which give generators of the Picard group have been
described. We describe them in Sect. 3 in a very simple way as certain modular
curves.

In Sect. 3 we consider smooth curves in the box variety. We prove an esti-
mate that shows how their genus grows with their degree. As a consequence,
smooth rational and elliptic curves have a bounded degree. This can be con-
sidered as a supporting evidence of the conjecture made in [ST] that the 140
curves described in [vL] exhaust all rational and elliptic curves. This has been
proved in [ST] for degrees ≤ 4.

In the paper [Be], the box variety arises as a member of a whole family
having the same properties, namely to be complete intersections of 4 quadrics
in P6 with an even set of 48 nodes. In this paper Beauville also describes a
certain smooth two-fold Galois covering X of the box variety. It is unramified
outside the 48 nodes and it is a minimal surface of general type with q = 4,
pg = 7, K2 = 32. In Sect. 4 we give a very simple modular description of it.

In Sect. 5 a certain involution σ of the box variety B is considered. We use
the modular description to realize the quotient B/σ as a Kummer variety.

In the last section we consider a certain moduli problem which gives the
realization of the box variety as fine moduli scheme over Q(i) classifying pairs
(E,F ) of elliptic curves with level 4 structures and a compatible isomorphism
E[8] → F [8]. This is closely related to work of E. Kani and Schanz [KS].

We want to thank A. Beauville, E. Kani and D. Testa for helpful discussions.
We thank the referee for pointing out a serious gap in a first version of the paper
and for his hint how to overcome this problem.

1. Generalities about modular groups

We use the standard notations

Γ[N ] = kernel(SL(2, Z) −→ SL(2, Z/NZ))

for the principal congruence subgroup of level N of the elliptic modular group
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and

Γ0[N ] =
{
M =

(
a b
c d

)
∈ SL(2, Z); c ≡ 0modN

}
,

Γ1[N ] =
{
M =

(
a b
c d

)
∈ SL(2, Z); a ≡ b ≡ 1modN, c ≡ 0modN

}
.

We also will use the Igusa groups

Γ[N, 2N ] =
{
M =

(
a b
c d

)
∈ Γ[N ]; ab ≡ cd ≡ 0 mod 2N

}
.

In the following we define the square root
√
a of a non-zero complex number by

the principal part of the logarithm. This means that the real part is positive
if a is not real and negative and that the imaginary part is positive if a is
real and negative. Let Γ ⊂ SL(2, Z) be a subgroup of finite index and let r
be an integer. By a multiplier system of weight r/2 one understands a map
v : Γ → S1 such that

v(M)
√
cτ + d

r
, M =

(
a b
c d

)
,

is a one-cocycle. Then the space [Γ, r/2, v] of holomorphic modular forms can
be defined in the usual way. Their transformation law is

f(Mτ) = v(M)
√
cτ + d

r
f(τ).

There are two basic multiplier systems. The theta multiplier system vϑ is a
multiplier system of weight 1/2 on the theta group

Γϑ := Γ[1, 2].

It can be defined as the multiplier system of the theta function

ϑ(τ) =
∞∑

m=−∞
eπin

2τ .

The theta group is generated by
(
1 2
0 1

)
and

(
0−1
1 0

)
. From the theta inversion

formula ϑ(−1/τ) =
√
τ/iϑ(τ) we get

vϑ

(
1 2
0 1

)
= 1, vϑ

(
0 −1
1 0

)
= e−πi/4.

We also have to consider the theta function of the second kind Θ(τ) := ϑ(2τ).
This is a modular form for Γ0[4]. We denote its multiplier system by vΘ.
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Both multiplier systems vϑ, vΘ agree on Γ[8]. This follows from classical theta
transformation formulae. Details have been worked out in [Kl] or [vGN].

For given Γ, r0, v we can consider the graded algebra

A(Γ, r0, v) :=
∑
r∈Z

[Γ, rr0, v
r].

If it is clear which (r0, v) has to be considered, we will simply write A(Γ) for
this algebra. This is a finitely generated algebra of Krull dimension 2. We
know, cf. [Fr2], that the associated projective curve proj(A(Γ)) is the Satake
compactification

H/Γ = H∗/Γ where H∗ = H ∪ Q ∪ {∞}.

We have to consider more generally subgroups of finite index Γ ⊂ SL(2, Z) ×
SL(2, Z). A multiplier system v of weight r/2 now means a function v : Γ → S1

such that
v(M1,M2)

√
c1τ + d1

r√
c2τ + d2

r

is a one-cocycle. The spaces of modular forms [Γ, r/2, v] (now functions of two
variables) and the algebras A(Γ) = A(Γ, r0, v) are defined in the obvious way.

