A simple proof of the quadratic reciprocity law

Larry Hammick

31 May 2002

Abstract

For any distinct odd primes p and q, a certain simple bijection of $\mathbb{Z} /(p q)$ onto $\mathbb{Z} /(p) \times \mathbb{Z} /(q)$ embodies the hypotheses of Gauss's lemma for both $\left(\frac{q}{p}\right)$ and $\left(\frac{p}{q}\right)$. With the help of an elementary counting argument, the quadratic reciprocity law follows.

Throughout, $p=2 a+1$ and $q=2 b+1$ are distinct odd primes. For $x, y \in \mathbb{Z},[x, y]$ will denote the interval $\{z \in \mathbb{Z} \mid x \leq z \leq y\}$ of \mathbb{Z}. For a prime r and an integer $m,\left(\frac{m}{r}\right)$ is the Legendre symbol, equal to 0 if $r \mid m$, to 1 if m is a nonzero square $\bmod r$, and to -1 otherwise.

The quadratic reciprocity law is:
Proposition (Gauss). With the above notation,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{a b}
$$

We will use the following well-known lemma, for which see e.g. [1, p.9].
Gauss's lemma. Let m be an integer not divisible by p, and let u be the number of elements of $\{m, 2 m, \ldots, a m\}$ which are congruent $\bmod p$ to some element of $\{-a,-a+1, \ldots,-1\}$. Then $\left(\frac{m}{p}\right)=(-1)^{u}$.

There exist unique functions

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow[-a, a] \\
& g: \mathbb{Z} \rightarrow[-b, b]
\end{aligned}
$$

such that for all $m \in \mathbb{Z}$

$$
f(m) \equiv m \quad(\bmod p)
$$

$$
g(m) \equiv m \quad(\bmod q) .
$$

Denote by R the interval $[-(p q-1) / 2,(p q-1) / 2]$ of \mathbb{Z}, and by S the subset $[-a, a] \times[-b, b]$ of $\mathbb{Z} \times \mathbb{Z}$. Denote by h the mapping $m \mapsto(f(m), g(m))$ of R into S. The Chinese remainder theorem shows that h is a bijection. Let P be the image of the restriction of h to $[1,(p q-1) / 2]$. We will examine how the elements of P are distributed among the quadrants and semiaxes of S.

Write

$$
\begin{aligned}
& P_{0}=\{(x, y) \in P \mid x>0, y>0\} \\
& P_{1}=\{(x, y) \in P \mid x<0, y \geq 0\} \\
& P_{2}=\{(x, y) \in P \mid x \geq 0, y<0\}
\end{aligned}
$$

and let N_{i} be the cardinal of P_{i} for each i.
There are a elements of P on the axis $g=0$, namely $h(m q)$ for each $m \in[1, a]$. Denote by u the number of such points having $f<0$. Likewise P has b elements on the axis $f=0$, and we denote by v the number of them which have $g<0$.
P has $a b+a$ elements in the region $g>0$, namely $h(m)$ for all m of the form $k+l p$ with $1 \leq k \leq a$ and $0 \leq l \leq b$. Thus

$$
N_{0}+N_{1}=a b+b-(b-v)+u
$$

i.e.

$$
\begin{equation*}
N_{0}+N_{1}=a b+u+v \tag{1}
\end{equation*}
$$

In the same way,

$$
\begin{equation*}
N_{0}+N_{2}=a b+u+v \tag{2}
\end{equation*}
$$

For any $m \in \mathbb{Z}$,

$$
\begin{aligned}
& f(-m)=-f(m) \\
& g(-m)=-g(m)
\end{aligned}
$$

It follows that for any $(x, y) \in S$ other than $(0,0)$, either (x, y) or $(-x,-y)$ is in P, but not both. Therefore

$$
\begin{equation*}
N_{1}+N_{2}=a b+u+v \tag{3}
\end{equation*}
$$

Adding (1), (2), and (3) gives us

$$
0 \equiv a b+u+v \quad(\bmod 2)
$$

so

$$
(-1)^{a b}=(-1)^{u}(-1)^{v}
$$

which, in view of Gauss's lemma, is the desired conclusion.

Reference

[1] J.-P. Serre, A Course in Arithmetic (Springer-Verlag, New York, 1970).

Postscript

G. Rousseau (On the quadratic reciprocity law, J. Austral. Math. Soc. 51 (1991), 423-425) has given a proof of the QRL which uses, instead of additive groups, the multiplicative groups of invertible residue classes mod $\mathrm{p}, \bmod \mathrm{q}$, and mod pq. It is shorter than the above, and does not lean on Gauss's lemma.

If we define a fourth region

$$
P_{3}=\{(x, y) \in P \mid x \leq 0, y \leq 0\}
$$

with, let us say, N_{3} elements, then a linear calculation gives

$$
N_{i}=k / 2
$$

for all four values of i, where $k=a b+u+v$. This again shows $k \equiv 0$ $(\bmod 2)$. But moreover $k \equiv 0(\bmod 4)$. Let me just sketch a proof. The lower left region P_{3} is symmetric under a half-turn around its center. One verifies

- the half-turn maps elements of P to elements of P
- the half-turn has no fixed points except its centre
- the centre, if it is a lattice point, is not in P.

Thus the $k / 2$ elements in the region fall into orbits each of which contains two elements.

More is true. Let's say that a point $(x, y) \in P$ is "verticle" (resp. "horizontal") if $(x,-y) \in P$ (resp. $(-x, y) \in P)$. It is easy to see that every element of P is verticle or horizontal and not both. But in fact each of the sets P_{i} contains $k / 4$ verticle and $k / 4$ horizontal elements. The proof is not easy.

We cannot define h simply as "the" mapping

$$
\begin{align*}
m & \mapsto(m, m) \tag{4}\\
\mathbb{Z} /(p q) & \rightarrow \mathbb{Z} /(p) \times \mathbb{Z} /(q), \tag{5}
\end{align*}
$$

like a curve on a torus, because the bijection (5) is not canonical.

