IMAGINARY QUADRATIC FIELDS k WITH $\text{Cl}_2(k) \simeq (2, 2^m)$ AND RANK $\text{Cl}_2(k^1) = 2$

E. BENJAMIN, F. LEMMERMEYER, C. SNYDER

Abstract. Let k be an imaginary quadratic number field and k^1 the Hilbert 2-class field of k. We give a characterization of those k with $\text{Cl}_2(k) \simeq (2, 2^m)$ such that $\text{Cl}_2(k^1)$ has 2 generators.

1. Introduction

Let k be an algebraic number field with $\text{Cl}_2(k)$, the Sylow 2-subgroup of its ideal class group, $\text{Cl}(k)$. Denote by k^1 the Hilbert 2-class field of k (in the wide sense). Also let k^n (for n a nonnegative integer) be defined inductively as: $k^0 = k$ and $k^{n+1} = (k^n)^I$. Then

$$k^0 \subseteq k^1 \subseteq k^2 \subseteq \cdots \subseteq k^n \subseteq \cdots$$

is called the 2-class field tower of k. If n is the minimal integer such that $k^n = k^{n+1}$, then n is called the length of the tower. If no such n exists, then the tower is said to be of infinite length.

At present there is no known decision procedure to determine whether or not the (2-)class field tower of a given field k is infinite. However, it is known by group theoretic results (see [2]) that if rank $\text{Cl}_2(k^1) \leq 2$, then the tower is finite, in fact of length at most 3. (Here the rank means minimal number of generators.) On the other hand, until now (see Table 1 and the penultimate paragraph of this introduction) all examples in the mathematical literature of imaginary quadratic fields with rank $\text{Cl}_2(k^1) \geq 3$ (let us mention in particular Schmithals [13]) have infinite 2-class field tower. Nevertheless, if we are interested in developing a decision procedure for determining if the 2-class field tower of a field is infinite, then a good starting point would be to find a procedure for sieving out those fields with rank $\text{Cl}_2(k^1) \leq 2$. We have already started this program for imaginary quadratic number fields k. In [1] we classified all imaginary quadratic fields whose 2-class field k^1 has cyclic 2-class group. In this paper we determine when $\text{Cl}_2(k^1)$ has rank 2 for imaginary quadratic fields k with $\text{Cl}_2(k)$ of type $(2, 2^m)$. (The notation $(2, 2^m)$ means the direct sum of a group of order 2 and a cyclic group of order 2^m.) The group theoretic results mentioned above also show that such fields have 2-class field tower of length 2.

From a classification of imaginary quadratic number fields k with $\text{Cl}_2(k) \simeq (2, 2^m)$ and our results from [1] we see that it suffices to consider discriminants $d = d_1 d_2 d_3$ with prime discriminants $d_1, d_2 > 0, d_3 < 0$ such that exactly one of the (d_i/p_j) equals -1 (we let p_j denote the prime dividing d_j); thus there are only two cases:

$$A \mid \frac{d_1}{p_2} = \left(\frac{d_1}{p_3}\right) = +1, \left(\frac{d_2}{p_1}\right) = -1;$$

1991 Mathematics Subject Classification. Primary 11R37.
B) \((d_1/p_3) = (d_2/p_3) = +1, (d_1/p_2) = -1\).

The \(\text{Cl}_2\)-factorization corresponding to the nontrivial 4-part of \(\text{Cl}_2(k)\) is \(d = d_1 \cdot d_2 d_3\) in case A) and \(d = d_1 d_2 \cdot d_3\) in case B). Note that, by our results from [1], some of these fields have cyclic \(\text{Cl}_2(k^1)\); however, we do not exclude them right from the start since there is no extra work involved and since it provides a welcome check on our earlier work.

The main result of the paper is that rank \(\text{Cl}_2(k^1) = 2\) only occurs for fields of type B); more precisely, we prove the following

Theorem 1. Let \(k\) be a complex quadratic number field with \(\text{Cl}_2(k) \simeq (2, 2^n)\), and let \(k^1\) be its 2-class field. Then rank \(\text{Cl}_2(k^1) = 2\) if and only if disc \(k = d_1d_2d_3\) is the product of three prime discriminants \(d_1, d_2 > 0\) and \(-4 \neq d_3 < 0\) such that \((d_1/p_3) = (d_2/p_3) = +1, (d_1/p_2) = -1,\) and \(b_2(K) = 2,\) where \(K\) is a nonnormal quartic subfield of one of the two unramified cyclic quartic extensions of \(k\) such that \(\mathbb{Q}(\sqrt{d_1d_2}) \subset K\).

This result is the first step in the classification of imaginary quadratic number fields \(k\) with rank \(\text{Cl}_2(k^1) = 2\); it remains to solve these problems for fields with rank \(\text{Cl}_2(k) = 3\) and those with \(\text{Cl}_2(k) \geq (4, 4)\) since we know that rank \(\text{Cl}_2(k^1) \geq 5\) whenever rank \(\text{Cl}_2(k) \geq 4\) (using Schur multipliers as in [1]).

As a demonstration of the utility of our results, we give in Table 1 below a list of the first 12 imaginary quadratic fields \(k\), arranged by decreasing value of their discriminants, with rank \(\text{Cl}_2(k) = 2\) and nongyclic \(\text{Cl}_2(k^1)\).

Table 1

<table>
<thead>
<tr>
<th>disc (k)</th>
<th>factors</th>
<th>(\text{Cl}_2(k))</th>
<th>type</th>
<th>(f)</th>
<th>(\text{Cl}_2(K))</th>
<th>(r)</th>
<th>(\text{Cl}2(k{\text{gen}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1015</td>
<td>-7 · 5 · 29</td>
<td>(2, 8)</td>
<td>A</td>
<td>(x^4 - 22x^2 + 261)</td>
<td>(4)</td>
<td>(\geq 3)</td>
<td>(2, 2, 8)</td>
</tr>
<tr>
<td>-1240</td>
<td>-31 · 8 · 5</td>
<td>(2, 4)</td>
<td>B</td>
<td>(x^4 - 6x^2 - 31)</td>
<td>(2)</td>
<td>2</td>
<td>(2, 2, 8)</td>
</tr>
<tr>
<td>-1443</td>
<td>-3 · 13 · 37</td>
<td>(2, 4)</td>
<td>B</td>
<td>(x^4 - 86x^2 - 75)</td>
<td>(2)</td>
<td>2</td>
<td>(2, 2, 8)</td>
</tr>
<tr>
<td>-1595</td>
<td>-11 · 5 · 29</td>
<td>(2, 8)</td>
<td>A</td>
<td>(x^4 + 26x^2 + 1445)</td>
<td>(4)</td>
<td>(\geq 3)</td>
<td>(2, 2, 8)</td>
</tr>
<tr>
<td>-1615</td>
<td>-19 · 5 · 17</td>
<td>(2, 4)</td>
<td>B</td>
<td>(x^4 + 26x^2 - 171)</td>
<td>(2)</td>
<td>2</td>
<td>(2, 2, 8)</td>
</tr>
<tr>
<td>-1624</td>
<td>-7 · 8 · 29</td>
<td>(2, 8)</td>
<td>B</td>
<td>(x^4 - 30x^2 - 7)</td>
<td>(2)</td>
<td>2</td>
<td>(2, 2, 8)</td>
</tr>
<tr>
<td>-1780</td>
<td>-4 · 5 · 89</td>
<td>(2, 4)</td>
<td>A</td>
<td>(x^4 + 6x^2 + 89)</td>
<td>(4)</td>
<td>3</td>
<td>(2, 2, 4)</td>
</tr>
<tr>
<td>-2035</td>
<td>-11 · 5 · 37</td>
<td>(2, 4)</td>
<td>B</td>
<td>(x^4 - 54x^2 - 11)</td>
<td>(2, 2)</td>
<td>3</td>
<td>(2, 2, 16)</td>
</tr>
<tr>
<td>-2067</td>
<td>-3 · 13 · 53</td>
<td>(2, 4)</td>
<td>A</td>
<td>(x^4 + x^2 + 637)</td>
<td>(2, 2)</td>
<td>3</td>
<td>(2, 2, 4)</td>
</tr>
<tr>
<td>-2072</td>
<td>-7 · 8 · 37</td>
<td>(2, 8)</td>
<td>B</td>
<td>(x^4 + 34x^2 - 7)</td>
<td>(2, 2)</td>
<td>(\geq 3)</td>
<td>(2, 2, 8)</td>
</tr>
<tr>
<td>-2379</td>
<td>-3 · 13 · 61</td>
<td>(4, 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2392</td>
<td>-23 · 8 · 13</td>
<td>(2, 4)</td>
<td>B</td>
<td>(x^4 + 18x^2 - 23)</td>
<td>(2)</td>
<td>(\geq 3)</td>
<td>(4, 4, 8)</td>
</tr>
</tbody>
</table>

