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1 Two results about singularities of modular varieties

Let D C C" be a bounded symmetric domain and
I' C Bihol(D)

an arithmetic group of biholomorphic mappings of D onto itselves. We assume that
(D, I)) is indecomposable (as direct product) for each subgroup I, C I" of finite index.
We also assume

n=dmD > 1.

We denote by
X=X,=D/T

the BAILY-BOREL compactification of D/I", which is a normal projective variety con-
taining D/I" as a ZARISKI-open subvariety. From our assumption follows that the field
K(I") of rational functions on X agrees with the field of meromorphic functions on D,
which are I'-invariant. The elements of K (I") are called modular functions.

We consider a desingularization

which contains the regular locus X, as ZARISKI-open subset.

An extension theorem

1.1 Therorem (BAUERMANN, [Bal). Let U C X be any open subset, U = 7~ (U) C X
its inverse image and U, = U N X, the regular locus.

Every holomorphic alternating differential form of degree p < n on U, extends

holomorphically to [7, 1.e. the natural restriction map
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(AP U) — (A72)(Ueg)s P <1,

reg

s an tsomorphism.

1.2 Corollary (POMMERENING, [Pol]). There is a natural isomorphism

(AP)(Xp) = (AP QD))"
(In the case of the Siegel modular group the latter result already has been proved in
[FP].)

Theorem 1.1 is a special case of a more general theorem. Instead of alternating differ-
ential forms one may consider arbitrary holomorphic tensors, i.e. elements

T € 2%P(U..).

reg

BAUERMANN [Ba] worked out the conditions for the holomorphic extendability for suf-
ficiently small (so called ,neat*) groups I'. Those condition are formulated in terms
of the FOURIER-JACOBI expension of T'. It generalizes results of Tai [AMRT] and the
author [Fr3].

Theorem 1.1 says that — in some sense — the singularites of X are harmless. The
next theorem will show that they are not harmless at all.

Let Y C X be an irreducible subvariety, for example a point. We consider the local
ring
R - OX,Y

of X at the general point of Y. By definition it consists of all modular functions which
are regular on an open subset of X whose intersection with Y is not empty. We have a
natural homomorphism

Oxy — K(Y)

onto the the field of rational function on Y. The kernel of this homomorphism is the
maximal ideal m.

The (KRULL-)dimension of R is
dimR =dim X —dimY.

The depth of R is the maximal length of a chain of elements (r,,...,r,,) in R, such that
image of r; is a non zero divisior in R/(ry,...,r,_;) (1 <i <m). It is well known that

depth(R) < dim(R).
We only consider the case dim R > 2. Ti follows from the normality of R that
2 < depth(R) < dim(R).
The depth can also be expressed by means of the cohomology groups
M, := H'(Spec(R) — m, O) (O = the structure sheaf ).

Those groups are finitely generated R-modules if ¢ < dim R — 2. The depth is the
maximal number m, such that



§1 Two results about singularities of modular varieties 3

M. =

(3

R ifi=0,

0 if1<i<m.
The determination of those cohomology groups is an unsolved problem even in the case
of points Y. Only the case of the HILBERT modular group has been settled ([Frl], [FK]).
The situation is better if one takes for Y an irreducible component of the boundary X-

D/I'. In this case the cohomology groups can be calculated in full generality [Bal]. The
case of the SIEGEL modular group has been treated earlier ([Cal).

The idea is as follows. One considers a small STEIN neighbourhood U C X of a
general point a of Y.

Standard comparison theorems show
M, = HU - (UNY),0) for i<dimR -2,

where the right land side are analytic cohomology groups.
The choice of U can be made as follows:

There is an open STEIN subset
ScD

which is invariant under a certain subgroup
Iycr

(I, is the stabilizer of a representative of a in the HARISH-CHANDRA boundary of D),
such that the natural projetion induces a biholomorphic map

S/)T,~5U — (UNY).

After that one is reduced to consider cohomology groups of I}, acting on holomorphic
functions on S.

The structure of I, is rather simple, nevertheless the computation of this group
cohomology is difficult. We do not go into the details but formulate only the result in
an important special case:

We consider for D the SIEGEL upper half plane
H =72={Z" =2 =X+iY, Y >0}

of all symmetric n x n-matrices with positive definit imaginary part and for I' the
principal congruence subgroup

I' [q] = kernel (Sp(n, Z) — Sp(n, Z [qZ))

of the SIEGEL modular group
I' =Sp(n, Z).

