SPHERICAL FUNCTIONS AND QUADRATIC FORMS

By HANS MAASS
{Roceived January 23, 1956]

InTRODUCTION. An analybical treatment of the problem of
representation of quadratic forms 7'[r] by a given positive form
8{r] seems to be possible in the following general shape: Let
8 = 8™ and T = T'™ with m > n be positive real matrices of m
and » rows respectively. In the set of all real matrices X = X,
having m rows and n columns, we denote by ¥ a domain of
homogeneity, i.e. a subset wiaich econtaing with X also XV, ¥ =™
being an arbitrary non-singalar real matrix of » rows. Further lot &
be a subset of the set of all reduced positive real matrices ¥ == F®
in the sense of Minkowski, such that with ¥, € also contains AY, A
heing an arbitrary positive real number. Then the number o8, €)
of all integral matrices @ = (™™ which yield a representation

SEj=86d=17, (L)
with GeB, TeQ, | 7| =1 or at least the mean value
. - 1
408,6) = . > 5, (8,€) @
6 & i

allows au asymptotic computation provided that B and § are
measurable in a certain sense.

A wmethod which is fitted for an analogous problem iu algebraio
number fields was developed by E. Hecke [2}. This method will
probubly work also In our case. It is based on the approximation
of

-2
)
B33 8, €)= > 4, (B,8) 4~ (3)
t=i
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by a finite or infinite linear combination of certain zeta funetions,
ie. by functions having a well-known behaviour on the strength
of a Dirichlet series development and a functional oquation of
Riemannian type. We introduce § =Q'Q, @' =@ > 0,
{ 1, for QX e®
AX) = (4)

0, otherwise,
and )
1, for Y @i,

#¥) =
0, for ¥ ¢¢, ¥ reduced;

HY (U =gl Y) for unimodular U.

Then we have obviously
B B, €)= D [(Q6) ¢(S[6]) 81611, (6)
&

the summation taken over a complete set of integral matrices G —
G of rank n, such that each $wo do not differ by & unimodular
right factor. The approximation of ¢(s ; B, €) amounts to one of
the functions f(X) and g(¥). Hero we have to make use of the
angular characters of quadratic forms I5] in so far as it concerns
the funetion g(¥). The theory of these angular characters is at the
present suificiently developed. [6] only in the case n = 2 so that
uumber-theoretical investigations of the desired kind are possible.
Provided that B is the full space of all veal matrices X = Xt
of rank #, an asymptotic computation of 4, (B, §) with the method
1 have in mind could be earried out indeed in the case n = 2
171. For the approximation of J(X) we need in the case n =1 the
spherical harmonics of m variablos [1]. Apparently nobody has so far
observed the significance of the spherical harmonics for this number

theovetical problem,

“The aim of this paper is to introduce a generalized class of
spherical functions which are useful for the approximation of JiX)
for arbitrary ». Omne obtains a reasonahle theory if one replaces
the special bub discontinuous functions SIX) by the elags of all
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functions g(X) continuous in X'X > 0 which satisfy, just as
J{X), the relation of homogoeneity

g(X V) = g(X) for non-singular ¥ = y*, (7N

Then wo can ask for the uniform approximation of these functions
by elementary functions with a certain typieal behaviour.
Applying Woeierstrass's well-known approximation theorem for
continuous functions to g(X), and using a cortain positive hermitian
metric in the space of the functions g(X), wo obtain by a

straight-forward conclusion the following result: Let X = (=),
%{ = (5;7 ), A=X a"?{.} e (Xa;,) and denote by o(W) the

e
trace of the square matrix W. Then we van find o finite set of
polynomials 4,(X) with the properties

Loug (XV) = [ V¥ uy(X) for non-singalur V = 7™,
2. oAy uy(X) = A u (X) with constant eigenvalues
Mbfor ko= 1,2, ..., m, {8}
RN
aX' BX

Uy{X) = 0,

guch that

for all X of rank n, where e denotes o given positive real number.

All functions of X we arc taking into consideration depend only

upon the equivalence class X of X which consists of all matrices XV
with arbitrary real V = V™ of determinans | V{ = 1. Thus it is
obvious to introduce the Pliicker coordinates

o = bupyiay = [Bls (v =1,2,..,n) (10)

of X. For breviby we shall call these coordinates also Pliicker
co-ordinates of X. Wo denobe by ¢ the set of all £’8. The first
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of the characteristic properties (8) says that wu,(e) is representable
as an algebraie form in ¢ of degree 2 :

U(X) = (@),

In particular we have

|X’X[=—.2§§, (11}

where the sum must be extended over all « = (o, o, ..., &,) with
o < oty < ... < oot Thus | X' X[ uy(X) defines a function on the

aphere
2.é=1

and it seems to be justified to speak of uy{z} as & generalized spheri-
cal function. However we have to observe that the Pliicker coordi-
nates are not independent so that uy(X) de facto is only defined on
the Grassmannian manifold represented by the £,’s.

The set of all differential operators o(A®), (b = 1, 2,..., %) comple-
ted by o(X'8/9X) has a remarkable basic property which can be
described in the following way. Wo define a linear differential
operator £ as a polynomial in the elements of §/0X with functions
of X as coefficients which have derivatives of arbitrary high order.
We call Q simply ‘invariant’ if Q i3 invariant relative to the group
of substitutions X — UXV where U = U™ iz an arbitrary ortho-
gonal matrix and |7 = ¥ an arbitrary non-singular one. Two
invariant linear operators are said to be equal if they are of the
same effect on all functions f(X) which are invariant relative to
X —+ XV, |V | =1L The invariant linear differential operators form
obviously o ring 1. We shall prove that R is generated by the

operstors o (X’ a—%) , ofA®), (=1, 2,...,n). Thus the first two

of the conditions (8} say that u;(X) is a polynomial in the Plicker
coordinates and also an eigenfunetion of the ring R.

Qur further interest is now concentrated on the series
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B8, 85 u,v) = Z w(QG) »(S[6T) | S[G] |, {12)
@

w{X) being an arbitrary spherical function of degree 2kn and »(¥)
an arbitrary sngular character. The sum must be extended over
the same get of matrices & as in (6). Now the question arisos
whether the functions (12) are zeta functions in the described sense,
i.e. whether these functions satisfy a funotional equation which
expresses a simple transformation property relative to the substitu-
tion s—+% — s with & suitable X' > 0. Let »(Y} run over all
angular characters, then we obtain in ¢(s, §; 4, v} a set of functions

which is supposed to be linear equivalent with the single series
MY, 8 u) = 2 W@ @) ™S (¥ =Y® % 0), (1)

@

{see [5]). At the present, this fact is provable only for n == 2.
W. Roeloke investigated this case by using Mellin’s integral-transfor-

mation [6]. Tn (13) & runs over all integral matrices of the type
{Him,n)

We can probably expect that $(¥, 8; w) has a simple transfor-
mation property relative to the substitution I —+¥~1 if the
functions ¢(s, 8 ; u, v) satisfy a functional equation of Riemannian
type at all. In this respeet we meet the following sitmation.
Applying Poisson summation method to the theta-series

HEY, 85 u) = w(Q(Y + X)) 6™ TG+,
]

we obtain with regard to «(X V) = |V | w(X) for
MY, S u)= H0, YV, S; u},

the representation
MY, 8 u) =| 8|~ |y TRk Z w¥(-- i @1 B~1) e-mi¥—18-1ian
IH

(14)
withY = 'R, R =R > 0and

WX = J WX + T) =D [a7), (15)
x
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where T denotes the full space of all real matrices T = TW™®) = ()

and [d7'] the product of all differentials dt,, [1]. According to

j e—na(i"T) [d T] == 1

I

one can state that w¥(X) —w(X)is a polynomial in tho elements of X
with a degree less than tiwt of «{X) provided »(X) # ¢. In general
however it is

w*(X) — u(X} # 0,

as examples show, and even w*(X) no algebraic form in the Plicker
coordinates of X. Therefore it is also impossible to split off the
factor B~!in w*(—3 @' G B~1). I we assume however
@ @
— X} = 16
“(ax'ax)“( )=90 (16)

