
11. Eisenstein Reciprocity

In order to prove higher reciprocity laws, the methods known to Gauss were
soon found to be inadequate. The most obvious obstacle, namely the fact
that the unique factorization theorem fails to hold for the rings Z[�`], was
overcome by Kummer through the invention of his ideal numbers. The direct
generalization of the proofs for cubic and quartic reciprocity, however, did
not yield the general reciprocity theorem for `-th powers: indeed, the most
general reciprocity law that could be proved within the cyclotomic framework
is Eisenstein's reciprocity law. The key to its proof is the prime ideal factor-
ization of Gauss sums; since we can express Gauss sums in terms of Jacobi
sums and vice versa, the prime ideal factorization of Jacobi sums would do
equally well.

Although Eisenstein's reciprocity law is only a very special case of more
general reciprocity laws, it turned out to be an indispensable step for proving
these general laws until Furtw�angler [253] succeeded in �nally giving a proof
of the reciprocity law in Q(�`) without the help of Eisenstein's reciprocity
law. It should also be noted that Eisenstein's reciprocity law holds for all
primes `, whereas Kummer had to assume that ` is regular, i.e. that ` does
not divide the class number of Q(�`).

Using the prime ideal factorization of Gauss sums together with the trivial
fact that the mth power of Gauss sums generate principal ideals in Z[�m],
we will be able to deduce amazing properties of ideal class groups of abelian
extensions of Q. This idea goes back to work of Jacobi, Cauchy and Kummer,
was extended by Stickelberger and revived by Iwasawa. Later re�nements and
generalizations due to Thaine, Kolyvagin and Rubin will be discussed only
marginally.

11.1 Factorization of Gauss Sums

In the mathematical literature there exist many proofs for the Stickelberger
relation, which gives the prime ideal factorization of Gauss sums. The simplest
proof unfortunately works only for the primes p � 1 modm, and this is why
we treat this case separately.
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First we will show that the Stickelberger relation follows almost from the

fact that adjoiningG(�) = �Pt2F�q
�(t)�

Tr (t)
p toQ(�m) generates an abelian

extension. We will complete the proof by following Hilbert's Zahlbericht [368].
Let p be a prime ideal in K = Q(�m) above p � 1 modm, and suppose

that � is a multiplicative character of order m on F = OK=p. From Chapter
4 we know that G(�)m 2Z[�m]; moreover, K is the decomposition �eld of p
in L = Q(�pm), because p � 1 modm guarantees that p splits completely in

K=Q. We also know from G(�)G(�) = p that only prime ideals above p can
occur in the prime ideal factorization of � = G(�)m. Since � = Gal (K=Q)
acts transitively on the prime ideals above p, we can write �OK = p for some
 =

P
� b�� 2 Z[� ], where Z[� ] denotes the group ring of � , and where 

depends on the choice of the prime ideal p.

Remark. The group ringZ[G] of a �nite group G is simply the set of formal
sums fP�2G a��g. If M is an abelian group on which G acts, then we can

makeZ[G] act on M via
�P

�2G a��
�
m =

P
�2G a��(m). Actually, we have

been doing this before without even noticing it when we used expressions like
���1 as an abbreviation for ����1.

In order to determine  we �rst take the absolute norm of �2 and �nd

NK=Q�
2 = NK=Q(��) = NK=Q(p

m) = pm(K:Q) = pm�(m); and

NK=Q� = NK=Qp
 = pS ; where S =

P
�2� b�:

This implies
P
�2� b� =

1
2m�(m). The proof we are about to give will proceed

as follows:

1. First we observe that 0 � b� � m: of course b� � 0 since G(�) is integral;
moreover, b� � m follows from �� = pm.

2. Then we will show that (b�;m) = 1; this will follow from the fact that
adjoining G(�) to K gives an extension L of degree (L : K) = m.

3. The fact that L=K is abelian will allow us to derive that the b� form a
complete system of coprime residues mod m;

4. Finally, a simple inequality will imply that the b� take the minimal pos-
itive coprime residues mod m, and Stickelberger's relation will follow.

Now we will prove that (a;m) = 1, where pa k �. To this end we will
show that K(m

p
� )=K is an abelian extension of degree m; once we know

this, the proof of (a;m) = 1 is immediate: suppose that b = (a;m); then p has
rami�cation index m

b in K(m
p
� )=K by the decomposition law in Kummer

extensions. On the other hand K(m
p
� )=K is a sub-extension of K(�p)=K,

which is completely rami�ed above p: this shows that p has rami�cation index
(K(m

p
� ) : K) = m. Comparing both expressions yields b = 1.

Lemma 11.1. Let � be a character of order m on Fp , p � 1 modm, let
G(�) be the corresponding Gauss sum, and put L = Q(�m; G(�)). Then L �
Q(�mp), and (L : Q(�m)) = m.
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Proof. Let g be a primitive root mod p and put
k = L \Q(�p); de�ne � 2 Gal (Q(�mp)=Q)
by � : �p 7�! �gp ; �m 7�! �m:
Now �(g) is a primitive m-th root
of unity, hence the relation
G(�)� = �(g)�1G(�)
shows that �m is the
smallest power of �
�xing L. This shows
that L=Q(�m) is cyclic of
degree m, and our claim fol-
lows.

Q(�mp)

��
��
� A

A
A

L Q(�p)

��
��
� A

A
A ��

��
�

Q(�m) k

A
A
A ��

��
�

Q

Now L = K(m
p
� ) is an abelian extension of Q; for each � 2 Gal(L=Q)

de�ne a(�) 2 (Z=mZ)� by �(�m) = �
a(�)
m : From Corollary 4.17 we in-

fer that ���a(�) = �m for some � 2 L�. This shows that the expo-
nent of p in ���a(�) is divisible by m, i.e., that � � a(�) modm. Let
�a denote the automorphism of Q(�m)=Q mapping �m 7�! �am and write
 =

P
(a;m)=1

ba�a. We �nd �c =
P
ba�a�c =

P
ba�ac and a(�c) = c =P

a(�)ba�a =
P
a(�)bac�ac, hence � � a(�) modm implies the congru-

ence bac � c�1ba modm for all a; c 2 (Z=mZ)�.
Now choose t such that bt is minimal among the bc; thenX

a

ba =
X
c

bct �
X
c

c�1bt = bt
X
c

c�1 modm:

On the other hand, letting M � f1; : : : ;m � 1g denote the set of minimal
positive coprime residues mod m, we �ndX

c2M

c =
1

2

 X
c2M

c+
X
c2M

(m � c)

!
=

1

2
m�(m):

Since the ba are integers � 1, this shows that
P
a ba = 1

2m�(m) can only
hold if bt = 1, that is if the ba actually take all the values ofM exactly once.
Therefore G(�)mOm = p for some suitable prime ideal p in Om = Z[�m]
above p, with  =

P
t t
�1�t 2 Z[� ], and where t�1 denotes the smallest

positive integer such that t�1t � 1 modm. If we denote the fractional part
of a real number x by hxi (i.e., hxi = x � bxc, where b�c is Gauss's oor
function), then G(�)mOm = p ;  = m�; with � =

P
(t;m)=1



t
m

�
��1t : We

have seen

Proposition 11.2. Let � be a character of order m on Fp, p � 1 modm,
and let G(�) be the corresponding Gauss sum. Then there exists a prime ideal
p j pOm such that

G(�)mOm = pm�; � =
X

0<t<m
(t;m)=1



t
m

�
��1t : (11.1)
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What we have proved so far about the prime ideal factorization of the
Gauss sum would su�ce to show that

�
a
�

�
m
= 1 () �

�
a

�
m
= 1; if we want

to prove that both expressions are always equal we need more information,
i.e. we have to specify the prime ideal p in the preceding proposition. In fact

we claim that p k G(�)m if � =
�
�
p

��1
m
. Since p = Pp�1 inZ[�mp], we see that

p k G(�)m () Pp�1 k G(�)m () P(p�1)=m k G(�):

Put n = p�1
m

and � = �p � 1; we will compute G(�) mod �n+1:

Lemma 11.3. Let the notation be as above. Then

G(�) � �n

n!
modPn+1: (11.2)

Proof. This is a slightly tricky computation:

�G(�) =
p�1X
a=1

�(a)�ap =

p�1X
a=1

�(a)(1 +�)a =

p�1X
a=1

�(a)
aX
j=0

�
a
j

�
�j

�1;2
nX
j=0

p�1X
a=1

ap�1�n
�
a
j

�
�j =3;4

p�1X
a=1

ap�1�n
�
a
n

�
�n

=

p�1X
a=1

ap�1�n
an

n!
�n � (p� 1)

�n

n!
�5 ��

n

n!
mod�nP:

In this computation we have used the following facts:
1. �(a) � ap�1�n mod p;
2. �j � 0 mod�n for j > n;
3.
�
a
j

�
is a polynomial of degree j in a; in particular, ap�1�n

�
a
j

�
contains a

monomial of degree divisible by p � 1 if and only if j = n;

4.
p�1P
a=1

ak � 0 mod p if k is not divisible by p� 1 (see Proposition 4.29);

5. P j �; in particular, the congruence G(�) � �n=n! is valid modulo Pn.
Observe the analogy to the computation in Section 8.7.

The congruence G(�) � �n=n! modPn+1 implies, as we already have
pointed out, that p k G(�)m, and we have proved:

Theorem 11.4. Let p � 1 modm be prime, and let p be a prime ideal above

p in K = Q(�m). Then � =
�
�
p

��1
m

is a multiplicative character of order m on

Fp , and the corresponding Gauss sum G(�) has the factorization G(�)mOm =
pm�, where � is de�ned in (11.1).

This looks more complicated than it is; here are a few examples that
illustrate the factorization of Gauss sums G(�)m for characters � = (�=p)m
over Fp, p � 1 modm; here pi denotes the prime ideal �i(p) with p = p1:



11.2 Eisenstein Reciprocity for `-th Powers 363

m G(��1)m G(�)m J(�; �)

2 p p

3 p1p
2
2 p21p2 p1

4 p1p
3
3 p31p3 p1

5 p1p
3
2p

2
3p

4
4 p41p

2
2p

3
3p4 p1p3

7 p1p
4
2p

5
3p

2
4p

3
5p

6
6 p61p

3
2p

2
3p

5
4p

4
5p6 p1p4p5

8 p1p
3
3p

5
5p

7
7 p71p

5
3p

3
5p7 p1p5

The factorization ofG(�)m into prime ideals follows from the factorization
of G(��1) given Theorem 11.4 and the relation G(�)G(��1) = �p. The
corresponding results for the Jacobi sum can be derived from J(�; �)m =
G(�)2mG(�2)�m and G(�2)m = �2(G(�)m) (the last equality only holds for
odd m; if m is even, G(�2) is known from the computations for m=2).

For odd prime values of m, one �nds (see Exercise 11.2)

Corollary 11.5. Let ` and p � 1 mod ` be odd primes; assume that p is a
prime ideal above p in Z[�`], and put � = ( � =p)`. Then

(J(�; �)) = ps; s =
`�1X
t=1

j2t
`

k
��1�t :

Turning this procedure around, one can prove Proposition 11.2 by ex-
ploiting the fact that Jacobi sums are integral (see Exercise 11.5).

11.2 Eisenstein Reciprocity for `-th Powers

Now that we know the prime ideal factorization of the Gauss sum, we will
use the special case m = ` prime to prove Eisenstein's reciprocity law. This
law will take its simplest form if we restrict it to numbers � 1 modulo a high
power of � = 1� �` (compare the special case of cubic and quartic residues).
We will call � 2Z[�`] semi-primary if (�; `) = 1 and � � a mod (1� �`)2 for
some a 2Z.
Lemma 11.6. Let ` be an odd prime, and suppose that (�; `) = (�; `) = 1
for some �; � 2Z[�`]. Then
i) there is a unique c 2Z=`Zsuch that �c`� is semi-primary;
ii) if �; � are semi-primary, then so are �� � and ��;
iii) �` is semi-primary;
iv) if � 2Z[�+ ��1], then � is semi-primary;
v) if � is a semi-primary unit, then � 2Z[�+ ��1];
vi) Jacobi sums are semi-primary; more exactly: if �;  6= 1l are characters

of order ` on Fq , then J(�;  ) � 1 mod (1� �`)
2.
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Proof. These are straightforward computations: i) Let � = �`�1; then l = (�)
is the prime ideal above ` in Q(�`), and we �nd

� =
`�1X
j=0

aj�
j
` =

`�1X
j=0

aj(1 + �)j �
`�1X
j=0

aj(1 + j�) = a+ b� mod l2

for some a; b 2 Z. Observe that ` - a since (�; `) = 1, and de�ne c 2 Zby
ac � b mod `; then �c` = (1 � �)c � 1� c� mod l2, hence �c`� � (a + b�)(1 �
c�) � a+ (ac � b)� � a mod l2.
ii) is clear;

iii) Let � � � mod �; then �` � �` =
Q`�1
j=0(� � �j�) � 0 mod �`: Thus

� � a mod � implies immediately �` � a` � a mod (1� �)2, and �` is semi-
primary as claimed.
iv) Assume that � � a + b� mod �2 for integers a; b 2 Z; then � � a +
b � b� mod �2 and � � a + b � b��1 mod �2 imply that 0 = � � � � b(� �
��1) mod �2, since � is real. But � k (� � ��1) shows b � 0 mod �, hence we
have b � 0 mod ` and � � a mod �2.
v) We can write � = ��j�0, where �0 2 Z[� + ��1] is a real unit. Since
� is semi-primary, we have � � a mod �2. Now a � � � ���j�0 mod �2,
together with the fact that � - �0 (since �0 is a unit) implies �2 j (�j � ��j);
this in turn is only possible if j � 0 mod `, i.e., if � = �0 is real.
vi) using the congruences (�(t) � 1) (1 � t) � �(t) � 1 mod (1 � �`)2 and
q � pf � 1 mod ` we �nd

J(�;  ) = �Pt6=0;1 �(t) (1� t)

= �Pt6=0;1(�(t)� 1) (1� t)�Pt6=0;1 (1� t)

� �Pt6=0;1(�(t)� 1)�Pt6=0;1 (1 � t)

� �(1) +  (1) + (q � 2) = q � 1 mod (1� �`)2:

This completes the proof.

Our next result concerns the power character of � = G(�)m; since the
proof does not depend on m = ` being prime, we treat the general case
of arbitrary m � 2 (observe that the lemma below contains the quadratic
reciprocity law as the special case m = 2!):

Lemma 11.7. Let p � 1 modm be prime, let p be a prime ideal above p in
K = Q(�m), and let � = G(�)m, where G(�) is the Gauss sum corresponding

to � =
�
�
p

��1
. Then for all prime ideals q in Ok such that q - pm we have�

�

q

�
m

=

�
Nq

p

�
m

;

where Nq = qf is the absolute norm of q.
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Proof. The decomposition law in cyclotomic �elds implies the congruence
qf � 1 modm; hence

(�G(�))qf �Pt �(t)
qf �tq

f

m =
P
t �(t)�

tqf

m

= ��(qf )�1G(�) =
�
Nq

p

�
m
(�G(�)) mod qOk:

This implies (�G(�))qf�1 � �Nq

p

�
m
mod q. On the other hand we have

(�G(�))qf�1 = ((�1)m�)(qf�1)=m �
��
q

�
m
mod q;

and comparing both expressions we get the claimed equality.