This group acts on H, by the formula

Z v M(Z)=(AZ+B)(CZ+ D)™, M= (é g).

In this case the ,stabilizer” I, consists of all elements of the form
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u o0 E S
u=(%5 5)(0 E):

1 ay 0 s,

U — .. : ’ S — : .
Loan,y s s
+1 1 n

(all the other entries of U and S are 0).

It is worth while the notice that the —1 only occurs if ¢ < 2. The subgroup A C I,
of all elements of the form
u 0
(0 o)

regulates the cohomology groups. This subgroup is isomorphic to Z" ! or to a semidi-
rect product Z" ' o Z /27, where the non trivial element of Z /27 acts on Z"*
by means of a — —a.

We have to consider the cohomology group of A acting trivially on €. We obtain

i Ai@n—l,
H (Aa (D) = { (Ai(Dn—l)Z/QZ.
The second case occurs if ) 0
0 -1

is in A. Now we can formulate the result in the SIEGEL case.

1.3 Theorem([Cal). Let R, denote the ring of holomorphic functions on UNY . Then
H'(U—-(UNY),0) 2 H(A,C)®¢ Ry, for 1<i<n-—2.

(The natural restriction
OoU)— O(U - (UnNY))

is an isomorphism. Hence R, can be considered as a factor ring of O(U — (U NY))
especially as a module over this ring.)

It is easy to see that
H*(Z" ', ©)2/?Z £ if n > 3,

HY(ZzZ" 1, 0) £0 if n>3,
Hl(Zn_l,(D)Z/QZ — O

Hence we obtain

1.4 Corollary. If R is the local ring at an irreducible component of the boundary
then
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dimR=mn
and
2, if n=2,
depth(R) = { 2, if n>3, ¢<2
3, if n>3 q>2.

A ring is called COHEN-MACAULEY if dimension and depth agree. We obtain

1.5 Corollary. The ring R is Cohen-Macauley if and only if

n<2 or (n=3 and ¢q<2).

In this connection we should mention that by a result of RUNGE [Ru] not only R but the
whole variaty Hy/I;[g] is COHEN-MACAULEY if ¢ < 2. This contradicts to a statement
of TSUGUMINE [Ts]. Actually the proof of TSUGUMINE is false.

2 Holomorphic tensors

Let X be an irreducible variety and X a nonsingular projective model of X. We
consider tensors

T € 2% (X),

which can be expressed locally (in analytic coordinates) as

Let
7 : GL(n,C) — GL(V)

be an irreducible polynomial representation of GL(n,C) on a finite dimensional vector
space. We can consider tensors of type m and the subspaces

%P (X).

(After the choice of a local coordinate system in a neighbourhood of a point a € X , We
may consider T'(a) as element

T(a) € (C,)*".

The 7-isotopic component in (C")®P does not depend on the choice of the coordinate
system).
The dimensions B
d. = dim Q%7 (X)

are birational invariants of X, i.e. they depend only on the field of rational functions
K(X) on X,
dr = d (K(X)).
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If 7 is the one dimensional representation

7(A) = (det A)*,

the elements of 2%%(X) are called multicanonical, the invariants
pk:d(detA)’f; k:0,1,2,...
are the so called plurigenera. If

T, : GL(n, C) — GL(AP(C"))

is the natural representation on the p*" extension power then the elements of 2%%(X)
are alterning differential forms, the invariant are denoted by

gp =d .

P

If 0 < p < n they sometimes are called irregularities. Obviously g,, = py, 9o =py = 1.

g=> (-1)7g,

The spaces Q;?k()}: ) are connected with the correspondending spaces of I'-invariant
tensors on the domain D, i.e. we have to compare

Q%F(X)  and 0Q%F(D).

The arithmetic genus

is of great importance.

If I' acts freely on D, one has a natural inclusion
ENX) = 22H(D)".

The elements of 2%%(D)!" can be interpreted as vector valued automorphic forms. A
vector valued holomorphic automorphic form is a holomorphic map

f:D—2Z

an D with values in a finite dimensional complex vector space Z and will the properties

f(vz) =p(I(v,2))f(2), ~el.
Here I(v, z) = (0v,;/0%;) denote the JACOBI matrix and

p:G— GL(Z)

a representation of the complex LiE-group G generated by all

I(g,2); g€ Aut(D), zeD.
We denote the space of these modular forms by

[, p].