-it follows, as it was proved reéently also by C. S. Herz {4'],

u¥( X} = u{X),

Le. u(X) is an eigenfunction of Gauss integral-transformation {15).
Moreover it can be shown that {18) is not only sufficient but also
necessary for u({X) being an eigenfunction of this kind. Assuming
{16) we now obtain

wH— i QT ERT =(— 1" Y [ @1 &),

and thus we see that (14) can be rewritten in the form
HY, S u) = (— P (87" Y |22 H(T~, 8 w).  (17)
The relation of homogeneity (X V) = |V |* u(X) effects a decom-

position of the differential equation (18) into the system

o @
e = (X ) = 0. 18
ax 5z ) (1)
A oconsequence of this is o{A®) y(X) = M y(X)for £ =1,2,..., %
with certain constant ecigenvalues A®., In the case n = 1 our
supposition (16) does not go beyond (8}, Thus the general
transformation formula (17) corresponds with the results of
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Schoeneberg [8]. Maybe it is sufficient also in the case n > I to
take into consideration only those spherical functions () which
are solutions of the Laplacian differential equation (16) in order
to approximate the functions defined by (4). Solutions of (18)
which also satisfy the relation of homogeneity are given by

w(x) = | LXK, (19}
o= L™ ™ boing an arbitrary complex solution of L'L, = 0, 3]

Now we assume the generalized spherical funetion w(X} to be
a non-constant eigenfunction of Gauss integral-transformation.
Further let »(Y) be a bounded angular character, i.e. we have

oY
#(¥ [U]) = »(¥) for unimodular ¥,

(a(yi)'a + A,,) oY) =0,forh=1,2,.. n 0

with the notation

I

3 P L for p =»,
¥ = (y,uv)’ 57 = ("'mé—): Cpp == . (21)
L 4 forp # v

A Ag, ..., A, are constant eigenvalues; in particular we have A =0,
It is easy to show that o*{(¥) = v(¥~1) also defines an angular
character which in general however belongs to another system of
eigenvalues A, Since now rank X <n implies w{X) == 0, it i3
sufficient to extend the sum in

B, 8 u) = D w@ @) 6=, (22)
o

over all integral matrices & of rank n so that always S[G] > 0.
This is important because at present we can prove a functional
equation for ¢(s, 8; u, v) only if the theta-series shows the behaviour
of a so-called cusp form. By means obtained in [5] we shall prove
that the function defined by the Dirichlet series (12} is an entire
function of ¢ which satisfies the functional equation

§dm + 2k — s, S u,0) = (— 1" | 872 ¢(s, S~ u, v¥), (23)
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where
£(s, S5 u, v) = ™™ D(s — B) T'(s — B,)..0(s — B,) $ls, s u, v), (24)

with certain constants 8, B;, ..., f, which depend upon the eigen-
values Ay, A;..., A, only. This is the main result of the present
paper.

1. Phicker coordinates. We denote by §,, the Kronecker symbol
and, introduce

Ia'. =I(“’1! Olgy <o ey d‘n) = (Sa,p)’ (nu' =L2,. . ,mv=12., n)a (25)

Oy, g,.--5 Oy Deing an arbifrary system of integers in the interval
from 1 to m, so that

U, X =(z,,), @v=12.,n)
The Plicker coordinates §, of X are given by
Ea = fulu,...an = |I'm X | (26)

Any summation over « is to extend always over the full system of
& ={a&, tgyny o) With 1 < oy <oy <o < o, <. If A, are the
Pliicker coordinates of LI = L¥" then we have as is well known

\I'X|= 2 A, £, partioularly | X" X| = Z £z,

We compute the effect of some differential operators on functions
of the type f(£) = f(..., £p...). First we state
9
e by I (XTI e 2
5 =L (X L) 27)

Denoting by 4 the algebraic complement of «,, in |I', X|
we obtain indeed

et (i te) = (Do) - OO UD =L 1) 6,

{27} yields in partxcular
X’ — §E = §{ B, E = unit matrix. (28)

[P
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Consequently

X ro=340x G- aon o

Let L = IM™ = (l,) be a constant matrix of rank n and
{l.) = (X'L)7%, then it is

D by Ty by = By
(X4

Differentiation yields

2L,
~ 'a““a;’;; xop zﬂ'v + gp.)q lgv = 0)

from which

2
“mngm@
follows. Thus we find

ﬂ7urm-=(§5 ) = = (D e e L)
~ ey v,

particularly for L =1,

7 X
I ! 1 fl X -l Xr -1 30
axr lx( Io‘.) (I © ) ( Ia) 3 ( )

according to I’ I, = E. Applying the operator 8/8X' to
2 /1) 1=t
i/ 0= 2, G L& LT

wo oblain

d a 3 _ _a aff) ’ -1 7 + iad
sz 5 1@ —% & aE;(f“ 1) WX L L)

— af(é) r -1 2 -
zasa S LX)

— ¢ -1 ’ —_ azf('f)
-;§Uax)?IJAXIQ I&faagai.
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Therefore
a 2\
e = 31
with
Bop = &lg XU XY I Ty( X' T) X =By, (32)
holds. The operators
2 @ 2 9
a5 X (X )

snnihilate the same funetions, From

ARG 2 2
—_— X: et e X'mO
X(Xax'ax) 9x) =X aX'axg(X)] ’

follows, by left and right-hand multiplication with X’ and X
respectively, since X'X > 0, indeed that
KA a
ez (),

We compute the elements of the matrix
Eup=(E0), (n,v=1,2,...,m), (33)

as functions of the Pliicker coordinates. Since I',J; = (8a.5,)
. we obtain

T& en?

£15 o Z 2,, A% 8x,0, A2 @ (34)
BB T
with A7, in the significance already introduced. The replacement of
the oth row in [I', X | by (z,1 2,5, - .- 2,,) leads obviously to X x,, 42,
]

Thus we obtain
me, A%y = [T (6 vy Gy e Uoyqy ore s &) X |
B
= fﬂ;«--%— pIE S WS
Now we introduce the notation

T = g tragi g OT O, (36)
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according as =, Or u % &, &g, ... &, S0 We can rowritc (34) as
£ = £ Bugn, E = > B G (36)

T P
According to the signification of the symbol £ the sum in (36)

can be oxtended over all integers p from 1 to m. A speocial con-
sequence of (32) is also

U(X' agc' ai{) J)r = “(X(Xé‘af’ 5%()')10(5)

Jd @
zﬁ%%m (37)
with
£ = g(B,q) = z grom fron, (38)

The remaining formulae of this section apply to the special case
m =n + 1. Now we note

fa. = Ter Eze = T]#v’ §m6 = Tn'ﬂ

a= (.., e~Le+l .. ,mhB=(,  ,A~1LA+1, .., m.
It is easy to see that
A tim =8 (— 1)ty £ 8, 9.