Let N be a divisor of the natural number N ′. In this paper the group

∆(N,N ′) =
{
(M1,M2) ∈ Γ[N ]× Γ[N ], M1 ≡M2 mod N ′ }

will play a role. It is generated by Γ[N ′]×Γ[N ′] and the diagonally embedded
Γ[N ].

2. A parametrization of the box variety by theta func-
tions

We make use of the Jacobi theta functions

ϑa,b(z) =
∞∑

n=−∞
eπi((n+a/2)2z+b(n+a/2)).

Here (a, b) is one of the three pairs (0, 0), (1, 0), (0, 1). These three functions
are modular forms of weight 1/2 with respect to the three conjugate groups
of the theta group contained in SL(2, Z). The multiplier systems agree on the
group Γ[4, 8] with vϑ. We also consider the two theta functions of the second
kind ϑ00(2τ) and ϑ10(2τ). They are modular forms for the two conjugated
groups of Γ0[4]. Their multiplier systems agree on Γ[2, 4] with vΘ.
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So we see that the 5 functions

ϑ00(z), ϑ10(z), ϑ01(z), ϑ00(2z), ϑ10(2z)

have the same multiplier system on Γ[8]. Hence they are contained in the ring

A(Γ[8]) :=
⊕
r∈Z

[Γ[8], r/2, vrϑ].

It is not difficult to show the following result. The details have been worked
out in the Heidelberg Diplomarbeit [Br].

2.1 Theorem. One has

A(Γ[8]) = C[ϑ00(z), ϑ10(z), ϑ01(z), ϑ00(2z), ϑ10(2z)].

Defining relations are the classical theta relations

ϑ00(z)
2 = ϑ00(2z)

2 + ϑ10(2z)
2,

ϑ01(z)
2 = ϑ00(2z)

2 − ϑ10(2z)
2,

ϑ10(z)
2 = 2ϑ00(2z)ϑ10(2z).

A quick way to see this is to use the fact that the defined variety is a smooth
complete intersection. From this one can follow easily that the ring defined by
these relations is a normal ring of Krull dimension 2. Hence the relations are
defining relations. One one compute the Hilbert polynomial and compare it
with well-known dimension formulae for spaces of modular forms. ⊔⊓

Since the multiplier system vϑ is defined on the theta group Γϑ, we can
define an action of the theta group on A(Γ[8]) by the formula

f |M(τ) = vϑ(M)−r
√
cz + d

−r
f(Mz).

This is an action from the right, f |(M1M2) = (f |M1)|M2. We describe it
by means of matrices. For this we have to use the action of GL(n,C) on a
complex vector space V with basis e1, . . . , en from the right. It is defined by
Aei =

∑
aijej . If we write an element of V in the form

∑
xiei, then this means

that the row x = (x1, . . . , xn) has to be multiplied from the right by the matrix
A. Standard theta transformation formulas give the following result.

2.2 Lemma. The matrix
(
1 2
0 1

)
acts with respect to the basis

ϑ00(z), ϑ10(z), ϑ01(z), ϑ00(2z), ϑ10(2z)

through the diagonal matrix with the diagonal entries

1, i, 1, 1,−1.

The matrix
(
0−1
1 0

)
acts with respect to this basis through the matrix

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1/

√
2 1/

√
2

0 0 0 1/
√
2 −1/

√
2


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We are interested in the action of Γ[4] on A(Γ[8]). The factor group Γ[4]/Γ[8]
is isomorphic to (Z/2Z)3. It is generated by the images of the matrices

T =

(
1 4
0 1

)
, T ′ =

(
1 0
4 1

)
, R =

(
5 8
8 13

)
.

From Lemma 2.2 we get the following result.

2.3 Lemma. The generators T, T ′, R of Γ[4]/Γ[8] act on A(Γ[8]) by means
of the diagonal matrices

T 7−→ diag(1,−1, 1, 1, 1),

T ′ 7−→ diag(1, 1,−1, 1, 1),

R 7−→ diag(1, 1, 1,−1,−1).

Now we consider modular forms of two variables. We consider the ring A(Γ[8]×
Γ[8]) of modular forms of integral or half integral weight r/2 with respect to
the multiplier system (vϑ(M1)vϑ(M2))

r. It is easy to show, using Theorem 2.1
and a standard argument of Krull (compare the proof of III, 1.41 in [Fr2]), that

A(Γ[8]× Γ[8]) = C[f(z)g(w)], f, g ∈ {ϑ00(·), ϑ10(·), ϑ01(·), ϑ00(2·), ϑ10(2·)}.