From our assumption this is a finite dimensional vector space. We have

QKDY =), pi=n|G.
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The automorphic forms T' € [I, p] define holomorphic tensors on

D'/I,
where D’ C D is the biggest open subset of D on which I" acts freely. It follows from
the results of [Ba] and Tai [AMRT]:

2.1 Proposition. Let
Tell,p], p=nm|G,

be a cusp form. Then there exists a subgroup Iy C I' of finite index such that T' extends
holomorphically to the nonsingular model XFo‘

2.2 Corollary. Each arithmetic subgroup I admits a subgroup I, C I' of finite index
such that the field K(I)) of modular functions is of general type.

In the case of the SIEGEL modular group better results are known:

¢

First we recall that the Jacobian ,matrix“ of a symplectic substitution is given by

the linear map )
W (CZ+ D) '‘W(CZ+ D)™,

where W varies in the tangent space of H,, i.e. in the space
zZ ={W=w=wm}
of all symmetric (n x n)-matrices. The group G generated by the Jacobians is
G = GL(n,C)/{xE}.
This means that SIEGEL modular forms belong to (rational) representations
p:GL(n,C) — GL(Z), p(—FE)=1id.

The rational representations are completely decomposable. Therefore we may assume
that p is irreducible.

The weight k of p is the biggest integer such that
po(A) = (det 4)~*p(4)

is a reduced representation, i.e. p, is polynomial but p,(A)/det A is not polynomial.
Obviousely k£ is nothing else but the last component of the highest weight vector. Good
existence theorems for modular forms are known for big k& (which means k& > 2n) and
for small k& (which means 2k < n).
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Existence theorems for big weight

Multicanonial tensors are of type
1
(AN 2)PE (N = S (n(n + 1))

They correspond to scalar valued modular forms of weight (n + 1)k. Using RIEMANN-
ROCH theorems one obtains good estimates for the asymptotic behaviour of the dimen-
sion. Also explicit constructions using ¥-series and POINCARE series give good results:

2.3 Theorem. The field of modular functions K(I',)) (I, = Sp(n,Z)) is of general
type if n > 7.
For proofs and more comments we refer to [Fr3], [Mu], [Tal.

We mentioned already that K (I,) is unirational if n < 5. The case n = 6 remains
open.

Using more complicated types of tensors one obtains results for subvarieties of the
SIEGEL modular variety [Fr], [We]. The best results are due to WEISSAUER.

2.4 Theorem. Let k be a natural number. There exists a constant n(k) with the
following property. Assume n > n(k). Then every irreducible subvariaty of H, /I,
(I, = the full SIEGEL modular group) of codimension < k is of general type. The bound
n(k) can be made explicite.

2.5 Corollary. Assume n > 13. The group of automorphism of the function field
K(I,) is trivial.

n

As we already mentioned, in the case of a large k the results describe mostly asymp-
totic behaviour. In the case of small weights we will obtain explicit formulae for some
invariants.

3 Singular modular forms

In this section we restrict to the case of congruence groups of the SIEGEL modular group.

Such modular forms admits a FOURIER expansion
f(Z) =" all)e(T2),
e(A) =¥ (5 = trace),

where T' runs through a lattice of rational symmetric matrices.

3.1 Definition. A modular form is called singular, if

a(T) #0 = detT = 0.



§3 Singular modular forms 9

3.2 Proposition. Assume that
p: GL(n,C) — GL(2)

s a finite dimensional irreducible rational representation of weight k. A non-vanishing
modular form with respect to p is singular if and only if 2k < n. In that case one has

2k = max{rank T'; a(T") # 0}

We have to introduce ¥-series with harmonic coefficients. The ingredients are

1) A positive definite rational symmetric matrix S. We restrict to the case where the
degree r of S is even,
r = 2k.

2) A harmonic polynomial
p:.¢c" — z

with the properties
P(X4) = po(A')P(X)
Such a polynomial is called a harmonic form with respect to pj.
More generally we consider functions
o X (rm) .z
which can be written as finite sum
1

where
o, Z" — Z

are functions which are periodic with respect to a suitable rational number q. We may
consider them as functions
¢, : R — ¢,

where R denotes the finite ring Z /qZ. A function ¢ of this type we call a harmonic
coefficient function (with respect to (.5, ¢q)).
3.3 Lemma. Assume that S = S is a positive rational matriz and
p: Z" — 2
a harmonic coefficient function. The 9-series
9,(8:2)= Y w(@e(S[G1Z)
Gez(mm)

18 a modular form with respect to
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p(4) = py(A)(det A)*

on a suitable congruence subgroup. (Obviously ¥,(S;Z) is singular if r < n in accor-
dance with 3.2.)