Thus we obtain

od g Py
T = z 'fl...xw-lx-!»l...m f1...a—la+1...m
2

= Z (S.Im(— 1)K+P} : 'Gp + 8“,» ??x) (Sw\(_ 1}/\4—.0-&-1 e + Svp 7]}\)
L= S;Mc Sw\(_ 1)"+'\z ’ﬁn + S;w e M +
P

- 8#«(_ 1)"-'-;"‘-JI e T -+ SPA(_ I)A‘H‘-}'I N e

7 =Z = %Z 72+ (m — 2) 9, N
» -

Now wo find for (37) the expression

and
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(XX T ) 1
(59 (330 32
W(m—z)(Zma—i:)}f(n). (39)

2. Invariant differential operators. Let Q be a linear differential
operator, i.6. a polynomial in the elements of X, and let us assume
that the coeflicients which are functions of X have derivatives of
arbitrary high order. 0 as a polynomial in the elements of 8f8X
has a certain degree; this we call plainly the degree of Q. All
linear operators £} of degree < A constitute a module which we
denote by MR;. Obviously %, cM,,, for all &, The module of
all linear differential operators which is indentical with It =U M,
R

defines a non-commutative ring. It is easy to see that
£ Qp = Q, Q) (mod IR,_,), {40)

provided that the product Q,Q, lies in %7,. The aim of the
following considerations is the determination of a basis for the
subring i of I consisting of all linear operators which are invariant
relative to the substitution

X+ UXV, _a.ﬁUéa-j-{V"‘lwmh U'U=E,[V|#0 (4)

In the sequel wo use the notation i, for the intersection B ~ I,

Let QO = F(X, 8/0X) be a given operator in ;. We choose a
matrix T = T%™" with variable elemonts which are commutable
with those of X. Then we have in particular

F(UX,UT) = F(X,T) for 'U = E.

Thus, according to well-known theorems of the theory of algebraic
invariants, we see that F(X, T') is a polynomial in the elements of
X'T and T'T with functions of X’X as coefficients. Then there
exists also a representation
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X, T) = Z GXX, T H(X0,

@, being a polynomial in the clements of T"T and H, & polynomial
in the elements of X'T'. Now we observe the invariance of 1" X, T)
relative to the substitutions X — XV, T — TV’ We set
V =¥, ¥V, with ¥, determined by (X’X)[¥,] = % and an arbitrary
orthogonal matrix ¥,. Using the notation W = (I"7T) [V';'] we
obtain

FX,T)= Z GUE WV, D BV (Ve (Vo X TY )Y Ty).
The argument of H, is of course, since we are still moving in com-
mutative domains, with V', V', X'TVy 1V, = V" X'T V'~ ! identical.
Because of (40) all produects porformed in IF (X, 5‘%( ) admit com-

mutations if we carry out the computations modulo 3, _,. So it
turns out

=305 (o ) ) 1)

e (v (v L)) 0) toa
Applying (29) wo seo that

(v (rex L)) Ve - 2 £, 52_ AEE

Lo e
helds for an arbitrary function f(£). Thus we obtain
a(ve(ver (v x 2) ) ) se -8l x ) m) 0

/

b )

where #,(z) denotes a polynomial of z. This leads to
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216 =365 () 17v) 1) »
)i (o( 2 5 )50 (mod M @), w2)

G(E, W[V,]) represents a continuous function on the compact
group of all orthogonal matrices ¥,. Thus the mean value

My {G(EB, W[V} =g,(W)

(in the sense of the theory of almost periodic functions) exists.
It is a polynomial in the elements of W which is invariant relative
to orthogonal substitutions :

GAWIVLD) = g,(W), (VY Vy = B).

Accordingly g,(W) is a symmetric polynomial in the characteristic
roots of W, thus a polynomial in o(W?), (b =1,2,..., n):

5W) = p(e(W), o(W?), ..., o(F)).
With regard to the signification of W and ¥, we state easily
o Wh) = ol X' XT" T

If we compute the mean value with respect to ¥, on the right
hand side of (42) we obtain by means of the deduced relations

Qf(&) = QF f(§) (mod M,_, f(£),

“Zp'(""°(X'XaX'aX) )h"(“(xta%'())' (43)

It is obvious that this operation is invariant relative to the substi-
tutions (41).

with,

In the sequel we shall identify invariant operations which have
the same effect on all functions of the kind f(¢). Then we can
state the following facts: To a givon operator Q € R, there
exists an operator Q% & ®, of the special form (43) such that
Q—0* ey ;. Induction on & yields at once
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. . 7 g 2"
Tuxorem 1, The invarient operators (X’ i ), (X’X- o )
invariant o) o ax ) e 5T 5%
(h==1,2,...,8) form a basis for the ring N of all invariant linear
operators.

Our argument shows moreover that we only noed the basis
@ 8 3\ I
slements a(X' -), a'( XX . )-) k=12 ..., [A/2]) for the
5x % ax ) [A/2])
represenfation of an invariant operator of degres b < 2n. Now it
is casy to see that the invariant operators

3 N BV B
x? Y o(x? (x8 12 1
°( aX)"’( ax'(XaX*) )’("’ bodenn) ()

also generate H. We have

2 3\ \: a8 L\ 3 2\
X e e = — 1\’.-' = . S = Ty
”( ax (X aX') ) "( Lox ox ) “(X Y ax ax)

(aocd Wiy, -

Thus by induction on & we obtain

? 2V
x 9 (x 2
“( aX'(XaX'))

2 a3\
= X' N
“( Loy aX) +

2 2 9 @\t 2
xx 22 L e(xx Y Jx l
+q"(“( aX'aX) U(XXBX’BX) "(X ax))

where ¢, denotes a certain polynomial, This proves the Dasis
property for the system (44). We dotermine yot a third basis for
the ring 9.

TreoREM 2. IfA =X 8%7 — ( X ajaf’ ) then the tnvariant opere-
lors o-(X' ai( ), oA (b= 1, 2,..., u) form u busis for the ring 9 of

all invariant linear operators.
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In order to prove this we compute

i o 2h
2hy ___ . X 7.
o(AT) = "(X ax’ ( ax*))
. 8 ]
e (x,2))
(= X oz a.X') +
+(W_1)ha,(( )I a R Z :I:G(IJ)
ax’ X' - .
Here P, are products of the form
a Hy a 7 a He a AN
x2 LAY (x 2 x.2 ) ,
(X5 ) ((F52)) " (%ox) (% 5%)

and it happens at least once that onc of the exponents g, v, is
greater than 1. Hence it is

P=0 (x ax') R, or P,:Q,((Xé%)’)zali,,

with certain products @, and R, which are also of the given form.
Now it follows in the first case {the second one can be treated
analogously)

o(£,) = o(L))

| EU(R aXX X1 )
(ror ). x d W)
=o va‘T BX) (mU 2h—1/%

and therefore by means of (29)

ALY f@) =o{ X QB )= o (X 2 ) 110

oo 5.0x) o ) 0

( ax’ k@, ) (Xr a%“()f(f) (mod My, f(£D.

S0 we obtain

S ——-
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o) foy =1 2o x 2 (X, 7)Y s+
+0o( X 2) 1O (mod My, 76,

with a certain invartant operator , of degree at most 2k — 1 which
can be represented as a polynomial of the form

oo (o (5 )
(3 (3 2))7 o(x 2).

The same is true for the operator

{A) — (~1"2fr( a;.,( )) Q"“(X'ax)

So wo see that
(3 (5,5 )+
o))

+%( CEACE
(x5 (xw)) (X' %))

holds with a certain polynomial ¢,. Theorem 2 now is an easy
consequence of this.

3. Spherical functions. A polynomial (X} shall be called a
spherical funotion of type (m, m) if the following conditions
are satisfied:

1. w{XV)=wX)for|V|=1,

2. u{X) is an eigenfunction of all invariant linear

differential operators, (45)
a @

s oo | U X) = 10,

ox x|
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The first comlitiou SaYH Hliﬂ) H .X. s n m!vnomin.l itl tho Plitcker
Y [ I
coordinates £, of X:

u (X) = f(§).