Here \(f\) denotes a generating polynomial for a field \(K\) as in Theorem 1, \(r\) denotes the rank of \(\text{Cl}_2(k^1)\). The cases where \(r = 3\) follow from our theorem combined with Blackburn’s upper bound for the number of generators of derived groups (it implies that finite 2-groups \(G\) with \(G/G' \simeq (2, 4)\) satisfy rank \(G' \leq 3\), see [3]).

In order to verify that \(\text{Cl}_2(k^1)\) has rank at least 3 for \(k = \mathbb{Q}(\sqrt{-2379})\) it is sufficient to show that its genus class field \(k_{\text{gen}}\) has class group \((4, 4, 8)\); in fact, \(\text{Cl}_2(k^1)\) then contains a quotient of \((4, 4, 8)\) by \((2, 2) \simeq \text{Gal}(k^1/k_{\text{gen}})\), and the claim follows.
We mention one last feature gleaned from the table. It follows from conditional Odlyzko bounds (assuming the Generalized Riemann Hypothesis) that those quadratic fields with rank $\text{Cl}_2(k^1) \geq 3$ and discriminant $0 > d > -2000$ have finite class field tower; unconditional proofs are not known. Hence, conditionally, we conclude that those k with discriminants $-1015, -1595$ and -1780 have finite 2-class field tower even though rank $\text{Cl}_2(k^1) \geq 3$. Of course, it would be interesting to determine the length of their towers.

The structure of this paper is as follows: we use results from group theory developed in Section 2 to pull down the condition rank $\text{Cl}_2(k^1) = 2$ from the field k^1 with degree 2^{m+2} to a subfield L of k^1 with degree 8. Using the arithmetic of dihedral fields from Section 4 we then go down to the field K of degree 4 occurring in Theorem 1.

2. Group Theoretic Preliminaries

Let G be a group. If $x, y \in G$, then we let $[x, y] = x^{-1}y^{-1}xy$ denote the commutator of x and y. If A and B are nonempty subsets of G, then $[A, B]$ denotes the subgroup of G generated by the set $\{a, b : a \in A, b \in B\}$. The lower central series $\{G_j\}$ of G is defined inductively by: $G_1 = G$ and $G_{j+1} = [G, G_j]$ for $j \geq 1$. The derived series $\{G^{(n)}\}$ is defined inductively by: $G^{(0)} = G$ and $G^{(n+1)} = [G^{(n)}, G^{(n)}]$ for $n \geq 0$. Notice that $G^{(1)} = G_2 = [G, G]$ the commutator subgroup, G_2, of G.

Throughout this section, we assume that G is a finite, nonmetacyclic, 2-group such that its abelianization $G^{ab} = G/G'$ is of type $(2, 2^m)$ for some positive integer m (necessarily ≥ 2). Let $G = \langle a, b \rangle$, where $a^2 \equiv b^{2m} \equiv 1$ mod G_2 (actually mod G_3 since G is nonmetacyclic, cf. [1]); $c_2 = [a, b]$ and $c_{j+1} = [b, c_j]$ for $j \geq 2$.

Lemma 1. Let G be as above (but not necessarily metabelian). Suppose that $d(G') = n$ where $d(G')$ denotes the minimal number of generators of the derived group $G' = G_2$ of G. Then

$$G' = \langle c_2, c_3, \ldots , c_{n+1} \rangle;$$

moreover,

$$G_2/G_2^2 \cong \langle c_2, G_2^2 \rangle \oplus \cdots \oplus \langle c_{n+1}, G_2^2 \rangle.$$

Proof. By the Burnside Basis Theorem, $d(G_2) = d(G_2/\Phi(G))$, where $\Phi(G)$ is the Frattini subgroup of G, i.e. the intersection of all maximal subgroups of G, see [5]. But in the case of a 2-group, $\Phi(G) = G_2$, see [8]. By Blackburn, [3], since G/G_2^2 has elementary derived group, we know that $G_2/G_2^2 \cong \langle c_2, G_2^2 \rangle \oplus \cdots \oplus \langle c_{n+1}, G_2^2 \rangle$. Again, by the Burnside Basis Theorem, $G_2 = \langle c_2, \ldots , c_{n+1} \rangle$.

Lemma 2. Let G be as above. Moreover, assume G is metabelian. Let H be a maximal subgroup of G such that H/G' is cyclic, and denote the index $(G' : H')$ by 2^a. Then G' contains an element of order 2^a.

Proof. Without loss of generality, let $H = \langle b, G' \rangle$. Notice that $G' = \langle c_2, c_3, \cdots \rangle$ and by our presentation of H, $H' = \langle c_3, c_4, \cdots \rangle$. Thus, $(G'/H') = \langle c_2, H' \rangle$. But since $(G'/H') = 2^a$, the order of c_2 is 2^a. This establishes the lemma.

Lemma 3. Let G be as above and again assume G is metabelian. Let H be a maximal subgroup of G such that H/G' is cyclic, and assume that $(G' : H') \equiv 0 \bmod 4$. If $d(G') = 2$, then $G_2 = \langle c_2, c_3 \rangle$ and $G_j = \langle c_2^{2^{j-2}}, c_3^{2^{j-3}} \rangle$ for $j > 2$.

Proof. Assume that $d(G') = 2$. By Lemma 1, $G_2 = \langle c_2, c_3 \rangle$ and hence $c_4 \in \langle c_2, c_3 \rangle$. Write $c_4 = c_2^x c_3^y$ where x, y are positive integers. Without loss of generality, let $H = \langle b, c_2, c_3 \rangle$ and write $(G' : H') = 2^k$ for some $k \geq 2$. Since $c_3, c_4 \in H'$ we have, $c_2^x \equiv 1 \text{ mod } H'$. By the proof of Lemma 2, this implies that $x \equiv 0 \text{ mod } 2^k$. Write $x = 2^s x_1$ for some positive integer x_1. On the other hand, since $c_4, c_2^s x_1 \in G_4$, we see that $c_3^y \equiv 1 \text{ mod } G_4$. This, however, implies that $G_2 = \langle c_2 \rangle$, contrary to our assumptions. Thus y is even, say $y = 2y_1$. From all of this we see that $c_4 = c_2^s x_1 c_3^{2y_1}$. Consequently, by induction we have $c_j \in \langle c_2^{j-2}, c_3^{j-3} \rangle$ for all $j \geq 4$. Since $G_j = \langle c_2^{j-2}, c_3^{j-3}, \ldots, c_{j-1}^2, c_j, c_{j+1}, \ldots \rangle$, cf. [1], we obtain the lemma. \hfill \Box

Let us translate the above into the field-theoretic language. Let k be an imaginary quadratic number field of type A) or B) (see the Introduction), and let M/k be one of the two quadratic subextensions of k^1/k over which k^1 is cyclic. If $h_0(M) = 2^{m+\kappa}$ and $\text{Cl}_2(k) = (2, 2^m)$, then Lemma 2 implies that $\text{Cl}_2(k^1)$ contains an element of order 2^k. Table 1 contains the relevant information for the fields occurring in Table 1. An application of the class number formula to M/Q (see e.g. Proposition 3 below) shows immediately that $h_0(M) = 2^{m+\kappa}$, where 2^k is the class number of the quadratic subfield $Q(\sqrt{\det(d_{ij})})$ of M, where $(d_{ij}/p_j) = +1$; in particular, we always have $\kappa \geq 2$, and the assumption $(G' : H') \geq 4$ is always satisfied for the fields that we consider.