For each prime ideal p - m in Z[�m] de�ne �(p) = G(�p)
m with �p =�

�
p

��1
m
; we extend � multiplicatively to all ideals prime to m, and from the

multiplicativity of �, the norm N , and of the power residue symbol
�
�
�

�
m
we

deduce that �
�(a)

q

�
m

=

�
Nq

a

�
m

(11.3)

for all ideals a which are products of prime ideals of degree 1 not dividing m.
Observe that we did not use the Stickelberger relation for deriving (11.3). It
comes in now: if a = �Ok is principal, then there exists a unit "(�) 2 O�k
such that

�(a) = "(�)� ; (11.4)

where  = m� 2Z[G] as in (11.1). We want to compute the residue symbol
(�=q): �rst note that, for m = ` prime,�

��1t (�t)

q

�
`

=

�
��1t (�)

q

�t
`

=

�
��1t (�)

q

��t
`

=

�
�

q�t

�
`

;

this shows immediately that�
�

q

�
`

=
Y
t

�
�

q�t

�
`

=

�
�

Nq

�
`

;

where Nq = pf denotes the absolute norm of q. Since we have proved Stick-
elberger's relation only for prime ideals of degree 1, the reciprocity formula
just proved is only valid for such � which are products of prime ideals of
degree 1. Before we will see how Hilbert dealt with this di�culty, we take
care of the unit "(�) de�ned in Equation (11.4): if we want a simple formula
like

�
�
Nq

�
`
=
�
Nq

�

�
`
to hold, we must make sure that "(�) is an `-th power

residue modulo all prime ideals q: the only way to do this is to show that
"(�) is an actual `-th power if � is semi-primary:
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Lemma 11.8. The unit "(�) de�ned in Equation (11.4) is a root of unity,
and if � is semi-primary and m = ` is an odd prime, then "(�) = �1.
Proof. We begin by showing that "(�) is an m-th root of unity. Since
Q(�m)=Q is abelian it is su�cient to show that j "(�) j = 1, because this
implies that j "(�)� j = 1 for all � 2 Gal (Q(�m)=Q), and a well known result
due to Kronecker asserts that the only algebraic integers with this property
are roots of unity.

The fact that j�(p) j2 = p = Np for all prime ideals of degree 1 implies at
once that j�(�) j2 = jN (�) jm: On the other hand, letting � = ��1 denote
complex conjugation we have j� j2 = ��� and

(1 + �) =
P
t�1�t +

P
t�1�t��1 =

P
t�1�t +

P
t�1��t

=
P
t�1�t +

P
(m � t)�1�t = m

P
�t;

hence ��� = jN (�) jm: This yields our �rst claim that j "(�) j = 1.
This much is true without m being prime or � being semi-primary { now

we suppose that � � z mod l2, where l = (1� �`)Ok is the prime ideal above
the rational prime m = `. Applying � 2 Gal (k=Q) yields �� � z mod `2,
since ` is an ambiguous ideal, i.e. `� = `. This shows that

� � z � z1+2+:::+(`�1) � z`(`�1)=2 �
�z
`

�`
� �1 mod l2:

Now look at �(�) = "(�)� : if we can show that �(�) � �1 mod l2, then we
can conclude that, for semi-primary �, we have "(�) � �1 mod l2. But the
only semi-primary roots of unity are �1, and this proves our claim.

The proof of the congruence �(�) � 1 mod l2 is straightforward:

�(�) = G(�p)
` =

�
�
X
t6=0

�p(t) (t)
�`
� �

X
t6=0

 (`t) =  (0) = 1 mod `;

and this su�ces because l2 j ` for ` > 2.

Now we will remove the condition that (�) be a product of prime ideals
of degree 1. To this end let � 2 Ok be a semi-primary integer, assume that
� : �` 7�! �r` generates Gal (k=Q), and de�ne

� = �S; where S =
Q
(1� �e);

here the product is over all integers e 6= ` � 1 which divide ` � 1. We claim
that only prime ideals of degree 1 occur in the prime ideal factorization of
�Ok. In fact, suppose that p is a prime ideal of degree f > 1 dividing �. Put
ef = ` � 1: then (1 � �e) occurs in the product S above, and we can write
� = (�h(�))1��

e

, where h is some polynomial in Z[x]. But �e �xes p, hence
p divides the numerator and the denominator of � equally often, and this
shows that it cannot occur in the prime ideal factorization of �Ok.
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Since � is semi-primary, so is �, and from what we have proved we know
that (�=q) = (q=�). We also know that (��=q)` = (�=q)�` = (�=q)r` , hence
we �nd ��

q

�Q(1�re)

`
=
��
q

�Q(1��e)

`
=
��
q

�
`
=
� q
�

�
`

=
� q
�

�Q(1��e)

`
=
� q
�

�Q(1�re)

`
:

But since the product of the numbers 1�re is not divisible by `, we conclude
that (�=q) = (q=�). At this point we know that (�=q)` = (q=�)` holds for all
semi-primary� 2 Ok and all primes q 6= `. Since (�=�)` is multiplicative in the
denominator, we have proved (�=a)` = (a=�)` for all semi-primary � 2 Ok
and all a 2Znot divisible by `.

Theorem 11.9. (Eisenstein's Reciprocity Law for `-th Powers) Let ` 2 N
be prime and suppose that a 2 Zand � 2 Z[�`] are relatively prime and
semi-primary; then �

a

�

�
`

=

�
�

a

�
`

:

Moreover, we have

i)
�
�
a

�
= 1 if (�; a) = 1 and � 2Z[�` + ��1` ] is real;

ii)
�
a
b

�
= 1 for all a; b 2Zsuch that (a; b) = (b; `) = 1.

iii) The �rst supplementary law:
�
�
a

�
= �(a

`�1�1)=`.

iv) The second supplementary law:
�
1��
a

�
=
�
�
a

� `�1
2 :

Proof. Only the assertions i) { iv) are left to prove:
i) Let G = Gal (k=Q) denote the Galois group of k = Q(�`); then complex
conjugation � generates a subgroup H = h� i of order 2 in G. For a prime p
let p denote a prime ideal in Ok above p. Then�

�

p�

�
=

�
��

p�

�
=

�
�

p

��
=

�
�

p

��1
implies that �

�

p

�
=

Y
�2G=H

�
�

p�p��

�
= 1:

ii) If ` - a this is a special case of i); but now
�
`
b

�
=
�
`�b
b

�
= 1.

iii) Let pOk = p1 : : :pg; then�
�

p

�
=

gY
j=1

�
�

pj

�
=

gY
j=1

�
pf�1
` = �g

pf�1
` :
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The observation

pfg � 1

`
=
pf � 1

`
� �pf(g�1) + : : :+ pf + 1

� � g � p
f � 1

`
mod `

shows that the claim holds for prime a = p. Now

(mn)`�1 � 1

`
=
m`�1 � 1

`
n`�1 +

n`�1 � 1

`

� m`�1 � 1

`
+
n`�1 � 1

`
mod `

proves the assertion by induction on the primes dividing a.
iv) This follows immediately from i), iii), and the fact that (1 � �)2��1 is
real.

11.3 The Stickelberger Congruence

If p is a prime which does not split completely inQ(�m), then the computation
of the prime ideal factorization of the Gauss sum corresponding to a character
on Z[�m]=p ' Fpf becomes more di�cult: historically, the �rst obstacle was
overcome by Galois through his construction of �nite �elds; the �rst character
sums over �nite �elds of order p2 and p3 were studied by Eisenstein [Eis],
Kummer [465, x2] gave the prime ideal factorization of Jacobi sums in the
general case, and Stickelberger [759] gave the corresponding result for Gauss
sums that will be discussed below. The main idea will be to study the prime
ideal decomposition of Gauss sums for characters � over Fq �rst in the �eld
Q(�p(q�1)), and then take norms down to Q(�m), where m is the order of �.

We start by introducing some notation. Let q = pf be the power of a prime
p which will remain �xed throughout this section. For an integer a 2Z, let
a denote the unique integer satisfying 0 � a < q � 1 and a � a mod q � 1.
Write it in the form

a = a0 + a1p+ : : :+ af�1p
f�1: (11.5)

Then we de�ne s(a) = a0 + a1 + : : :+ af�1 and (a) = a0!a1! � � �af�1!.
Theorem 11.10. Let P be a prime ideal above p in Q(�q�1), and let ! =
( � =P)�1. Then the corresponding Gauss sums G(!a) satisfy the Stickelberger
congruence

G(!a)

�s(a)
� 1

(a)
mod P (11.6)

for all a 2 N, where � = �p � 1 and P = (P; �). Since P k � and (a) is a
P-adic unit, this implies in particular that Ps(a) k G(!a).
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This is the main theorem on Gauss sums { among its corollaries are
Theorems 4.31 and 4.32 of Davenport-Hasse (see [DaH] and Exercise 11.9) as
well as a host of amazing results on class groups of abelian extensions of Q,
some of which we will discuss below. Also note that the choice a = p�1

2 turns

(11.6) into (8.35), since !(p�1)=2 = ( �p ) is the quadratic residue character.
The Hasse diagram for the �elds and ideals occurring in the proofs below are
displayed in Figure 11.1.

Q(�(q�1)p)

�
� @

@
Q(�q�1) Q(�mp)

@
@ �

� @
@

Q(�m) Q(�p)

@
@ �

�

Q

P

�
� @

@
P (p; �p � 1)

@
@ �

� @
@

p (�p � 1)

@
@ �

�

(p)

Fig. 11.1. Some sub�elds of Q(�(q�1)p)

Proof of Theorem 11.10. We will prove Stickelberger's congruence by induc-
tion on s(a). For s(a) = 0, the claim is trivial (recall that G(1l) = 1). If
s(a) = 1, then a = pr for some r � 1. Now

G(!p) = G(!); s(ap) = s(a) and (ap) = (a): (11.7)

The last two equations are obvious, and the �rst is proved easily: since
G(!p) = �Pt2F�q

�(tp)�Tr (t), it is su�cient to prove that Tr (t) = Tr (tp).

But this is clear in light of Tr (t) = t+ tp + : : :+ tp
f�1

.
Therefore it is su�cient to prove the claim for a = 1. This is done as

follows: �rst we notice that

�G(!) =
X
t2F�q

!(t)�Tr (t) =
X
t2F�q

!(t)(�Tr (t) � 1)

since
P
t !(t) = 0. The last sum has the advantage that all summands are

divisible by � � 1; moreover,

�m � 1

� � 1
= 1 + � + �2 + : : :+ �m�1 � m mod �
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since �r � 1 mod � for all r 2Z. This shows �G(!)
� � Pt !(t)Tr (t) mod �:

Since we are summing over roots of unity t, we have !(t) = t�1 and Tr (t) =

t+ tp + : : :+ tp
f�1

. Thus

�G(!)
�

�
X
t2F�q

t�1
�
t+ tp + : : :+ tp

f�1 �
=
X
t2F�q

�
1 + t + : : :+ tp

f�2 �
= (q � 1) � �1 mod P:

This proves Stickelberger's congruence for a = 1, thus for all a < q � 1 such
that s(a) = 1.

Now we do the induction step, so assume that (11.6) is proved for all
0 < a < q � 1 with s(a) � r, r � 1. Suppose s(a) = r + 1 and write
a = aip

i + : : :af�1p
f�1 with ai > 0. Using (11.7) we may assume that

i = 0, i.e. that a = a0 + a1p + : : : af�1p
f�1 with a0 > 0. Then a � 1 =

a0 � 1 + a1p+ : : :af�1p
f�1, hence s(a � 1) = s(a) � 1, and

G(!a�1)

�s(a�1)
� 1

(a � 1)
mod P

from the induction assumption. Next G(!a�1)G(!) = G(!a)J(!; !a�1), and
writing b = q � 1� (a� 1) = q � a we �nd

�J(!; !a�1) �
X
t

t�1(1 � t)b �
X
t

t�1
bX
j=0

(�1)j
�
b

j

�
tj

=

q�1X
j=0

(�1)j
�
b

j

�X
t

tj�1 modP:

Since the inner sum vanishes modulo p unless j�1 is divisible by q�1 (which
happens if and only if j = 1), we get

J(!; !a�1) � ��b1� = �b = a� q � a � a0 modP:

In particular, J(!; !a�1) is a P-unit, and we conclude that

G(!a)

�s(a)
=
G(!a�1)

�s(a�1)
G(!)

�s(1)
J(!; !a�1)�1 � 1

(a � 1)

1

a0
=

1

(a)
mod P:

This proves our claims.

Since (a) is a P-adic unit and P k �, the Stickelberger congruence implies
that Ps(a) k G(!a). In order to �nd the complete prime ideal factorization
of G(!a), let �b 2 � = Gal(Q(�p(q�1))=Q) be de�ned by �b : �q�1 7�! �bq�1,

�p 7�! �p. Assume that Pr��1b k G(!a); applying �b gives Pr k G(!a)�b =

G(!ab), and we see that r = s(ab).
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Corollary 11.11. We have (G(!a)) = P�, where � =
P

�b2�=Z
s(ab)��1b :

Here Z denotes the decomposition group of p.

This corollary gives the complete prime ideal factorization of Gauss sums;
we will now show that the formulation of Theorem 11.4 carries over to the
general case:

Theorem 11.12. Let p - m be prime and let p be a prime ideal above p in

K = Q(�m); then � =
�
�
p

��1
m

is a multiplicative character of order m on

F = Fq , where q = pf = Np is the absolute norm of p. The corresponding

Gauss sum G(�) = �Pt2F� �(t)�
Tr (t)
m has the factorization G(�)m = pm�

for � as in (11.1).

Proof. We start by recalling that the decomposition group Z of P is generated

by �p (see Proposition 3.1.iv), hence we have Z = f1; �p; : : : ; �pf�1p g. Now
we need

s(a) = (p � 1)

f�1X
i=0

D api

q � 1

E
: (11.8)

For a proof, consider the following set of congruences modulo q � 1:

a = a0 +a1p+ : : : +af�1pf�1

ap � af�1 +a0p+ : : : +af�2pf�1 mod(q � 1)
: : :

apf�1 � a1 +a2p+ : : : +a0pf�1 mod(q � 1)

The right hand side of the i-th congruence equals (q � 1)hapi�1q�1 i; summing
up we �nd

f�1X
i=0

D api

q � 1

E
= s(a)

1 + p+ : : :+ pf�1

q � 1
=

s(a)

p� 1
;

and this proves (11.8). Using (11.8) we get

s(ab)��1b = (p� 1)

f�1X
i=0

D abpi
q � 1

��1b

E
� (p � 1)

f�1X
i=0

D abpi
q � 1

��1
bpi

E
mod Z;

hence X
�b2�=Z

s(ab)��1b � (p� 1)
X

tmod q�1

D at

q � 1

E
��1t mod Z:

Using Pp�1 = P, we �nd



372 11. Eisenstein Reciprocity

(G(!a)) = PT ; where T =
X

tmod q�1

D at

q � 1

E
��1t : (11.9)

Now we are in a position to complete the proof by using Kummer's trick
(cf. Section 10.2) of going up to Q(�q�1; �p), where q = pf = Np: every ideal
prime to m inZ[�m] has norm� 1 modm, hence, in particular, q � 1 modm.
Let P denote the prime ideal above p in Q(�q�1); then P still has inertia
degree f , hence Oq�1=P ' Om=p ' Fq . The advantage of working in Oq�1
is, as we have seen, that (Oq�1=P)� has �q�1 as a set of representatives.