The second condition is, aecording to Theorem 2, equivalent to

(X 5% )fu,X —nZ§ - f(s) =l f(&) = knu{X) (46)

and
oA™Y W X) = NP w(X) (h=1,2,...,0), {47)

ke, A, XL, X being certain constants. Thus f(¢) is an algebraie
form of degree % so % is & non-negative integor. In order to understand

the third condition we observe that | X’ X| iéf’ -_TE is an invariant
linear operator. So we have also '
XX 12 2y = A (48)
X’ X

with a certain constant A, The third condition is obvicusly equi-
valent to A = 0.

Let us assume that the polynomial w(X) satisfies only the first
two but not the third of the conditions (45). 'Then it is obvious that
| X'X | is a divisor of w(X). We prove the existence of an integer
§ 21 such that w(X) = | X' X {7 w(X) is still a polynomial which
satisfies also the third of the conditions (45); in other words % {X)
represents a spherical function. First of all we observe that the
elements y,, of the matrix ¥ = X'X can be considerod as
constants with respeet to the operator A. It is indeed

¢ @
A_%A = (Z ("”ﬂpé*; — 7, 5;) ) me‘-xu.\
e 1tp a
== (Z (Sw oxc Lo - Fon Sm 8,';)‘ })

"o

(2 Ol B+ T B0 ) )

t g

= {-’JSM R Ly mw;) = (&, Xy + E x,-uc) = 0,
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s thal each function $(¥), in partienlsr { X7 X s commniablo
with the oporators o(A*). Therelore (46) and (47) hmpiy
9 - o
G'( X BX) w(X) = (k — 2j) n ufX),
o AP (X)) = AW (XY (h—1,2,...,n)

consequently also
beg g . .
‘aj}f" a—Yi’H‘J(X) =Aj ’M}(X) (j: 1,2., 3,...)
with coertain constants A;. Now we deduce: If A, £ ¢ then |X'X|
divides (X}, ie. uy(X) is a polynomial. If A 5 0 the same
conelusion shows that 4,(X) is a polynomial. So it turns out

that an integer j 2> 1 exists such that u,{(X) is a polynomial but A;=0,

XX

We assert that a polynomind «(X} with the three properties

Loow(X V)= |V[Fu(X) for V|0,

2 of s 5x ) V=0, (49)

3. {X'X ] is no divisor of 4{X),

is nlveady a spherical function. First we state that

) G( 51%’ 8&4’?{) wX Py =1V “( a')a'{:i 5%() w(X) =0

is true for arbitrary non-singular V. Replacing X — X V-1,
we obiain

8 2

y.2 .2 V') X) = 0.
°( ez )X

This implics

2 @

2 (X)) = 0. 50

5 5x &) 60
According to Theorem 1 it turns out that »(X) is an eigenfunction
of all invariant lincar operators. The third of the conditions (43) is
a consequence of the faet that |X'X| does not divide w(X).
This proves our assertion,
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A apecial class of spherical functions is given by
w(X) = |L'X ¥ with L = Ifm™ L'L =0, (51)

We assume that L is of rank #. Then at least one of the Plioker
coordinates A, of L differs from €. According to a well-known

formula we have
'M(X) = {z Aa fa)'{x

an expression which is obviousiy not divisible by {X'X| = Z £
@
So it is sufficient to prove that the algebiaic forms (51) are solutions
of (80). This can be done in the following waw, We set
X = {xﬂv) = {gi Eg““gﬂ}! L = {E,mr) = {Tl 12'-- im)
and denote by e, &g, ..., €, the columns of the m-rowed unit
matrix. Then we have

?% (X =k I XP VM

with

2
o

e

o= 21X = (2 m p)

=L ey B Lgr o L) 1)

For p # v wo have
9
az,,
=L@t Gl b1 G e L) [ =0,

iL'(Xl E#—i en EV-H l'n) I

since two colummns of this determinant are equal, Tor p =» we
have alsa
? iy .
afc; [y e et o usn - Lad [ =0
since the elements of this determinant do not depend w on w,, at
all. So we obiain

e e ot o s e e
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dY’ (Z ax,, LS RIEY o Ep}:v—i-l---Lt}])wO,

and it follows that

9 9 ' by -
_________ XPF=k S \LXPFM
sx gy AT =R gy AT
=kl — DL XPF2 MM kL X i{M

— k(b — 1)L X - MM

Now it remains to show that L' L = (1", [,) = 0 implies M'M =0,
First we forin with o variable matrix Z = Z™"* -z (z,) the product

Z’M:(Z 2, 1L, ..g,_leﬂg;,.n..,g,,,};)

= (IL'(Il E»—1 31132v-[-1 &‘ﬂ}l}

Here ;. 32 -5 3a denote fho columns of Z. We choose Z =M
and prove that in this case 3, is a linvar combination of the

columns [y, lp..., |, of L. Then it turns out that L'z, =0
and finally M’ == 0. We introduce £'g, = a, and denote by ¢*,,
e*,, ..., e%, the columns of the n-rowed unit matrix. Because of

Le,= Z 1., e*, we now obtain indeed
Br = (IL’(EI °"§v—1 e}t 2:‘»-%-[ e 2;») E)
:(( v— Ziﬂpe v)-‘l )E)
- (Z lﬂp E(al s av—l e*n a,,,|,k b an) I)
= Z i (al e ay—l n*p aH-I ave (1,,) Hp-

Vice versa we shall prove that the conditions M’ = 0, which is
an identity in X, and rank L == n imply also L], = 0. Based on
the deduced formulac we have
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= (Z |L(E ot by Boga o T I X
X Qe €%, @y oo 01) E)

Since rank L = n, a column §, cxists which solves I/, = 01,
if 8, is given. So we van choose in particular £, == n*,. The
identical vanishing of M'3 now implics

He*..e®, L le* . e%} =0,
thus [, [, = 0 or L' L = 0 as we assertod.

The above argument also shows {hat X is a solution of
B
the system

8

X, 62
ax’ aY LA &2
if and ooly if cither

- k=0,lorrank L <nor 'L = 0. (53)

Withoui proof it may be mentioned that

&

&
aX G—U(X’,l'} — (_ 2}nk lLr X lk G—G{X'..'{) tl‘(n. L'L =0,

By means of (31), (33), {86) it can be proved in the particular case
m = 3, » = 2 that the special function

wWX) = €y iy = 02 (54)

satisfies the differential equations

(X' a’X’) w(X) = 4 u(X), of X (x aa‘f ai()) a(X) = 2 u(X),

G(X(X .3 ) )2 w(X) = 8 u(X),

5% 3% ‘u(X =0, (55)

|8X’ oX

Observing that in genoral the operators

(X’ BX) (X(Xa%; a%)’)l‘, (h=1,2,..,n
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generate the ring of all invariant linear operators, this can be
proved easily with the given methods, we see that «(X) is a spheri-
cal function of type (3, 2). However, we have

0'( aiX’ a_@)_() W) = 2 (B4 Tgy 4 Ty Tp) 5 0. (56)
4. The approximation theorem. Lot F(X) be a complex-valued
function defined and continwous in the domain X'X > 0. Let
My{F(UX)} denote the mean value of F(UX) relative to the com-
paet group of all orthogonal matrices U in the sense of bthe theory of
almost periodic funetions. This mean value is a function of
X which is invarfant relative to the substitutions X — UX
(U'U=B), therefore it depends only upon X'X. If F(X) is
invarian$ relative to the substitutions X — X V(| ¥ | £ 0) then the
mean value is obviously independent of X and therefore is a
constant.

For two complex-valued funetions ¢(X) and (X)), defined and
confinuous in X'X > 0 with the transformation invariance
HXV)=1VFEHX), PXV)= |VFEHX)for V|0, (67)
we define a scalar produet by
(B, (X)) = Mp{p(U X) (U X) | X X (7). (58)
It has the property of the translation invariance :
(SUX), J(UX)), = ($(X), p(X))y for U U = B (59}
and determines a positive hormitian metric, i.e.
(#(X), $(X)), — 0 implics (X)) == 0.
This metric and Weierstrass's approximation theorem for con-

tinuous functions are the essential means for the proof of the
following approximation theorem.

