HERMITE'S IDENTITY

FRANZ LEMMERMEYER

Hermite's identity is the following distribution relation for the floor function:
Lemma 1. For all real values $x \geq 0$ and all natural numbers $m \geq 1$ we have

$$
\begin{equation*}
\lfloor x\rfloor+\left\lfloor x+\frac{1}{m}\right\rfloor+\ldots+\left\lfloor x+\frac{m-1}{m}\right\rfloor=\lfloor m x\rfloor . \tag{1}
\end{equation*}
$$

In this note we collect a few proofs of Hermite's identity.
Hermite's techniques from [3] were studied by Giulini [2] and Basoco [1].

1. Hermite

Hermite [3] proved (1) using generating functions. Assume that a function f is given as a power series

$$
f(x)=A_{0}+A_{1} x+A_{2} x^{2}+\ldots ;
$$

then

$$
\frac{f(x)}{1-x}=A_{0}+\left(A_{0}+A_{1}\right) x+\left(A_{0}+A_{1}+A_{2}\right) x^{2}+\ldots
$$

as can be verified easily by multiplying through by $1-x$.
Next

$$
f\left(x^{a}\right)=A_{0}+A_{1} x^{a}+A_{2} x^{2 a}+\ldots
$$

hence

$$
\frac{f\left(x^{a}\right)}{1-x}=\sum_{n \geq 0}\left(A_{0}+A_{1}+\ldots+A_{\nu}\right) x^{n}
$$

where $\nu=\left\lfloor\frac{n}{a}\right\rfloor$. For $f(x)=\frac{1}{1-x}$ this implies

$$
\begin{equation*}
\frac{1}{(1-x)\left(1-x^{a}\right)}=\sum_{n \geq 0}\left[1+\left\lfloor\frac{n}{a}\right\rfloor\right] x^{n} \tag{2}
\end{equation*}
$$

This implies

$$
\frac{1}{(1-x)\left(1-x^{m a}\right)}=\sum_{n \geq 0}\left\lfloor\frac{n+m a}{m a}\right\rfloor x^{n}
$$

since $1+\left\lfloor\frac{n}{m a}\right\rfloor=\left\lfloor\frac{n+m a}{m a}\right\rfloor$.
Multiplying this last equation through by $x^{k a}$ we obtain

$$
\frac{x^{k a}}{(1-x)\left(1-x^{m a}\right)}=\sum_{n \geq 0}\left\lfloor\frac{n+m a}{m a}\right\rfloor x^{n+k a}=\sum_{n \geq k a}\left\lfloor\frac{n+(m-k) a}{m a}\right\rfloor x^{n}
$$

Observe that (1) is true for very small values of x; thus it is sufficient to prove the identity for rational values of x.

Now the identity

$$
\frac{1-x^{m a}}{1-x^{a}}=1+x^{a}+x^{2 a}+\ldots+x^{(m-1) a}
$$

implies

$$
\begin{aligned}
\frac{x^{a}}{(1-x)\left(1-x^{a}\right)} & =\frac{x^{a}\left(1+x^{a}+a^{2 a}+\ldots+x^{m-1}\right)}{(1-x)\left(1-x^{m a}\right)} \\
& =\sum_{k=1}^{m} \frac{x^{k a}}{(1-x)\left(1-x^{m a}\right)} \\
& =\sum_{k=1}^{m} \sum_{n \geq k a}\left\lfloor\frac{n+(m-k) a}{m a}\right\rfloor x^{n} .
\end{aligned}
$$

Replacing the summation index k by $m-k$ we find

$$
\frac{x^{a}}{(1-x)\left(1-x^{a}\right)}=\sum_{k=0}^{m-1} \sum_{n \geq k a}\left\lfloor\frac{n+k a}{m a}\right\rfloor x^{n} .
$$

On the other hand we know

$$
\frac{x^{a}}{(1-x)\left(1-x^{a}\right)}=\sum_{n \geq 0}\left\lfloor\frac{n+a}{a}\right\rfloor x^{n+a}=\sum_{n \geq a}\left\lfloor\frac{n}{a}\right\rfloor x^{n} .
$$

Comparing the coefficient of x^{n} and setting $z=\frac{n}{m a}$ we find

$$
\lfloor m z\rfloor=\left\lfloor\frac{n}{a}\right\rfloor=\sum_{k=0}^{m-1}\left\lfloor\frac{n+k a}{m a}\right\rfloor=\sum_{k=0}^{m-1}\left\lfloor z+\frac{k}{m}\right\rfloor .
$$

2. Weber

In his proof of the Theorem of Kronecker and Weber given in [9], Weber has to deal with the class numbers of cyclotomic number fields, and he uses a result on the greatest integer function that generalizes Hermite's identity.