<table>
<thead>
<tr>
<th>M_1</th>
<th>$\text{Cl}_2(M_1)$</th>
<th>M_2</th>
<th>$\text{Cl}_2(M_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(\sqrt{5}, \sqrt{-7}, 29)$</td>
<td>(2, 16)</td>
<td>$Q(\sqrt{5}, \sqrt{-7})$</td>
<td>(2, 16)</td>
</tr>
<tr>
<td>$Q(\sqrt{7}, \sqrt{-5}, 31)$</td>
<td>(4, 4)</td>
<td>$Q(\sqrt{5}, \sqrt{-5}, 31)$</td>
<td>(2, 16)</td>
</tr>
<tr>
<td>$Q(\sqrt{13}, \sqrt{-3}, 37)$</td>
<td>(2, 16)</td>
<td>$Q(\sqrt{37}, \sqrt{-3}, 13)$</td>
<td>(2, 16)</td>
</tr>
<tr>
<td>$Q(\sqrt{-11}, \sqrt{5}, 29)$</td>
<td>(2, 16)</td>
<td>$Q(\sqrt{29}, \sqrt{-5}, 11)$</td>
<td>(2, 16)</td>
</tr>
<tr>
<td>$Q(\sqrt{5}, \sqrt{-17}, 19)$</td>
<td>(4, 4)</td>
<td>$Q(\sqrt{17}, \sqrt{-5}, 19)$</td>
<td>(2, 16)</td>
</tr>
<tr>
<td>$Q(\sqrt{29}, \sqrt{-7}, 7)$</td>
<td>(2, 16)</td>
<td>$Q(\sqrt{7}, \sqrt{-7}, 29)$</td>
<td>(2, 16)</td>
</tr>
<tr>
<td>$Q(\sqrt{5}, \sqrt{-89})$</td>
<td>(4, 4)</td>
<td>$Q(\sqrt{5}, \sqrt{-89})$</td>
<td>(2, 8)</td>
</tr>
<tr>
<td>$Q(\sqrt{37}, \sqrt{-5}, 11)$</td>
<td>(4, 4)</td>
<td>$Q(\sqrt{5}, \sqrt{-37}, 11)$</td>
<td>(2, 32)</td>
</tr>
<tr>
<td>$Q(\sqrt{53}, \sqrt{-3}, 13)$</td>
<td>(4, 4)</td>
<td>$Q(\sqrt{13}, \sqrt{53}, \sqrt{-3})$</td>
<td>(2, 2, 4)</td>
</tr>
<tr>
<td>$Q(\sqrt{37}, \sqrt{-7}, 7)$</td>
<td>(2, 16)</td>
<td>$Q(\sqrt{2}, \sqrt{-7}, 37)$</td>
<td>(2, 16)</td>
</tr>
<tr>
<td>$Q(\sqrt{13}, \sqrt{-2}, 23)$</td>
<td>(4, 4)</td>
<td>$Q(\sqrt{2}, \sqrt{-13}, 23)$</td>
<td>(2, 16)</td>
</tr>
</tbody>
</table>

We now use the above results to prove the following useful proposition.

Proposition 1. Let G be a nonmetacyclic 2-group such that $G/G' \simeq (2, 2^m)$; (hence $m > 1$). Let H and K be the two maximal subgroups of G such that H/G' and K/G' are cyclic. Moreover, assume that $(G' : H') \equiv 0 \text{ mod } 4$. Finally, assume
that N is a subgroup of index 4 in G not contained in H or K Then

$$(N : N') \begin{cases} = 2^m & \text{if } d(G') = 1 \\ = 2^{m+1} & \text{if } d(G') = 2 \\ \geq 2^{m+2} & \text{if } d(G') \geq 3 \end{cases}$$

Proof. Without loss of generality we assume that G is metabelian. Let $G = \langle a, b \rangle$, where $a^2 \equiv b^{2^m} \equiv 1 \pmod{G_3}$. Also let $H = \langle b, G' \rangle$ and $K = \langle ab, G' \rangle$ (without loss of generality). Then $N = \langle ab^2, G' \rangle$ or $N = \langle a, b^4, G' \rangle$.

Suppose that $N = \langle ab^2, G' \rangle$.

First assume $d(G') = 1$. Then $G' = \langle c_2 \rangle$ and thus $N' = \langle [ab^2, c_2] \rangle$. But $[ab^2, c_2] = c_2^q h$ for some $h \in G_4 = \langle c_2^q \rangle$ (cf. Lemma 1 of [1]). Hence, $N' = \langle c_2^q \rangle$, and so $(G'/N') = 2$. Since $(N : G') = 2^{m-1}$, we get $(N : N') = 2^m$ as desired.

Next, assume that $d(G') = 2$. Then $N = \langle ab^2, c_2, c_3 \rangle$ by Lemma 1. Notice that $[ab^2, c_2, c_3] = c_2^q h$ and $[ab^2, c_3] = c_2^q h$ where $h_2 \in G_j$ for $j = 4, 5$. Hence $N' = \langle c_2^q h, c_2^q h, \rangle$ and so $(G'/N') = 3$. Then $N' \subseteq N_4$. But notice that $N_3 \subseteq N_4$. Thus $N' = \langle c_2^q, c_3^q \rangle$ and so $(G'/N') = 4$ which in turn implies that $(N : N') = 2^{m+1}$ as desired.

Finally, assume $d(G') \geq 3$. Then $(G'/N_5) = 3$. Moreover there exists an exact sequence

$$N/N' \rightarrow (N/G_5) / (N/G_5) / \rightarrow 1,$$

and thus $\#N^{ab} \geq \#(N/G_5)^{ab}$. Hence it suffices to prove the result for $G_5 = 1$ which we now assume. $N = \langle ab^2, c_2, c_3, c_4 \rangle$ and so arguing as above, we have $N' = \langle c_2^q h, c_3^q h, c_4^q h, \rangle$ where $h_2 \in G_j$. But $N_3 = \langle [ab^2, c_2] \rangle = \langle c_2^q \rangle$. Therefore, $N' = \langle c_2^q h, c_3^q, c_4^q \rangle$. From this we see that $(G'/N') = 8$ and thus $(N : N') = 2^{m+2}$ as desired.

Now suppose that $N = \langle a, b^4, G' \rangle$. Then the proof is essentially the same as above once we notice that $[a, b^4] \equiv c_2^q c_3^{-2} \pmod{G_5}$.

This establishes the proposition. \hfill \Box

3. Number Theoretic Preliminaries

Proposition 2. Let K/k be a quadratic extension, and assume that the class number of k, $h(k)$, is odd. If K has an unramified cyclic extension M of order 4, then M/k is normal and $\text{Gal}(M/k) \cong D_4$.

Proof. Rédei and Reichardt [12] proved this for $k = \mathbb{Q}$; the general case is analogous. \hfill \Box

We shall make extensive use of the class number formula for extensions of type $(2, 2)$:

Proposition 3. Let K/k be a normal quartic extension with Galois group of type $(2, 2)$, and let k_j ($j = 1, 2, 3$) denote the quadratic subextensions. Then

$$h(K) = d^{4-\kappa-2-v}q(K)h(k_1)h(k_2)h(k_3)/h(k)^2,$$

where $q(K) = (E_K : E_1 E_2 E_3)$ denotes the unit index of K/k (E_j is the unit group of k_j), d is the number of infinite primes in k that ramify in K/k, κ is the Z-rank of the unit group E_k of k, and $v = 0$ except when $K \subseteq k(\sqrt{E_k})$, where $v = 1$.