TaBoREM 3. . Let g{X) be a complex-valued function, defined and
continuous in X' X > 0, which is invariant relative to the substitutions
X =+ XV with | V] 0. Then there exisls a finile set of spherical
SJunctions wi(X) of degree 2in swch that
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oX)— S XX " uy(X)| < (60)
-3 )< e

holds in the whole domain X' X > 0 where e denoles & given positive
number.

Aceording to the Weicrstrass approximation theorem thore oxist
algebraic forms p,(X) of degree A(h =1, 2, ..., 2k) such that

:

2%
X - > pX)| < (61)
v
for all X of the compact domain X'X = E. We introduce the
mean values

gu(X) = M, {P};(X V}}

relative to the compact group of all erthogonal matrices V. Obser-
ving that the compact domain defined by X' X = F is mapped
onto itself by the substitutions X — X V(V'V = E) and besides
also (X ¥) = g{X)} is valid, we obtain from (61), by computing the
mean values,

Lg(X) - i g,,(X)‘ < efor X'X = E. (62)
b=}

According to well-known theorems of the theory of algebraic
invariants, the algebraic form ¢,(X), being invariant relative to the
substitutions X — X V(V'V = E), is representable as an algebraic
form in the elements of the matrix XX':

(X)) = g%, (X X).
This shows in particular that % is even if ¢,(X) + 0.

Let X be an arbitrary matrix of rank »n. Then we can determine
a non-singular matrix B = RB® guch that

X'X =FR.

Replacing X in (62) by X R~ and observing that g(X R~1) — ¢(X)
we obtain '
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& '
\g(X) - z g%(XR‘l)E < ¢ for XX >0. (63)
h=0

It is obvious that
goa(XB™H) =¥ X B R X') = ¥ (X (X" X) 1 X7)
is independent of the choico of R, and thus represents a one-valued
fanction of X. It is easy to see that
U X) = | X' X [P gup{ X R} = | X' X P g%, (X (X" X)X
is an algebraic form with the invariance property
uX V) = |V [ u(X) for |V | + 0. (64)

In place of (63) we obtain now

, k
lg(x) — Z IX'X [ Puy(X) < e for XX >0, (65)
i P J
The following considerations apply to the linear space consisting
of all algebraic forms of degree 2hn with the invariance property
(64). With w(X) also »{UUX) belongs to this space, U being an
arbitrary orthogonal matrix. For an arbitrary subspace ¥ which
also has these two propertics we prove a lemma of which the appro-
ximation theorem is an easy consequence.

Lmmma. Let 8 be a linear space of algebraic forms v(X) which
satisfy the transformalion formula

WX V)= | V[P o(X) for | V| 0. (66)

Assume that with v{X), L also contains v(UX), U beinyg an arbitrary
orthogonal matriz. Further let k be a given integer > 0. Then there
exists a bagis v,;( X}, v(X),..., v{X) in & such that

o A¥) o X) = A o X) Jori=1,2,...,8 j=1,2,..,k (67)
with non-negative real etgenvalues Ay

The proof will be based on induetion on k. For k — 0 our assertion
is only that 2 has a finite dimension. This is trivial. S0 we can assume
that the lemma is valid for & given value of & (;>0). Then we prove
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it for £4-1 in place of k. First of all we distribute the basis functions
p(X) into classes &, (v =1, 2,..., I} so that two functions v,(X)
have the same system of eigenvalues A;, Ay,..., Ay if and only if
they belong to the same class. Let us assume perhaps v,(X) e R,
w=1,2,..,0). 8 denote the linear space generated by all
v({X) e f,. Then we have

ﬁ =21 +82+ e + S_l.l.
Let o(X) € 2 bo an arbitrary eigenfunction of the operators o{A¥)
(G=12...5:
o(A¥) o(X) = A o(X), (5 = 1, 2,..., B).

Then there exists o unique decomposition
. "
oX) = > w(X) withw(X)eg,
ye=1

011 agcount of
oA wiX) = A w(X), v =1,2,...,10)

it follows that

1 3
o(A%) o X) = > Ay w(X) = > Nw(X),

- 1 I‘-l
therefore
Ay w,(X) = X w(X)

for all ¥ and j. w,(X) % 0 implies
Ag= A for j=1,2, .. k

This of course is impossible for two different » <. Thus only
one w,(X) differs from 0 and »(X) € €, is proved. Because of
the invariance properties of the operators o(A¥) it is obvious
that with o(X) also »(UX) is an eigenfunction of the operators
o(A¥)y (j=1,2,..,%) if U denotes an orthogonal matrix. v(X)
and #(UX) even belong to the same system of eigenvalues. This
proves that, with »(X), 2, contains also »(UX). In other words,

B

T gt < i

i g T
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each subspace @, itsell has the characteristic properties of £.
So it suffices to consider the subspaces £, individually. Without
loss of generality we can identify such £, with 2, L.e. we can assume

Am’j . Aj: (j =12 .. k)) (68)
for all 4.

For a given orthogonal matrix U the mapping #(X) — »(UX)
defines a linear transformation of ¥ into itself. Thus we hnve

v UX) = D DU vo(X), (n=1,2, ... 8)

yi

with certain coefficients D, (U). We assume that the »,(X)'s form
an orthogonal and normalized basis, Le.

(wﬂ.(’x)) 'U..(X))z}a = 8,uv‘

Because of the translation invariance of the scalar product the
»,(UX)'s are also orthogonal and normalized. This proves that

D(U) = (Du(U))

is & unitary matrix and it turns out that the function

FX,X*) = > o/(X) v(X% (69)

vl
is invariant relative to the simultaneous substitutions

X— UX, X*— UX*, (U'U = E).

Here a general oconclusion applied already by E. Hecke [8]
again gets importance. On the strength of the invariance property
of F(X, X*) we deduce now the differential equations for the
basis functions @,{X)}. It is well known that

U—(E+8) (BE—8)* with 8 +8 =0,

defines a parameter representation of the orthogonal matrices.
Since F(UX, UX*) is independent from U and so from S, the
partisl derivatives of this function relative to the eloments
$4lp <o) of the matrix § vanish necessarily, i.c. we have
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9 mUx, X% —o.
0s,,

It suffices to discuss these conditions for § =0. A development
into powers of § yields

U = K 4+ 28 4+ higher powers of S,
therefore
8 ] 2
— UX=2_— 8X =2 —_
9, ds,, (z 5,4 O x“’)
= 2(3,, ¥, — 8, %,,), for §=0,

This leads in the case 8§ =0 o

aP(X, X¥)
dz,,
AF(X, X¥)
+2 D (8,0 — 8,7, —
z (/2 n p amm
aF(X, X* aF(X, X*
_22 ”___(._____) 22 p,__ﬂ_____)

dx,

o oy

2 F(UX UX*) =23 By = duu )

1214

"'22 .aF(X X*) 22 2 aI«'(X X%

=0,
or, rewritten by means of the matrix caleulus,
AFX, X* 4 A F(X,X*) =0, (70)

Here A* denotes the operator which arises from A if we replace
X by X*. Acocording to (69) we obtain

Z Av(X) oK% + 2 o X) Ao XF) = 0, o)

This shows, since the functionsv,{X) are independent, that relations
of the kind )

Ag(X) = 3 04X)Cr (r=1,2...,9), (72)

H
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with certain constant matrices (', are valid. A and so all C,’s
are skew-symmetric:
¢, =—0, (73)

In (72) now we replace X by X* and also turn over to conjugate
complex expressions. By means of the relations, besides (72), which
we obtain in this way, (71} can be rewritten as follows:

> 5(EF) 00X) O, + > 0 (X) 0, {EH T, = 0.