We want to describe conditions under which 9)-series belong to a given level. i.e. is an
element of [I',[q], q]-

The natural number ¢ is fixed now.

3.4 Definition. Let S = S®") be a rational symmetric positive matriz such that

gS and ¢St
both are integral. A matrix
Ve lz(2r,n)
q
is called isotropic (with respect to (S,q)) if
STHV + X]

18 integral for all integral X.

We have to consider very distinguished coefficient functions:

3.5 Definition. Let (S, q) be as in 3.4 An isotropic coefficient functions (with respect
to (S,q) and py) is a function
p: Z" — Z

which can be written as finite sum

sO(GY) _ Z€2ﬂiU(VV/G)PV(G)

where
a) V,, is isotropic in the sense of 3.4.

b) P, is a harmonic form with respect to p,.

3.6 Proposition. Assume that
¢S and ¢St

are even positive matrices (i.e. they are integral and have even diagonal).
We assume furthermore
(—1)" det(¢S)

sgn(det D)" ( et D|

)zl for M €T, [q],

where (—) denotes the generalized Legendre symbol. Then for every harmonic coefficient
function ¢ with respect to (S,q) and p, we have

0,(5;2) € [I,[d], ]
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We denote by
D(S) = 9(S, 4, po)

the subspace of all ¥-series ¥ ,(S; Z), where ¢ is isotropic.

One of the main results of the theory of singular forms states th following.

3.7 Theorem. Assume 2r <n. Then

[T, [q], 0] = > _9(S),
S

where S runs over a (finite) system of unimodular classes of all rational positive S, such
that S and ¢S~ are integral and with the correct multiplier system.

Actually the theory gives more. It exhibits a basis of [I",[q], 0], which means that one
can control the linear relations among the generating 1¥-series. This means that we can
get control the linear relations among the ¥-series. The classical RIEMANN ¢-relations
are of this type.

In the singular case, harmonic forms are something very trivial. From the formula
P(GA) = po(4)P(G)
one obtains immediately th following lemma.

3.8 Lemma. Assume r < n. Let Z; C Z be the subspace of all vectors a € Z with the
following two properties:

EM 0
a) pO 0 0 a=a

b) P,(X) := py(X’,0)a is harmonic. The map

a

a— P,

defines an isomorphism of Z, onto the space of all harmonic forms.

This means that an isotropic coefficient function may be written as

P(G) = po(G',0)p0(G)

where
P - /AR Z,
is a function which may be written as linear combination of functions
eQﬂiU(V/G)a; V' isotropic, a € Z,.
The function is periodic with period q. We consider it as a function

©p Rrm) 2,

where R is the finite ring
R=7Z/qZ.

The function ¢, is not determinated by its ¥-series. One reason is the existence of non
trivial units of S. The unit group
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E(S)={U € GL(n, Z); S[U]= S}
acts on the space of coefficient functions by
¢(G) = o(UG)
For ¢, instead of ¢ this means

eo(@ (1) ) w06

Replaycing in the ¥-series the summation index G by UG we see that the 1J-series depend
only on the orbit of ¢, under this action. It is hence sufficient to consider E(.S)-invariant
©o- We denote the space of all E(S)-invariant @, by

A(S)
Hence A(S) consists of all function ¢, : R — Z with the property

26 =0, (5 ¢ ) w0l

But there are still new hidden linear relations in A(S) and — even more complicated
— these are relations among different spaces A(S). The only fact which can be seen
immediately is
3.9 Lemma. Asssume that the ¥-series

0,(8:2), ¢ € A(S)
vanishes identically. Then the restriction of ¢, to the subfield of primitive matrices

R(rn) — Rrm)

vanishes identically.

( A matrix in R™™ is called primitive if it is a part of a matrix in GL(r,n)).
Lemma 3.9 leads us to consider the space B(S) of all functions

R Z,

prim

which are restrictions of function from A(S), that is

B(S) = {@o|RUM: 0y € A(S)}.

prim>
Y relations come in because the maps A(S) — B(.9) is not injective in general.
We now choose a subspace

A (S) € A(S)

which is isomorphic to B(S),
Ay (S)—=B(S).