Proof. See [10]. \hfill \Box
Another important result is the ambiguous class number formula. For cyclic extensions \(K/k \), let \(\text{Am}(K/k) \) denote the group of ideal classes in \(K \) fixed by \(\text{Gal}(K/k) \), i.e., the ambiguous ideal class group of \(K \), and \(\text{Am}_2 \) its 2-Sylow subgroup.

Proposition 4. Let \(K/k \) be a cyclic extension of prime degree \(p \); then the number of ambiguous ideal classes is given by

\[
\# \text{Am}(K/k) = h(k) \cdot \frac{p^t - 1}{[E:H]},
\]

where \(t \) is the number of primes (including those at \(\infty \)) of \(k \) that ramify in \(K/k \), \(E \) is the unit group of \(k \), and \(H \) is its subgroup consisting of norms of elements from \(K^x \). Moreover, \(\text{Cl}_p(K) \) is trivial if and only if \(p \nmid \# \text{Am}(K/k) \).

Proof. See Lang [9, part II] for the formula. For a proof of the second assertion (see e.g. Moriya [11]), note that \(\text{Am}(K/k) \) is defined by the exact sequence

\[
1 \longrightarrow \text{Am}(K/k) \longrightarrow \text{Cl}(K) \longrightarrow \text{Cl}(K)^{1-\sigma} \longrightarrow 1,
\]

where \(\sigma \) generates \(\text{Gal}(K/k) \). Taking \(p \)-parts we see that \(p \nmid \# \text{Am}(K/k) \) is equivalent to \(\text{Cl}_p(K) = \text{Cl}_p(K)^{1-\sigma} \). By induction we get \(\text{Cl}_p(K^i) = \text{Cl}_p(K)^{1-\sigma^i} \), but since \((1-\sigma)^p \equiv 0 \mod p \) in the group ring \(\mathbb{Z}[G] \), this implies \(\text{Cl}_p(K) \subseteq \text{Cl}_p(K)^p \). But then \(\text{Cl}_p(K) \) must be trivial.

We make one further remark concerning the ambiguous class number formula that will be useful below. If the class number \(h(k) \) is odd, then it is known that \(\# \text{Am}_2(K/k) = 2^r \) where \(r = \text{rank} \text{Cl}_2(K) \).

We also need a result essentially due to G. Gras [4]:

Proposition 5. Let \(K/k \) be a quadratic extension of number fields and assume that \(h_2(k) = \# \text{Am}_2(K/k) = 2 \). Then \(K/k \) is ramified and

\[
\text{Cl}_2(K) \cong \begin{cases}
(2, 2) & \text{or } \mathbb{Z}/2^n\mathbb{Z} \ (n \geq 3) \quad \text{if } \#\kappa_{K/k} = 1, \\
\mathbb{Z}/2^n\mathbb{Z} \ (n \geq 1) & \text{if } \#\kappa_{K/k} = 2,
\end{cases}
\]

where \(\kappa_{K/k} \) denotes the set of ideal classes of \(k \) that become principal (capitulate) in \(K \).

Proof. We first notice that \(K/k \) is ramified. If the extension were unramified, then \(K \) would be the 2-class field of \(k \), and since \(\text{Cl}_2(k) \) is cyclic, it would follow that \(\text{Cl}_2(K) = 1 \), contrary to assumption.

Before we start with the rest of the proof, we cite the results of Gras that we need (we could also give a slightly longer direct proof without referring to his results). Let \(K/k \) be a cyclic extension of prime power order \(p^r \), and let \(\sigma \) be a generator of \(G = \text{Gal}(K/k) \). For any \(p \)-group \(M \) on which \(G \) acts we put \(M^* = \{ m \in M : m^{1-\sigma^r} = 1 \} \). Moreover, let \(\nu \) be the algebraic norm, that is, exponentiation by \(1 + \sigma + \sigma^2 + \ldots + \sigma^{r-1} \). Then [4, Cor. 4.3] reads

Lemma 4. Suppose that \(M^* = 1 \); let \(n \) be the smallest positive integer such that \(M_n = M \) and write \(n = a(p-1) + b \) with integers \(a \geq 0 \) and \(0 \leq b \leq p-2 \). If \(\# M_{i+1}/M_i = p \) for \(i = 0, 1, \ldots, n-1 \), then \(M \cong (\mathbb{Z}/p^{a+1}\mathbb{Z})^b \times (\mathbb{Z}/p^b\mathbb{Z})^{p-1-b} \).

We claim that if \(\kappa_{K/k} = 2 \), then \(M = \text{Cl}_2(K) \) satisfies the assumptions of Lemma 4: in fact, let \(j = j_{K/K} \) denote the transfer of ideal classes. Then \(c^{1+\sigma} = j(N_{K/k}c) \) for any ideal class \(c \in \text{Cl}_2(K) \), hence \(M^* = j(\text{Cl}_2(K)) = 1 \). Moreover,
$M_1 = \text{Am}_2(K/k)$ in our case, hence M_1/M_0 has order 2. Since the orders of M_{i+1}/M_i decrease towards 1 as i grows (Gras [4, Prop. 4.1.ii]), we conclude that $# M_{i+1}/M_i = 2$ for all $i < n$. Since $a = n$ and $b = 0$ when $p = 2$, Lemma 4 now implies that $C_2(K) \cong \mathbb{Z}/2\mathbb{Z}$, that is, the 2-class group is cyclic.

The second result of Gras that we need is [4, Prop. 4.3]

Lemma 5. Suppose that $M^v \neq 1$ but assume the other conditions in Lemma 4. Then $n \geq 2$ and

$$M \simeq \begin{cases}
\left(\mathbb{Z}/p^2\mathbb{Z}\right) \times \left(\mathbb{Z}/p\mathbb{Z}\right)^{n-2} & \text{if } n < p; \\
\left(\mathbb{Z}/p\mathbb{Z}\right)^p \text{ or } \left(\mathbb{Z}/p^2\mathbb{Z}\right) \times \left(\mathbb{Z}/p\mathbb{Z}\right)^{n-2} & \text{if } n = p; \\
\left(\mathbb{Z}/p^{a+1}\mathbb{Z}\right)^b \times \left(\mathbb{Z}/p^{a}\mathbb{Z}\right)^{p-1-b} & \text{if } n > p.
\end{cases}$$

If $\kappa_{K/k} = 1$, then this lemma shows that $C_2(K)$ is either cyclic of order ≥ 4 or of type $(2, 2)$. (Notice that the hypothesis of the lemma is satisfied since K/k is ramified implying that the norm $N_{K/k} : C_2(K) \to C_2(k)$ is onto, and so the argument above this lemma applies.) It remains to show that the case $C_2(K) \cong \mathbb{Z}/4\mathbb{Z}$ cannot occur here.