v v

This implies, according to the independence of the functions v,(X),

Op=—0C,, =0, (74)

iy

Thus particularly the clements of €, are pure imaginary numbers.
The repeated application of A to the basis functions v (X) yields
N v (X) = 3 v,(X) 09, (75)
u
with certain constant matrices %) which obviously';sa;tisfy the
rolations

Oh =3 08 CY, 0P =0,

»

By means of induction on j it is oasy to see that

=00
holds for all j > 1. This shows
O = 2,0000= 2,000 >o. (76)
n e

Taking the trace we obtain from (78) with 2j in place of §
o(A%) v X) = > 0,(X) i, -

"
where

) == o(CEP) = o CN) = 3.
This is to say (¢)) is a hermitian matrix. So we can find a unitary
matrix U which transforms (¢%*1) into a diagonal matrix, We
expross this fact in the form
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N U = UG, Ay, (78)
The funections of the new basis
(wy(X), wy(X), ..., w(X)) = (vy(X), vo(X), ..., v (X)) U
now turn out to be eigenfunctions of the operator a(A”‘.“):
AAFTR) (X)) =MD w(X), (v =12, ..., ¢). (7%)
The relations
ANy Xy =X (X} (1=1,2 .. . kv=12..3)
of course can be carried over at once to the functions w,{X}:
o A¥y w (X)) =X w(X), (F=1,2, ..,k v =1,2,..38. {80

Finally we have to observe that for an arbitrary system of complex

pumbers z,, Z,..., 2, the hermitian form
N o N
>z = a8 2,5)= > o(CH092,3)
v £y Hw, B
= DO, 3y (Y3Y o, 5
= > o0 0P 2,5 = > "(Z o G 2, z,)
Hvp [ XS
i
— )
-SoSen)(San) >
I3 rl v

so that in particulsr for § == & -4 1
ALy =0{v=12..3). (813
By this our lemma is proved.
On the strength of the lemma, applied to the special case & = »,
one can see that a decomposition of the algebraic form wu,(X),

appearing in (65), into eigenfunctions w,(X) of the operators
o(A®) @ = 1, 2,..., ») is possible :

u, (X) = Z (X}
i
As we have seen before, {X'X |~* u,, (X) represents a spherical

function of the type (m, n) for a suitable exponent a > 0 which
may depend upon & and j. This completes the proof of Theorem 3.
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5. Theta series. The Ganss-transform «*(X) of a function u(X)
is defined by

wH{X) = j w(X 4+ D) e {47 (82)

4

Heore T denotes the full space of all real matrices 1" = 1" = (¢,)
and [d77 tho product of all differentials di,. We call w(X)
an eigenfunction of the Gauss-transformation il w{X} s 0 and
w*{X) = A u(X) holds. Assume that »(X) is & polynomial different
from 0, then «*{X) is also one and according to

j eI D @] == 1,
x
we¢ have

—
f
\‘.‘:-
-

degree (w¥(X) — u(X)) < degreo w(X},
so that necessarily A =1 if »{(X) is an ecigenfunction.
In the sequel wo denote by ¥ == Y™ a positive real mabrix
having variable cloments and by § — 8™ a posivive matrix having

arbitrary but fixed chosen eiemenis.

TuEoreM 4. Lel w(X) be a polynomial with the invariance property
WX V) = |V{*FuX) for |[Vi#0, (84)

wssume also that w(X) is an eigenfunction of the Gauss-trunsformulion.
Further on we infroduce Q by S = @'Q, @ =@ > 0. Then the thelu
series
MY, 8;u) = z w( Q) ¢ rTSIED, (83)
(2]

where G has to run over all integral madrices of lhs lype (B,

satisfics the transformalion formula
KT, 85 u) = (— L (8|72 | ¥ {22 (Y, 574 u).  {36)

In order to prove this we develop the theta series
ﬁ(X, Y, S: #) = 2 ’:‘L(Q(G + X)} ﬁ—na(YS[G—h\'])’ (87)
w

which is a periodic function of X, into a Fourier serics. Wo obtain
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MY, Y, S u) = Z (@, Y, 8; u) @D (38)
@
with
(@, T, 5 u) j QX 6oL 2mio) 17 ],
x .
X denoting the full X-space. In this integral we substitute X, =
QX R for X, R being determined hy Y = RE, B = R> 0. Using
{84) we find by a simple computation
WG, ¥, 8;up= | § 17" | ¥ |72k q3(— i gL @ Ry ¢naty =15 (01,

u*(X) denoting the Gauss-transform of %(X). Wo can spiib off thoe
factor R~ from wX(—iQ~' ¢ B~Y) if and only if w*{X)} = u{X).
In the case w*(X) 5 w(X), u*{X) is nob even homogeneous as (83)
shows. In order to obtain a reasonable transformation formula
for our theta series it is necessary to assume wHX) = w(X}. Now
it is casy to state that

GL{G, Y’ S; u) — (_l)kn JSI_RM l Yi-m,’z-—zfc 'L&(Q“l Gg) a—ﬂﬂ(l"‘JH"liGi)_
Thus we can carry over (88) with X — 0 and Y~! instead of ¥

immediately into {86), the asserted formula.

The question whether for spherical functions u(X), wH(X) = u(X)
always holds is to be answered in the negative. For instance in the
special case m =3, n = 2 the spherical function

W) = £y5 15
= &gy gy Ly + Ty gy By = Ty By By, Fgy — By, Ty Fg1 Ezgs
we considered already, differs from «*(X). A simple computation
yields ‘
1
w*(X) = u(X) + 5 (11 @ay + %1y Ta).

It is however remarkable that generally with «(X) also w*(X) is
an eigenfunction of the operators ¢(A™}, (v =1, 2, ..., n), and thab

. a

th w(X), | o
mth Ul ox ax
facts more precisely in

also annihilates w¥(X}. We formulate these
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TugoreM 5. If « pelynomial w(X} satisfics the relations
9 9
ax’' oX

wX) =0, s(A®) u{X) = A w(X), v=1,2,...,n), {89)

then they are valid also for the Gauss-transform uw*{(X) of w(X).

The proof is based on a general integral transformation which
can be considered as a generalization of the method of partial
integration. Now we denote by [dX] the exterior product of all
differentialy dw,,. Letw, be the exterior product of all dz,, with
the exception of dx,,. We intend to choose the order of tho factors
such. that

[dX] = da,,. o,
holds. Weset Q = (w,,). Further on let & be an oriented compact
and measurable domain in the X-space with a measurable boundary

N, Wo carry over the orientation from & fo 1. On these promisses
we prove the following

Lemma. Let A = A" = (a,) and B = B™ = (b,) be matrices
with funclions of X as elements which have derivatives of sufficiently
high order. Then

K AAF B{aX] = J (B'AF A'Y[dX] +

k=1

- Z [ (AAY (X - QXY A1 B (90)
v=t %

holds for an arbitrary watwral number k.
First of all we cstablish by means of Stokes’ integral-formula

o .
ax % pax;— | axo'B—
i 2 BLAX] j
,J (1(‘( a,i})' Af)' [dX] — nJ AB[AX]. (91)
1] o

‘A straightforward computation yields indeed
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X AX ﬁ, BdX]

]

_ j (z o b,,) [dX]

Py 95T

(z Ev ®p Lo n) [2X] J(z b, awxpu) [dX]

oy W maT

(dz [ ) —

I(Z b, % w3 a)[dX]“"j(z Bry Gy u)[dX]

BT W CASS

J(Z By %yq 0 b, )

PyO,T

j(z b, .wﬁa ){dX] —ni(z b, ) 4]

MHa,T

j AXQ'B j (B’(X ) A*)’ [dX] — 'nj ABlAX).
R ]
The analogous formula
l A(X éf) BldX]

:j AQX'B —J' (B'X a% A')' [dX] —njAB[dX] (92)
o b

¥

&

I

can be obiained from (91) in a simple manner by transposition.
Subtraction of (92) from (91} yields (90) in the special case &£ = I.
A general proof of (30} is now possible without difficulty by induc-
tion on k.

