HERMITE'S IDENTITY AND THE QUADRATIC RECIPROCITY LAW

FRANZ LEMMERMEYER

In this note we give a proof of the quadratic reciprocity law based on Gauss's Lemma and Hermite's identity.

Let $p=2 m+1$ and $q=2 n+1$ be odd primes, and let $A=\{1,2, \ldots m\}$ and $B=\{1,2, \ldots n\}$ denote two half systems modulo p and q, respectively.

For each $a \in A$ we have $q a \equiv r_{a} \bmod p$ for some $0<r_{a}<p$, hence either $r_{a} \in A$ or $p-r_{a} \in A$. In particular, $r_{a} \equiv \varepsilon_{a} a^{\prime} \bmod p$, where $\varepsilon_{a}= \pm 1$ and $a^{\prime} \in A$. Taking the product of these congruences we find

$$
q^{\frac{p-1}{2}} \cdot m!\equiv \prod \varepsilon_{a} a^{\prime} \bmod p
$$

and since $m!=\prod a^{\prime}$ and $q^{\frac{p-1}{2}} \equiv\left(\frac{q}{p}\right) \bmod p$ we obtain

$$
\left(\frac{q}{p}\right)=\prod_{a \in A} \varepsilon_{a} .
$$

Now $\varepsilon_{a}=1$ if $0<r_{a}<\frac{p}{2}$ and $\varepsilon_{a}=-1$ otherwise; on the other hand we see that

$$
\left\lfloor\frac{2 q a}{p}\right\rfloor-2\left\lfloor\frac{q a}{p}\right\rfloor= \begin{cases}0 & \text { if } r_{a}<\frac{p}{2} \\ 1 & \text { if } r_{a}>\frac{p}{2}\end{cases}
$$

Thus $\varepsilon_{a}=(-1)^{\left\lfloor\frac{2 q a}{p}\right\rfloor}$, and we have proved
Lemma 1 (Gauss's Lemma).

$$
\left(\frac{q}{p}\right)=(-1)^{M} \quad \text { for } \quad M=\sum_{a \in A}\left\lfloor\frac{2 q a}{p}\right\rfloor .
$$

Next we transform the sum M modulo 2 .
Lemma 2. We have

$$
\sum_{a \in A}\left\lfloor\frac{2 q a}{p}\right\rfloor \equiv \sum_{a \in A}\left\lfloor\frac{q a}{p}\right\rfloor \bmod 2
$$

Proof. The terms $\left\lfloor\frac{2 q a}{p}\right\rfloor$ with $a<\frac{p}{4}$ occur as $\left\lfloor\frac{q \cdot 2 a}{p}\right\rfloor$ in the sum on the right. We pair the remaining terms $\left\lfloor\frac{2 q a}{p}\right\rfloor$ with $a>\frac{p}{4}$ with the terms $\left\lfloor\frac{q a}{p}\right\rfloor$ with odd values of a in the sum on the right by pairing $\left\lfloor\frac{2 q a}{p}\right\rfloor$ with $\left\lfloor\frac{q(p-2 a)}{p}\right\rfloor$. The claim follows from the observation that the sum of these two terms is even; this in turn follows from $\left\lfloor\frac{2 q a}{p}\right\rfloor+\left\lfloor\frac{q(p-2 a)}{p}\right\rfloor=\left\lfloor\frac{2 q a}{p}\right\rfloor+\left\lfloor q-\frac{2 q a}{p}\right\rfloor=\left\lfloor\frac{2 q a}{p}\right\rfloor+q-1-\left\lfloor\frac{2 q a}{p}\right\rfloor=q-1$, and we are done.

Here we have used the fact that $\lfloor a-x\rfloor=a-1=a-1-\lfloor x\rfloor$ for all natural numbers a and real numbers $x \in \mathbb{R} \backslash \mathbb{Z}$. In fact we have $\lfloor a-x\rfloor=a-1=a-1-\lfloor x\rfloor$ when $0<x<1$, and the claim follows from the fact that both sides have period 1.