We have � = !a with a = q�1
m . From (11.9) we get

G(�) = PT ; with T =
X

tmod q�1

D t
m

E
��1t : (11.10)

Next let us look at the automorphisms of Q(�q�1)=Q(�m). Write q�1 = mn;
then �t : �q�1 7�! �tq�1 �xes �m = �nq�1 if and only if nt � 1 mod q �
1, i.e. if and only if t � 1 modm. We conclude that the relative norm of
Q(�q�1)=Q(�m) is simply � = �1 + �1+m + : : : + �1+m(n�1). Since h tm i in
(11.10) only depends on t mod m, we can write

X
tmod q�1

D t
m

E
��1t =

X
tmodm

D t
m

E n�1X
j=0

��1t+jm

=
n�1X
j=0

�1+jm
X

tmodm

D t
m

E
��1t

Since the �rst sum is just the relative norm � that occurred before, we �nd,
using P� = p, that

G(�)m = pm�; with � =
X

(t;m)=1



t
m

�
��1t : (11.11)

This concludes our proof.

Congruences for Jacobi Sums

Equation (11.6) also generalizes many of the congruences for cubic and quar-
tic Jacobi sums that we have proved. In fact, assume for the sake of sim-
plicity that f = 1, that is, let p = mn + 1 be prime, K = Q(�m), let p

denote a prime ideal in OK above p, and let � = ( � =p)�1m . Then s(a) = a
for 0 < a < m, and we can identify � with !(p�1)=m = !n via the isomor-
phism (OK=p)� ' (Z[�p(q�1)]=P)�. Now Stickelberger's congruence gives
G(�a)=�a � 1=(an)! mod P. This implies

J(�a; �b) =
G(�a)G(�b)

G(�a+b)
� (an+ bn)!

(an)! (bn)!
=

�
an+ bn

an

�
mod P (11.12)
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whenever 0 < a; b; a + b < m. Since the left hand side is an element in
OK =Z[�m], the congruence is even valid moduloP = P\OK . Observe that
this contains the results of Corollaries 6.6, 7.6 and Exercise 9.1 as special
cases. Also observe that this congruence is compatible with Proposition 4.28
since the binomial coe�cient on the right hand side of (11.12) is divisible by
p if and only if a+ b = m� 1 (under the restrictions 0 < a; b; a+ b < m).

11.4 Class Groups of Abelian Number Fields

Our �rst application will exploit the fact that the Stickelberger relation can
be regarded as a statement about the class group: for every prime ideal p in
O =Z[�m] prime to m, the ideal pm� is principal, because it is generated by
G(�)m, where � is a character of order m on (O=p)�.

Stickelberger's Theorem

Let K=Q be a �nite abelian extension with Galois group G and conductor m.
Let �a denote the restriction of the automorphism �p 7�! �ap of M = Q(�m)
to K. Then

� = �(K) =
1

m

X
0<a<m
(a;m)=1

a��1a 2 Q[G]

is called the Stickelberger element corresponding to K. Clearly �(K) is the
restriction of �(M ) to K.

Now we claim that (b��b)� 2Z[G] for integers b 2Zsuch that (b;m) = 1:
in fact, from �b�

�1
ab = ��1a we deduce that

(b� �b)� =
X

(a;m)=1

�
b
D a
m

E
�
Dba
m

E�
��1a ;

and this element of Q[G] has integral coe�cients. This allows us to de�ne
the Stickelberger ideal I0(K) as the ideal in Z[G] generated by elements of
the form (b � �b)�. We also use the name Stickelberger ideal for I(K) =
Z[G]\ �Z[G]. We have already seen that I0(K) � I(K); unfortunately, these
ideals are di�erent in general (see Exercise 11.22). Nevertheless we have

Lemma 11.13. If K = Q(�m) is a full cyclotomic �eld, then I(K) = I0(K).

Proof. We already know that I0(K) � I(K) for any abelian �eld K, so it is
su�cient to prove the converse. To this end, take any � =

P
t bt�t 2 Z[G]

with the property �� 2Z[G]; we have to show that �� 2 I0(K). The familiar
trick of substituting a = ct gives

�� =
�X

t

bt�t

��X
a

a��1a

�
=
X
c

�X
t

D ct
m

E
bt

�
��1c :
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Since K is the full cyclotomic �eld, the automorphisms �c are all di�erent,
and we can deduce that the coe�cient of �1 must be an integer, i.e. thatP
t tbt � 0 modm. But now �� =

�P
t bt�t

�
� =

P
t bt(t � �t)� +

P
t tbt�;

the �rst sum is clearly in I0(K), the second is an integral multiple of m� =
(m + 1� �m+1)� and therefore also lies in I0(K).

Stickelberger used Gauss sums to construct annihilators of the ideal class
groups of cyclotomic �elds; his result looks quite innocent:

Theorem 11.14. (Stickelberger's Theorem) Let K=Q be an abelian exten-
sion. Then the Stickelberger ideal I(K) annihilates Cl (K).

Thus if � 2 Z[G], where G = Gal (K=Q), is such that �� 2 Z[G], then
c� = 1 for any ideal class c 2 Cl (K). In other words: any element of Z[G]
that kills the denominator of the Stickelberger elementattached to K=Q also
kills the class group of K. Let us admit right away that Theorem 11.14 is
useless for real abelian �elds, because then �a = ��a, thus � =

1
m

P
a��1a =

1
m

P
a<m=2[a + (m � a)]��1a =

P
a < m=2��1a , and this last expression is

the relative norm from Q(�m + ��1m ): this clearly kills the ideal class of any
intermediate �eld since Q has class number 1.

Proof of Theorem 11.14. Let m be the conductor of K; then we have K �
M = Q(�m). For a prime ideal p - m in M , let � = �p = ( �

p
)�1m be the

corresponding m-th power character. Then we know that G(�)m = pm� is
principal in M , and since the class group is generated by classes of prime
ideals coprime to m (any ideal class contains an ideal coprime to any given
ideal), we conclude that m� annihilates Cl (M ). Our �rst aim is to show that
this holds for any �� 2 I(M ) (not just for � = m), and then we will have to
pull everything back to K �M .

So assume that we are given a � 2 Z[� ] such that �� 2 Z[� ], where
� = Gal(M=Q). We want to show that a�� is principal for any integral ideal
a inM ; clearly it is su�cient to prove this for ideals coprime tom. To this end,
write a =

Q
p
p and put  =

Q
p
G(�p). Then am�� = (m� ) is a principal

ideal in M . Put � = m� and L = M (m
p
� ). Then L=M is a Kummer

extension; moreover, (� ) = a�� is an integral ideal in M since �� 2 Z[� ],
hence (�) is an m-th ideal power and therefore L=M is unrami�ed outside m.
On the other hand, L �M (�P ), where P is the product of primes below the
prime ideals p dividing a, and every subextension �=M ofM (�P )=M rami�es
at some p. Since p - m, this implies that L =M , hence � 2M , and we have
shown that �� annihilates Cl (M ).

Now assume that a is an integral ideal in K; then a� = a for any � 2
Gal (M=K). In particular, � permutes the prime ideals p that divide a. Let
s be an automorphism of M (�p)=Q(�p) whose restriction to M is � (note
that, in particular, �sp = �p ); this is possible since p - m. Then right from the
de�nition of a Gauss sum we deduce that G(�p)

s = G(�p� ). But this implies
that � is �xed by �, hence � 2 K and ��(K) kills Cl (K).
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A) Quadratic Fields It might seem that this result is not what we wanted,
because we were looking for an integer annihilating Cl (K), not some element
�� in the group ringZ[G]. But consider an imaginary quadratic number �eld
K = Q(

p
d ) with discriminant d 6= �3;�4;�8. If we put

R =
X

(d=r)=+1
1�r<d

r; N =
X

(d=n)=�1
1�n<d

n;

then �(K) = 1
jdj (R + �N ), where � is the nontrivial automorphism of K=Q.

The de�nition of � implies that jdj� 2Z[G]; actually, much more is true:

Lemma 11.15. For any discriminant d of a complex quadratic number �eld,
R and N are divisible by d unless d 2 f�3;�4;�8g.
Proof. If d = �` with ` > 3 prime, this is trivial: choose a 6� 1 mod ` such
that (d=a) = +1 and observe that aR � R mod `.

Now assume that d = d0m for a prime discriminant d0 and some m 6=
�1. Let C = fa + dZ : (d=a) = +1g be the group of quadratic residues
modulo d and consider the homomorphism � : C �! (Z=d0Z)�. Since �
is onto, #ker� = 1

2�(m
0), so among the 1

2�(d) summands in R, exactly
1
2�(m

0) reduce modulo d0 to a given element in (Z=d0Z)�. Thus we see R �
1
2�(m

0)
�P

(a;d0)=1 a
�
mod d0. But if d0 = �` is an odd prime, the last sum is

1 + 2 + : : :+ ` � 1 = 1
2`(` � 1) � 0 mod `, if d0 = �4, it is 1 + 3 � 0 mod 4,

and if d0 = �8, it is 1 + 3 + 5 + 7 � 0 mod 8. This proves our claims.

Thus �(K) 2 Z[G] for these d, hence Stickelberger's theorem says that
�(K) = (R + �N )=d annihilates Cl (K). But so does 1 + �, hence Cl (K) is
also killed by h = 1

jdj
jR�N j:

Proposition 11.16. Let d < �4 be a discriminant of an imaginary quad-
ratic number �eld. Then h = N�R

d annihilates the ideal class group of

k = Q(
p
d ), i.e., the h-th power of any ideal in Ok is principal.

Note that we have proved that the imaginary quadratic number �elds
with discriminant d = �3 or d = �4 have class number 1 in Chapters 6 and
7 by using Jacobi sums, and that the corresponding result for d = �8 was
shown to hold in Chapter 9 using Eisenstein sums.

B) Quartic Fields Proposition 11.16 is just the tip of an iceberg; in order
to show what can be done and to get a feeling for the problems yet to solve,
let us look at the complex cyclic quartic �elds K of conductor f . Recall that
K is a CM-�eld, that is a totally complex quadratic extension of a totally real
number �eld K+. For CM-�elds K, the minus or relative class group Cl�(K)
is de�ned as the kernel of the norm map NK=K+ : Cl (K) �! Cl (K+): If
we let � denote a generator of Gal (K=Q), then 1 + �2 = jK+ 7�!K �NK=K+ ,
where jK+ 7�!K : Cl (K+) �! Cl (K) is the canonical transfer of ideal classes.
In particular, 1 + �2 kills Cl�(K) since NK=K+ does.
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Instead of just two sums N and R as in the quadratic case, here we have
four of them: let  be an odd character (that is,  (�1) = �1; recall that K is
complex) of order 4 on (Z=fZ)�; then Cj =

P
 (a)=ij a. We claim that Cj �

0 mod f unless f 2 f5; 16g. This is easily checked for prime power conductors,
and if f is not a prime power, we use the same argument as in the quadratic
case. Thus we can write Cj = fDj for integers Dj . Then Stickelberger's
theorem says that � = D0 +D1�+D2�

2 +D3�
3 kills Cl (K) since � 2Z[G].

On the other hand, 1+�2 kills Cl�(K), hence so does (D0�D2)+(D1�D3)�
(this follows from � � (D0 �D2) + (D1 �D3)� mod (1 + �2)). Now we use
the following lemma:

Lemma 11.17. Let G = h�i be a cyclic group of order 4 and assume that the
G-module R is annihilated by 1+�2 and a+b� 2Z[G]. Then R is annihilated
by a2 + b2.

Proof. Applying � to the relation cacb� = 1 and using the fact that c�
2
=

c�1 we get 1 = ca�cb�
2

= ca�c�b. Raising this to the b-th power we �nd
1 = c�b

2

cab� = c�b
2

c�a
2

, and this proves our claim that a2 + b2 kills G.

Using this lemma in the case at hand we �nd that (D0�D2)2+(D1�D3)2

kills Cl�(K). Finally we claim that h� = 1
2 [(D0 �D2)2 + (D1 �D3)2] is an

integer. But C0+C1+C2+C3 =
P
a+
P
(f�a), where the sums are over all

1 � a < f=2 with (a; f) = 1 (the summand a = f=2 does never occur: either
f is odd, or f is even and f=2 62 (Z=fZ)�). Since there are �(f)=2 summands,
we �nd C0+C1+C2+C3 = f�(f)=2, hence D0+D1+D2+D3 = �(f)=2. But
�(f)=2 is even, since f is either divisible by a prime � 1 mod 4 or divisible
by 16. This implies that D0 � D2 and D1 � D3 have the same cardinality,
and therefore h� is an integer. We have proved:

Proposition 11.18. Let K=Q be a cyclic quartic �eld with conductor f 6=
5; 16 and Galois group G = Gal(K=Q); let  2 Gb be an odd character of
order 4 on (Z=fZ)�, de�ne Cj as the sum of all t 2 (Z=fZ)� with  (t) = ij

and put Cj = fDj . Then 2h� annihilates the minus class group of K, where

h� =
1

2

�
(D0 �D2)

2 + (D1 �D3)
2
�
:

It is not too hard to prove more general versions; unfortunately, it seems,
the method we have presented only shows that some power of 2 times h�

kills Cl�(K) for general abelian extensions K=Q. It seems that even in the
case of full cyclotomic �elds of prime power conductor, the best result that
can be achieved with algebraic methods is that 2h� kills the minus class
group. For prime power conductors, one can use genus theory to show that,
in Proposition 11.18, the class number h(K) is odd, hence that h� annihilates
the minus class group of K.
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Herbrand's Theorem

Herbrand's Theorem is a result on the �ne structure of the p-class group of
Q(�p), strengthening previous classical results in a very beautiful way. The
story starts, predictably, with Kummer.

A) Kummer and Hecke In his letter to Kronecker (May 17, 1847), Kum-
mer conjectured that the class number h of K = Q(�p) is divisible by p (such
primes he called irregular; primes not dividing h were called regular) if p di-
vides the numerator of one of the Bernoulli numbers B2, B4, : : : , Bp�3. He
also conjectured that units congruent to a rational integer modulo p must be
p-th powers if p - h (this would later become known as Kummer's Lemma)
and expressed his hope that the �rst conjecture would imply the second. In
a letter to Dirichlet (Sept. 16, 1847) he not only sketched a proof of these
conjectures but also introduced the class number h+ of the maximal real
sub�eld K+ = Q(�p + ��1p ) of K and showed that h+ j h:
Theorem 11.19. A prime p is irregular if and only if p divides the nu-
merator of one of the Bernoulli numbers B2, B4, : : : , Bp�3. Moreover, the
quotient h� = h=h+ is integral, and p j h+ only if p j h�.

In another letter to Kronecker (Dec. 28, 1849), Kummer announced that
he had found a unit " 2Z[�37] that is congruent to a rational integer modulo p
but not an p-th power (in modern terminology:K(37

p
" )=K is an unrami�ed

cyclic extension of K = Q(�37), or, since h37 = 37: the Kummer extension
K(37

p
" ) is the Hilbert class �eld of K).

The number i(p) of indices i � p�3
2 such that p j B2i is called the index

of irregularity. It is very hard to �nd good bounds on i(p); see Mets�ankyl�a
[Met] for more.

Kummer also introduced the relative class number h�p of K = Q(�p):
let hp and h+p denote the class numbers of K and its maximal real sub�eld
K+ = Q(�p + ��1p ), respectively. Then hp = h+p h

�
p , and both factors are

integers. Kummer's observation that p j h+p implies p j h�p was later re�ned
by Hecke [Hec], who used the class �eld theory of Furtw�angler to show

Proposition 11.20. We have rank Cl p(K
+) � rank Cl�p (K).

