A simple proof of the infinitude of Primes

Franz Lemmermeyer

March 30, 2020

The following is a simplification of the proof of the infinitude of primes using continued fractions given by Barnes [1]. Assume that there are only finitely many prime numbers, namely $2, p_{1}=3, \ldots, p_{n}$. Let $q=p_{1} \cdots p_{n}$ be the product of all odd primes; then $q^{2}+1$ is not divisible by any odd prime, hence must be a power of 2 . Since $q^{2}+1 \equiv 2 \bmod 4$, we must have $q^{2}+1=2$ and therefore $q=1$: contradiction.

Since no odd prime $p \equiv 3 \bmod 4$ can divide $q^{2}+1$, the proof actually shows that there are infinitely many primes $p \equiv 1 \bmod 4$.

References

[1] C.W. Barnes, The infinitude of primes; a proof using continued fractions, L'Ens. Math. 22 (1976), 313-316