We want to determine the subring A(∆(4, 8)) of modular forms with respect
to the group ∆(4, 8). This is the ring of invariants with respect to the diagonal
action of Γ[4] by means of the action

f(z, w) 7−→ vϑ(M)−2r
√
cz + d

−r√
cw + d

−r
f(Mz,Mw).

Using Lemma 2.3 it is obvious that the forms

ϑ00(z)ϑ00(w),

ϑ10(z)ϑ10(w),

ϑ01(z)ϑ01(w),

ϑ00(2z)ϑ00(2w),

ϑ00(2z)ϑ10(2w),

ϑ10(2z)ϑ00(2w),

ϑ10(2z)ϑ10(2w).

are invariant under the action of the quotient Γ[4]/Γ[8]. Moreover, since the
action of the group is twisting by a character, one can show that they generate
the invariant ring. In fact the action of the group A(Γ[8] × Γ[8]) depends on
the multipliers and eventually on a sign.
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2.4 Theorem. There is an isomorphism

B ⊗Q C ∼−→ A(∆(4, 8))

which is given by

Z1 7−→ ϑ01(z)ϑ01(w),

Z2 7−→ ϑ00(z)ϑ00(w),

Z3 7−→ ϑ10(z)ϑ10(w),

C 7−→ ϑ00(2z)ϑ00(2w) + ϑ10(2z)ϑ10(2w),

W1 7−→ ϑ10(2z)ϑ00(2w) + ϑ00(2z)ϑ10(2w),

W2 7−→ i(ϑ10(2z)ϑ00(2w)− ϑ00(2z)ϑ10(2w)),

W3 7−→ ϑ00(2z)ϑ00(2w)− ϑ10(2z)ϑ10(2w).

Hence the complexified box variety is B ∼= H × H/∆(4, 8).

Proof. The classical theta relations given in Theorem 2.1 show that this is
a homomorphism. Obviously it is surjective. Since A(∆(4, 8)) is an integral
domain of Krull dimension three and since B also has dimension three, this
homomorphism must be an isomorphism. ⊔⊓

The modular picture can be used to recover known properties of the box
variety. We mention some of them.

First we describe the automorphism group of the box variety. The group
∆(4, 8) is a normal subgroup of ∆(1, 2). The index is 768. Hence the quotient
∆(1, 2)/∆(4, 8) is a subgroup of order 768 of the automorphism group. The in-
volution (z, w) 7→ (w, z) gives an extra automorphism. Both together generate
a subgroup of order 1 536 of the automorphism group. Due to [ST] the order of
the automorphism group is 1 536. Hence we described the full automorphism
group.

Now we describe the singularities. It is known by [ST] that the box variety
has 48 singularities which all are nodes. In the modular picture they correspond
to some zero dimensional cusps. These are the images of the points (a, b) where
a, b ∈ Q ∪ {∞}. There are two types of such points. It may happen that (a, b)
is the fixed point of pair (M1,M2) of parabolic elements. The typical case is
(∞,∞) and A = B =

(
1 4
0 1

)
. The group ∆(1, 2) acts transitively on them. There

are pairs which do not have this property. The precise picture is as follows.

2.5 Proposition. The box variety H × H/∆(4, 8) contains 96 zero dimen-
sional cusps. They decompose into two orbits of 48 cusps under ∆(1, 2). The
orbit containing the image of (∞,∞) defines the singular locus.

A slightly different way to see this is to consider the Galois coverings

H/Γ[8]× H/Γ[8] −→ H × H/∆(4, 8) −→ H/Γ[2]× H/Γ[2].
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The covering group of the first cover is G = ∆(4, 8)/Γ[8] × Γ[8] ∼= (Z/2Z)3.
The singular points of the box variety are the images of the fixed points of G.
They agree with the fibres of three zero dimensional cusps of H/Γ[2]×H/Γ[2]
which are of the form (a, a). They can be represented by (∞,∞), (0, 0) and
(1, 1). In the typical case (∞,∞) one can take p = e2πiz/8, q = e2πiw/8 as
uniformizing parameters of H/Γ[8]×H/Γ[8] . The stabilizer in G is generated
by the translation (z, w) 7→ (z + 4, w+ 4) wich acts by (p, q) 7→ −(p, q). Hence
the singularity appears as quotient singularity of the type (C × C)/± which
actually is a node.

