HERMITE’S IDENTITY

FRANZ LEMMERMEYER

Hermite’s identity is the following distribution relation for the floor function:

Lemma 1. For all real values x > 0 and all natural numbers m > 1 we have

(1) ij+{x+%J+...+{x+mTJ:meJ.

In this note we collect a few proofs of Hermite’s identity.
Hermite’s techniques from [3] were studied by Giulini [2] and Basoco [1].

1. HERMITE

Hermite [3] proved (1) using generating functions. Assume that a function f is
given as a power series

flx)=Ag+ Az + Aga® + .. .

then
{(_xi = Ao+ (Ag+ Az + (Ao + Ay + Ag)a® + ...
as can be verified easily by multiplying through by 1 — z.
Next
flx®) = Ag 4+ Ayz® + Agz®* + ...,
hence Fa
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where v = [Z|. For f(z) = 71 this implies
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This implies

(1 —x)(i —gma) 2 anZmen

n>0
since 14 [ | = [2dma |,
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Multiplying this last equation through by z*¢ we obtain
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Observe that (1) is true for very small values of z; thus it is sufficient to prove the
identity for rational values of x.
Now the identity
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implies
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Replacing the summation index k by m — k we find
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On the other hand we know
n+a n+a __ \‘QJ n
(1—1 )(1 —z9) Z{ J _Z al®
n>0 n>a
Comparing the coefficient of 2™ and setting z = - we find
-1

ey = (3] - |2k -5 o £

k=0

2. WEBER

In his proof of the Theorem of Kronecker and Weber given in [9], Weber has to
deal with the class numbers of cyclotomic number fields, and he uses a result on
the greatest integer function that generalizes Hermite’s identity.

For 0 <z <1 (and 0 <t < m) we have

t LLJ =0 or
o+ ] =41
m L*J+1 =1
according as there is an integer between - and x + ~ or not. The first case holds
ifandonlyif 1=[L|+1<az+ L ie, 1fand onlylf
(3) m —t < maz.

The number of values of ¢t > 0 satisfying this inequality is clearly |max]. Thus there
are |ma] values of ¢ for which |2 + L] =1, and Hermite’s identity follows.

3. STERN

Stern [8] determines an integer k satisfying

k k+1
— < [
L$J+m*x<tﬂ+ m

Multiplying through by m he finds
m|z] +k <mx <m|x]+k+1,
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thus [mx| = m|z] + k. On the other hand we have

m—k—1 k+1 m—-k-1 k m—k m—k
x+T<LzJ+ + :LIJ+E+ <

m

and this implies
m—k—1 m—k
4 —<|z| <+ ——.
m m

Thus each term )
o o k[ g M
has the value |z, whereas each term
m—k m—1
P P ¥
m m
has the value |z] 4+ 1. The sum of these terms thus equals

(m - k)|2) + k(|| +1) = m|e] +k = [ma).
4. PoLyA & SZEGO

The proof by Polya & Szego [6] is very short. Clearly it suffices to consider the
case 0 < z < 1. Determine k such that

k-1 k
T+ <1<+ —,
m m
i.e.,, —k = [ma — m] = [ma] — m. Both sides are = m — k.
5. MATSUOKA

The elementary proof given by Matsuoka [5] was included (without attribution)
in [7, Ch. 12).

Proof. Consider the function

fl@) = 2] + [H%J T [HmT’lJ ~ |ma).

It is immediately seen that f(z + =) = f(z) and that f(z) =0 for 0 <z < L.
Thus f(x) = 0 for all real values of x, and this proves the claim. O
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