Now we know that

$$
\left(\frac{q}{p}\right)=(-1)^{\mu} \quad \text { for } \quad \mu=\sum_{a \in A}\left\lfloor\frac{q a}{p}\right\rfloor \quad \text { and } \quad\left(\frac{p}{q}\right)=(-1)^{\nu} \quad \text { for } \quad \nu=\sum_{b \in B}\left\lfloor\frac{p b}{q}\right\rfloor .
$$

This implies

$$
\begin{equation*}
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\mu+\nu} \tag{1}
\end{equation*}
$$

For proving that $\mu+\nu=\frac{p-1}{2} \frac{q-1}{2}$ (from which quadratic reciprocity follows) we use Hermite's identity:
Lemma 3. For all real values $x \geq 0$ and all natural numbers $n \geq 1$ we have

$$
\begin{equation*}
\lfloor x\rfloor+\left\lfloor x+\frac{1}{n}\right\rfloor+\ldots+\left\lfloor x+\frac{n-1}{n}\right\rfloor=\lfloor n x\rfloor . \tag{2}
\end{equation*}
$$

Hermite [1] proved this identity using generating functions; the elementary proof given here can be found in [2, Ch. 12].
Proof. Consider the function

$$
f(x)=\lfloor x\rfloor+\left\lfloor x+\frac{1}{n}\right\rfloor+\ldots+\left\lfloor x+\frac{n-1}{n}\right\rfloor-\lfloor n x\rfloor .
$$

It is immediately seen that $f\left(x+\frac{1}{n}\right)=f(x)$ and that $f(x)=0$ for $0 \leq x<\frac{1}{n}$. Thus $f(x)=0$ for all real values of x, and this proves the claim.

Applying Hermite's identity (2) with $x=\frac{a}{p}$ and $n=q$ to the sum μ and using the fact that $\left\lfloor\frac{a}{p}+\frac{b}{q}\right\rfloor=0$ whenever $a \in A$ and $b \in B$, we find

$$
\begin{aligned}
\mu & =\sum_{a \in A}\left\lfloor\frac{a q}{p}\right\rfloor=\sum_{a \in A} \sum_{b=0}^{q-1}\left\lfloor\frac{a}{p}+\frac{b}{q}\right\rfloor=\sum_{a \in A} \sum_{b=n+1}^{q-1}\left\lfloor\frac{a}{p}+\frac{b}{q}\right\rfloor \\
& =\sum_{a \in A} \sum_{b=1}^{n}\left\lfloor\frac{a}{p}+\frac{q-b}{q}\right\rfloor=\sum_{a \in A} \sum_{b \in B}\left(\left\lfloor\frac{a}{p}-\frac{b}{q}+1\right\rfloor\right) \quad \text { and, similarly, } \\
\nu & =\sum_{b=1}^{m}\left\lfloor\frac{b p}{q}\right\rfloor=\sum_{a \in A} \sum_{b \in B}\left\lfloor\frac{b}{q}-\frac{a}{p}+1\right\rfloor
\end{aligned}
$$

Clearly $\left\lfloor\frac{a}{p}-\frac{b}{q}+1\right\rfloor=1$ if $\frac{a}{p}-\frac{b}{q}>0$ and $\left\lfloor\frac{a}{p}-\frac{b}{q}+1\right\rfloor=0$ if $\frac{a}{p}-\frac{b}{q}<0$; this implies that $\left\lfloor\frac{a}{p}-\frac{b}{q}+1\right\rfloor+\left\lfloor\frac{b}{q}-\frac{a}{p}+1\right\rfloor=1$, and we find

$$
\mu+\nu=\sum_{a \in A} \sum_{b \in B}\left\lfloor\frac{a}{p}-\frac{b}{q}+1\right\rfloor+\sum_{a \in A} \sum_{b \in B}\left\lfloor\frac{b}{q}-\frac{a}{p}+1\right\rfloor=\frac{p-1}{2} \frac{q-1}{2} .
$$

References

[1] Ch. Hermite, Sur quelques conséquences arithmétiques des formules de la théorie des fonctions elliptiques, Extrait du Bulletin de l'Acad. Sci. St. Pétersb. XXIX., Acta Math. 5 (1884), 297-330; Oeuvres 4 (1917), 138-168
[2] S. Savchev, T. Andreescu, Mathematical miniatures, MAA 2003
Mörikeweg 1, 73489 Jagstzell
Email address: hb3@uni-heidelberg.de