As a corollary of the two preceding theorems we note that p j hp if and
only if p j B2B4 � � �Bp�3. This prompts the question whether the p-part
of the minus class group of Q(�p) can be broken into smaller pieces such
that the nontriviality of such a piece is controlled by the p-divisibility of a
corresponding Bernoulli number.

B) Idempotents Let K be a totally complex abelian number �eld with
maximal real sub�eld K+; then the restriction J of complex conjugation to
K generates H = Gal (K=K+). Moreover, J acts on the class group, and for
each odd prime p there is a decomposition of Cl p(K) into a plus and a minus
part.
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This decomposition can be put into a quite general framework: let R be
a commutative ring with 1, and M an R-module. An element e 2 R is called
an idempotent if e2 = e. If e is an idempotent, then so is 1 � e: in fact,
(1 � e)2 = 1 � 2e + e2 = 1 � e as desired. The existence of idempotents
allows us to decompose R-modules M into smaller pieces: for m 2 M , we
get m = 1m = (e + 1 � e)m = em + (1 � e)m, so M is the sum of the
submodules (!) eM and (1 � e)M . Moreover, this sum is direct: this is due
to the fact that e and 1 � e are orthogonal idempotents, that is, we have
e(1� e) = 0. Thus if m 2 eM \ (1� e)M , then m = em1 = (1� e)m2, hence
m = em1 = e2m1 = e(1� e)m2 = 0m2 = 0.

As a simple example, assume that a group H = f1; Jg acts on M ; de�ne
M+ = fm 2M : Jm = mg and M� = fm 2M : Jm = �mg. If M has odd
order n, then M is a Z=nZ-module, and since 2 has a multiplicative inverse
in Z=nZ, the element e = 1+J

2 is in R = (Z=pnZ)[H]. Next J2 = 1 implies
that e2 = e, that is, e is an idempotent in R. As we have seen, this implies
M = eM�(1�e)M ; moreover, eM �M+ since Je = e, and (1�e)M �M�

since J(1� e) = �(1� e), and this implies that we actually have M+ = eM
and M� = (1� e)M . In the case p = 2, there is a weak substitute in form of
Exercise 11.11.

The prototype for such considerations is the decomposition of the class
group Cl p(K), p an odd prime, into plus and minus parts. Now Cl p(K) is
not only acted upon by H but by the whole Galois group G = Gal (K=Q).
Since this is an abelian group, it contains many idempotents:

Proposition 11.21. Let G be a �nite abelian group with character group
Gb = Hom(G; C� ). Let R be an integral domain containing �(�) for all
� 2 G, and suppose that #G is a unit in R. Then the elements

"� =
1

#G

X
�2G

�(�)��1 2 R[G]

form a complete set of orthogonal idempotents of R[G], that is we have
"2� = "� (idempotent), "�" = 0 for � 6=  (orthogonal), and

P
�2 bG "� = 1

(complete). Moreover, �"� = �(� )"� for every � 2 G.
Proof. This is a straightforward veri�cation.

For understanding Herbrand's Theorem, it is su�cient to look at the
quotient group C = Cl (K)=Cl (K)p of the class group. This is clearly an
Fp [G]-module, and the character group Gb is generated by the character !
that maps �a 2 G to a mod p (this becomes a character in the above sense
upon identifying F�p with �p�1). Writing ei := "!i for 1 � i � p� 1, we �nd
that

ei =
1

p� 1

p�1X
t=1

ti��1t
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are the idempotents constructed above. For any Fp [G]-module M we can
therefore de�ne Mi = eiM . It is a formal consequence of the properties of
complete sets of orthogonal idempotents that we haveM =M1� : : :�Mp�1:
the existence of the sum is deduced from 1 =

P
ei, the fact that the sum

is direct follows from the orthogonality relations in the same way as in the
special case of the idempotents e and 1� e above.

It is an easy exercise to show thatM� =M1�: : :�Mp�2 andM
+ =M2�

: : :�Mp�1, or, equivalently, that
1�J
2 =

P
� odd e� and 1+J

2 =
P
� even e�

(recall that J = ��1). In particular, the decomposition ofM into eigenspaces
is �ner than the one into a plus and minus part, at least for p > 3.

C) Pollaczek, Takagi, Herbrand and Ribet Let us recall the situation:
We have an odd prime p, the cyclotomic �eld K = Q(�p), and its Galois
group G = Gal (K=Q); we want to study the action of G on the p-class
group Cl p(K). Using the idempotents of Fp [G] introduced above we get the
decomposition

C = Cl (K)=Cl (K)p = C1 � : : :� Cp�1;
where the submodules Ci = "iC can be described more concretely by

Ci = fc 2 C : �t(c) = ct
i

for 1 � t � p� 1g:
Thus Hecke's result (Proposition 11.20) can be expressed by saying that
rank C+ � rank C�. By studying the interplay between Kummer theory and
class �eld theory, Leopoldt [Leo] was able to re�ne this inequality consider-
ably:

Theorem 11.22. We have rank C2n � rank Cp�2n � 1 + rank C2n for all
1 � n � p�3

2 .

Actually this is only a special case of Leopoldt's famous `Spiegelungssatz'
(reection theorem).

In general it is hard to tell which of the subspaces Ci are trivial and
which are not; the following theorem due to Pollaczek [Pol], Takagi [Tak] and
Herbrand [Her] re�nes Kummer's Theorem 11.19:

Theorem 11.23. We have C1 = 1, and for odd integers 3 � i � p � 2,
p - Bp�i implies Ci = 1.

This shows that the p-divisibility of certain Bernoulli numbers controls
the minus class group Cl�p (K) in a very precise way. The proof that C1 = 1 is
actually quite easy: if c 2 C1, then c�t = ct, hence, by Stickelberger's theorem,

1 = c
P
t��1t = c

P
tt�1 = cp�1 = c�1, and the claim follows.

The general case is more di�cult: in order to make the proof work, we
have to use the Stickelberger element �: its denominator p does not allow us
to continue using FpG.

We therefore have to replace the FpG-module C by the ZpG-module
Cl p(K); this is'nt really more than a switch of language: let M be any �nite
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abelian p-group of order pm+1 on which a group G acts; then we can make
M into a ZpG-module by letting � = a0+ a1p+ : : :+ amp

m + : : : 2Zp (with
0 � aj � p� 1) act on M via m� = ma0+a1p+:::+amp

m

for any m 2M .
Both interpretations are compatible: the action of a group ring RG on an

abelian p-group M gives rise to a homomorphism RG �! Aut (M ), and we
have a commutative diagram

ZpG ����! Aut (M )??y� ??y
FpG ����! Aut (M=Mp)

with � :ZpG �! FpG being induced by reduction modulo p.
In order to lift the idempotents from FpG to ZpG we have to replace

the cyclotomic character ! by the Teichm�uller character (that we continue to

denote by !) de�ned as follows: for any 1 � a � p�1, the sequence a, ap, ap
2
,

: : : converges in Zp; its limit !(a) sati�es !(a) � a mod p and !(a)p�1 = 1,
that is: it is contained in the subgroup �p�1 � Z�p . Using the isomorphism
Gal (K=Q) ' (Z=pZ)� we can view ! as a character Gal(K=Q) �! �p�1,
and then the idempotents ei = "!i are elements ofZpG, as are the generalized
Bernoulli numbers that will occur in a moment.

Back to the proof of Herbrand's theorem: we know from Stickelberger's
Theorem that (b � �b)� kills the class group Cl (K); in particular it kills C.
Thus Ci is annihilated by (b� �b)�ei. Now �aei = !i(a)ei implies that

�ei =
�1
p

p�1X
a=1

a!�i(a)
�
ei = B1;!�iei; (11.13)

hence Ci is killed by (b�!i(b))B1;!�iei. Choose b in such a way that b�!i(b)
is not divisible by p (for example, take b to be a primitive root modulo p;
then !i(b) � gi mod p, and p j (g � gi) if and only if i � 1 (mod p � 1),
which is not the case here); since ei is an automorphism on Ci we see that Ci
is killed by B1;!�i . Finally, putting n = p� i � 1 in the congruence

1

n + 1
Bn+1 � B1;!n mod p: (11.14)

(see Washington [Was1, Corollary 5.13]) and observing that !p�1 = 1l gives
B1;!�i � 1

p�i
Bp�i mod p. This shows that Ci is killed by Bp�i, and Her-

brand's theorem follows.
Takagi [Tak] and Herbrand [Her] showed moreover that if one assumes

the truth of Vandiver's conjecture that p does not divide the class number
of Q(�p + ��1p ), then the converse also holds: this is done by writing down
the corresponding p-class �elds explicitly as Kummer extensions generated
by p-th roots of certain cyclotomic units; Vandiver's conjecture is needed for
securing that these units aren't p-th powers.



11.4 Class Groups of Abelian Number Fields 381

Example. For p = 37 we �nd that B32 is the only Bernoulli number with
index � 34 divisible by 37. Since h�37 = 37, we conclude that the minus class
group ofK = Q(�37) consists only of C5. In particular, we see that �2(c) = c32

for each ideal class c 2 Cl�(K).

Using deep properties of modular curves, Ribet [Rb1] succeeded in re-
moving Vandiver's conjecture from the converse of Herbrand's theorem:

Theorem 11.24. For odd integers 3 � i � p � 2, the relation p j Bp�i
implies Ci 6= 1.

For an exposition of Ribet's proof without the technical details, see
Tamme [Ta]. The explicit construction of the class �elds corresponding to
nontrivial Ci was studied by Harder & Pink [HP] as well as by Harder's stu-
dents Lippert [Lip] and Kleinjung [Klj]. Generalizations to cyclotomic �elds
of conductor pq were given by Kamienny [Ka].

Gut [Gut] studied a similar situation in 1951: consider the �elds L =
Q(�4n) and K = Q(�n); the relative class group Cl (L=K) is de�ned to be the
kernel of the norm map NL=K : Cl (L) �! Cl (K); let C = Cl p(L=K) be its
p-Sylow subgroup. Next de�ne the Euler numbers En by

1X
n=0

En
xn

n!
=

2

ex + e�x
;

actually Euler numbers are essentially generalized Bernoulli numbers since
En = 2

n+1Bn+1;�, where � is the nontrivial Dirichlet character modulo 4.
Then Gut showed that #C is divisible by p if and only if one of the Euler
numbers E2, : : : , Ep�3 is divisible by p. Kleboth [Kle] proved the analogous
result overQ(�3). The natural question whether this result can be improved in
the direction of Herbrand's theorem was only studied after Mazur and Wiles
had proved the main conjecture of Iwasawa theory which contained such an
extension of Gut's result as a very special case.1 Recently, Ernvall [Er2] has
proved such a generalization of Herbrand's theorem using the elementary
techniques of Herbrand.

The Stickelberger Ideal

The most attractive results about the structure of class groups of abelian
�elds are known only for cyclotomic �elds of prime power conductor, and in
this case the desired result follows from the computation of the index of the
Stickelberger ideal:

Theorem 11.25. (The Index of the Stickelberger Ideal) Let m = pn be a
prime power, K = Q(�m), G = Gal(K=Q), R = Z[G], � = �(K) the cor-
responding Stickelberger element, and I = R \ R� the Stickelberger ideal.
Moreover, let J = ��1 denote complex conjugation, and de�ne

1 Karl Rubin kindly explained that to me in an email from July 29, 1998.
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R� = fx 2 R j Jx = �xg; I� = I \R�:

Then

(R� : I�) = h�(K) := Qw
Y
� odd

8<:� 1

2f�

f��1X
t=1

�(t)t

9=; : (11.15)

The analytic class number formula says that the number h�(K) de�ned
above coincides with the minus class number h�(K) = #Cl�(K) for any
abelian extension of Q. Here Q = (EK : WKEK+) denotes Hasse's unit
index, which is known to be trivial for cyclotomic �elds of prime power con-
ductor, and in general takes only the values 1 or 2 (see Exercise 11.10). The
product is over all odd characters of the character group X(K=Q) associated
to abelian extensions of Q in Section 4.5. Using the generalized Bernoulli
numbers de�ned in Equation (10.16) we can also express h� in the form

h� = Qw
Y
� odd

�
� 1

2
B1;�

�
:

Note that these h� coincide with the integers de�ned in Propositions 11.16
and 11.18 above (see Exercise 11.23).

Let us give a few examples. Assume that p is an odd prime and let K =
Q(�pn). We claim that Theorem 11.25 provides us with an algebraic proof
that h�(K) annihilates the odd part of Cl�(K). In fact, we know Cl�p (K) =

Cl p(K)1�J = Cl p(K)R
�

, so for any c 2 Cl�p (K), we �nd ch
� 2 Cl (K)I

�

,
because h� = (R� : I�); but I� annihilates the ideal class group ofK, hence
h� annihilates Cl�p (K) for every odd prime p. For p = 2 the result is not as

strong: from Exercise 11.11 we know that Cl�2 (K)2 � Cl 2(K)(1�J), so the
above reasoning only shows that 2h� annihilates Cl�2 (K).

The proof that h�(K) = (R� : I�) also shows that h�(K) is an integer:
a direct integrality proof for general abelian extensions was given by Hasse
[Has1].

For the proof of Theorem 11.25 we need a few concepts. Exercise 11.13
generalizes the notion of an index of free abelian groups (lattices, to be exact).
From Exercise 11.14 we will also borrow the fact that if V is a Q-vector space
and T : V �! V an invertible endomorphism, then (A : TA) = j detT j for
any lattice A in V .

Proof of Theorem 11.25. We will split up the index (R� : I�) into more
manageable parts. To this end, we put S = f� 2 R : �� 2 Rg, so I =
R\R� = �S. We also introduce the Q-vector space V = Q[G]� = 2e�Q[G] =
f� 2 Q[G] : (1 + J)� = 0g, where 2e� = 1 � J 2 Z[G], and the linear map
T : V �! V de�ned by T� = ��. Clearly V is a Q-vector space of dimension
r = 1

2
#G, and R� is a submodule of V of full rank r. Now
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(R� : I�) =
(R� : 2e�S)(2e�S : T (2e�S))(T (2e�S) : 2I�)

(I� : 2I�)
:

Since I� has rank r, we see (I� : 2I�) = 2r. Moreover, (2e�S : T (2e�S)) =
j detT j; in order to compute this determinant, we extend T to a map on
C [G]� = f� 2 C [G] : (1 + J)� = 0g and observe that the idempotents e�,
� odd, form a basis of C [G]� over C . The relation (11.13), when generalized
from primes p to prime powers, says that e�� = B1;��1�. Thus the e� are
eigenvectors of T with eigenvalues B1;��1 , hence detT =

Q
� oddB1;��1 .

All that is left to do now is to compute (R� : 2e�S) and (T (2e�S) : 2I�).
We de�ne a homomorphism � : R �! Z=pnZby putting �(�a) = a + pnZ
and claim that

0 ����! S ����! R
�����! Z=pnZ����! 0

is an exact sequence. Surjectivity of � being clear, we have to show that
ker� = S. Take an � =

P
xb�b 2 R; here and below, the sums are over all

1 � b < pn with p - b. Then

pn�� =
X
a

X
b

axb�
�1
a �b =

X
c

�c
X
a

axac:

Now � 2 S means �� 2 R, and this implies that the coe�cient of �1 in
pn�� is divisible by pn; but then

P
a axa � 0 mod pn, hence �(�) = 0 and

� 2 ker �. Conversely, assume that �(�) = 0. Since � is a homomorphism,
this implies �(���1c ) = 0, hence the coe�cient of �1 in ��

�1
c � is an integer;

now this coe�cient coincides with the coe�cient of �c in ��, therefore �� 2 R
and � 2 S as claimed.

