MATHEMATIK G10A

F. LEMMERMEYER, 22.02.2021

1. Extrempunkte

Bestimmung von Extrempunkten:

- Lösen der Gleichung f'(x) = 0, um die Stellen x_1, \dots zu bestimmen, in denen f waagrechte Tangenten besitzt.
- Bestimmung der y-Koordinaten durch $y_1 = f(x_1), \ldots$
- Einsetzen von x_1, \ldots in f''(x);

Hochpunkt $H(x_1|y_1)$, falls $f''(x_1) < 0$ (Näherungsparabel nach unten geöffnet);

Tiefpunkt $T(x_1|y_1)$, falls $f''(x_1) > 0$ (Näherungsparabel nach oben geöffnet).

Aufgaben

(1) Löse folgende Gleichungen.

a)
$$\frac{3}{4}x = \frac{4}{3}x + 1$$

$$b) \quad \frac{1}{x-1} = \frac{2}{x}$$

c)
$$2x^4 + 4 = 9x^2$$

$$d) \quad \frac{1}{x} = \frac{1}{x^2}$$

(2) Löse folgende Gleichungen.

a)
$$3\sqrt{x} + 1 = 13$$

b)
$$x^4 = 4$$

c)
$$2x^3 + 2x = 5x^2$$

d)
$$x^4 + \frac{1}{6} = \frac{5}{6}x^2$$

(3) Bilde die erste Ableitung

a)
$$f(x) = 0.5x^4$$

b)
$$f(x) = \frac{1}{9}x^6$$

c)
$$f(x) = 2x^3 - 12x^2 + 1$$

d)
$$f(x) = 0.02x^5 + 0.05$$

(4) Bilde die erste Ableitung

$$a) \quad f(x) = -\frac{3}{7x}$$

b)
$$f(x) = \frac{3x^2}{2x^4}$$

$$f(x) = \frac{3x}{4} - 2\sqrt{x}$$

d)
$$f(x) = a^2 x^4 - a^3 x$$

(5) Zeige, dass das Schaubild der Funktion f mit

$$f(x) = \frac{1}{3}x^3 - 3x^2 + 8x - \frac{16}{3}$$

Extrempunkte $P(2|\frac{4}{3})$ und Q(4|0) besitzt.

Untersuche, ob P und Q Hoch- oder Tiefpunkt ist.

(6) Bestimme die Extrempunkte des Schaubilds der Funktion

$$f(x) = \frac{3}{32}x^3 - \frac{9}{16}x^2 + 3.$$

(7) Gegeben ist die Funktion

$$f(x) = x^3 - x^2 - x + 1.$$

Zeige, dass $x_1 = 1$ Nullstelle von f ist.

Bestimme Hoch- und Tiefpunkte von f.

(8) Gegeben ist die Funktion

$$f(x) = -\frac{1}{4}x^3 + 3x + t.$$

Bestimme t so, dass $x_0 = -2$ eine Nullstelle von f ist.

Ermitteln Sie (mit diesem Wert von t) Hoch- und Tiefpunkte dieser Funktion.

(9) Bestimme Hoch- und Tiefpunkte der Schaubilder folgender Funktionen (WTR erlaubt).

a)
$$f(x) = x^2 + 2x + 3$$

b)
$$f(x) = x^3 - 3x + 5$$

a)
$$f(x) = x^2 + 2x + 3$$

b) $f(x) = x^3 - 3x + 5$
c) $f(x) = x^3 - 9x^2 + 15x - 3$
d) $f(x) = x^3 - 3x^2 - 9x + 10$

d)
$$f(x) = x^3 - 3x^2 - 9x + 10$$

Lösungen

(1) Löse folgende Gleichungen.

a)
$$\frac{3}{4}x = \frac{4}{3}x + 1$$

$$b) \quad \frac{1}{x-1} = \frac{2}{x}$$

c)
$$2x^4 + 4 = 9x^2$$

$$d) \quad \frac{1}{x} = \frac{1}{x^2}$$

Probe nicht vergessen!