We denote by
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6,(5) C O(5)

the subspace of all ¥-series coming from functions ¢, € A,(5). Of course O,(S) depends
on the choice of A4, = (5). From Lemma follows

3.10 Remark. The map
Ap(S) — 6,(5)

SOO = 194)0(87 )
s an isomorphism.

Now we can formulate a refined version which describes in principle the ¥-relations :

3.11 Theorem. One has
[Fn[q]a T‘] = EB(’90(5)7

where S runs through a system of representations of unimodular classes of matrices with
properties 3.6

3.12 Corollary.
dim[I,[g],r] =)  dim B(S).
S

The calculation of dim B(S) is a finite problem for given (S, n, q).

4 Application at invariants

We consider alterning holomorphic differential forms of degree v on a non-singular
model of K(I'), I C Sp(n, Z). If 0 < v < N = in(n + 1) they correspond to modular
forms with respect the natural representations

GL(n, €) — GL(AP(Sym*(C™))).

These representations are not irreducible but their decomposition into irreducible com-
ponents can be described.

4.1 Proposition. Let I' C Sp(n, Z) be a congruence subgroup and g, (I") the dimension
of the space of holomorphic p-forms on a non singular model of K(I"). We have

g,(I) # 0= p = "(”;1) - k(k;”, kel0,... n)

For every k € {1,...,n — 1} these exists a distinguished irreducible subrepresentation

p, of AP(Sym?(C™)),

such that
nn+1) k(k+1)
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The weight of p, is n —p

4.2 Corollary. The space [T pp] is a singular space if and only if k > 3.

In the first occuring case
k=n—1 (p=n)

we need binary quadratic forms for the J-series.

4.3 Theorem. Let p be a prime and I, ,[p] the Hecke subgroup of Sp(n,Z) defined
by C' = 0mod p. Assume that n > 3 is even. Then

ot = {8, 7=t

p) otherwise,
where h(—p) denotes the class number of Q(1/—p).

Stable modular forms

For sake of simplicity we restrict to the case of the full SIEGEL modular group I, =
Sp(n, Z). we consider the SIEGEL-®-operator

[F’I’L7 k] — [Fn—l? k]’
. zZ 0
Frs g, oz = g (5.
We may consider the direct limit

([, k] :=Um[I,k].

The elements of this limit are sequences f,, € [I',, k] with the property

fn+1|¢: fn'

It follows from the theroy of singular modular forms that the natural homomorphism

is an isomorphism if n > 2k. Therefore the elements of [I,_, k] may be considered as
,stable modular forms®“. We also consider the graded algebras

AL,) = @BIT,, k], (0<n< o).
k
The geometric counterpart of this algebra is th direct limit
X, =limX,,
—

where
X, =M,/ J...UH,/T},

denotes the Satake compactification of H, /I’,. The Siegel operator
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& AL,) — AL,
corresponds to the natural inclusion. In this sense we may write
X, =projA(I,).

We describe certain elements of A(I, ). Let S = S™) be a unimodular even positive
matrix. It is well known that such a matrix exists if and only if m = 0 mod 8. For every
n we consider the theta series

19(5’ Z(n)) _ Z eTriS[G]Z.

G integral

This sequence is an element of A(I,_ ). The matrix S is called irreducible if it is not
unimodular equivalent with a matrix of the type

S(ml) 0
0 S(m2) y My, My > 0.

4.4 Theorem [Fr3]. The algebra A(I) is a polynomial ring generated by the systems
(9(S; ZM)), , where S runs through a set of representatives of unimodular classes of
unimodular even positive irreducible matrices.

Corollary. The homogenous field of fractions of A(L,.) which consists of quotients of
elements of the same weight is a rational function field in countable many variables

I(S™; Z(”))
I(S®); ZGmymrs )

(In the case m = 8 there is precisely one unimodular class).

A similar result is true for the HECKE group I, ;[q], which is defined by the condition
C = 0mod g, more generally for all congruence groups which contain all unimodular
substitutions Z — Z[U], U € GL(n, Z) [En]. For more general groups, for example
the principal congruence group, the situation is more complicated because the isotropic
structures come in.
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