We denote by B̃ the minimal resolution of the 48 nodes. The exceptional
divisor is the union of 48 lines.

Next we describe the holomorphic differential forms on B̃. The modular
curve H/Γ[8] has genus 5. The differentials

ω1(z) = ϑ00(z)
2ϑ01(z)ϑ10(z)dz,

ω2(z) = ϑ00(z)ϑ01(z)
2ϑ10(z)dz,

ω3(z) = ϑ00(z)ϑ01(z)ϑ10(z)
2dz,

ω4(z) = ϑ00(2z)ϑ00(z)ϑ01(z)ϑ10(z)dz,

ω5(z) = ϑ10(2z)ϑ00(z)ϑ01(z)ϑ10(z)dz

are holomorphic on H/Γ[8], since the defining modular forms are cusp forms of
weight two. Moreover they are independent since they transform with different
multipliers with respect to the group Γ[4]. A simple computation gives that

ψ1 = ω1(z) ∧ ω1(w), ψ2 = ω2(z) ∧ ω2(w), ψ3 = ω3(z) ∧ ω3(w), ψ4 = ω4(z) ∧
ω4(w), ψ5 = ω4(z) ∧ ω5(w), ψ6 = ω5(z) ∧ ω4(w), ψ7 = ω5(z) ∧ ω5(w)

are ∆(4, 8)-invariant holomorphic differential forms on B . One can check that
they extend holomorphically to the desingularization B̃. In this way one can
recover the result of [ST] that the minimal resolution of the box variety has
geometric genus 7. One can also derive from this picture that the box variety
is of general type.

In the paper [ST] the structure of the Picard group of B̃ has been deter-
mined. It is a free abelian group of rank 64. Stoll and Testa proved that
certain 140 curves defined already in [vL] generate this group. There are 80
rational and 60 elliptic curves. Of the 80 rational curves, 48 are the exceptional
curves described above, while the remaining 32 have the following easy modular
description.

2.6 Proposition. The equations w = Mz + k where M runs through a
system of representatives of Γ[4]/Γ[8] and k ∈ {0, 2, 4, 6} define 32 smooth
rational curves in the box variety. Their union is the zero set of the modular
form

ϑ00(z)
4ϑ01(w)

4 − ϑ01(z)
4ϑ00(w)

4 (= 4iW1W2W3C).
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Proof. We observe that the diagonal w = z is in the zero set of the modular
form. The same is true for all conjugated curves. In this way we see that the
modular form in the proposition vanishes at the described 32 curves. Moreover
the zero set of each of W1,W2,W3, C consists of 8 rational curves as one can
easily verify by means of the defining equations of the box variety. ⊔⊓

Next we describe the elliptic curves. Part of them is in the Satake boundary.
The Satake boundary is the union of the images of H∗ ∪ {a} and {a} ∪ H∗,
where a ∈ Q ∪ {∞}. It is easy to work out the structure.

2.7 Proposition. The Satake boundary consists of 12 (smooth) elliptic
curves. Each of them contains 8 singular and 8 smooth zero dimensional cusps.
The whole Satake boundary is the zero set of the modular form

ϑ00(z)ϑ10(z)ϑ01(z)ϑ00(w)ϑ10(w)ϑ01(w) (= Z1Z2Z3).

We will not give the details of the proof but we explain a typical boundary
curve. We take the image of H∗×{∞}. This is the modular curve with respect
to the group Γ1[8] ∩ Γ[4]. It contains Γ[8] as a subgroup of index 2. It is not
difficult to work out the structure of the ring of modular forms. Details can be
found in [Kl].

2.8 Proposition. The ring A(Γ1[8] ∩ Γ[4]) of all modular forms of half
integral weight for the group Γ1[8] ∩ Γ[4] with respect to the multiplier system
vrϑ is generated by

a = ϑ0,0(z), b = ϑ0,1(z), c = ϑ0,0(2z), d = ϑ1,0(2z).

Defining relations are

a2 = c2 + d2, b2 = c2 − d2.

This is an intersection of two quadrics in P3 and hence an elliptic curve. So
this describes one of the 12 elliptic curves in the Satake boundary of the box
variety of the box variety.

Finally we describe 48 elliptic curves that are not contained in the boundary.

2.9 Proposition. The equation w = z + 1 describes an elliptic curve in the
box variety which also can be defined by the equations

W1 =W2, Z1 = Z2,
√
2W1 = Z3, W

2
3 + Z2

3 − C2 = 0, 2Z2
2 + Z2

3 − 2C2 = 0.