(b)
$$\frac{1}{x-1} = \frac{2}{x} \qquad | \cdot (x-1)$$

$$1 = \frac{2(x-1)}{x} \qquad | \cdot x$$

$$x = 2x-2 \qquad | -x+2$$

$$x = 2$$

(2) Löse folgende Gleichungen.

a)
$$3\sqrt{x} + 1 = 13$$

b)
$$x^4 = 4$$

c)
$$2x^3 + 2x = 5x^2$$

d)
$$x^4 + \frac{1}{6} = \frac{5}{6}x^2$$

(a)
$$3\sqrt{x} + 1 = 13$$
 | -1 | $3\sqrt{x} = 12$ | $: 3$ | $\sqrt{x} = 4$ | $|^2$ | Probe: $3\sqrt{16} + 1 = 13$

(b)
$$x^4 = 4 \qquad | \sqrt{}$$

$$x^2 = \pm 2 \qquad x^2 = -2 : \text{keine Lsg.}$$

$$x_{1,2} = \pm \sqrt{2}$$

(c)
$$2x^{3} + 2x = 5x^{2} \qquad | -5x^{2}$$
$$2x^{3} - 5x^{2} + 2x = 0$$
$$x(2x^{2} - 5x + 2) = 0 \qquad \text{Nullprodukt}$$
$$x_{1} = 0$$
$$x_{2} = \frac{1}{2}$$
$$x_{3} = 2$$

$$(d) x^4 + \frac{1}{6} = \frac{5}{6}x^2 | -\frac{5}{6}x^2$$

$$x^4 - \frac{5}{6}x^2 + \frac{1}{6} = 0 | \cdot 6$$

$$6x^4 - 5x^2 + 1 = 0 | x^2 = z$$

$$6z^2 - 5z + 1 = 0 | x^2 = z$$

$$z_1 = \frac{1}{3}$$

$$z_2 = \frac{1}{2}$$

$$x_{1,2} = \pm \frac{1}{\sqrt{3}}$$

$$x_{3,4} = \pm \frac{1}{\sqrt{2}}$$

(3) Bilde die erste Ableitung

a)
$$f(x) = 0.5x^4$$

b)
$$f(x) = \frac{1}{9}x^6$$

c)
$$f(x) = 2x^3 - 12x^2 + 1$$

d)
$$f(x) = 0.02x^5 + 0.05$$

a)
$$f'(x) = 2x^3$$

b)
$$f'(x) = \frac{2}{3}x^5$$

c)
$$f'(x) = 6x^2 - 24x$$

d)
$$f'(x) = 0, 1x^4$$

(4) Bilde die erste Ableitung

a)
$$f(x) = -\frac{3}{7x}$$

b)
$$f(x) = \frac{3x^2}{2x^4} = \frac{3}{2x^2}$$

$$f(x) = \frac{3x}{4} - 2\sqrt{x}$$

d)
$$f(x) = a^2 x^4 - a^3 x$$

a)
$$f'(x) = -\frac{3}{7x^2}$$

b)
$$f'(x) = -\frac{3}{x^3}$$

c)
$$f'(x) = \frac{3}{4} - \frac{1}{\sqrt{x}}$$

d)
$$f'(x) = 4a^2x^3 - a^3$$

(5) Zeige, dass das Schaubild der Funktion f mit

$$f(x) = \frac{1}{3}x^3 - 3x^2 + 8x - \frac{16}{3}$$

Extrempunkte $P(2|\frac{4}{3})$ und Q(4|0) besitzt.

 ${\it Untersuche, \ ob \ P \ und \ Q \ Hoch- \ oder \ Tiefpunkt \ ist.}$

Möglichkeit 1: Extrempunkte ausrechnen.

$$f'(x) = x^2 - 6x + 8$$

$$f''(x) = 2x - 6$$

Extrempunkte: f'(x) = 0 ergitb (abc-Formel) $x_1 = 2$ und $x_2 = 4$. Weiter ist $y_1 = f(2) = \frac{4}{3}$ und $y_2 = f(4) = 0$. Endlich gilt f''(2) = -2 < 0, also ist $P(2|\frac{4}{3})$ Hochpunkt; weiter ist f''(4) = 2 > 0, also ist Q(4|0) Tiefpunkt.

Möglichkeit 2: Nachrechnen.

Weil die Ergebnisse bekannt sind, müssen wir die Gleichungen nicht lösen. Wir rechnen also nach, dass gilt:

•
$$f(2) = \frac{4}{3}$$
; $f'(0) = 0$, $f''(0) < 0$: Hochpunkt

•
$$f(4) = 0, f'(4) = 0, f''(4) > 0$$
: Tiefpunkt

- 6
- (6) Bestimme die Extrempunkte des Schaubilds der Funktion

$$f(x) = \frac{3}{32}x^3 - \frac{9}{16}x^2 + 3.$$

Die beiden Ableitungen sind

$$f'(x) = \frac{9}{32}x^2 - \frac{9}{8}x$$
$$f''(x) = \frac{9}{16}x - \frac{9}{8}.$$

Erste Ableitung = 0 setzen:

$$\frac{9}{32}x^2 - \frac{9}{8}x = 0$$

$$9x^2 - 36x = 0$$

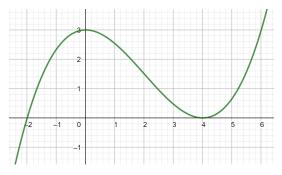
$$x^2 - 4x = 0$$

$$x(x - 4) = 0$$

$$| \cdot 32$$

$$| : 9$$
Ausklammern

- $x_1 = 0$; $y_1 = f(0) = 3$; $f''(0) = -\frac{9}{8} < 0$, also H(0|3).
- $x_2 = 4$; $y_2 = f(4) = 0$; $f''(4) = \frac{9}{8} > 0$, also T(4|0).