Note that R� = 2e�R, although this is not obvious as 2 is not invertible
inZ. In fact it is su�cient to show that R� � 2e�R. But � =

P
xa�a 2 R�,

the sum being over all 1 � a < m with p - a, implies that xa = �xm�a, hence
� =

P
a xa�a = (1 � J)

P
b xb�b, where b runs over the integers 1 � b < m

2
not divisible by p.

Now we use the simple fact that (A : B) = (Af : Bf )(Af +B : B), where
f : A �! A is a group endomorphism and where B � A is a subgroup of the
abelian group A (see Exercise 11.12). Applying this to the situation A = R,
B = S and f = 1� J , we �nd (R : S) = (R� : 2e�S) because the kernel of
1� J : R �! R is (1 + J)R � S. Thus (R� : 2e�S) = pn.

Finally we claim that (T (2e�S) : 2I�) = � with � = 2 if p is odd and
� = 1 if p = 2; in particular, � � pn = w gives the number of roots of unity in
K. Taking this for granted and putting everything together we get

(R� : I�) =
(R� : 2e�S)(2e�S : T (2e�S))(T (2e�S) : 2I�)

(I� : 2I�)

=
pn � ��QB1;��1

�� � �
2r

= w
Y
� odd

�
� 1

2
B1;�

�
;
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where w = #WK denotes the number of roots of unity inK. The fact that the
product

Q
� odd(�1

2B1;�) is positive follows from the analytic class number
formula; if you don't want to invoke analytic machinery, take the absolute
value on both sides.

In order to study the index (T (2e�S) : 2I�) we introduce a homomor-
phism  : T (2e�S) �! Z=2Zby putting  (2e��) = !() + 2Z, where
! : R �!Zinduced by mapping �a to 1. The identity 2 = 2e� + 2e+ (with
e+ = 1 + J) shows that 2e�� = 2� � 2e+�; since 2e+� = N is the norm,
we have 2e+ 2 S, N 2 I, and 2e+� = N = !()N . If !() is even, then
this implies that 2e�� 2 2I \ R� = I�. Conversely, if 2e�� 2 2I�, then
!()N 2 2R, thus 2 j !(). This proves that ker = 2I�.

If there is a  2 S such that  () is odd, then similarly 2e�� �N 2 2I,
and then N 2 R n 2R implies that 2e�� =2 2I�, which in turn means that
 is onto. Now if p is odd, then pn 2 S, so  = pn does it. If p = 2,
however, then we claim that  is the trivial map. To this end we observe that
(
P
xb�b)� = (

P
xbb)� for

P
xb�b 2 R; since the b's are all odd if p = 2, we

see that
P
xbb �

P
xb = !(

P
xb�b) mod 2. In particular, the existence of a

 2 S with odd !() implies that the odd integer !() is in S: but S also
contains m = 2n, and since S is an ideal, it must be equal to R. But this is
a contradiction because it would imply � 2 R. This completes our proof.

Sinnott [Sin] de�ned a Stickelberger ideal I(K) for general abelian exten-
sions K=Q in such a way that Theorem 11.25 essentially remains valid; more
exactly he showed that (R� : S�) = c�h� for certain `dirt factors' c�. Sim-
ilar class number formulas hold for the plus part when Stickelberger ideals
are replaced by cyclotomic units. Recently, a uni�ed approach combining the
plus and minus side was discovered by Anderson [An]. Anderson also inspired
a new proof of Sinnott's formulas by Ouyang [Ou] in which Sinnott's quite
technical calculations are replaced by arguments using spectral sequences.
For computational aspects involving Stickelberger ideals, see Schoof [Sf3].

The fact that the index (R� : I�) coincides with the minus class number
h� = #Cl�(K) prompts the question whether there is an isomorphism
R�=I� ' Cl�(K) as abelian groups (or even as Gal (K=Q)-modules). The
answer to the second question is no (see Washington [Was1]), and the �rst
question can be answered negatively using the following result due to Jha
[Jha, p. 78]:

Proposition 11.26. Let p � 3 mod 4 be a prime, K = Q(�p), and let R�

and I� be as above. Moreover, let h be de�ned as in Proposition 11.16. Then
h divides the exponent t of R�=I�, and, in particular, h j h�(K).

Proof. Consider the homomorphism � : R �! Zinduced by �a 7�! (ap ).

Observe that �(�) = h. Since 1 � J 2 R� and t kills R�=I�, we have
(1 � J)t 2 I� = R� \ R�. Thus (1 � J)t = � for some  2 R, hence
2t = �((1 � J)t) = �()�(�) = �() � h. Now �() is an integer, hence h
divides 2t; but h is odd by genus theory, and the claim follows.
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We need another ingredient:

Proposition 11.27. Let `, q and p = 2q+1 be odd primes, and assume that
` is a primitive root modulo q. Put K = Q(�p) and let h be de�ned as in
Proposition 11.16. Then ` does not divide h�(K)=h.

Proof. We have already seen that h j h�(K), hence h�(K)=h is an integer.
From the de�nition of h�(K) and h we �nd immediately that h�(K)=h =
2p
Q
�(�1

2B1;�), where the product is over all characters of F�p with exact
order p� 1 = 2q (the class number h corresponds to the single odd character
of order 2 in the product (11.15)). Now B1;� 2 Q(�q), and the product over all
characters of order 2q is simply the norm of B1; , where  is the character
de�ned by  (`) = �2q. But since ` is inert in Q(�q), the norm of B1; is
divisible by ` if and only B1; is. But this is easily seen not to be the case: if

we write B1; = 1
p

Pp�1
a=1 a (a)

�1 =
Pq�1
j=0 aj�

j
q , then a0 =  (1)+(p�1) (p�

1) = 2�p and (observe that �2q = �
(q+1)=2
q ) a(q+1)=2 = ` (`)+(p�`) (p�`) =

2`�p. But a sumPq�1
j=0 aj�

j
q is divisible by an integer n if and only if n divides

all the di�erences aj � a0; since a(q+1)=2� a0 = 2`� p� (2� p) = 2`� 2 and
since ` is odd, B1; is not divisible by `.

For a proof that R�=I� is not isomorphic to Cl�(K) as an abelian group
we use the analytic class number formula which says that h�(K) is the order
of Cl�(K), and that h is the class number of k = Q(

p�p ). Now take ` =
3 and let p and q be as above. Then (K : k) = q is not divisible by `,
consequently the transfer of ideal classes j : Cl (k) = Cl�(k) �! Cl�(K) is
injective (see Exercise 11.25). If we can �nd a p such that the 3-class group
Cl 3(k) of k is non-cyclic, then so is Cl�(K). If 3 is a primitive root modulo
q, then the fact that 3 - h�=h implies that Cl�3 (K) ' Cl 3(k). Thus h=3 kills
Cl�3 (K) while the exponent of R�=I� is divisible by h: hence R�=I� is not
isomorphic to Cl�(K).

Finding such q is easy: q = 30689 (here Q(
p�p ) has class group (Z=3Z�

Z=9Z�Z=5Z) and q = 38333 (here Q(
p�p ) has class group (Z=3Z�Z=27Z)

are the two smallest examples.2

Brumer and Stark

To some degree, the results of Stickelberger on the annihilation of class groups
can be generalized (at least conjecturally) from abelian extensions of Q to
those of arbitrary number �elds. So letK=k be an abelian extension of number
�elds with Galois group G = Gal (K=k) and conductor f = cond (K=k). Let
S denote a �nite set of places containing all rami�ed and all archimedean
places, and write (a; S) = 1 if an integral ideal a is not divisible by any �nite
prime in S. Then de�ne the partial �-function

2 Thanks go to Ren�e Schoof and Larry Washington for communicating the ideas
that led to these examples (emails from Nov. 13, 1999).
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�S(�; s) =
X

(a;S)=1
(a;K=k)=�

Na�s: (11.16)

Here (a;K=k) denotes the Artin symbol. Siegel has shown that the values
�S(�; 0) are rational (this is a deep result!), hence the Brumer-Stark elements

�S;K=k = �S;G = �S :=
X
�2G

�S (�; 0)�
�1 (11.17)

are elements of the group ring Q[G]. It follows from work of Deligne & Ribet
[DeR] (as well as from Shintani's formulas [Shi]) that the denominator of �S
is bounded by the number of roots of unity in K; in fact, if we denote the
group of roots of unity in K by WK and put w = #WK , then

w�S;K=k 2Z[G]: (11.18)

More generally, if some � 2Z[G] kills WK , then ��S;K=k 2Z[G].
Let us see what happens when k = Q and K = Q(�m) for some m � 3.

In this case, the Artin symbol (a;K=Q) maps an ideal (a) generated by
a positive integer a coprime to m to the element �a : �m 7�! �am of the
Galois group G = Gal(K=Q). Thus the elements a 2 N whose Artin symbols
coincide form a residue class modulom, and the partial �-function de�ned in
(11.16) coincides with the partial �-function (10.13) studied in Chapter 10.
Here clearly S = f1g[ fp : p j mg. Recall that

�(�a; 0) =
1

2
�
D a
m

E
by Theorem 10.22. This shows that the corresponding Brumer-Stark elements
are �S;K=k =

1
2� � �, where � is the Stickelberger element de�ned in (11.11).

Note that #WK = 2m, and that 2m�S;K=k 2Z[G] as predicted by (11.18).
Back to the general case. Let Pdenote the set of all places in K, and let

P1 be its subset of in�nite places. Then the subgroup

Ko = f� 2 K� : j�jv = 1 for all v 2 P1g (11.19)

is called the group of anti-units (the group of units EK is de�ned by replacing
P1 in (11.19) withPnP1; this explains the `anti'). It follows fromKronecker's
Lemma (see Exercise 11.1) that, for anti-units �, an ideal (�) determines �
up to a root of unity in WK . This observation guarantees that the following
conjecture makes sense:

The Brumer-Stark Conjecture
Let K=k be an abelian extension of number �elds. Then for each ideal a in
K there is an � 2 Ko such that aw��S;K=k = (�), and such that the extension
K(w

p
� )=k is abelian.
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In fact, � is determined up to a factor � 2WK , and K(w
p
� )=k is abelian

if and only ifK(w
p
�� )=k is (sinceK(w

p
� )=k is abelian,K(w

p
� )=k is abelian

if and only if K(w
p
� ; w

p
� )=k is).

If K is a cyclotomic extension of Q, the Brumer-Stark conjecture follows
from Stickelberger's theorem (see Exercise 11.18). The fact that the Brumer-
Stark elements give rise to abelian extensions of number �elds k made Stark
look more closely at what is happening here; see Tate's book [Ta1]. Recently,
the Stark conjectures have been used to �nd explicit generators for certain
Hilbert class �elds by e.g. H. Bauer [Bau], Dummit & Hayes [DuH], Dummit,
Sands & Tangedal [DST] and Roblot [Ro1, Ro2].

Amazingly, the Brumer-Stark theory can be generalized yet further: for
abelian extensions K=k, de�ne elements

�n(K=k) =
X
�2G

�K(�;�n)��1:

Clearly �0(K=k) is the Brumer-Stark element for K=k. Let wn(K) be the
maximal integer m such that Gal (K(�m)=K) has exponent dividing n; in
particular, we have w1(K) = w = #WK . Again it follows from the work of
Deligne and Ribet that

wn(K)�n(K=k) 2Z[G]:

Coates [Co2] has shown that their results even imply that the elements

(Nan+1 � (a;K=k))�n(K=k) (11.20)

are integral. This allows us to de�ne the n-th Stickelberger ideal In(K=k) as
the Z[G]-ideal generated by elements in (11.20), as was suggested by Brumer
(see Rideout's thesis [Rid]). Stickelberger's theorem (combined with Lemma
11.13) says that the ideal I0(K=Q) annihilates Cl (K). What do the In(K=Q)
annihilate?

Note that Cl (K) can be interpreted as the reduced K-group eK0(OK); it
is also known that Milnor's K2(OK) is a �nite group, and it can be shown
that I1(K=Q) kills K2(OK), except perhaps for the 2-part. The conjecture of
Birch & Tate (see Birch [54] for its origin) predicts that, for K totally real,
#K2(OK) equals w2(K) � j�K(�1)j. In general, it is expected that In(K=Q)
annihilates Quillen's K-groups K2n(OK).

Iwasawa Theory

One of the origins of Iwasawa theory is the construction of functions that
interpolate zeta functions p-adically. In fact, since Hurwitz's �-function as-
sumes rational values at the negative integers, it is tempting to ask whether
there exists a continuous function de�ned on Zp that takes the same values
there, at least up to some trivial factors. The answer is yes, as was shown by
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Leopoldt and Kubota (who constructed p-adic L-functions this way) as well
as Iwasawa (who used p-adic integration). These p-adic L-functions can be
used to show that, for large enough n 2 N, the p-class number hn of Q(�pn)
is given by

hn = #An = pt; t = �pn + �n+ �; (11.21)

here �; �; � 2 N 0 are integers depending only on the prime p.
Later Iwasawa could prove a similar formula for p-class numbers in arbi-

trary Zp-extensions; these are in�nite abelian extensions k1=k of a number
�eld k with Galois group Gal (k1=k) ' Zp. A famous result of Ferrero and
Washington says that � = 0 for every abelian extension F=Q. A notoriously
di�cult question is whether � = � = 0 for all totally real number �elds
F ; this conjecture of Greenberg has only been veri�ed in special cases. The
number of independent Zp-extensions of a given number �eld k is at most
r2 + 1 (where r2 denotes the number of complex primes of k), with equality
if Leopoldt's conjecture on p-adic regulators is true.

Iwasawa also found a way to reinterpret p-adic L-functions in terms of his
theory of Zp-extensions; this led to a very natural conjecture on the nature
of these functions: the \Main Conjecture" of Iwasawa theory. See Nekovar
[Nek].

Mazur and Wiles

This Main Conjecture soon occupied a central part of the research in Iwa-
sawa theory, and when Mazur and Wiles eventually proved it in 1984, it was
already known that it had quite a few important corollaries. For example,
R. Greenberg had by then deduced the following conjecture of G. Gras from
the Main Conjecture: Let K be an abelian extension of Q with conductor
m, L = Q(�m), and put G = Gal (K=Q). The units in E = EK that can be
written as products or quotients of elements of the form �NL=K

Q
a(1� �am)

form a group

C = CK =

� NL=K

�
�jm
Y
a

(1� �am)
�� \EK (11.22)

called the group of cyclotomic (sometimes also called circular) units of K;
note, however, that there are even more de�nitions of cyclotomic units than
of Stickelberger ideals oating around.

Gras conjectured that, for even characters � 2 Gb, the components Cl p(�)
and (E=C)p(�) not only should have the same order, but that they are isomor-
phic as Zp[G]-modules. Thanks to Mazur and Wiles, this is now a theorem.

Another corollary of the Main conjecture is a class number formula con-
jectured by Iwasawa and Leopoldt. In order to formulate it, let us write a � b
for p-adic integers a; b 2Zp when a and b are divisible by the same p-power.
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Theorem 11.28. Let F=Q be an abelian extension with Galois group G, and
assume that p is an odd prime not dividing (F : Q). Let � 6= ! be an odd
character of Gal (F=Q); then

#Cl p(F )(�) � Bg1;��1 : (11.23)

Here g = (Qp(�) : Qp), where Qp(�) is the smallest extension of Qp contain-
ing the values of �.