Applying the group ∆(1, 2) one gets 48 elliptic curves.

The 92 curves, given in the propositions 2.6, 2.7, 2.9, coincide with those in
[ST], as can be seen from their description in the box-coordinates. Hence, as
has been proved in [ST], together with the 48 exceptional curves they generate
the Picard group.
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3. Curves in the box variety

We want to study irreducible curves C ⊂ B in the box variety. We have to make
the rather strong assumption that the normalization map C̄ → C is bijective.
We denote by g the genus of C̄. We use the following fact which has been
explained in [ST] and [Be] and which can be seen from the explicit description
of the holomorphic 2-forms on B̃ above: the canonical map (defined by the
canonical divisor on B̃) is the composition of the natural projection B̃ → B
and the original embedding B → P6. This shows that the degree d of C in P6

equals the intersection number of the strict transform of C in B̃ and a canonical
divisor on B̃.

3.1 Theorem. Let C ⊂ B be a curve such that the normalization map
C̄ → C is bijective. Let g be the genus of C̄ and d be the degree of C. Then
the inequality

d ≤ 176 + 16g

holds.

As a consequence, rational and elliptic curves have bounded degree. This sup-
ports a conjecture in [ST] that the only rational or elliptic curves contained in
B are the 140 curves described above.

Proof of Theorem 3.1. Let k be a natural number. We consider a modular
form of weight 4k for the group ∆(4, 8). Then we consider the tensor

T = ∆(z)k∆(w)kf(z, w)(dzdw)8k

in the algebra of symmetric tensors. Since the modular form ∆ has weight
12, this tensor is invariant under ∆(4, 8). Hence it defines a meromorphic
tensor on B̃. Using the coordinates p = e2πiz/8, q = e2πiw/8, it is easy to
check that this tensor is holomorphic outside the 48 exceptional curves. In the
exceptional curves it may have poles. We can lift the curve C̄ to a holomorphic
map φ : C̄ → B̃. Then we consider the pulled back tensor φ∗T . This is a
meromorphic tensor of degree 16k on C̄.

We can assume that C is not the image of a H∗ × {a} or {a} × H∗ for
an a ∈ H∗, since for these curves the theorem can be seen directly. Then the
tensor φ∗T vanishes if and only f vanishes along C as a function. Since the
weight k can be made large we can choose f that it doesn’t vanish along C and
in addition we can get that f does not vanish at any of the 48 nodes in B.

We assume that C contains one of the nodes, for example the image of the
cusp (∞,∞). We recall that this point is fixed by the translations. Then we
can consider a parametrization of the curve close to this cusp. So we have
a pointed disk contained in C \ (∞,∞). In [Fr], Satz 1, it is described how
a complex curve in a Hilbert modular variety can run into a cusp. For this
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purpose such a curve has been described close to the cusp (∞, . . . ,∞) by a
holomorphic map α : H → H× . . .×H. The same argument works in our split
case and shows that

α(z) = z(a1, a2) + (Φ1(q),Φ2(q)), q = e2πiτ ,

where Φi are holomorphic at q = 0. The pair (a1, a2) is contained in the
translation lattice, i.e.

a1 ≡ a2 ≡ 0 mod 4, a1 + a2 ≡ 0 mod 8.

The numbers a1, a2 are both positive. This implies a1 + a2 ≥ 8.

We study the poles and zeros of the tensor φ∗T . Since its divisor is the
16k-multiple of a canonical divisor, we have

16(2g − 2)k = #zeros−#poles.

First we estimate the number of poles of φ∗T from above (counted with mul-
tiplicity). The poles are intersection points of C̄ with the exceptional divisor.
Since C̄ → C is bijective, C̄ can meet each of the 48 exceptional curves at most
once. Hence the set of poles contains at most 48 points.

We have to estimate the pole order. It is sufficient to do this for the standard
node, i.e. the image of the cusp (∞,∞). Using the parametrization α(z) above,
we can see that the term (dzdw)8k contributes with 16k to the pole order and
∆(z)∆(w) contributes with a zero of order (a1 + a2)k ≥ 8k. Hence the pole
order of the tensor at the node is at most 8k. Since we have 48 nodes the total
pole order is at most 384k.

Next we estimate the number of zeros from below. Each intersection point
of the zero divisor of f with the curve produces a zero. (Since we assumed that
f doesn’t vanish at the nodes, there is no cancellation between poles and zeros
of T .) Since the zero divisor of f is a 2k-multiple of the canonical divisor, we
get that there are at least 2kd zeros. So we get

16(2g − 2)k = #zeros−#poles ≥ 2kd− 384k.