Now we chcose 4 =H(X)E, B =y(X)F and form the trace
of (90). At the same time we extend & to the full A-space which was
designed with X. By a suitable choivo of ¢{X} we sholl take care
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later that all limit processes remain legitimate, in particular also
that all houndary integrals vanish. Our lemma then yields

j $X) oA YD) AX] = [ W) oA 40 (XL (90)
S ¥

Tn
w¥( Ty = j (T 4+ X) o= ™0 (4307
%

we substitute X, =X — T and then replace 7' by — 7. So we abtain
for
wl(T) = u¥( —iT) g~ ™D
the representation
(T} = Ju(X) g TR B X
3

Since o{ X’ X) can be considered ns a congtant with respect to
the operator A it is sufficient to prove that

oAy w( Xy = A w(X), (v=1,2,..., n).
Then these differential equationy are also valid for «4*(X) in place
of w(X). We set more precisely A=A, and denote by A, the

operator which arises from A, by the substitution X — 7. Tt is
easy 1o see that

—2mie{ ATy, AV 2wie(XT
Az P e ) - A‘ g~ 2wie )’

and by induction on %
A’; P L C e T ( AJtu): o—2mial "7
This leads indeed to
(Ai:+1)‘ g 2wialX°T) (Af A'rx)’ &~ 2miolX'T)
- Az(Af)l e—Znia(X'T)
—_ Ak-i-i G—Zniu(X’T)
£ .
Taking the trace, we obtain

G(AL) g2 TT) o g ARy @ 2riolX'T)
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In order to determine the effect of o(A®) on w(T) we apply (93)
to k=2, HX)=u(X)e ™FD YX)= 2@ Qo wo get
finally

U(Af") wl T} — { u(X) (,’——w(.’\".\')s U(A?") e—..m'u(.]"ﬁ“)[d_;\r]
4

mj u(X) a= 7N G(AB) =TT T T

e—wav(X'T} G’(AEV) 'H-(X) e—m‘!(X’X)[dX]

Hm—y

,\ J —no{X'X)nznfc(X’T)[d_X} — )l,’w{T),
&

the asserted rolations. Tt is trivial that nlso the fivst of the differential
equations (88) can be carried over from w{X) to w*¥{X). So
Theorem 5 is proved.

A characterization of the algebraic forms whieh are eigenfunctions
of the Gauss-transformation yields

TeEOREM 6. The Gauss-transform w*(X) of an algebraic form
u(X) is identical with w(X) of and ondy +f w(X) is a solution of the

Lapl d ¢ i X)=0.
placian differential equation o ( =% aX) w(X)

In this connection the fact that X is a rectangular matrix of an
arbitrary number of columns does not come into appearance. So we
can assume without loss of generality that n=1. Let X = ),

then A = ( -3 i) In the sequel we dencte by w(X)

“ B, "o
an algebraic form of deg;ee & which does not vanish identically.

1. Assume o ( i ‘_a_m

28X’ oX
ordinary spherical harmonic of m variables. Thus we have

o(A%) w(X) = A u{X),

) uw(X) = 0. wuw(X) then represents an
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and also, according to Theorem 5,
(A uH{X) = X wH(X),
with a constant cigenvalue 4. We apply the well-known operator

identity
J,U(Az)j(zx i)z _r(m#z}(zx ?_) -
: " " ax Y du

~(54)(38) e

W) = D b (X) with hy (X) = u(X),

v=0(}

to #¥(X). Let

be the decomposition of «*(X) into homogencous berms such thab
A(X) has tho degree v, Then wo obtain
v (=

&
A () Z (v - — 2) £ (X),
thorelore e

A =y +m —2)iTAX) % 0.

This happens for v ==k, so that A, > v(v + m — 2) for v < k, which
proves w*(X) = w(X).

2. Wo apply the Gauss-transformation to tho polynomial

— V. 1B ¥
u(X) - Z a'ylvl...vmxl] Lo o Loy

A first coinputa.tion yiolds

o«
@,y m)* = j ‘[ emm T e ) (L L (R, ) AL dt

I
—g
<
|
EN
)
+

-

(102, () | ().
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Obviously it suffices to define the summationon even §;. For
such j3;

o Bl Jp e BRI 1"( JB_t_'tl)
2

{
sf--——"-aS

holds. Consequently

¥ —Bi—k i
@) o »|| (2 (F)yrs e paeia)
apbizt i
i+ BBi==vy
-2 2 () () e 9T+ 1
=1 &jgiz0 X
a2y
3 g Bt et B — o al..x,
thus
u*('x) = Z a’vlvz...um (ﬂ;? x‘.? * m m)*
EZ%MmW%%%
with
< 2
b = % +2381 mm,"i_ Bm W
LI Cogty + 28y oy + 2Bia e o
; %y n
=l Bizd

X TR, + 3) e DB +4) w0t PP

Since #(X) is assumed to be an algebraic form of degree & wo
need only to consider those systems of numbers 8, B,, ... B, for which

oy A oy 2By b ) =k

In particulsr we obtain, for o ... oy =k —2,

bm‘ T T Z (QC -+ 2)(0& + l) Gy o 1"‘!‘3""“?-11 St

1=1
Now 4*(X) = u(X) implies

baim,_.,_uh‘ =10, for o + oy 4 ..\ Fay, == 2.
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These relations first mean that

P
Z 3 .a. u(X)

f=1

- Z(Z(“ -+ 2) ( +}‘ a’“x R e T f,m)x“la,z Lyt = 0.

So Theorem 6 is proved,

6. Angular characters. In the spaece of all positive real matrices
Y = Y™ = (y,} we can dovelop a theory of invariant linear
differential operators analogously to that of the X-space. Since we
meet a rather simpier situation in the ¥-space we need now only brief

considerations. Let .. = (e .- 9
aY * o,

as = or wsEv. L denotes o lincar differential operator, ie. a

) with ¢, =1 or } according

polynomial in the elements of ;}7 with functions of ¥ as coofficionts,

We call € = F( Y, aﬂy) invarians if

F(Y[U], %{, [U“‘}) - F( Y, ;f) for [UI#£0  (95)

holds. Let %% be again the module of all linear operators, i, the
modulo of all operators of degree < h and R the ring of all invariant
lincar operators. (40} is still valid now.

oY

. o _
and Likewtse cr(( ¥ 6_27) ) =1, 2,..., n) form a busis for the ring

9 of all invariant linear operators.

3
TurorEM 7. The invariant operators o-( ¥ —a-) (h=1,2..,n)

in order to prove this theorem, which was first anmounced by
A. Selberg, we choose a symmetric matrix W — W™ with variable
clements. We assume that they are commutable with those of Y.

Let £ = F( Y, ;f’ ) be invariant. Then we have with regard to {95)

F(Y, W) =F(@, (WU V], : (96)
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if Y{U ) = & and ¥V an arbitrary orthogonal matrix. The right side
of (98) is a symmetric polynomial in the characteristic roots of
W[U'5], consequently also representable as a polynomial in

o(WIU T I =YWl =o((FW)P (R =1,2,..,n).
Let
FY, Wy=plo(YW),...,al YW =p{c{TWY, ..., (YW) )

be such a representé.tion. If Q is of degree k, we obtain on the
strength of (40)

Q=p(o(¥55) 0 o(T55)")
Ao o (755 ) Y

Our asgertion now follows in the uswal manner by induetion on k.