The condition that p - (F : Q) was removed later by D.R. Solomon [Sol].
As an example, take F = Q(�p); here G ' Z=(p� 1)Z, hence � takes

values in �p�1 � Qp, and we have g = 1. Theorem 11.28 says that if i is
odd then #Cl p(F )(!

i) � B1;!�i , congruence (11.14) says that B1;!�i �
1
p�iBp�i mod p, hence we �nd that Cl p(F )(!

i) 6= 1 if and only if p j Bp�i;
this is of course the theorem of Herbrand{Ribet.

In a similar way we can explain (and improve on) the results of Gut and
Kleboth: take F = Q(�4p); its characters are either characters � belonging to
K = Q(�p), or they have the form �, where  is the nontrivial Dirichlet char-
acter modulo 4. The relative class group Cl p(F=K) corresponds to characters
 �, that is, Cl p(F=K) ' L

�Cl p(F )( �), and Cl p(K) ' L
�Cl p(F )(�).

Since  is an odd character,  !i is odd if and only if i is even; for
such values of i we �nd that #Cl p(F )( !i) � B1; !�i by (11.23), and
B1; !�i � 1

p�iBp�i( ) mod p by (11.14). Finally 1
p�iBp�i( ) � Ep�1�i by

the de�nition of Euler numbers, hence we �nd that for even integers i � p,
the component Cl p(F )( !i) is nontrivial if and only if p j Ep�1�i.

Yet another consequence of the Main Conjecture ([MW, Thm. 5]) due to
Coates [Co1] is the formula #K2(OK ) = w2(K) � j�K(�1)j �2a for real abelian
extensions K=Q and some 2-power 2a, that is, the truth of the Birch-Tate
conjecture up to 2-powers. The problem with the 2-part came from the fact
that Iwasawa's Main Conjecture was usually formulated only for odd primes
p; the analogous conjecture for p = 2 was stated by Iwasawa (see Federer
[Fe]), Kolster [Kol] showed that it would imply the 2-primary part of the
Birch-Tate conjecture, and �nally Wiles [Wil] proved the Main Conjecture
also for p = 2. For a proof using the simpler methods described in the next
subsection, see Greither [Gre].

The connection between K-groups and the class groups of cyclotomic
�elds is much stronger than indicated by this last result. In fact, Kurihara
[Kur] showed that Vandiver's conjecture would follow from conjectures about
the structure of Quillen's K-groups Kn(Z); he exploits this relationship to
construct a surjection K4(Z)
Z=pZ�! Cp�3, where Cp�3 = Cl p(F )(!

p�3),
and then shows that K4(Z) is small enough to enforce Cp�3 = 0 (in fact,
today we know that K4(Z) = 0). A more general result in this direction is
due to Soul�e [Sou]; see Ghate [Gha] for an introduction.
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Thaine, Kolyvagin and Rubin

Stickelberger's relation contains no information on the class group of real
abelian �elds (see Exercise 11.18, for example). In [Tha], Thaine used cyclo-
tomic units to construct annihilators of ideal class groups of real abelian �elds
F : let m = condF be the conductor of F , G = Gal (F=Q) its Galois group,
put K = Q(�m), and de�ne the subgroup CF � EF of cyclotomic units as in
(11.22) above. Then Thaine proved that for any prime p not dividing (F : Q),
2� kills Cl p(F ) whenever � 2Z[G] kills the p-Sylow subgroup of EF =CF .

By re�ning Thaine's construction, Kolyvagin could not only give an ele-
mentary proof of Gras' conjecture but also of Ribet's converse of Herbrand's
theorem. Rubin �nally showed how Kolyvagin's theory of Euler systems could
be applied to prove the main conjecture of Iwasawa theory; see e.g. his ap-
pendix in Lang's [La2], [Ru1], or the survey [PR] by Perrin-Riou. All this
is explained beautifully in the second edition of Washington's book [Was1].
Rubin has written a book on Euler systems that will be published soon. His
CIME lectures [CGR] on this topic have just appeared.

Notes

Normal Integral Bases

It was not completely accurate when we said that our proof of Eisenstein's
reciprocity law would followHilbert's arguments as laid out in his Zahlbericht
[368]: in fact we left out all of his results on normal integral bases of number
�elds, because they are not needed for deriving Eisenstein's reciprocity law.
We cannot disregard them completely, however, because these results moved
to the center of mathematical interest during the 1970's. This was due to
the completely unexpected connections with Artin's L-series; in order to see
what has happened we have to go back to Hilbert's Zahlbericht.

In Chapter 3 we have seen that, for odd primes p, all sub�elds of Q(�p)
have a normal integral basis. More generally, Hilbert showed

Theorem 11.29. (Satz 132) Let K=Q be an abelian extension of Q such
that (discK; (K : Q)) = 1. Then OK has a NIB.

Hilbert's proof was quite simple: he used the theorem of Kronecker and
Weber to embed K in some L = Q(�m) and applied Proposition 3.6 to reduce
the problem to �nding a NIB of OL, which is easy.

Now where are the Gauss sums? Take odd primes p; ` with p � 1 mod `,
and let k denote the sub�eld of degree ` in Q(�p). Since disc k = p`�1, k=Q
satis�es the hypothesis of Satz 132 and thus has a NIB generated by � 2 Ok
(this means that a NIB is given by f�; ��; : : : ; ��`�1g, where � is a generator
of G = Gal (k=Q). In this situation, the element
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 = � + �`�
� + �2` �

�2 + : : :+ �`�1` ��
`�1 2Z[�p]

is called a root number (Wurzelzahl) of k by Hilbert. The principal properties
of root numbers are given by

Theorem 11.30. (Satz 133) Let � be the Q-automorphism of K = Q(�`)
de�ned by �` 7�! �r` , where r is a primitive root modulo `, and let k be as
above. Then root numbers of k have the following properties:

i) ! := 
` 2 OK , and !��r is an `-th power in K�.
ii) 
 � �1 mod (1� �`), and ! � �1 mod (1 � �`)`.
iii) NK=Q! = p`(`�1)=2.

iv) ! 2 K� nK�`.

As a matter of fact, Hilbert neither states nor proves property iv), but
when he claims that properties i), ii) and iii) su�ce to characterize root
numbers, he makes use of it:

Theorem 11.31. (Satz 134) If ! 2 OK satis�es the properties i) { iv) in
Theorem 11.30, then 
 =

p̀
! is a root number of k.

Next Hilbert studies the prime ideal decompositions of root numbers with
the techniques discussed in Section 11.1 (this is no problem: the essential
property is that root numbers as well as Gauss sums generate abelian exten-
sions).

We still haven't seen any Gauss sums, but now they enter the picture:
since Q(�p) has a NIB, so does k (its sub�eld of degree `), and the proof of
Proposition 3.6 shows that we can take

�0 = �p + �R
`

p + : : :+ �R
(m�1)`

p

�1 = �Rp + �R
`+1

p + : : :+ �R
(m�1)`+`

p

: : :

�`�1 = �R
`�1

p + �R
2`�1

p + : : :+ �R
m`�1

p

as a NIB for k, where R is a primitive root modulo p. Hilbert calls the
corresponding root number � = 
 a Lagrangian root number (Lagrange'sche

Wurzelzahl); but � =
Pp�2

j=0 �
j
` �
Rj

p is nothing but the Gauss sum for the

character � over Fp that maps Rj mod p to �j` . In particular, Hilbert's results
on root numbers apply to Gauss sums.

Back to normal integral bases. Speiser [Sp] later observed that Hilbert's
condition (discK; (K : Q)) = 1 could be weakened; he found

Theorem 11.32. If K=Q is a normal extension such that OK has a NIB,
then the rami�cation index of each prime does not divide (K : Q) i.e., K=Q
is tamely rami�ed. Moreover, if K=Q is abelian, this condition is su�cient.
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This is not so hard to prove: recall from Hilbert's work that if K has a
NIB generated by �, then k has a NIB generated by TrK=k�. In particular,
the existence of a NIB for K implies that TrK=kOK = Ok. Now it is easy
to see that a prime ideal p in Ok divides TrK=kOK if and only if p is wildly
rami�ed in K=k.

In 1932, E. Noether [Noe] looked at this problem from the viewpoint of
the local-global principle and showed that Speiser's condition e(p) - (K : Q)
was equivalent to the existence of a local NIB, i.e. if K=Q is normal, then
p is tamely rami�ed in K=Q if and only if Op has a NIB, where Op is the
integral closure of the completion Kp of K at some prime ideal p above p
(see Chapman [Ch1] for a simple proof).

There are two obvious ways to generalize these results of Hilbert, Speiser
and Noether: one can replace Q by a general number �eld (the naive way of
doing this does not work at all: see Exercise 11.31 for a simple counterex-
ample. In fact, Greither, Replogle, Rubin & Srivastav [GRR] have recently
shown that Q is the only number �eld such that all tame abelian extensions
have a normal integral basis), and one can look at non-abelian extensions of
Q. In the last direction we have the following result of Martinet [Ma1]:

Proposition 11.33. If K=Q is a tame normal extension with Galois group
Gal(K=Q)' Dp (dihedral group of order 2p), then K=Q has a NIB.

The next simplest non-abelian groups are the quaternion groups. Here
Martinet [Ma2] found:

Proposition 11.34. There exist tame normal extensions K=Q with Galois
group isomorphic to H8 (the quaternion group of order 8) which do (or do
not) possess a NIB.

Now H8 has a unique irreducible character � of degree 2. Artin showed
how to attach an L-series L(s; �) to the pairK and �; the corresponding func-
tion �(s; �) (obtained by multiplying L(s; �) by appropriate � -factors as in
Section 10.4) satis�es a functional equation of type �(s; �) = W (�)�(1�s; �),
where W (�) is a root of unity called the Artin root number of �; it follows
from the functional equation that W (�) = �1 for real-valued characters �.
Fr�ohlich & Queyrut [FQ] showed that W (�) = +1 whenever � is the charac-
ter of a real representation. On the other hand, Armitage showed that, for the
irreducible 2-dimensional character of H8, the root number does assume neg-
ative values. This led Serre to the `crazy idea' that the value of W (�) might
be connected with the existence of a NIB, and in fact, Fr�ohlich eventually
managed to prove

Theorem 11.35. Let L=Q be a tame normal extension with Gal(K=Q) '
H8. Then L=Q has a NIB if and only if W (�) = 1.

It can be shown that W (�) = 1 is also equivalent to L(1=2; �) = 0. See
the Notes in Narkiewicz [Nar, Chapter 4] for more.
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There is (in some sense) a �nal answer which was given by M. J. Taylor (by
now, of course, the whole area has been generalized { at least conjecturally {
almost beyond recognition by Chinburg, Fr�ohlich, M.J. Taylor, and others):

Theorem 11.36. Let L=Q be a tame normal extension with Gal(K=Q) = G.
If G has no symplectic characters, then L=Q has a NIB. If G has a symplectic
character, then OL or OL �OL is a free Z[G]-module.

A symplectic character of a �nite group G is a character corresponding to
a representation of G that factorizes through the symplectic group Sp2n(C ).
Note that abelian groups or groups of odd order do not possess symplectic
characters, but that H8 does. For a leisurely introduction to this area, see
Erez [Ere]; the real stu� is in Fr�ohlich [Fr1]. For connections between NIB's,
Gauss sums and Leopoldt's Spiegelungssatz see Brinkhuis [Br2, Br3].

The Stickelberger Relation

Theorem 11.4 was already known to Cauchy, Jacobi, Eisenstein, and Kum-
mer. Of course, they had to use a di�erent language since ideals had not yet
been invented then. Jacobi's substitute for Gauss sums were the polynomials

F (x; �) = x+ �xg1 + : : :+ �p�2xgp�2 ;

where x is an indeterminate, � a complex number with �p�1 = 1, and
where the exponents gj are de�ned by gj � gj mod p, 0 � gj � p � 1,
with g a primitive root modulo p. It is clear that substituting x = �p gives
F (�) := F (�p; �) = �G(�), where � is the character modulo p of order p� 1
de�ned by �(g) = �. Thus the relation G(�)G(��1) = �(�1)p translates into
F (x; �)F (x; ��1) = �(p�1)=2(p� 1� x� : : :� xp�1): Jacobi also shows that
F (�a)F (�b) =  a;b(�)F (�a+b) as long as �a; �b and �a+b are di�erent from
1, and that  a;b(�) 2Z[�]: of course  a;b(�) = �J(�a; �b) is a Jacobi sum. He

then replaces � by g and shows that the congruence  a;b(g) � � (a+b)!
a!b! mod p

holds (this is how Cauchy and Jacobi could determine the \prime ideal fac-
torization" of Jacobi sums without having the notion of ideal numbers, let
alone ideals). This is of course just the congruence (11.12): in fact, we have
n = 1 since m = p� 1, and if we write P = (1� �p; g � �), then the congru-
ence is valid modulo P. Replacing � by g turns the Jacobi sum on the left
hand side into  a;b(g), and the resulting congruence is not only valid modulo
(1� �p) but modulo p since both sides are elements of Z.

Next Jacobi compares the equality  a;b(�) =
F (�a)F (�b)
F (�a+b)

with the con-

gruence  a;b(g) � � (a+b)!
a!b! mod p and concludes that F (�a) seems to behave

very much like � 1
a! mod p. He then goes on to prove a special case of Stick-

elberger's congruence.
Cauchy's work is somewhat hard to read (the motto `more Landau, less

Goethe!' would have stood him in good stead). His main work [123] on cy-
clotomy has about as many pages as this book. The basic relations for Gauss
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sums are all there, but scattered throughout his treatise. The multiplication
formula G(�1)G(�2) = J(�1; �2)G(�1�2) for Gauss sums occurs as (9) on
p. 7, and the relations G(�)G(��1) = �(�1)p, J(�; �)J(�; �) = p as well as
G(�)2 = p� for the quadratic character � on F�p can be found on pp. 92{93.
On p. 15, he gives 4p� = x2+ny2, where n � 3 mod 4, and on p. 18 he shows
that � is congruent to the smallest integer � �2B(n+1)=4 mod p. On p. 106,
he discusses a similar result for n � 1 mod 4. The last chapters are dedicated
to congruences for binomial coe�cients: on p. 410, he gives Gauss's result
that x � �2nn � mod p for p = 3n+ 1 = x2 + 3y2, and on the next 15 pages he
discusses analogous results with 3 replaced by other primes � 3 mod 4 up to
p = 43.

The general congruence 11.10 is due to Stickelberger [759]; for di�erent
proofs, see Brinkhuis [Br1], Coates [Co2], Conrad [Con], Gillard [Gil], Gras
[Gra], Joly [413], and Mertens [581]. There are also various textbooks con-
taining proofs of Stickelberger's relation: see e.g. Ireland & Rosen [386], Lang
[La1, La2], Moreno [Mo1], and Washington [Was1]. The very simple proof
we have given is taken from Gras [Gra] (it coincides essentially with Lang's
presentations). The proof of Davenport & Hasse [DaH] is presented in the
book [386] of Ireland & Rosen. See also Fr�ohlich [Fr2], Ibrahimoglu [Ibr] and
Washington [Was2] for proofs of Stickelberger's theorem.