This finishes the proof of Theorem 3.1. ⊔⊓
Remark. As we mentioned, the tensor T = ∆(z)k∆(w)kf(z, w)(dzdw)8k can
have poles along the 48 exceptional divisors. The results of Theorem 3.1 could
be improved if one could find f such that T is holomorphic on the whole B̃.
We did not succeed to find such f and we think that they don’t exist. But we
could not prove this.
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4. A two-fold covering of the box variety

We consider the subgroup Γ′[4] of index two of Γ[4] which is generated by Γ[8],
TT ′ and TR. As can be seen via an explicit calculation in the finite group
SL(Z/8Z), this group is equal to the subgroup of Γ[4] given by the condition

a+ b+ c ≡ 1 mod 8.

4.1 Lemma. The group Γ′[4]/Γ[8] is isomorphic to Z/2Z × Z/2Z. It acts
freely on H/Γ[8].

Proof. Let a be a point of the extended upper half plane H∗ = H ∪ Q ∪ {∞}.
Assume that M ∈ Γ′[4] − Γ[8] is a matrix that fixes a mod Γ[8]. Then there
exists an element A ∈ Γ[8] such that M(a) = A(a). The matrix N = A−1M
fixes a. This matrix is also contained in Γ′[4] and not in Γ[8]. Modulo 8 it is
one of the following three(

1 4
4 1

)
,

(
5 4
0 5

)
,

(
5 0
4 5

)
.

Since it has a fixed point, the absolute value of its trace is bounded by 2. We
treat the three cases separately. In the first case we have

N =

(
1 + 8α 4 + 8β
4 + 8γ 1 + 8δ

)
.

The condition for the trace implies δ = −α. The determinant is 1. But the
condition δ = −α implies that the determinant is 1 − 16 mod 32. This is a
contradiction.

In the second case we have

N =

(
5 + 8α 4 + 8β
8γ 5 + 8δ

)
.

The condition for the trace now gives δ = −α− 1. Now the determinant would
be congruent to 25−40 = 17 mod 32 which is not possible. The same argument
works in the third case. ⊔⊓

We consider the (non-singular) manifold

X := (H/Γ[8]× H/Γ[8])/Γ′[4]

where Γ′[4] acts diagonally. The inclusion Γ′[4] ↪→ Γ[4] gives a two fold covering
X → B of the box variety. Locally around the 48 singularities of B this looks
like the covering C2 → C2/±. One can desingularize the node at 0 by first
blowing up the origin in the covering C2. The involution (z, w) 7→ (−z,−w)
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lifts to this resolution and the quotient is smooth. The same can be done
globally. We blow up X at the 48 inverse images of the nodes of B. This gives
a manifold X̃. The Galois involution of X over B lifts to X̃ and the quotient
B̃ is just the blow up of B at the nodes. So we have a commutative diagram

X̃ −→ B̃
↓ ↓
X −→ B

.

The map X̃ → B̃ is ramified along the exceptional divisors (48 lines). The
existence of this covering and its uniqueness have been treated in the paper
[Be]. We call

X = (H/Γ[8]× H/Γ[8])/Γ′[4]

the Beauville manifold. The existence of X is equivalent to the fact that the
exceptional divisor is divisible by two in the Picard group Pic(B̃). The unique-
ness follows from the fact that this Picard group is torsion free [ST]. We refer
to [Be] for more interesting properties of the surface X. Some of them can be
easily derived from the modular picture.

Since the universal covering of X is the product of two half planes, it cannot
contain a rational or elliptic curve. So we obtain the following result.

4.2 Remark. Every rational or elliptic curve in the box variety contains at
least one node.

5. Relation to a Kummer variety

In this section we consider the Q-structure of the box variety. It is the projec-
tive variety associated to the algebra

B = Q[W1,W2,W3, Z1, Z2, Z3, C]

(with the defining relations of the box variety). We consider the involution
σ(Z3) = −Z3 of the ring B. It induces an involution of the box variety. The
invariant ring is

Bσ = Q[Z1, Z2, C,W1,W2,W3]

with defining relations
W 2

1 +W 2
3 = Z2

2 ,

W 2
2 +W 2

3 = Z2
1 ,

W 2
1 +W 2

2 +W 2
3 = C2.
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The associated projective variety is the quotient of the box variety by σ. This
is a also a modular variety, since in the picture of Theorem 2.4 transformation
σ is induced by the modular substitution

(z, w) 7−→ (Tz,w).

This gives the following result.

