SOME REMARKS ON SELBERG'S ZETA FUNCTIONS

H. Maass

In 1959 Atle Selberg reported foy the firet time [1] on a new
type of zeta functions of several complex variables, the so-called
Eisenstein series of the unimodular group [, of degree n. He suc-
ceded, by a number theoretical approach, in solving the problem of
analytical centinuation and proving a system of functional equations.
Although a second report [3] contains further information on the sub-
ject, it seemed to me rather difficult to reproduce Selberg's proofs
on the basis of his very short sketches. 8o I started with some work
just at the point where Selberg remarked [1]:

"If one tries to establish the analytical properties and funce
tional equations of the functien ..., it seems that it is not prac-
ticable to follow the usual pattern of finding some integral
representation of the function which at once gives the analytic con-
tinuation and sets inte evidence the functional equation. I was able
to find such a representation in the case = = 3, but it was already
extremely complicated and by the way 4id not involve theta series."

I was wondering whether theta series could not be useful for the
treatment of a function so strongly connected with gquadratic forms.
Approaching from a gensral theory of Dirichlet series attached to
modular forms of higher degree, I got actually a proof for the ana-
lytic continuation and some of the functional equations by means of
theta series, In order tc eliminate disturbing terms of the theta
series, one has to apply certain invariant differential opevators.

In this way one aveids the unpleasant computation of the residués.

One gets rid of them., This methed was originally conceived by




A, Selberg already in 1950 but never published., He also succeeded
in 1961 in obtain. g the analytic continuation by means of theta
functions, by using the differential cperators. I got this informa-
tion when I had finished the investigation which is the gubject of
this report. Complete proofs are given in the notes of my lectures
on "Siegel's modular forms and Dirichlet series" delivered at the
University of Maryland during the academio year 1369/70 (to appear).
We use the following notations:

¥ = X(m,n)’ a matrix of m rows and n columns X(n) 2 X(n,n};

'

U, the transpose of the matrix v; y[vl = #'yy 3f v' = ¥

H
S AT T 73 |x|, the determinant of x = x\"7,

E

(X}, the trace of ¥ = X(n);

4y = (dyuu) if Y =y ),

U

H o= ﬂn’ Minkowski's domain of reduced matrices ¥ = Y(n) > 05
ro={vlus yt? integral, [v] = 21},

Foore e
B”:{(U 1“ [ ln},
A, = { ( "_i) » n-rowed, integral, non-singular};

0 fe
R: the field of real numbers;
C: the field of complex numbers.
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1. A sequence of positive matrices Y, Y ,...,Y, defines a

descending chain if esach link can be respresented by the preceding:

h htl
Y= Y [6 1 Ush<n) with an integral matrix G+ The chain is called

primitive if all matrices Gh are primitive., A second chain
noon-L 1
¥*, Y#,...,¥% is said to be equivalent to the given chain if



A h

r* = ¥lo, 1, with v €T, (LEr3In). EDquivalence pelations must be

h
n
considered always as identities in Y. We introduce the class

n 1 n 1
{ Yy...,Y) of all chains equivalent to ¥,...,¥ and use ¢ %} in-

stead of { » if all chains of the class are primitiva, Selberg's

zeta functions are now defined by

-1 k- n-1 h -
(1) r(¥,8) = Z ’]’_l. 7] ‘”’h’ gH (Y, 8) = Z T 7] xy
n 1, A=1 n 1 h=1
S , (r,...,%)

"
whera ¥ = ¥, g = (61,...,sn) a system of # complex variables and

LI P Bh+ ¥ (Lfh<ny. They are velated by

t(¥,8) = Z(s)L%(¥,a),
(2)

o) =TT stateap+i), e = Zi ne
ne

18veusa

2. By means of the function

+3
n Z2g. 4w - RLE
7
(3) Flry = 71 ¢V : ,
a NS vy

where

y=or', o p= U ooy, 0 for p<wv, £ >0

? v’ uv ? vy ?

in the notation of [2], we represent t*(¥,5) as Eisenstein series as
follows

n-1
mg — —
(u) ch(y,e) = jy; T % Z F xluly,
: U:Fn/Bn

The convergence of these series for Rezh >1 (l<h<n} can be

proved by a geometrical method, Moreover, one can show that LE(Y, 8}



on  |¥] = 1 does not grow faster to infinity than the "main term",

s0 that in the domain of convergence
le#(r,e) | < o |F (0] < oy totzn (x| = 1

holds with ceprtain positive constants Cl, Uz, kK depending only on e.