Why Hilbert did not mention Stickelberger's general relation in his Zahl-
bericht is quite mysterious; Davenport rediscovered Stickelberger's contribu-
tion in 1934 after he and Hasse had given a new proof of the relation. Three
months after Davenport's discovery, Hasse [Has2] writes

I found this proof very nice indeed, and much simpler than I expected
from my �rst scanning of Stickelberger's paper.

It is conceivable that Hilbert's �rst impression was similar.
Schwering [Sch] proved that Jacobi sums for characters of odd prime order

` > 3 are congruent to 1 mod (1 � �`)3; this is sharper than the congruence
in Lemma 11.6.vi).

A drastic improvement of the Stickelberger congruence is due to Gross
& Koblitz [GK], who gave precise p-adic expressions for Gauss sums that
contain Stickelberger's result as a very special case. Washio, Shimaura, &
Shiratani derive a congruence following from the Gross-Koblitz formula from
Stickelberger's congruence. See also Koblitz [Kob] (an excellent book provid-
ing a lot of insight, but requiring quite some background at various places),
and Lang [La2] for a more elementary treatment.

A completely new approach to the Stickelberger relation using the arith-
metic of the Jacobian variety of the curve y2 = 1 � xl, where l is an odd
prime, was presented by Shimura and Taniyama in [ST, p. 129]; see also
Kubota [Kub].
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Eisenstein's Reciprocity Law

Eisenstein's reciprocity law for residues of `-th powers is due to Eisenstein
[204] himself. He published his proof in 1850, using Kummer's language of
ideal numbers. Jacobi had claimed in 1839 (see [403]) to be in possession of
this law in the special cases n = 5, 8 and 12, but never published anything
on them. In [400, p. 263], he writes

Mit den Resten der 8ten und 5ten Potenzen, welche ganz neue Princip-
ien n�othig machen, bin ich ziemlich weit vorger�uckt; sobald ich den
betre�enden Reciprocit�atsgesetzen die w�unschenswerthe Vollendung
gegeben habe, werde ich sie der Akademie mittheilen.3

Whether Jacobi knew that the corresponding rings Z[�5] and Z[�8] are Eu-
clidean is questionable: in his lectures, the Euclidean algorithm is not used
to prove unique factorization (in fact, this problem is not addressed at all)
but to the problem of computing power residue symbols using reciprocity!
In a letter to Jacobi, Hermite [Hrt] showed in 1845 that Z[�p] is a principal
ideal ring for p = 5 and p = 7 by a di�erent method. Whatever the reasons,
Jacobi did not publish anything on this. Even when Reuschle wrote to Ja-
cobi on Nov. 11, 1846 and asked him for criteria for (10=p)n for n = 5; 7; 8; 9
(he was computing the period length of decimal fractions for a table he was
compiling: see Hertzer [365]), Jacobi's answer from Dec. 13, 1846 (published
by Lampe [475]) contains criteria for (10=p)8 plus the rather shallow remark
that criteria for (10=p)5 would depend on the factorization of p in Z[�5].

Eisenstein seems to have rediscovered these special cases in 1844, as his
letter to Stern (probably July 1844) shows:

Die Reste der 8ten, 12ten und auch der 5ten Potenzen, welche fertig
sind, arbeite ich jetzt aus. Das ist ein Feld, auf dem ich mich ganz frei
bewegen kann, denn hier hat selbst Jacobi nichts, wie er mir gesteht.4

At that time, Eisenstein visited Jacobi weekly, and Jacobi's accusation of
plagiarism lay two years ahead.

Apart from the allusions by Jacobi and Eisenstein, the �rst contribution
to quintic residuacity is due to P�epin [635], who used an approach via Jacobi
sums. Later, L. Tanner hit upon results on quintic power residues without
recognizing them as such (he was studying the coe�cients of quintic Jacobi
sums); Tanner's results were explained by E. Lehmer in [500].

Hilbert's proof of Eisenstein's reciprocity law in Section 11.2 can be sim-
pli�ed somewhat by using Theorem 11.12; see Ireland & Rosen [386]. For

3 I have advanced considerably the theory of the 8th and 5th power residues which
require completely new principles. As soon as I have given these reciprocity laws
the desired perfection, I will communicate them to the academy.

4 I am now elaborating the residues of the 8th, 12th and also the 5th powers, which
are completed. This is an area where I can move freely, as even Jacobi admits
not to have anything on them.
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other (but similar) proofs, see Landau [Lan], Spearman & Williams [745], as
well as Weil's beautiful paper [827].

The generalization to `2-th powers was sketched by Furtw�angler in [255],
and the law for `�-th powers was proved by Hasse. In the case ` = 2, Hasse
could only prove the reciprocity law for 2��2-th powers in Q(�`�). Here is his
result for odd prime powers:

Theorem 11.37. Let m = `n be an odd prime power. Assume that a 2Zand
� 2Z[�m] be relatively prime; if � � �` mod (1� �m)2 and a`�1 � 1 modm,
then �

a

�

�
m

=

�
�

a

�
m

:

Apparently Hasse, at the time of writing [336], was not aware of the pa-
pers of Western [837, 838] which contain stronger results and simpler proofs;
Western's discussion of primary elements is not very clear, but fortunately
Berndt, Evans & K.S. Williams gave a readable and simpli�ed account of
Western's paper in their excellent book [48]. Nevertheless, an explicit def-
inition of primariness in Western's sense is still a desideratum. Bohnicek
claims in [63] that [62] contains a proof for Hilbert's n-th power reciprocity
law for number �elds K in which Eisenstein's n-th power reciprocity holds;
unfortunately, [62] was unaccessible to me. Takagi [790] proves Eisenstein's
reciprocity law for `-th powers in arbitrary number �elds containing �`. Woj-
cik [873] gives a version of Eisenstein's reciprocity law for n-th powers based
on yet another de�nition of primary integers; since the special case n = 2 of
his law is an incorrect formulation of the quadratic reciprocity law, his proof
(which is based on his results from [874]) needs to be checked. It seems that
a de�nitive treatment of Eisenstein's reciprocity law for n-th powers is still
lacking. For an application of Eisenstein's reciprocity law to n-th powers of
integers (this problem was discussed in the Notes of Chapter 4) see Kraft
& Rosen [436]. Hayes [Hay2] uses Eisenstein's reciprocity law for computing
conductors of what he calls Eisenstein characters; in [Hay1] he proved an
analogue of Eisenstein's reciprocity law in function �elds.

Class Numbers

The integrality of h = R�N
d (Lemma 11.15) was proved by Cauchy [Cau] and

Stickelberger [759]. The proof given here is Stickelberger's, which is much
simpler than the one in Hasse's book [342]. Hasse also proved the integrality of
the minus class number h�p in Equation (11.15) (see [Has1]). Cauchy noticed
the connections with Bernoulli numbers; see also Voronoi [Vor]. For some slick
proofs of congruences between Bernoulli numbers (originally due to Kummer
and Voronoi), see Johnson's article [Joh]. For generalizations of many results
about Bernoulli numbers to generalized Bernoulli numbers, see Ernvall [Er1].
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Computation of cyclotomic invariants (that is, irregular primes, irregu-
larity index, Iwasawa invariants etc.) continues despite the proof of Fermat's
last theorem; for the latest results, see Buhler, Crandall, Ernvall, Mets�ankyl�a,
& Shokrollahi [BC1, BC2].

Special cases of Proposition 11.16 were already known to Cauchy and
Jacobi; since they only had Gauss sums over Fp at their disposal, all they
could treat were primes p � 1 mod d. Jacobi even restricted to prime values
d = �`, but conjectured that N�R` always equals the class number ofQ(

p�` )
[Jac]. Cauchy and Jacobi published their results at about the same time
(shortly after Jacobi's visit in Paris in 1829), but apparently they have been
written independently (the same remark applies to Cauchy's and Jacobi's
versions of Gauss's sixth proof of quadratic reciprocity that we were talking
about in the Notes of Chapter 8). The extension of these results to primes not
necessarily of the form p � 1 mod ` was accomplished by Stickelberger [759].
Hilbert's Zahlbericht [368] only gives the part due to Cauchy and Jacobi, as
does e.g. the exposition in Ireland & Rosen [386]. A proof of the general result
along these lines borrowing ideas from the paper of Coates [Co2] is given
in Exercise 11.8. Mitchell [Mi1, Mi2] showed, using Jacobi sums, that the
minus class number of the sub�eld K � Q(�p) of degree e annihilate certain
parts of the minus class group of K. MacKenzie [McK] derives relations in
the class group of Q(�n) that seem to come from the fact that Jacobi sums
are principal; his proof, however, uses Fourier transforms, and it would be
desirable to see if his method can be used to �nd the prime ideal factorization
of Jacobi sums.

Euler numbers were �rst studied by Euler in 1755; they satisfy the relation

mX
�=0

�
2m

2�

�
E2� = 0

for m � 1, and this implies that Euler numbers are integral; the �rst few
values are E2 = �1, E4 = 5, E6 = �61, E8 = 1385. Their connection with
class groups of Q(�4m) was studied by Gut [Gut] and Ernvall & Mets�ankyl�a
[EM]. For a survey of known results see Sali�e [Sal].

The index of the Stickelberger ideal (Theorem 11.25) was computed by
Iwasawa, who also seems responsible for introducing the Stickelberger ideal
itself (of course Kummer and Stickelberger never talked about ideals in group
rings). Our calculation of (R� : I�) is based on an unpublished (but web-
lished) manuscript by Robin Chapman [Ch2] and is close in spirit to the one
given by Lang [La2]. The treatment in Washington [Was1] is closer to the
original computation by Iwasawa. Jha [Jha] wrote a survey on class number
formulas and Stickelberger ideals, and so did Kimura [Kim]; Kimura's book
seems to be the better choice but unfortunately it is written in Japanese.

For surveys on Iwasawa theory, the main conjecture, Euler systems etc.
we refer the reader to Coates [Co3] (he also discusses relevant work of Kubert
& Lang on the occurrence of the Stickelberger ideal in the theory of cusps of
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modular forms), Lang [La3], Nekovar [Nek], Rubin [Ru1, Ru2] and Tamme
[Ta] as well as to the books on cyclotomic �elds by Lang [La2] andWashington
[Was1].

Fermat's Last Theorem

The claim that the equation x3+y3 = z3 has only trivial solutions in integers
was �rst claimed (with a completely inadequate proof) by al-Hogendi more
than six centuries before Fermat: see Rashed [Ras] for more on this, as well
as for other details about the contributions of Arabic mathematics to number
theory.

Legendre included his results on Fermat's Last Theorem as a second sup-
plement to his book on number theory; the �rst supplement was added in
1816, and the book was brought into its �nal form for the third edition in
1830. Legendre also studied the equation x3+y3 = az3 for a 2 N and claimed
that there are no non-trivial solutions if a = 1; 2; 3; 4;5; 6; 8;16 : : : ; P�epin no-
ticed, however, that 173 + 373 = 6 � 213, as did Lucas in a letter to Sylvester
as well as Dudeney in his booklet \The Canterbury Puzzles".

The results on Fermat's Last Theorem in Exercises 11.32 { 11.37 can all
be found in Hasse's Zahlbericht [340] as well as in the third volume of Lan-
dau's Vorlesungen [Lan]. Frobenius [Fro] showed how the criteria of Wieferich
and Mirimano� could be extended to primes q > 3; using quite complicated
computations, this has been done up to q = 89 by Granville & Monagan
[GM] and then to q = 113 by J. Suzuki [Su]. Wieferich derived his result
from a congruence due to Kummer; a simple proof of this congruence using
Herbrand's theorem was given recently by Granville [Gr2].

For a proof of a result containing Exercise 11.35 see Wendt [Wen]; his
method was taken up again by Fee & Granville [FG], as well as Lenstra
& Stevenhagen [LeSt]; see also Helou [Hel]. Attempts at attacking the case
of prime pairs p, 6p + 1 are due to Granville [Gr1]. For other connections
between reciprocity and Fermat's Last Theorem, see Bachmann [Ba], Delcour
[154], Edwards [181], Furtw�angler [254], Holzer [373], Nogu�es [Nog], Terjanian
[Ter, 799], and Vandiver [812], as well as Ribenboim's excellent pre-Wiles
classic [Ri1] and his article [Ri2].

After centuries of research on certain types of diophantine equations, it
was eventually noticed that equations like x3+y3 = az3 or z2 = x4+y4 belong
to the family of elliptic curves; in fact, Fermat's proof of FLT for n = 4 via in-
�nite descent has been developed into an algorithm that allows us to compute
the group of rational points for a large class of elliptic curves (unfortunately,
the non-triviality of the Tate-Shafarevich group qq(E=Q) complicates things
considerably; Fermat and Euler were simply lucky that their curves had triv-
ial qq). Only the cases n = 3; 4 and 7 of Fermat's equation are known to lead
to elliptic curves: x3+y3 = z3 is already elliptic and has the Weierstra� form
y2 = x3� 432, the quartic Fermat equation x4+ y4 = z4 leads to the elliptic
curve z2 = x4+y4 with Weierstra� form y2 = x3�4x (see Exercise 10.17 for



Exercises 399

the analogous problem of z2 = x4� y4), and Lam�e's solution of x7+ y7 = z7

boils down to solving u2 = s4 + 6s2t2 � 1
7 t

4, which can also be written as
y2 = x(x2�3�72x+24 �73); this is an elliptic curve of conductor 72 whose only
rational points are its two torsion points. Since there are no elliptic curves
of 5-power conductor, a similar proof for the case n = 5 of FLT probably
doesn't exist. In this connection it is interesting to note that Chowla [Cho]
has shown that the Fermat curve xp + yp + zp = 0 has a nontrivial rational
point if and only if the hyperelliptic curve y2 = 4xp + 1 does.

Hellegouarch associated the elliptic curve Ea;b;c : y
2 = x(x�ap)(x+bp) to

any solution a; b; c of Ap+Bp = Cp in order to study torsion points on elliptic
curves; Frey was the �rst to suggest that Ea;b;c should have properties that
are so weird that the curve cannot exist. After contributions of Serre, Ribet
succeeded in proving that the conjecture of Taniyama-Shimura-Weil would
imply FLT. Wiles, with a little help from R. Taylor, eventually managed to
prove enough of this conjecture to be able to derive Fermat's Last Theorem.
For an exposition of his proof plus an explanation of the terms used above,
see the Boston Proceedings edited by Cornell, Silverman, & Stevens [CSS].
Remarkably, Stickelberger's congruence is still present there: look up Theo-
rem 4.4.1. in Tate's contribution, where these congruences play a role in the
classi�cation of certain �nite at group schemes.

Other expositions of the proof of Fermat's Last Theorem (or, rather, of
a large part of the Taniyama-Shimura conjecture) ordered approximately by
level of di�culty are Cox [Cox], van der Poorten [vdP], Hellegouarch [Hll],
J. Kramer [Kr1, Kr2], Moreno [Mo2], K. Murty [Mu1, Mu2], R. Murty [Mu],
Schoof [Sf1, Sf2], Bertolini & Canuto [BC], Darmon [Dar], Ribet [Rb2], and
Darmon, Diamond & R. Taylor [DDT]. Note that some of these surveys were
written before the gap in Wiles' �rst proof was �lled.

Exercises

11.1 Prove Kronecker's assertion that any algebraic integer � 2 OK such that
j��j = 1 for every embedding � : K ,! C is a root of unity. Give a counterex-
ample in the case where � is not integral.