For $0<x<1$ (and $0 \leq t<m$) we have

$$
\left\lfloor x+\frac{t}{m}\right\rfloor=\left\{\begin{array}{ll}
\left\lfloor\frac{t}{m}\right\rfloor & =0 \\
\left\lfloor\frac{t}{m}\right\rfloor+1 & =1
\end{array} \quad\right. \text { or }
$$

according as there is an integer between $\frac{t}{m}$ and $x+\frac{t}{m}$ or not. The first case holds if and only if $1=\left\lfloor\frac{t}{m}\right\rfloor+1 \leq x+\frac{t}{m}$, i.e., if and only if

$$
\begin{equation*}
m-t \leq m x . \tag{3}
\end{equation*}
$$

The number of values of $t \geq 0$ satisfying this inequality is clearly $\lfloor m x\rfloor$. Thus there are $\lfloor m x\rfloor$ values of t for which $\left\lfloor x+\frac{t}{m}\right\rfloor=1$, and Hermite's identity follows.

3. Stern

Stern [8] determines an integer k satisfying

$$
\lfloor x\rfloor+\frac{k}{m} \leq x<\lfloor x\rfloor+\frac{k+1}{m} .
$$

Multiplying through by m he finds

$$
m\lfloor x\rfloor+k \leq m x<m\lfloor x\rfloor+k+1
$$

thus $\lfloor m x\rfloor=m\lfloor x\rfloor+k$. On the other hand we have

$$
x+\frac{m-k-1}{m}<\lfloor x\rfloor+\frac{k+1}{m}+\frac{m-k-1}{m}=\lfloor x\rfloor+\frac{k}{m}+\frac{m-k}{m} \leq x+\frac{m-k}{m},
$$

and this implies

$$
x+\frac{m-k-1}{m}<\lfloor x\rfloor \leq x+\frac{m-k}{m} .
$$

Thus each term

$$
\lfloor x\rfloor,\left\lfloor x+\frac{1}{m}\right\rfloor, \ldots,\left\lfloor x+\frac{m-k-1}{m}\right\rfloor
$$

has the value $\lfloor x\rfloor$, whereas each term

$$
\left\lfloor x+\frac{m-k}{m}\right\rfloor, \ldots,\left\lfloor x+\frac{m-1}{m}\right\rfloor
$$

has the value $\lfloor x\rfloor+1$. The sum of these terms thus equals

$$
(m-k)\lfloor x\rfloor+k(\lfloor x\rfloor+1)=m\lfloor x\rfloor+k=\lfloor m x\rfloor .
$$

4. Polya \& SzegÖ

The proof by Polya \& Szegö [6] is very short. Clearly it suffices to consider the case $0 \leq x<1$. Determine k such that

$$
x+\frac{k-1}{m}<1 \leq x+\frac{k}{m},
$$

i.e., $-k=[m x-m]=[m x]-m$. Both sides are $=m-k$.

5. Matsuoka

The elementary proof given by Matsuoka [5] was included (without attribution) in [7, Ch. 12].
Proof. Consider the function

$$
f(x)=\lfloor x\rfloor+\left\lfloor x+\frac{1}{m}\right\rfloor+\ldots+\left\lfloor x+\frac{m-1}{m}\right\rfloor-\lfloor m x\rfloor .
$$

It is immediately seen that $f\left(x+\frac{1}{m}\right)=f(x)$ and that $f(x)=0$ for $0 \leq x<\frac{1}{m}$. Thus $f(x)=0$ for all real values of x, and this proves the claim.

References

[1] M. A. Basoco, On the greatest integer function, Bull. Amer. Math. Soc. 42 (1936), 720-726
[2] J. Giulini, Contributo alla teoria della funzione numerica $E(x)$, G. Mat. 42 (1904), 103-108
[3] Ch. Hermite, Sur quelques conséquences arithmétiques des formules de la théorie des fonctions elliptiques, Extrait du Bulletin de l'Acad. Sci. St. Pétersb. XXIX., Acta Math. 5 (1884), 297-330; Oeuvres 4 (1917), 138-168
[4] F. Lemmermeyer, Hermite's Identity and the Quadratic Reciprocity Law, Elem. Math. (2022)
[5] Y. Matsuoka, On a proof of Hermite's identity, Amer. Math. Monthly $\mathbf{7 1}$ (1964), 1115
[6] G. Polya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer Verlag Berlin, 1934
[7] S. Savchev, T. Andreescu, Mathematical miniatures, MAA 2003
[8] M. Stern, Sur un théorème de M. Hermite relatif à la function $E(x)$, Acta Math. 8 (1886), 93-96
[9] H. Weber, Theorie der Abel'schen Zahlkörper, Acta Math. 8 (1886), 193-263
Mörikeweg 1, 73489 Jagstzell
Email address: hb3@uni-heidelberg.de