Now assume that $C_2(K) = \langle C \rangle \cong \mathbb{Z}/4\mathbb{Z}$; since K/k is ramified, the norm $N_{K/k} : C_2(K) \to C_2(k)$ is onto, and using $\kappa_{K/k} = 1$ once more we find $C^{1+\sigma} = C$, where c is the nontrivial ideal class from $C(k)$. On the other hand, $c \in C_2(k)$ still has order 2 in $C_2(K)$, hence we must also have $C^2 = C^{1+\sigma}$. This but implies that $C^2 = C$, i.e. that each ideal class in K is ambiguous, contradicting our assumption that $# \text{Am}_2(K/k) = 2$.

\[\square\]

4. **Arithmetic of some Dihedral Extensions**

In this section we study the arithmetic of some dihedral extensions L/Q, that is, normal extensions L of Q with Galois group $\text{Gal}(L/Q) \cong D_4$, the dihedral group of order 8. Hence D_4 may be presented as $\langle \tau, \sigma \mid \tau^2 = \sigma^4 = 1, \tau\sigma \tau = \sigma^{-1} \rangle$. Now consider the following diagrams (Galois correspondence):

$$
\begin{array}{cccc}
\langle \sigma^2 \rangle & \langle \tau \rangle & \langle \sigma \rangle & \langle \sigma^3 \rangle \\
\langle \sigma^2 \tau \rangle & \langle \tau \rangle & \langle \sigma \rangle & \langle \sigma^3 \rangle \\
\langle \sigma, \tau \rangle & \langle \sigma \rangle & \langle \sigma \rangle & \langle \sigma \rangle \\
\langle \sigma \rangle & \langle \sigma \rangle & \langle \sigma \rangle & \langle \sigma \rangle \\
\end{array}
$$

In this situation, we let $q_1 = (E_L : E_1 E_2^j E_K)$ and $q_2 = (E_L : E_2 E_3^j E_K)$ denote the unit indices of the bicyclic extensions L/k_1 and L/k_2, where E_i and E_i' are the unit groups in K_i and K_i' respectively. Finally, let k_i denote the kernel of the transfer of ideal classes $j_{i_k} : C_2(k_i) \to C_2(K_i)$ for $i = 1, 2$.

The following remark will be used several times: if $K_1 = k_1(\sqrt{a})$ for some $a \in k_1$, then $k_2 = Q(\sqrt{a})$, where $a = \alpha^4$ is the norm of α. To see this, let $\gamma = \sqrt{a}$; then $\gamma^2 = \gamma$, since $\gamma \in K_1$. Clearly $\gamma^{1+\sigma} = \sqrt{a} \in K$ and hence fixed by σ^2. Furthermore,

$$(\gamma^{1+\sigma})^2 = \gamma^{\sigma^2 + \sigma^2} = \gamma^{\sigma^2 + \sigma^2} = (\gamma^2)^{\sigma^2} = \gamma^{\sigma^2 + \sigma^2} = \gamma^{1+\sigma} = \gamma^{1+\sigma},$$

implying that $\sqrt{a} \in k_2$. Finally notice that $\sqrt{a} \notin Q$, since otherwise $\sqrt{a} = \sqrt{a}/\sqrt{a} \in K_1$ implying that K_1/Q is normal, which is not the case.
Recall that a quadratic extension \(K = k(\sqrt{a}) \) is called essentially ramified if \(\alpha \mathfrak{O}_K \) is not an ideal square. This definition is independent of the choice of \(\alpha \).

Proposition 6. Let \(L/\mathbb{Q} \) be a non-CM totally complex dihedral extension not containing \(\sqrt{-1} \), and assume that \(L/K_1 \) and \(L/K_2 \) are essentially ramified. If the fundamental unit of the real quadratic subfield of \(K \) has norm \(-1\), then \(q_{1q_2} = 2 \).

Proof. Notice first that \(k \) cannot be real (in fact, \(K \) is not totally real by assumption, and since \(L/k \) is a cyclic quartic extension, no infinite prime can ramify in \(K/k \)); thus exactly one of \(k_1, k_2 \) is real, and the other is complex. Multiplying the class number formulas, Proposition 3, for \(L/k_1 \) and \(L/k_2 \) (note that \(v = 0 \) since both \(L/K_1 \) and \(L/K_2 \) are essentially ramified) we find that \(2q_{1q_2} \) is a square. If we can prove that \(q_1, q_2 \leq 2 \), then \(2q_{1q_2} \) is a square between \(2 \) and \(8 \), which implies that we must have \(2q_{1q_2} = 4 \) and \(q_{1q_2} = 2 \) as claimed.

We start by remarking that if \(\zeta_7 \) becomes a square in \(L \), where \(\zeta \) is a root of unity in \(L \), then so does one of \(\pm \zeta \). This follows from the fact that the only non-trivial roots of unity that can be in \(L \) are the sixth roots of unity \(\zeta_6 \), and here \(\zeta_6 = -\zeta^2 \).

Now we prove that \(q_1 \leq 2 \) under the assumptions we made; the claim \(q_2 \leq 2 \) will then follow by symmetry. Assume first that \(k_1 \) is real and let \(\varepsilon \) be the fundamental unit of \(k_1 \). We claim that \(\sqrt{\varepsilon} \not\in L \). Suppose otherwise; then \(k_1(\sqrt{\varepsilon}) \) is one of \(K_1, K_1^t \) or \(K \). If \(k_1(\sqrt{\varepsilon}) = K_1 \), then \(K_1^t = k_1(\sqrt{-\varepsilon}) \) and \(K = k_1(\pm \varepsilon^2) \). (Here and below \(x^t = x^* \).) This however cannot occur since by assumption \(\varepsilon \varepsilon^t = -1 \) implying that \(-1 \in L \), a contradiction. Similarly, if \(k_1(\sqrt{\varepsilon}) = K \), then again \(-1 \in L \).

Thus \(\sqrt{\varepsilon} \not\in L \), and \(E_1 = \langle -1, \varepsilon, \eta \rangle \) for some unit \(\eta \in E_1 \). Suppose that \(\sqrt{\eta} \not\in L \) for some unit \(u \in k_1 \). Then \(L = K_1(\sqrt{\eta}) \), contradicting our assumption that \(L/K_1 \) is essentially ramified. The same argument shows that \(\sqrt{\eta^t} \not\in L \), hence either \(E_L = \langle \zeta, \varepsilon, \eta, \eta^t \rangle \) and \(q_1 = 1 \) or \(E_L = \langle \zeta, \varepsilon, \eta, \sqrt{\eta^t} \rangle \) for some unit \(u \in k_1 \) and \(q_1 = 2 \). Here \(\zeta \) is a root of unity generating the torsion subgroup \(\mathcal{W}_L \) of \(E_L \).

Next consider the case where \(k_1 \) is complex, and let \(\varepsilon \) denote the fundamental unit of \(k_2 \). Then \(\pm \varepsilon \) stays fundamental in \(L \) by the argument above.

Let \(\eta \) be a fundamental unit in \(K_1 \). If \(\pm \eta \) became a square in \(L \), then clearly \(L/K_1 \) could not be essentially ramified. Thus if we have \(q_1 \geq 4 \), then \(\pm \eta^2 = \alpha^2 \) is a square in \(L \). Applying \(\tau \) to this relation we find that \(-1 = \varepsilon \varepsilon^t \) is a square in \(L \), contradicting the assumption that \(L \) does not contain \(-1\). \(\square \)

Proposition 7. Suppose that \(q_2 = 1 \). Then \(K_2'/k_2 \) is essentially ramified if and only if \(q_2 = 1 \); if \(K_2'/k_2 \) is not essentially ramified, then \(\nu_2 = \langle |b| \rangle \), where \(K_2 = k_2(\sqrt{\beta}) \) and \((\beta) = b^2 \).

Proof. First notice that if \(K_2/k_2 \) is not essentially ramified, then \(q_2 \neq 1 \): in fact, in this case we have \((\beta) = b^2 \), and if we had \(q_2 = 1 \), then \(b \) would have to be principal, say \(b = \gamma \). This implies that \(\beta = \varepsilon \gamma^2 \) for some unit \(\varepsilon \in k_2 \), which, in view of \(q_2 = 1 \) implies that \(\varepsilon \) must be a square. But then \(\beta \) would be a square, and this is impossible.