11.2 Prove Corollary 11.5.

11.3 (cf. Shari� [731]) Generalize Exercises 6.5 and 7.12 to `th powers: for primes
p = �`(`x), show that any divisor a of x is an `-th power residue modulo p.
(Hint: observe that p = N(1� `x�`) and use Eisenstein's reciprocity law).

11.4 Let p � 1 mod 5 be a prime, and � 2 Z[�5] a semi-primary element of norm
p. Let � = ( � =�) be the quintic power residue character; then show that
J(�;�) = ��3(�), where �3 is the automorphism of Q(�5)=Q mapping �5 to
�35 . How does multiplying � by the primary unit "2, where " = 1

2 (1 +
p
5 ),

inuence the product ��3(�)? Show also that J(�2; �2) = ��2(�), and use
Proposition 4.27 to deduce that (�=2) = (�=2).
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11.5 Assume the notation of Proposition 11.2. Write G(�m) = p�, where � =P
a ba�a. Use the facts that

P
a ba = 1

2�(m)m and that the Jacobi sums

J(�;�t) are integral for t = 1; 2; : : : ;m� 2 to give a new proof of Proposition
11.2.

11.6 (Conrad [Con]) Let 1 � a1; : : : ; ar < q � 1 be integers; generalize the congru-
ence (11.12) to

J(!a11 ; : : : ; !arr ) � (a1 + : : :+ ar)!

a1! � � �ar ! mod P

for any r � 2. Here J(�1; : : : ; �r) is the generalized Jacobi sum de�ned by

J(�1; : : : ; �r) =
X

t1;::: ;tr2Fq
t1+���+tr=1

�1(t1) � � ��r(tr):

11.7 Here we sketch the proof of Stickelberger's Relation as given in Davenport &
Hasse [DaH]. De�ne a function S(a) by PS(a) k G(!a); we have to show that
S(a) = s(a).

S(�) � 0 (11.24)

S(�+ �) � S(�) + S(�) (11.25)

S(�+ �) � S(�) + S(�) mod p� 1 (11.26)

S(1) = 1 (11.27)

S(�p) = S(�) (11.28)
X

�modq�1

S(�) =
f(p� 1)(q � 1)

2
(11.29)

Once we have proved these claims we can complete the proof as follows: from
(11.24), (11.26) and (11.27) we deduce that S(�) � � for 0 � � � p�1. From
(11.25) and (11.27) we get S(�) � �, and we conclude that S(�) = � for
0 � � � p� 1. Now (11.25) and (11.28) imply S(�) � �0+ : : :+�f�1 = s(�),
where � = �0 + �1p+ : : : + �f�1p

f�1. But now (11.29) gives

X
�modq�1

S(�) =
1

2
f(p� 1)(q � 2) =

X
�modq�1

s(�);

and this implies the claim S(�) = s(�). Now

� (11.24) follows directly from the fact that the Gauss sum G(�) is an
algebraic integer;

� (11.25) is also a direct consequence of the integrality of the Jacobi sums
J(�; );

� (11.26) can be deduced from J(�; ) 2Z[�q�1];
� (11.27): redo the calculation we did in our proof of (11.2);

� (11.28): follows from G(!ap) = G(!a);

� (11.29): note that G(!a)G(!a) = q implies S(�)+S(q�1��) = (p�1)f
and form the sum over all 1 � � � q � 2.
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11.8 Prove Proposition 11.16 directly, that is, without using Stickelberger's Theo-
rem 11.14.
Hints: 1. Show that it is su�cient to show that ph is principal for all prime
ideals that split in k by using the fact that every ideal class contains an ideal
prime to any given ideal (the only problem is to get around the rami�ed
primes; an alternative solution is to show that rami�ed primes are principal
if d is a prime discriminant, and that h is even otherwise).
2. Put L = Q(�m), where m = jdj, and observe that k is contained in the
decomposition �eld K of p. Let P denote a prime ideal above p in OK ; the

following Hasse diagram (where eF = F (�p)) shows what's going on:

eL
QQQeK L P

QQQek K P

QQQ
Q(�p) k p

QQQ
Q (p)

Let � = ( � =P)�1m be the inverse of the m-th power character in (OL=P)
�,

and let G(�) denote the corresponding Gauss sum. Then � = G(�)m 2 OK

by Proposition 4.25. Show that p(R�N)=m is principal in ek.
3. Put  = N

eK=ekG(�); use an argument about rami�cation to show that

k() = k.

11.9 Use Stickelberger's congruence to prove the Davenport-Hasse theorem 4.32
(compare Exercise 10.28).

Hints: consider the algebraic number � = G(�0)=G(�)(E:F ).
1. Show that � 2 Q(�m), where m denotes the order of � (which equals the

order of �0);
2. show that the prime ideal factorization of � contains only prime ideals

above p;
3. show that � is a unit in Z[�m] (use the prime ideal factorization of the

Gauss sum);
4. show that j�j = 1 and deduce that � must be a root of unity;
5. use Stickelberger's congruence to show that � � 1 mod p for any prime

ideal p above p in Z[�m] and conclude that � = 1.
Use the same idea to give a proof of the Davenport-Hasse relation in Theorem
4.31.

11.10 Let k be a totally real number �eld and K a totally complex quadratic exten-
sion. Show that Q = (EK : WKEk) divides 2.

11.11 LetM be a �nite additive group on which a group H = f1; Jg of order 2 acts.
Put M� = fm 2M : Jm = �mg and show that (1�J)M �M� �M .Using
(1� J)M� = 2M�, deduce that 2M� � (1� J)M .

11.12 Let B � A be abelian groups and f : A �! A a group homorphism. Then
(A : B) = (Af : Bf )(Af + B : B) whenever these indices exist, where Af =
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f(A), Bf = f(B), and Af = ker f . Hint: show that the epimorphism A=B �!
Af=Bf has kernel (Af +B)=B.

11.13 Let V be a Q-vector space. An abelian group A � V is called a lattice in V if
A = v1Z� : : :� vnZ, where fv1; : : : ; vng is a basis of V=F . Show that, given
lattices A and B in V , there exists a lattice C in V containing A and B (can

you �nd a counter example for vector spaces V over, say, Q(
p
2 )?). For any

such lattice, de�ne

(A : B) =
(C : A)

(C : B)
;

where the indices on the right hand side are the usual indices of abelian groups,
and show that this de�nition does not depend on the choice of C. Show that
this index has the following properties:
i) (A : B) coincides with the usual index if B � A;
ii) (A : B) = (B : A)�1;
iii) (A : B)(B : C) = (A : C).

11.14 (continued) Let A be a lattice in V , and assume that T : V �! V is a linear
map with the property that there is an integer m 2 N such that mTA � A.
Then (A : TA) = jdetT j. Hints: (A : TA) = (A : mTA)(mTA : TA) =
(A : mTA)(TA : mTA)�1; clearly (TA : mTA) = mn, so it is su�cient to
show that (A : TA) = jdet T j for any linear map T : V �! V such that
TA � A. For help, cf. Cohn [Coh, IV.8, Lemma 7]. Alternatively, consider
lattices B � A and de�ne vol (A) to be the volume of the parallelepiped
spanned by the basis vectors of A. Show that (A : B) = vol (B)=vol (A), and
deduce our claim from vol (TA) = jdet T j � vol (A).

11.15 Verify the following table containing information about the subgroups of R
occurring for m = 3 and m = 4 in our computation of the index of the
Stickelberger ideal:

m � S S� 2e�S I = S� I�

3 1
3
(1 + 2J) (1 + J; 3) 3R� 3R� R R�

4 1
4 (1 + 3J) (1 + J; 2� 2J) 2R� 4R� (1 + J; 1� J) R�

Note that I� = (1� J)I for m = 3 while (1� J)I = 2I� for m = 4. Can you
generalize?

11.16 Recall our proof that 2h� kills the minus class group Cl (K�) of K = Q(�p)
and show that we have proved more, namely that twice the exponent of R�=I�

annihilates Cl (K�).

11.17 Let P be a prime ideal in K = Q(�m) and put � = ( � =P)m. Show that

G(�)mOK = Pm�0, where �0 = m
P

(a;m)=1

�
1 � h am i

�
��1a . Show that this

implies G(�)mOK = Pm(�=2+�S ), where �S is the Brumer-Stark element for
K=Q as de�ned in (11.17).

11.18 Verify the Brumer-Stark conjecture for cyclotomic extensions of Q. Also show
that �S = 0 for real abelian extensions K=Q.

11.19 Check what goes wrong in the proof of Proposition 11.16 if d = �8.
11.20 In the proof of Proposition 11.16, can you show that  2 k by Galois theory?
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11.21 Prove Proposition 11.16 for rami�ed prime ideals. (Hint: if d is a prime dis-
criminant, the claim is trivial since p is principal in this case. If d is composite,
p2 = (p) is principal, and it is su�cient to show that h is even).

11.22 (Washington [Was1, x6.2]) Let K = Q(�12). Show that �(K) = 1 + � 2
I(K) n I0(K).

11.23 Show that the integer de�ned in (11.15) gives h� = (N � R)=jdj for complex
quadratic number �elds of conductor d, and h� = 1

2 [(D0 � D2)
2 + (D1 �

D3)
2] for complex cyclic quartic �elds, where N , R and the Dj are de�ned in

Propositions 11.16 and 11.18.

11.24 Show that the integer h� de�ned in Proposition 11.18 is odd when the con-
ductor f is an odd prime. Show that h� = 1 for f = 16, and verify this by

showing that the class number of Q(
p
�2 +p

2 ) is 1.

11.25 Let K=k be an extension of number �elds. De�ne a map j : Cl (k) �! Cl (K)
by mapping an ideal class c = [a] to [aOK ] 2 Cl (K) and show that ker j
is killed by (K : k) (Hint: take the relative norm). Show that Cl�(k) gets
mapped to Cl�(K).

11.26 For primes p, de�ne a function �p : N �! Zby �p(n) := (�1)nQ j, where
the product is over all 1 � j � n� 1 such that p - j. Prove that �p(m+ n) �
�p(m) mod pvp(n) unless p = 2 and n � 4 mod 8. Show that this congruence
allows us to extend the function �p continuously to a function �p :Zp�!Z�p
by putting �p(x) = limn!x �p(n), where the n tend p-adically to x 2 Zp.
Verify that this p-adic Gamma function satis�es �p(0) = 1, and that �p(x+
1)=�p(x) = �x or = �1 according as x 2Z�p or x 2 pZp.

11.27 A non-empty set I is called partially ordered if there is an order relation <
de�ned on I such that
1. i < j and j < k =) i < k;
2. i < j and j < i =) i = j;
3. i < i for all i 2 I.

The set I is called directed if, in addition, it has the property
1. for all i; j 2 I there is a k 2 I such that i < k and j < k.

Now consider a family Xi (i 2 I) of compact topological spaces indexed by
a directed set I, and assume that for each pair (i; j) 2 I � I there exists a
continuous epimorphism �ij : Xj �! Xi such that
i) �ii = id;
ii) if i < j < k, then �ij � �jk = �ik;
then the triple (Xi;�ij ; I) is called an projective system.

Given such a projective system, we can form the direct product eX =
Q

i2I Xi

and make it into a topological space by giving it the product topology; this

ensures that the projection maps �i : eX �! Xi are continuous. Now de�ne
the projective limit of this projective system by

lim
 �

Xi = fx 2 eX : �ij � �j(x) = �i(x) for all i < jg:

1. Use the axiom of choice to show that lim
 �

Xi is non-empty;

2. Use Tychonov's theorem to show that lim
 �

Xi is compact;

3. Show that X is a group if each Xi is a group;
4. For a ring R, show that X is an R-module if each Xi is.
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11.28 Let ` be a prime and consider the �nite groups Xn = Z=`nZtogether with
the projections �mn :Z=`nZ�!Z=`mZfor 0 < m < n. Endow the Xn with
the discrete topology and show that the triple (Xn;�mn;N) is a projective
system. Show that lim

 �
Xn ' Z̀ as topological groups, where the topology on

Z̀ is induced by the `-adic valuation.

11.29 Let K0 � K1 � : : : be a tower of normal number �elds, and put Gn =
Gal (Kn=K0). De�ne epimorphisms �mn : Gn �! Gm for m < n such that
(Gn;�mn;N) becomes a projective system, and show that � = lim

 �

Gn is topo-

logically isomorphic to the Galois group of K1 =
S
nKn, endowed with the

Krull topology.

11.30 Let K = K0 � K1 � : : : � Kn � : : : be a Zp-extension of a number �eld
K, that is, a family of number �elds such that Gal (Kn=K) ' Z=pnZ(the
preceding exercise shows that Gal (K1=K) ' Zp). Put An = Cl p(Kn) and
show that the relative norms Nmn = NKn=Km make (An;Nmn;N) into a
projective system.

11.31 Put K = Q(
p�5 ) and L = K(i). Show that the result of Hilbert and Speiser

is not valid for general number �elds by showing that L=K is unrami�ed
(hence tame), that OL has an integral basis over OK , but does not have a
NIB over OK .

11.32 (Furtw�angler 1912) Let p be an odd prime, and assume that xp + yp + zp =
0 for pairwise coprime integers x; y; z 2 Zwith p - xyz. Use the unique
factorization theorem for prime ideals to deduce that (x + y�i) = A

p
i for

ideals Ai, i = 0; 1; : : : ; p� 1. Show that � = �yx+ ��xy is semi-primary. Now
use Eisenstein's reciprocity law to deduce that

�
�
r

�
p
=
�
r
�

�
p
=
�

r
Aj

�p
p
= 1 for

each prime r j x, and deduce that rp�1 � 1 mod p2.

11.33 (Wieferich 1909) Suppose that xp + yp + zp = 0 for some odd prime p - xyz;
then 2p�1 � 1 mod p2. (Hint: Use the preceding exercise).
Remark. Primes p satisfying 2p�1 � 1 mod p2 are called Wieferich primes.
The only Wieferich primes below 4 � 1012 are 1093 and 3511 (see Crandall,
Dilcher & Pomerance [CDP]).

11.34 (S. Germain 1823) Suppose that xp+ yp+ zp = 0 for some odd prime p - xyz;
then ` = 2p+ 1 is not prime.

11.35 (Legendre 1823) Suppose that xp + yp + zp = 0 for some odd prime p - xyz;
then the numbers 2p + 1; 4p+ 1 and 8p+ 1 are not prime.

11.36 (Furtw�angler 1912) Suppose that xp+yp+zp = 0 for some odd prime p - xyz,
and that (x; y) = (y; z) = (x; z) = 1; assume moreover that p - (x2� y2); then
rp�1 � 1 mod p2 for every prime r j (x� y).

11.37 (Mirimano� 1911) Suppose that xp + yp + zp = 0 for some prime p - xyz,
p > 3; then 3p�1 � 1 mod p2.

11.38 Transform the Fermat curve x3 + y3 = 1 into Weierstra� form. (Hint: put
x = u+ v, y = u� v).

11.39 Transform the Fermat curve w4 + 1 = z2 into Weierstra� form. (Hint: write
it as 1 = (w2 � z)(w2 + z) and put x = w2 + z. Then 2w2 = x+ 1

x ; multiply

by x2 and put wx = y).
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11.40 Ribenboim [Ri1] sketches a proof for FLT in the case n = 7; �ll in the details
and transform the resulting curve u2 = s4+6s2t2� 1

7 t
4 into the form E : y2 =

x(x2�3 �72x+16 �73). Use simple 2-descent to show that E(Q) = E(Q)tors '
Z=2Z, and conclude that x7 + y7 = z7 has only trivial solutions in Z.
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