5.1 Lemma. The variety B/σ is defined over Q. Over C it agrees with the
modular variety which is defined by the subgroup of SL(2, Z)× SL(2, Z) that is
generated by Γ[8]× Γ[8] and the elements

(T,E), (E, T ), (T ′, T ′), (R,R).

We considered already in Proposition 2.8 the group Γ1[8] ∩ Γ[4] and explained
the structure of the ring of modular forms. We defined 4 generators a, b, c, d
with defining relations

a2 = c2 + d2, b2 = c2 − d2.

Since these relations are defined over Q, we can can consider this algebra over Q
A(Γ1[8] ∩ Γ[4]) = A0 ⊗Q C, A0 := Q[a, b, c, d].

and obtain an elliptic curve E over Q. One can compute its normal form
over Q:

y2 = x3 − x.

Its projective form is y2z = x3 − xz2. An explicit isomorphism is given by

x = a− b, y = 2d, z = 2c− a− b.

We consider the automorphisms

τ(a, b, c, d) = (a,−b, c, d), ρ(a, b, c, d) = (a, b,−c,−d)
of the algebra.

They correspond to the modular transformations T ′ and R whereas T acts
as identity. The two transformations generate a group H ∼= Z/2Z × Z/2Z.

5.2 Lemma. The transformation ρ is an involution without fixed point of
the elliptic curve E. Hence it is a translation by a two-torsion point. The
transformation τ is an involution with the fixed point [

√
2, 0, 1, 1]. Hence the

following is true. If one considers E as an elliptic curve over Q(
√
2) with

origin [
√
2, 0, 1, 1] then τ corresponds to the map” x 7→ −x.

We want to consider the product of two copies of this curve. This is the
projective variety associated with the graded algebra

A2 = Q[a⊗ a, a⊗ b, . . . , d⊗ d].

In the modular picture we have to identify

a⊗ a = ϑ00(z)ϑ00(w), . . . , d⊗ d = ϑ10(2z)ϑ10(2w).

The group H acts diagonally on A2. The ring of invariants is just Bσ. Hence
we get the following result.
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5.3 Proposition. There is a biholomorphic map

(E × E)/H
∼−→ B/σ,

defined over the field of Gauss numbers.

The variety (E×E)/H can be understood as follows. We first take the quotient
by the translation ϱ. This gives an abelian variety over Q.

X = (E × E)/ϱ.

Then we take the quotient by τ . If we extend the base field Q by
√
2, and take

[
√
2, 0, 1, 1] diagonally embedded as origin then τ corresponds to the negation

and
(E × E)/H = X/±

appears as a Kummer variety. Hence over the field Q(i,
√
2) of eighth roots of

unity, the variety B/σ can be identified with a Kummer variety.

6. A moduli problem

In this section we will give a modular interpretation of the variety (H ×
H)/∆(N,N ′). First we recall from [KM] some basic facts. We denote by
(Sch/S) the category of schemes over a base scheme S. For S = SpecA we
write (Sch/A). We fix an algebraic number field K. We also fix an embedding
K ↪→ C. The category (Ell) = (Ell)/K has as objects elliptic curves π : E → S
over a variable base-scheme S ∈ (Sch/K) and whose morphisms are cartesian
squares of elliptic curves. A contravariant functor

P : (Ell) −→ (Sets)

is called a moduli problem for elliptic curves. The moduli problem is called
relatively representable over (Ell) if for every elliptic curve E/S the functor on
Sch/S defined by

T 7−→ P(ET /T )

is representable by an S-scheme denoted by PE/S . The moduli problem is
called representable if there exists an elliptic curve over a scheme

E −→ M(P)

together with a functorial isomorphism

P(E/S)
∼−→ Hom(Ell)(E/S,E/M(P)).
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If the moduli problem P is representable, the scheme M(P) represents the
functor over (Sch)

S 7−→ {isomorphism classes of (E/S, α)}.

Here E is an elliptic curve over S and α ∈ P(E/S). Any representable moduli
problem P is relatively representable.

If P ′ is representable and P ′′ is relatively representable, then the simulta-
neous moduli problem (P ′,P ′′)

E/S 7−→ P ′(E/S)×P ′′(E/S)

is representable. In fact, if E/M(P ′) represents P ′, then

M(P ′,P ′′) = P ′′
E/M(P′).

Let E/S be an elliptic curve and N be a natural number. We denote by E[N ]
the kernel of multiplication by N from E to E. This is a group scheme over S.
If T is a scheme over S, then the T -valued points are

E[N ](T ) = kernel(E(T )
·N−→ E(T )).