Conversely, suppose \(q_2 \neq 1 \). Let \(a \) be a nonprincipal ideal in \(k_2 \) of absolute norm \(a \), and assume that \(a = (\alpha) \) in \(K_2 \). Then \(\alpha^1 \alpha^2 = \eta \) for some unit \(\eta \in E_2 \), and similarly \(\alpha^\sigma \alpha^{-\sigma} = \eta^t \), where \(\eta^t \) is a unit in \(E_2^t \). But then \(\eta \eta^t = \alpha^{1+\sigma-\sigma} = \eta \). Hence \(N_{L/k} \alpha = \pm N_{L/k} \alpha = \pm \alpha^2 \) is a square in \(L^2 \), where \(\pm \) means equal up to a square in \(L^2 \). Thus \(\pm \eta \eta^t \) is a square in \(L \), so our assumption that \(q_2 = 1 \) implies that \(\pm \eta \eta^t \)
must be a square in \(k_0 \). The same argument show that \(\pm \eta / \eta' \) is a square in \(k_0 \), hence we find \(\eta \in k_0 \). Thus \(\alpha_1 - \alpha_2^2 \) is fixed by \(\sigma^2 \) and so \(\beta := \alpha_2^2 \in k_0 \). This gives \(K_2 = k_0(\sqrt{\gamma}) \), hence \(K_2 / k_0 \) is not essentially ramified, and moreover, \(\alpha \sim \beta \). \(\Box \)

From now on assume that \(k \) is one of the imaginary quadratic fields of type A) or B) as explained in the Introduction. Let

\[k_1 = \mathbb{Q}(\sqrt{d_1}) \quad \text{and} \quad k_2 = \mathbb{Q}(\sqrt{d_2d_3}) \quad \text{in case A),} \]
\[k_1 = \mathbb{Q}(\sqrt{d_5}) \quad \text{and} \quad k_2 = \mathbb{Q}(\sqrt{d_4d_5}) \quad \text{in case B).} \]

Then there exist two unramified cyclic quartic extensions of \(k \) which are \(D_4 \) over \(\mathbb{Q} \) (see Proposition 2). Let us say a few words about their construction. Consider e.g. case B) by Rédei’s theory (see [12]), the \(C_4 \)-factorization \(d = d_1d_2d_3 \) implies that unramified cyclic quartic extensions of \(k = \mathbb{Q}(\sqrt{d}) \) are constructed by choosing a “primitive” solution \((x, y, z)\) of \(d_1d_2X^2 + d_3Y^2 = Z^2 \) and putting \(L = k(\sqrt{d_1d_2}, \sqrt{\alpha}) \) with \(\alpha = z + x\sqrt{d_1d_2} \) (primitive here means that \(\alpha \) should not be divisible by rational integers); the other unramified cyclic quartic extension is then \(\overline{L} = k(\sqrt{d_1d_2}, \sqrt{d_4d_5}) \). Since \(4\alpha \beta = (x\sqrt{d_1d_2} + y\sqrt{d_3} + z)^2 \) for \(\beta = \frac{1}{2}(z + y\sqrt{d_5}) \), we also have \(L = k(\sqrt{d_5}, \sqrt{\gamma}) \) etc. If \(d_3 = -4 \), then it is easy to see that we may choose \(\beta \) as the fundamental unit of \(k_0 \); if \(d_3 \neq -4 \), then genus theory says that a) the class number \(h \) of \(k_2 \) is twice an odd number \(u \); and b) the prime ideal \(p_3 \) above \(d_3 \) in \(k_0 \) is in the principal genus, so \(p_3^2 = (\pi_3) \) is principal. Again it can be checked that \(\beta = \pm \pi_3 \) for a suitable choice of the sign.

Example. Consider the case \(d = -31 \cdot 5 \cdot 8 \); here \(\pi_3 = \pm(3 + 2\sqrt{10}) \), and the positive sign is correct since \(3 + 2\sqrt{10} \equiv (1 + \sqrt{10})^2 \pmod{4} \) is primary. The minimal polynomial of \(\sqrt{\pi_3} \) is \(f(x) = x^4 - 6x^2 - 31 \); compare Table 1.

The fields \(K_2 = k_2(\sqrt{\alpha}) \) and \(\overline{K}_2 = k_2(\sqrt{d_2\alpha}) \) will play a dominant role in the proof below; they are both contained in \(M = F(\sqrt{\alpha}) \) for \(F = k_2(\sqrt{d_2}) \), and it is the ambiguous class group \(\text{Am}(M/F) \) that contains the information we are interested in.

Lemma 6. The field \(F \) has odd class number (even in the strict sense), and we have \(\# \text{Am}(M/F) \mid 2 \). In particular, \(\text{Cl}_2(M) \) is cyclic (though possibly trivial).

Proof. The class group in the strict sense of \(k_2 \) is cyclic of order 2 by Rédei’s theory [12] (since \((d_2/p_3) = (d_3/p_2) = -1 \) in case A) and \((d_1/p_2) = (d_2/p_1) = -1 \) in case B). Since \(F \) is the Hilbert class field of \(k_2 \) in the strict sense, its class number in the strict sense is odd.

Next we apply the ambiguous class number formula. In case A), \(F \) is complex, and exactly the two primes above \(d_3 \) ramify in \(M/F \). Note that \(M = F(\sqrt{\alpha}) \) with \(\alpha \) primary of norm \(d_3y^2 \); there are four primes above \(d_3 \) in \(F \), and exactly two of them divide \(\alpha \) to an odd power, so \(t = 2 \) by the decomposition law in quadratic Kummer extensions. By Proposition 4 and the remarks following it, \(\# \text{Am}_2(M/F) = 2/(E : H) \leq 2 \), and \(\text{Cl}_2(M) \) is cyclic.

In case B), however, \(F \) is real; since \(\alpha \in k_2 \) has norm \(d_3y^2 < 0 \), it has mixed signature, hence there are exactly two infinite primes that ramify in \(M/F \). As in case A), there are two finite primes above \(d_3 \) that ramify in \(M/F \), so we get \(\# \text{Am}_2(M/F) = 8/(E : H) \). Since \(F \) has odd class number in the strict sense, \(F \) has units of independent signs. This implies that the group of units that are positive at the two ramified infinite primes has \(\ell \)-rank 2, i.e. \((E : H) \geq 4 \) by consideration of the infinite primes alone. In particular, \(\# \text{Am}_2(M/F) \leq 2 \) in case B). \(\Box \)
Next we derive some relations between the class groups of K_2 and \tilde{K}_2; these relations will allow us to use each of them as our field K in Theorem 1.

Proposition 8. Let L and \tilde{L} be the two unramified cyclic quartic extensions of k, and let K_2 and \tilde{K}_2 be two quadratic extensions of k_2 in L and \tilde{L}, respectively, which are not normal over \mathbb{Q}.

- a) We have $4 \mid h(K_2)$ if and only if $4 \mid h(\tilde{K}_2)$;
- b) If $4 \mid h(K_2)$, then one of $\text{Cl}_2(K_2)$ or $\text{Cl}_2(\tilde{K}_2)$ has type $(2, 2)$, whereas the other is cyclic of order ≥ 4.

Proof. Notice that the prime dividing $\text{disc}(k_1)$ splits in k_2. Throughout this proof, let p be one of the primes of k_2 dividing $\text{disc}(k_1)$.

If we write $K_2 = k_2(\sqrt{\alpha})$ for some $\alpha \in k_2$, then $\tilde{K}_2 = k_2(\sqrt{d\alpha})$. In fact, K_2 and \tilde{K}_2 are the only extensions F/k_2 of k_2 with the properties:

1. F/k_2 is a quadratic extension unramified outside p;
2. kF/k is a cyclic extension.

Therefore it suffices to observe that if $k_2(\sqrt{\alpha})$ has these properties, then so does $k_2(\sqrt{d\alpha})$. But this is elementary.

In particular, the compositum $M = K_2\tilde{K}_2 = k_2(\sqrt{d_2}, \sqrt{\alpha})$ is an extension of type $(2, 2)$ over k_2 with subextensions K_2, \tilde{K}_2 and $F = k_2(\sqrt{d_2})$. Clearly F is the unramified quadratic extension of k_2, so both M/K_2 and M/\tilde{K}_2 are unramified. If K_2 had 2-class number 2, then M would have odd class number, and M would also be the 2-class field of \tilde{K}_2. Thus $2 \mid h(K_2)$ implies that $2 \mid h(\tilde{K}_2)$. This proves part a) of the proposition.