Let ¥; = ¥~'. Introducing d¥, = — Y 1dY ¥~ in

oo (41 ) b=e (47, )

where ¢ denotes an arbitrary function, we obtain

2 3\
¥y o —— = .
Yy (Ylayl)

Thus the substitution ¥ — ¥~! maps the ring N of all invariant
linear operators into itself according to Theorem 7.

The space defined by ¥ = 0 can be considered as a Riemannian
space relative to the metric introduced by the differential form

de? = oY1 d ¥
Let w denote the invariant volume element on the determinant

surface [Y|=1. Further let , be a fundamentsl domain in
Y > 0 relative to the group of transformations ¥ — Y [U] with

e vt g St e it et
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unimodular U. For instance we can take for §§, the domain of
all reduced positive ¥ in the sonse of Minkowski. Let B, denote
the interseotion of {§, with the determinant surface | ¥ | =1.

A function »(Y) shall be called an angular character if

L. #(Y}is holomorphic in ¥ > 0 and homogeneous of
degree 0,

2. o(Y) is an eigenfunction of the ring M of all
invariant linear operators,

3. v{Yiul) =o(Y) is valid for unimodular U, (97)
4. v(Y) is square integrable over B,, so that

j 2(¥) 2(T) w exists,
By

In applications we replaco the fourth eondition first of all by the
sharper one saying that ¢(Y) is bounded. Since the metric introduced
inY > 0 and also the ring % are invariant relative to the substitu-
tionY — ¥ !, it is easy to see, that with v(¥) also v¥{¥) = v(¥ 1)
represents an angular character. Bub in general v(¥) and v(¥*) be-
long to different eigenvalues, This may be mentioned without proof.

Here we note yet an integral formula, a generalization of the
Euler gamma-integral, which was proved already elsewhere [5]:

6—2170{1'1’} 1)( Y) I Y ia—(n-{- 1y/e [dY}
¥>0
= (2m) T T8 -~ w ) D — ag) o D(s — o) a0 D=1y | T~ (98)

Here it is 7" = T™ > 0, »(¥) a bounded angular character, [d¥]

= II dy,, and &, @y, ..., o, a set of constants which are uniquely
nEy

determined up to the order by the eigenvalues of v(¥). We have to
agsume Re s > {(n — 1)/2.

7. Zeta-functions. In the sequel u(X) denotes a spherical func-
tion of type (m, n) and dogree 2kn and ¥(¥) an angular character.
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We assume that ©(Y) is bounded and w(X) a non-constant eigen-
function of the Gauss-transformation so that in particular & > 0.
‘The theta serios (85) can be rewritten ag

NY, 8 u) = Z a(T, 8; uy e~ YD, (99)
T>0
with
alT', 8; u) = z w(@A, (100}
S[G?:T_

where the finite sum must be extended over all integral ¢ with
S[G]=T. We introduce y and ¥, by ¥ =y¥, y> 0, | ¥, =1
and apply the Mellin transformation o the theta series, this being
considered as a funciion of y, i.e. we form the function

n(s; ¥y, S; w) == j Hy Yy, 8 u) ¢t dy.
©

For brovity we set ¢, =n~t 2"~V denote by {7} the class of ail
with T(> 0) equivalent matrices T[T, where U/ denotes an arbi-
trary unimodular matrix, and by (7" the number of units of 7'.
We use §,, B,, w in the introduced meaning. In anology with a
computation carried out in [5] we obtain now

£ols; 85w, v)

= j s Y, 8 w)v{Y ) w
By,

L

o
= J Y, 8 u) o(F) | TP~ B+02 4T
Fn

Hy Ty, 8 u) o(¥y) g™ dy w

= ¢, z alT, 8, u) J e~mi N Ty | T |-t 02 [ 7]
20 &

e = g e o et e £ n
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| a{T, 8; 'u) — ol Ly
=y Z G(T) 2—: X TR (Y)Y tORgY],  (101)

"

where 7 hag to ran over ali unonodular matrices. The addition
of all intograls and the application of the integral-formula {88) yield

Euls; 85 n, )

=20, o, .if___“_) j (=T (FY | Y40 [17]
i} E( ) Y=o
- 5: (2= 5 Dls o) T{s— o) . Tls = ) bls, S 1, v%)
"
with

T ¥
Bs, S u, %) - z " .1 S u) "‘{f’. o Ty — w{Y. (102)
Pt SRV
The summation over the classes {7} can be replaced by a summa-
tion over ' eF,. According to the signification of a(7', 5; u} we get

w(@ @) v*(8{4))
«(S[G]) | S[e1

Sl edn

dls, 8w, 0% — {103)

where & has to run over all integral matrices such that J[GleF,.
A set of matrices of this kind can be obtained by forming the
products G = G* U, where G must run over a full set of integral
matrices of rank s, such that each two are not right-associated,
and, U over a full seb of units of S[G*] provided that G* is given.
Two matrices are callod right-associated if they differ by a uni-
modular right factor only. Writing *U in place of ¢ we see that
the general term in (103) does not depend upon U, thus we obtain
finally, after writing again @ instead of G*,

w(@G) v*{(S[G])

! 104
S@ar (104

Hs, 8; u, v¥) = z
&

where the sum must be extended over a full set of integral matrices
G of rank =, such that cach two are not right-associated.
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A functional equation for the functions (s, §; u, ») and
$(s, 8, w, »¥) can be obtained by decomposing the integral
over , in

£ (s, 8 u, 0) = cnj ST, 8wy o(¥) |7 -0 0R[GY]  (105)
&n

into two parts corresponding to the decompesition of F, by
the determinant surface |¥|=1. We assume that ¥ 18 Invariant
relative to the substitution ¥ — ¥~ In that part of the integral
which must be extended over the intersection of §, with |¥| < 1
we substitute ¥ — ¥~! and apply the transformation formula.
Observing that | ¥ |~*+2 [d¥] is invariant relative to the substitu-
tion ¥ — ¥ ! we obtain the following representations

~&ols, 8 u, v)

C =g, J MY, S; u) oY) | T P2 1Y) 4
Yefin
¥zl
e | S 850 w7 7 e ()
¥egn
I¥iz1
—¢, j{z‘}(y,s; W o(¥) Y P+

Yefy
|Fiz1

F(=LF [ SITMEHNY, 87 ) v¥(X) | X R Y TR Y ]

All these expressions have first of all a meaning only if the real part
of 5 is sufficiently large. The last integral however represents, as
can be seen easily, an entire function of 5. So the analytical con-
tinuation of ¢{s, §; %, ¥*) into the whole s-plane is performed. It is
. obvious that ¢(s, S; u, v*) is an entire function of 5. The integral-
representation of £,(s, S; u, v) yields directly

Em/2 + 2 — s, 8, 8) = (— 1™ | |72 gyfs, §~% w, v¥).  (106)

The replacement of v by v* and consequently v* by » may carry
OVer &, X, ... %, N0 B, By, ... B Introducing
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s, 8w, v) = .\_g_'_?' (2a)min= 14 £ (s, 8; 0, v¥)

we obtain finally the following result,

TumorEM 8. Let u(X) be a spherical function of type (m, n) and
degree 2kn, o{Y) an angular character. Assume that w(X) is a non-
constant eigenfunction of the Gauss-transformation and that v(¥) is
bounded. Then the Dirichlet series

. = > w@G) v (S[G])
?5(8! Ss U, ?))--- ; W,

where the sum must be extended over a full set of integral matrices &
of rank n such that each two are not right-associated, represents an
entire function of s. It satisfies the functional equation

£(m2 + 2k — 8, 85w, v) = (— 1y | 8]~ §(s, §7; w, v¥)
where
£(s, 55w, v) =a " (s — B;) T(s ~ 182) T - 1871) 95(3: S5 u, )

with ceriain constants Py, o, ..., B, which depend only wupon the
eigenvalues of v,
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