It may be that E[N ](S) is isomorphic (Z/NZ×Z/NZ)(S). A levelN structure
on E then means the choice of an isomorphism

(Z/NZ × Z/NZ)(S) ∼−→ E[N ](S).

It extends to an isomorphism of E(N) to the constant group scheme associated
to Z/NZ × Z/NZ.

The kernel of the Nth power is the group scheme µN . Hence

µN (S) = {a ∈ O(S); aN = 1}.

For an elliptic curve E over S ∈ (Sch/K) there exists the Weil-pairing. It
associates to each S-scheme T an alternating map

E[N ](T )× E[N ](T ) −→ µN (T ).

When K contains the cyclotomic field of N -th roots of unity, then µN is the
constant group scheme associated to the abstract group

µN (C) = {ζ ∈ C; ζN = 1} ∼= Z/NZ.

We also can consider the symplectic pairing

eN : Z/NZ × Z/NZ −→ µN (C), e((a1, a2), (b1, b2)) = e2πi(a1b2−a2b1)/N .
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From now on we assume that K contains the Nth roots of unity. Since we
consider a fixed embedding of K into C, we can identify µN (C) and µN (K).
So it makes sense to consider level N -structures which preserve the symplectic
pairings.

We denote by P ′
N the moduli problem that classifies the level N -structures

which preserve the symplectic pairings. It is known (see [KM]) that this moduli
problem is representable if N ≥ 3.

We formulate a second moduli problem P ′′
N on (Ell),

P ′′
N (E/S) = Isomorphy classes of pairs (F/S, β)

where β : E[N ]
∼−→ F [N ] is an isomorphism of S-groups which preserves the

Weil-pairings. This is a moduli problem studied in [FK]. There has been proved
that it is relatively representable, quasi-affine, smooth and geometrically con-
nected of relative dimension 1 if N ≥ 3. We now consider two natural numbers
N |N ′ such that N ≥ 3. The simultaneous problem

P(N,N ′) = (P ′
N ,P ′′

N ′)

is representable. Hence we can summarize with the following theorem.

6.1 Theorem. Let us assume N ≥ 3. The moduli problem P(N,N ′) is
representable as a moduli problem on (Ell).

We denote the moduli space of P(N,N ′) by M(N,N ′). This is an affine
algebraic scheme over the cyclotomic field Q(ζN ).

6.2 Lemma. The scheme M(N,N ′) ⊗K C can be identified with (H ×
H)/∆(N,N ′).

This is a generalization of the well-known fact that H/Γ[q] parameterizes el-
liptic curves over C with a level q-structure. In the case N = 1 the variety
M(N,N ′) is a special case of the diagonal quotient surfaces ZN ′,ϵ [KS] which,
over C, have been introduced by F. Hermann 1991 [He]. The proof in [KS]
works for arbitrary N . We can omit it here.

We are interested in the group ∆(4, 8). Theorem 2.4 says that the surface
(H × H)/∆(4, 8) is embedded as an open part of the box variety. We call this
the finite part of the box variety. We have now two Q(i)-structures, one coming
from the defining equations of the box variety and the other coming from the
moduli problem P(4, 8).

6.3 Theorem. The variety M(4, 8) is isomorphic as variety over Q(ζ8) to
the finite part of the box variety (considered as variety over Q(ζ8)).
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Proof. Let K = Q(ζ8). The Galois group Gal(C/K) acts on M(4, 8) ⊗K C
and hence on (H × H)/∆(4, 8). We have to show that the 7 modular
functions (generators of the field of modular functions) corresponding to
Z2/Z1, . . . ,W3/Z1, C/Z1 (see Theorem 2.4) commute with the action of the
Galois group. For example Z2/Z1 corresponds to

ϑ00(z)

ϑ01(z)

ϑ00(w)

ϑ01(w)
.

So it is sufficient to prove that ϑ00(z)/ϑ01(z), considered as rational function
on the modular curve X(8) (see [DR]) commutes with the action of this Galois
group. Since this modular function has rational Fourier coefficients, it is defined
over K as follows from the q-expansion principle in [DR]. ⊔⊓

From Theorem 6.3 we obtain the following result.

6.4 Theorem. The Q(ζ8)-valued points of the finite part of the box vari-
ety are in one-to-one correspondence to isomorphy classes of pairs of elliptic
curves E,F over Q(ζ8), equipped with a level 4 structure and a compatible
isomorphism of group schemes E[8] → F [8] which preserves the Weil pairing.
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