Before we go on, we give a Hasse diagram for the fields occurring in this proof:

```
    N
   /\
  /  \N
 /    \M
K_2  F_1  F_2  \tilde{K}_2
   \   \   \   \   \   \  k_2
```

Now assume that $4 \mid h(K_2)$. Since $\text{Cl}_2(M)$ is cyclic by Lemma 6, there is a unique quadratic unramified extension N/M, and the uniqueness implies at once that N/K_2 is normal. Hence $G = \text{Gal}(N/k_2)$ is a group of order 8 containing a subgroup of type $(2, 2) \cong \text{Gal}(N/F)$: in fact, if $\text{Gal}(N/F)$ were cyclic, then the primes ramifying in M/F would also ramify in N/M contradicting the fact that N/M is unramified. There are three groups satisfying these conditions: $G = (2, 4)$, $G = (2, 2, 2)$ and $G = D_4$. We claim that G is non-abelian; once we have proved this, it follows that exactly one of the groups $\text{Gal}(N/K_2)$ and $\text{Gal}(N/\tilde{K}_2)$ is cyclic, and that the other is not, which is what we want to prove.

So assume that G is abelian. Then M/F is ramified at two finite primes q and q' of F dividing p (in k_2); if F_1 and F_2 denote the quadratic subextensions of N/F different from M then F_1/F and F_2/F must be ramified at a finite prime (since F has odd class number in the strict sense; see Lemma 6); since both F_1 and F_2 are normal (even abelian) over k_2, ramification at q implies ramification at the conjugated ideal q'. Hence both q and q' ramify in F_1/F and F_2/F, and since they
also ramify in M/F, they must ramify completely in N/F, again contradicting the fact that N/M is unramified.

We have proved that $\text{Cl}_2(K_2)$ and $\text{Cl}_2(\tilde{K}_2)$ contain subgroups of type (4) and $(2, 2)$, respectively. Now we wish to apply Proposition 5. But we have to compute $\#\text{Am}_2(\tilde{K}_2/k_2)$. Since the class number of \tilde{K}_2 is even, it is sufficient to show that $\#\text{Am}_2(\tilde{K}_2/k_2) \leq 2$. In case A), there is exactly one ramified prime (it divides d_1), hence $\#\text{Am}_2(\tilde{K}_2/k_2) = 2/(E : H) \leq 2$. In case B), there are two ramified primes (one is infinite, the other divides d_3), hence $\#\text{Am}_2(\tilde{K}_2/k_2) = 4/(E : H)$; but -1 is not a norm residue at the ramified infinite prime, hence $(E : H) \geq 2$ and $\#\text{Am}_2(\tilde{K}_2/k_2) \leq 2$ as claimed.

Now Proposition 5 implies that $\text{Cl}_2(K_2)$ is cyclic of order ≥ 4, and that $\text{Cl}_2(\tilde{K}_2) \cong (2, 2)$. This concludes our proof.

Proposition 9. Assume that k is one of the imaginary quadratic fields of type A) or B) as explained in the Introduction. Then there exist two unramified cyclic quartic extensions of k. Let L be one of them, and write

$k_1 = \mathbb{Q}(\sqrt{d_1})$ and $k_2 = \mathbb{Q}(\sqrt{d_2})$ in case A), and $k_1 = \mathbb{Q}(\sqrt{d_3})$ and $k_2 = \mathbb{Q}(\sqrt{d_4})$ in case B).

Then $h_2(L) = \frac{1}{4} h_2(k_1) h_2(K_1) h_2(K_2)$ unless possibly when $d_3 = -4$ in case B).

Proof. Observe that $\nu = 0$ in case A) and B); Kuroda’s class number formulas for L/k_1 and L/k_2 gives

$$h_2(L) = \frac{q_1 h_2(K_1)^2 h_2(K)}{2 h_2(k_1)^2} = \frac{q_2 h_2(K_2)^2 h_2(K)}{4 h_2(k_2)^2}$$

in case A) and

$$h_2(L) = \frac{q_1 h_2(K_1)^2 h_2(K)}{4 h_2(k_1)^2} = \frac{q_3 h_2(K_2)^2 h_2(K)}{2 h_2(k_2)^2}$$

in case B). Multiplying them together and plugging in the class number formula for K/\mathbb{Q} yields

$$h_2(L)^2 = \frac{q_1 q_2 h_2(K_1)^2 h_2(K_2)^2 h_2(k)^2}{8 h_2(k_1)^2 h_2(k_2)^2}.$$

Now $h_2(k_1) = 1$, $h_2(k_2) = 2$ and $q_1 q_2 = 2$ (by Proposition 6), and taking the square root we find $h_2(L) = \frac{1}{4} h_2(k) h_2(K_1) h_2(K_2)$ as claimed. \hfill \Box

5. Classification

In this section we apply the results obtained in the last few sections to give a proof for Theorem 1.

Proof of Theorem 1. Let L be one of the two cyclic quartic unramified extensions of k, and let N be the subgroup of $\text{Gal}(K^2/k)$ fixing L. Then N satisfies the assumptions of Proposition 1, thus there are only the following possibilities:

<table>
<thead>
<tr>
<th>$d(G')$</th>
<th>$h_2(L)$</th>
<th>$h_2(K_1) h_2(K_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2^m</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2^{m+1}</td>
<td>4</td>
</tr>
<tr>
<td>≥ 3</td>
<td>2^{m+2}</td>
<td>≥ 8</td>
</tr>
</tbody>
</table>
Here, the first two columns follow from Proposition 1, the last (which we do not claim to hold if $d_3 = -4$ in case B) is a consequence of the class number formula of Proposition 9. In particular, we have $d(G') \geq 3$ if one of the class numbers $h_2(K_1)$ or $h_3(K_2)$ is at least 8. Therefore it suffices to examine the cases $h_2(K_2) = 2$ and $h_2(K_2) = 4$ (recall from above that $h_2(K_2)$ is always even).

We start by considering case A; it is sufficient to show that $h_2(K_1)h_2(K_2) \neq 4$. We now apply Proposition 5; notice that we may do so by the proof of Proposition 8.

a) If $h_2(K_2) = 2$, then $#e_2 = 2$ by Proposition 5, hence $q_2 = 2$ by Proposition 7 and then $q_1 = 1$ by Proposition 6. The class number formulas in the proof of Proposition 9 now give $h_2(K_1) = 1$ and $h_2(L) = 2^m$.

It can be shown using the ambiguous class number formula that $Cl_2(K_1)$ is trivial if and only if ε_1 is a quadratic nonresidue modulo the prime ideal over d_0 in K_1; by Scholz's reciprocity law, this is equivalent to $(d_1/d_2)_4(d_2/d_1)_4 = 1$, and this agrees with the criterion given in [1].

b) If $h_2(K_2) = 4$, we may assume that $Cl_2(K_2) = (4)$ from Proposition 8.b. Then $#e_2 = 2$ by Proposition 5, $q_2 = 2$ by Proposition 7 and $q_1 = 1$ by Proposition 6. Using the class number formula we get $h_2(K_1) = 2$ and $h_2(L) = 2^{m+2}$.

Thus in both cases we have $h_2(K_1)h_2(K_2) \neq 4$, and by the table at the beginning of this proof this implies that rank $Cl_2(k') \neq 2$ in case A).

Next we consider case B; here we have to distinguish between $d_3 \neq -4$ (case B_1) and $d_3 = -4$ (case B_2).

Let us start with case B_1.\[\]
a) If $h_2(K_2) = 2$, then $#e_2 = 2$, $q_2 = 2$ and $q_1 = 1$ as above. The class number formula gives $h_2(K_1) = 2$ and $h_2(L) = 2^{m+1}$.

b) If $Cl_2(K_2) = (4)$ (which we may assume without loss of generality by Proposition 8.b), then $#e_2 = 2$, $q_2 = 2$ and $q_1 = 1$, again exactly as above. This implies $h_2(K_1) = 4$ and $h_2(L) = 2^{m+3}$.