With & = (3n,sn_l,...,sl), U o= (6n+1~u,u)’ éuv the Kronecker

symbcl, we have

Ty = p oD,
& -5
a relation which yields
n-1
& —g, t =
i;*(fl,e) = jr] " oo (Y, -8)
and, hecause of Z4(-3) = z{g}, also
-1
R I
{5y tir sy = ly| #0022 r(¥,-5).

This transformation formula, in ceonnection with a similar formula,
obtained from an integral representation, will lead te one of the
functional equations of £{(¥,s). We note that the transformation

8 + -8 leaves the domain of convergence of the zeta functions fixed.

3. the space & of all positive matrices ¥ = Y{n) = (y, ) 1is

Uy
a weakly symmetric Riemannian space in the sense of Selberg [2] with
respect to the metric defined by ds2 = U(Y“ldY)Q, the group & of

isometries Y » Y[V] (i?] # 03 and the invelution uly) = Y_l

which also is an isometry. Thus the ring L of the differential
operators invariant under ¢, is commutative. Denote by I the image
1

of L& L under Y + ¥ If L is real, [ 1s the adjeint operator

of [ with respect to the invariant volume element



ntl

_ 7 . 3 3 .
dv = fl’; Udylfv' With T¥ = (em} —3:1;—)’ ep\)—%(l+éu‘u)’ we
usv e
introduce the special operator M = ]Y{{g?fe L and define
(6) Po= xR r R,

Since L is commutative we get

~

7 Pk

-k
lz(*e, 1v|%,

It is known that Fa(¥) is an éigenfunction of L i a computation

yields in particular
. 1
" n-
(8) MfB(Y) x 1:1 (.e;\j +wE—)fé(Y).

We add here tha important relation [2]

: -1 nin=1}
(9) J oot ranay =0 T e, -2y (1),
¥>0 g v=l
valid for x » 0, Resv > Eii -(l v Sny, and mention finally
T - . -
(10) - r] e = Fass (XD witn (s¥2), = s+ ¢

. Our investigations aim at the following

Theorem (Selberg). The Ffunetion T—T (g -sv—%}c(f;a

v 8 )
1fv<epysy M L n

‘s holomerphic in €7 and
n
-2 7. vsv 5
v=l " .
T lSJ:I;n Ple ~a +i) x| C(Y,al,...,sn)

g invariant under the group of all eyelie permutations of the vari-

bles,



Proof: omit the well-known case n = 2 and assume nZo3,

But then for plain technical veasons we replace in our theorem Y(nj

(n+1)

by 3 and g = (sl,...,sn) by (s,sn+1) % (Sl""’ﬂn+l)’ now

under the assumpticn # 2 2, and introduce the theta series

(11) 0(r,8) = p, pmmosIEln)
>
where & runs over all integral matrices of type G(n+l’n). It is
known that
n+l n
(123 0™y = (1 2 1s(% ecr,m

and, because of (7),

(137 6(r,5) = Pﬁiig{f,s)
2

obviously satisfies the same transformation formula

LA
(14) ex s = Jx1 2 1517 aer,s.
Since
(15) 1251 I ELEID L orgyg,Tetsleln)

vanishes if wrank 4 < n, it suffices to sum in

ntl

(18) 6(Y,5) = Z{L P c-oslelry
&

over all integral ¢ of rank x. But then the integral
n
8 47 — 89t % .
(a7 E(S3ee, ) = j@(r,s)iyf w2 ey 5y
R

exists, provided that the peal part of the complex variable 8 4y I8

sufficiently large. With the help of (2), {10), (15} and

Z(-3) = z(g) wa rewrite {(17) as follows
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U:Fﬂ/]{i?1 a
nt3
‘/f ~ Mlif[u))ﬁiy} 2 g-malsieln,
_3+8n+l_ T

R
Benote by A the set of ali integral ¢ of rank n and replace in (18)
the matrix ¢ by GW'U', where the new ¢ runs over a conplete set of
representatives of the cosetsg A/Br and ¥ over all matrices in B s

while U’ is fixed. Observing the invariance of Ty {¥) under

7= ylw] (WEBn} we get by means of (8§}, (9)

