COMPOSITE VALUES OF IRREDUCIBLE POLYNOMIALS

FRANZ LEMMERMEYER

In his letter to Euler from September 1743 in \[2, \text{Letter 73}\], Goldbach remarked that it

\[
\text{is very easy to prove that no algebraic formula such as } a + bx + cx^2 + dx^3 + \ldots, \text{ where } x \text{ is the index of the terms, can yield none but prime numbers, whatever integers the coefficients } a, b, c, \ldots \text{ may be; but all the same there are formulae which comprise a greater number of primes than many others; the series } x^2 + 19x - 19 \text{ is of this kind, as in its 47 initial terms it comprises only 4 non-prime numbers.}
\]

In this note we will give a very short proof of Goldbach's claim based on a simple identity, which shows not only the existence of infinitely many composite values of a given polynomial, but presents identities from which the claim follows directly. As an example, applying our result to Goldbach's polynomial \(f(x) = x^2 + 19x - 19 \) provides us with the identity

\[
f(x^2 + 20x - 19) = f(x) \cdot g(x) \quad \text{with} \quad g(x) = x^2 + 21x + 1 = f(x + 1),
\]

which implies that \(f \) attains infinitely many composite values. In particular, \(f(25) = f(2) \cdot g(2) = 23 \cdot 47 \).

Observe that Goldbach's claim is trivial if \(f \) is reducible or if its content (the greatest common divisor of its coefficients) is not a unit. Our main result is the following

Theorem 1. Let \(f \in \mathbb{Z}[x] \) be an irreducible polynomial with integral and coprime coefficients. Then for an arbitrarily chosen polynomial \(q(x) \in \mathbb{Z}[x] \) there exists a polynomial \(g \in \mathbb{Z}[x] \) such that

\[
f(q(x)f(x) + x) = f(x)g(x).
\]

Proof. Since \(f \) is irreducible, a polynomial \(h \in \mathbb{Z}[x] \) is divisible by \(f \) in the ring \(\mathbb{Q}[x] \) if and only if \(h(\alpha) = 0 \) for all the complex roots \(\alpha \) of \(f \). But if \(f(\alpha) = 0 \), then

\[
f(q(\alpha)f(\alpha) + \alpha) = f(\alpha) = 0,
\]

and we are done. By Gauss’s Lemma for polynomials (see \([3]\) and \([1]\) for the history of this result), the coefficients of \(h \) must be integral. \(\square \)

This implies in particular that polynomials \(f \) with degree \(\geq 1 \) represent infinitely many composite numbers of the form \(f(f(x) + x) \). In fact, assume that \(f(x) = a_n x^n + \ldots + a_0 \) with \(a_n \geq 1 \). Then there is a constant \(C > 0 \) such that \(f(x) > 1 \) and \(f'(x) > 0 \) for all \(x > C \). But then \(f(x) + x > x \), hence \(f(f(x) + x) > f(x) \) and thus also \(g(x) > 1 \).

Out of the four composite values of \(f(n) \) for \(0 \leq n \leq 47 \), where \(f(x) = x^2 + 19x - 19 \) is Goldbach’s polynomial, the numbers \(f(19) \) and \(f(38) \) are composite for trivial reasons: they are clearly divisible by 19. The other two composite values are \(f(25) = f(2 + f(2)) \) and \(f(36) = f(-f(-1) - 1) \).
The next few composite values also flow from our theorem: $f(48) = f(2f(2) + 2)$, $f(50) = f(f(3) + 3)$, and $f(51) = f(-f(-2) - 2)$. The smallest composite value I could not derive from (1) is $f(56) = 37 \cdot 113$.

Theorem 1 may also be proved by setting $h = q(x)f(x)$ in the Taylor identity

$$f(x + h) = f(x) + f'(x) \cdot h + \frac{f''(x)}{2!} h^2 + \ldots + \frac{f^{(n+1)}(x)}{(n + 1)!} h^{n+1}.$$

This implies

$$f(x + f(x)) = f(x) \left[1 + f'(x)q(x) + \frac{f''(x)}{2!} f(x)q(x)^2 + \ldots + \frac{f^{(n+1)}(x)}{(n + 1)!} f(x)^n q(x)^{n+1}\right].$$

Observe that the polynomials $\frac{1}{k} f^{(k)}(x)$ have integral coefficients since the product of k consecutive integers is divisible by $k!$.

References