Finally, consider case B_2.\[\]
Here we apply Kuroda's class number formula (see [10]) to L/k_1, and since $h_2(k_1) = 1$ and $h_2(K_1) = h_3(K_1)$, we get $h_2(L) = h_2(K_1)^2 h_2(k) = 2^m q_1 h_2(K_1)^2$. From $K_2 = k_2(\sqrt{e})$ (for a suitable choice of L, the other possibility is $K_2 = k_2(\sqrt{d_2 e})$), where ε is the fundamental unit of k_2, we deduce that the unit ε, which still is fundamental in k, becomes a square in L, and this implies that $q_1 \geq 2$. Moreover, we have $K_1 = k_1(\sqrt{\pi \lambda})$, where $\pi, \lambda \equiv 1 \mod 4$ are prime factors of d_1 and d_2, in $k_1 = \mathbb{Q}(i)$, respectively. This shows that K_1 has even class number, because $K_1(\sqrt{\pi \lambda})/K_1$ is easily seen to be unramified.

Thus $2 | q_1$, $2 | h_2(K_1)$, and so we find that $h_2(L)$ is divisible by $2^m \cdot 2^2 = 2^{m+3}$. In particular, we always have $d(G') \geq 3$ in this case.

This concludes the proof. □

The referee (whom we'd like to thank for a couple of helpful remarks) asked whether $h_2(K) = 2$ and $h_2(K) > 2$ infinitely often. Let us show how to prove that both possibilities occur with equal density.

Before we can do this, we have to study the quadratic extensions K_1 and K_2 of k_1 more closely. We assume that $d_2 = p$ and $d_3 = r$ are odd primes in the following, and then say how to modify the arguments in the case $d_2 = 8$ or $d_3 = -8$.

Let h denote the
odd class number of \(k_1 \) and write \(p^h = (\pi) \) and \(\tau^h = (\rho) \) for primary elements \(\pi \) and \(\rho \) (this can be easily be proved directly, but it is also a very special case of Hilbert’s first supplementary law for quadratic reciprocity in fields \(K \) with odd class number \(h \) (see [7]): if \(\alpha^h = \alpha \mathcal{O}_K \) for an ideal \(\alpha \) with odd norm, then \(\alpha \) can be chosen primary (i.e., congruent to a square mod \(4\mathcal{O}_K \)) if and only if \(\alpha \) is primary (i.e., \([\varepsilon/\alpha] = +1 \) for all units \(\varepsilon \in \mathcal{O}_K^\times \), where \([\cdot / \cdot] \) denotes the quadratic residue symbol in \(K \)). Let \([\cdot / \cdot] \) denote the quadratic residue symbol in \(K_1 \). Then \([\pi / \rho][\pi'/\rho] = [p/\rho] = (p/r) = -1 \), so we may choose the conjugates in such a way that \([\pi / \rho] = +1 \) and \([\pi'/\rho] = [\pi / \rho'] = -1 \).

Put \(K_1 = k_1(\sqrt{\pi \rho}) \) and \(\bar{K}_1 = k_1(\sqrt{\pi / \rho'}) \); we claim that \(h_2(\bar{K}_1) = 2 \). This is equivalent to \(h_2(\bar{L}_1) = 1 \), where \(\bar{L}_1 = k_1(\sqrt{\pi}, \sqrt{\rho'}) \) is a quadratic unramified extension of \(K_1 \). Put \(\bar{F}_1 = k_1(\sqrt{\pi}) \) and apply the ambiguous class number formula to \(\bar{F}_1/k_1 \) and \(\bar{L}_1/\bar{F}_1 \); since there is only one ramified prime in each of these two extensions, we find \(\text{Am}(\bar{F}_1/k_1) = \text{Am}(\bar{L}_1/\bar{F}_1) = 1 \); note that we have used the assumption that \([\pi / \rho'] = -1 \) in deducing that \(\pi' \) is inert in \(\bar{F}_1/k_1 \).

In our proof of Theorem 1 we have seen that there are the following possibilities when \(h_2(K_2) = 4 \):

<table>
<thead>
<tr>
<th>(q_2)</th>
<th>(\text{Cl}_2(K_2))</th>
<th>(q_1)</th>
<th>(h_2(K_1))</th>
<th>(\tilde{q}_2)</th>
<th>(\text{Cl}_2(\bar{K}_1))</th>
<th>(h_2(L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(2)</td>
<td>1</td>
<td>2</td>
<td>(\tilde{q}_2 = 2)</td>
<td>(2)</td>
<td>(2^{m+1})</td>
</tr>
<tr>
<td>2</td>
<td>(4)</td>
<td>1</td>
<td>4</td>
<td>?</td>
<td>(2, 2)</td>
<td>(2^{m+3})</td>
</tr>
</tbody>
</table>

In order to decide whether \(\tilde{q}_2 = 1 \) or \(\tilde{q}_2 = 2 \), recall that we have \(h_2(K_1) = 4 \); thus \(\bar{K}_1 \) must be the field with 2-class number 2, and this implies \(h_2(\bar{L}_1) = 2^{m+2} \) and \(\tilde{q}_2 = 1 \). In particular we see that \(4 \mid h_2(K_2) \) if and only if \(4 \mid h_2(K_1) \) as long as \(K_1 = k_1(\sqrt{\pi \rho}) \) with \([\pi / \rho] = +1 \).

The ambiguous class number formula shows that \(\text{Cl}_2(K_1) \) is cyclic, thus \(4 \mid h_2(K_1) \) if and only if \(2 \mid h_2(L_1) \), where \(L_1 = K_1(\sqrt{\pi}) \) is the quadratic unramified extension of \(K_1 \). Applying the ambiguous class number formula to \(L_1/F_1 \), we see that \(2 \mid h_2(L_1) \) if and only if \((E : H) = 1 \). Now \(E \) is generated by a root of unity (which always is a norm residue at primes dividing \(r \equiv 1 \) mod \(4 \)) and a fundamental unit \(\varepsilon \). Therefore \((E : H) = 1 \) if and only if \([\varepsilon / \mathfrak{R}_1] = [\varepsilon / \mathfrak{R}_2] = 1 \), where \(\varepsilon \mathfrak{C}_F = \mathfrak{R}_1 \mathfrak{R}_2 \) and where \([\cdot / \cdot] \) denotes the quadratic residue symbol in \(F_1 \). Since \([\varepsilon / \mathfrak{R}_1][\varepsilon / \mathfrak{R}_2] = [\varepsilon / \varepsilon] = 1 \), we have proved that \(4 \mid h_2(K_1) \) if and only if the prime ideal \(\mathfrak{R}_1 \) above \(\pi \) splits in the quadratic extension \(F_1(\sqrt{\pi}) \). But if we fix \(\pi \) and \(q_1 \), this happens for exactly half of the values of \(r \) satisfying \((p/r) = -1 \), \((q/r) = +1 \).

If \(d_2 = 8 \) and \(p = 2 \), then \(2\mathcal{O}_{k_1} = \mathcal{Z}\mathcal{Z} \), and we have to choose \(z^h = (\pi) \) in such a way that \(k_1(\sqrt{\pi}) / k_1 \) is unramified outside \(p \). The residue symbols \([\alpha / \bar{\alpha}] \) are defined as Kronecker symbols via the splitting of \(2 \) in the quadratic extension \(k_1(\sqrt{\pi}) / k_1 \).

With these modifications, the above arguments remain valid.

References

(E. Benjamin) Mathematics Department, Unity College
E-mail address: benjamin@mint.net

(F. Lemmermeyer) Erwin-Rohde-Str. 19, Heidelberg, Germany
E-mail address: hb36ix.urz.uni-heidelberg.de

(C. Snyder) Department of Mathematics and Statistics, University of Maine, and, Research Institute of Mathematics, Orono
E-mail address: snyder@gauss.umemat.maine.edu