K2 MATHEMATIK KLAUSUR 3

FREITAG 13.01.2023

Aufgabe	(a)	(b)	(c)
Punkte (max)	5	3	7
Punkte			

Gegeben sind die Gerade $g: \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + r \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ und die Ebene H mit der Gleichung $2x_1 + x_2 + 6 = 0$.

- (a) (5 VP) Bestimmen Sie die gegenseitige Lage von g und H. Die Ebene H schneidet die x_1x_3 -Ebene. Bestimmen Sie eine Gleichung der Schnittgeraden und den Schnittwinkel der beiden Ebenen.
- (b) g' ist diejenige Gerade, die man erhält, wenn man g an H spiegelt. (3 VP) Bestimmen Sie eine Parametergleichung von g' und berechnen Sie den Abstand von g und g'.
- (c) Für jedes $a \in \mathbb{R}$ ist eine Gerade h_a gegeben durch

$$h_a: \vec{x} = \begin{pmatrix} -2\\ -2\\ 5 \end{pmatrix} + s \begin{pmatrix} 1\\ -2\\ a \end{pmatrix}.$$

- (2 VP) Weisen Sie nach, dass jede Gerade h_a in der Ebene H liegt.
- (2 VP) Bestimmen Sie a so, dass h_a die x_1 -Achse schneidet.
- (2 VP) Zeigen Sie, dass jede Gerade h_a windschief zu g ist.
- (1 VP) Begründen Sie: Jede Gerade h_a hat von g denselben Abstand.

$$\cos \alpha = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1| \cdot |\vec{n}_2|}$$

1

LÖSUNGEN

Gegeben sind die Gerade $g: \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + r \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ und die Ebene H mit der Gleichung $2x_1 + x_2 + 6 = 0$.

(a) Gegenseitige Lage: Schneiden liefert die falsche Gleichung $2 \cdot 1 + 1 + 6 = 0$; also sind g und H echt parallel.

Schnittgerade von H und x_1x_3 -Ebene $x_2 = 0$. Einsetzen von $x_2 = 0$ liefert $x_1 = -3$. Also sind x_1 und x_2 festgelegt; setzt man $x_3 = t$, hat man die Geradengleichung $\vec{x} = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

Alternativ: die beiden Punkte P(-3|0|0) und Q(-3|0|1) liegen auf beiden Ebenen, folglich auf der Schnittgeraden.

Schnittwinkel: Der Normalenvektor von H ist $\vec{n} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, der der $x_1 x_3$ Ebene ist $\vec{n}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ Damit folgt $\cos \alpha = \frac{1}{\sqrt{5}}$ und $\alpha \approx 65,4^{\circ}$.

Hier habt ihr alle Möglichkeiten für Blödsinn machen ergriffen: $\binom{2}{1}$ als Normalenvektor von H, $\binom{1}{0}$ als Normalenvektor der x_1x_3 -Ebene, oder $\cos \alpha = \frac{1}{\sqrt{5}} \approx 65.4^{\circ}$.

(b) Gespiegelt wird am Lotfußpunkt. Lotgerade ist $\vec{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ (Aufpassen: Wer hier als Parameter r wählt, also den gleichen wie bei g, darf sich nachher nicht beschweren, wenn sie $r = -\frac{9}{5}$ in die falsche Gerade einsetzt). Schneiden ergibt $r = -\frac{9}{5}$, also L(-2,6|-0,8|2) und damit P'(-6,2|-2,6|2).

Der Abstand von g und g' ist der Abstand $\overline{PP'} = \sqrt{64.8}$. Alternativ: $d(P, H) = \sqrt{16.2}$ mit der HNF und dann verdoppeln.

(c) Einsetzen von $x_1 = -2 + s$, $x_2 = -2 - 2s$ uznd $x_3 = 5 + as$ in H liefert 0 = 0; also liegt h_a in H.

Die x_1 -Achse hat die Gleichung $\vec{x} = t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$; Gleichsetzen (Punktprobe mit (1|0|0) reicht nicht!) liefert s = -1, t = -3 und a = 5; der Schnittpunkt ist damit S(-3|0|0).

 h_a und g windschief: Zuerst muss man zeigen, dass die Richtungsvektoren keine Vielfachen voneinander sind. Aber weder $\begin{pmatrix} 1 \\ -2 \\ a \end{pmatrix} = k \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ noch $k \begin{pmatrix} 1 \\ -2 \\ a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ ist möglich.

Schneiden führt auf einen Widerspruch; also sind die Geraden windschief.

13. 01. 2023 3

Weil h_a in der Ebene H liegt und g parallel zu H ist, hat jede Gerade h_a von g denselben Abstand, außer wenn h_a und g parallel wären; aber das sind sie nicht.