19)  €(538,0,,0) = (-m)a(e) > Jsreal
n

G:A/B
nt3
DD ff i a1 STLUW DM x) 2 om0 (SLEIPLonT)
U:I‘ﬂ/B?f1 WEB”E{ —s+sn+l--«g—
n+3
= 2(-m"2(a) Z Is[(;] ff pep (DN[z| 2 gmmolsleln)
¥>0 “8+Sn+l-T
+3
= 2(-m"z(s) Z SEG}i fg—m(s[cjy)m 2 ur or (D) dv
Y50 SCAL I ”4*

n
2(-m)" T‘:{L (8,1 =8,~%)2(s)
vz

Z j emTolslaln) F o (D dw
G:A/B ¥ig ~3te 4L+ B
7 n+l

n+n(n—l)
{(s\)h I %)?(sﬂﬂ_-— B+ 511ze8)

)
o)
=
<
n I:
P

2 % sCel|s 2 G Leston™h =
G:A/B —a+3n 1t At



29Ca,8 ) N
S gy 2L g naq (BLE1 ),
${g) GiA/B s-8 - 2Tt
" n+l b

where in general

(207 $pls) =

~{& ~g_+%) ~
T—T {m (su—sv+%)(sv—s“+%)T(su—sv+%)} = #(-g),

lzvw<ysn

; D
Let G = U (O ) . Then we can replace the summation G:A/Bn by
U:Tn+l/Bn+l and Dn:An/Bn. A complete set of coset representatives

Dﬂ is for instance given by

This yields in a similar way as one gets the relation (2)

. . 1
(21 02;;3 fsms _E:i(staj) = %8588 L) I:g t(2Ce i -6 )+ 1)
: o) n+l i3

and finally

2¢(s,sn+ll

+1) T e—e—— " 7(g,8

(22 ElS58,s, 50) n+l

NS I N

2¢(s,sn+1)

Z ee——————— (538,

$(e) ne1l:

Starting again from (17) we get now by means of (5) and {14) the

integral representation

(23) E(S;s,sn ) o=

+1
8pe1751%7 -7 1 et T
f {80y,9) ] ¥| “L(Y,-8) + |8} ‘elr,sThyjy| MR $(¥,a) dv,
i
lr|z1



/ich shows that

L3 +1
24) n(83858,,00 = 20€a,e, ) ]5) " t(S30,8, )

a
v(e) 5] o 8053858,

H

+l)

s helomorphic in the domain
25y %= {(a,an+l) !Re(ev+l—av+%} > 1 (1%vany, 8 41 arbitrary}.

oreover (23) makes evident the functienal equation
n
28) 151 £sse,e 3 = £057 55 .ms L)
TS ST
* express both sides of (285) by n using again (5), now for n+l in-

tead of n,
"

n
a2 1 77 a1
>E E(S;B,Sn_”_) = m i E U(S;S,En+l},
' 2¢(-5,-8__ )
ca=l, . PR -1 -
§ Ti-8,-8 - {8 "i-3,-8 ) o=
n+l 6(=5) n+l
2¢{a al -8 +g_ 2.a
n+l? ntl “n 2 . _ 1 2 nt+l .
__“a?;;_w_ E(S,8n+l,s) z ¢{s)lsl n(S,sn+l,s).
mparison yields
7 n(S;a,sn+l) = n(S;sn*l,s).

& invariance of n(S;a,sn+l) under the cyeclic permutation

Bad g 8,479 implies that n(S;s,en+1) defines a holeomorphic

nction in the domain
n

28 = Lw) V&,

ER

=¥ be the image of 4 under the projection (S’Sn+l) +(Res,stn+1)

i1
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i.e., 2% ig a so-cailed tube domain. The holomerphy envelope #7

of W} is again a tube domain:
P L ﬂRer ,

where %% denotes the convex hull of 7 in the sense of euclidean

geometry. This is a well-known fact, One can easily see that g

contains a system of straight lines Zl’ZE""’ln+l such that Zv 1s
parallel to the v-th axis of Rn+l. But then we have already

» +1 . . L
4% =R"  and it turns out that n(S;s,sn+1) is holemorphic in
q};‘: - @rﬁl

The statements of our theorem (in the changed notatien) now can

be obtained from the proved results without any difficulty.
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