(7) Gegeben ist die Funktion

$$f(x) = x^3 - x^2 - x + 1.$$

Zeige, dass $x_1 = 1$ Nullstelle von f ist.

Bestimme Hoch- und Tiefpunkte von f.

Es ist $f(1) = 1^3 - 1^2 - 1 + 1 = 0$; also ist $x_1 = 1$ Nullstelle.

Hoch- und Tiefpunkte:

$$f'(x) = 3x^2 - 2x - 1$$
$$f''(x) = 6x - 2$$

$$f'(x) = 3x^2 - 2x - 1 = 0$$
 liefert $x_1 = -\frac{1}{3}$ und $x_2 = 1$.

$$f(-\frac{1}{3}) = \frac{32}{27}$$
; $f''(-\frac{1}{3}) = -4 < 0$, also $H(-\frac{1}{3}|\frac{32}{27})$.
 $f(1) = 0$; $f''(1) = 4 > 0$, also $T(1|0)$.

(8) Gegeben ist die Funktion

$$f(x) = -\frac{1}{4}x^3 + 3x + t.$$

Bestimme t so, dass $x_0 = -2$ eine Nullstelle von f ist.

Ermitteln Sie (mit diesem Wert von t) Hoch- und Tiefpunkte dieser Funktion.

Es soll f(-2) = 0 sein, also $-\frac{1}{4} \cdot (-8) - 6 + t = 0$; also ist t = 4.

Jetzt sollen wir die Extrempunkte von

$$f(x) = -\frac{1}{4}x^3 + 3x + 4$$

bestimmen. Ergebnis: T(-2|0) und H(2|8).

(9) Bestimme Hoch- und Tiefpunkte der Schaubilder folgender Funktionen (WTR erlaubt).

a)
$$f(x) = x^2 + 2x + 3$$

$$f(x) = x^3 - 3x + 5$$

a)
$$f(x) = x^2 + 2x + 3$$

b) $f(x) = x^3 - 3x + 5$
c) $f(x) = x^3 - 9x^2 + 15x - 3$
d) $f(x) = x^3 - 3x^2 - 9x + 10$

d)
$$f(x) = x^3 - 3x^2 - 9x + 10$$

(a) $f(x) = x^2 + 2x + 3$ beschreibt eine Parabel. Mit quadratischer Ergänzung bekommt man $f(x) = (x+1)^2 + 2$, und daraus kann man ablesen, dass die Parabel den Tiefpunkt (-1|2) besitzt, denn $(x+1)^2$ ist für x=-1 am kleinsten.

Mit Differentialtrechnung geht es so:

$$f'(x) = 2x + 2$$

$$f''(x) = 2.$$

f'(x) = 2x + 2 = 0 liefert $x_1 = -1$; damit ist $y_1 = f(-1) =$ 1-2+3=2; wegen f''(x)=2>0 liegt ein Tiefpunkt vor T(-1|2).

(b) $f(x) = x^3 - 3x + 5$. Hier ist

$$f'(x) = 3x^2 - 3$$

$$f''(x) = 6x$$

 $f'(x) = 3x^2 - 3 = 0$ liefert $x_{1,2} = \pm 1$.

•
$$x_1 = -1$$
, $y_1 = f(-1) = 7$, $f''(-1) = -6 < 0$: $H(-1|7)$

•
$$x_2 = 1$$
, $y_2 = f(1) = 3$, $f''(1) = 6 > 0$: $T(1|3)$.

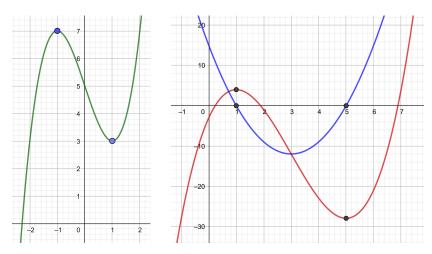


ABBILDUNG 1. Links: $f(x) = x^3 - 3x + 5$. Rechts: Schaubild von $f(x) = x^3 - 9x^2 + 15x - 3$ (rot) und $f'(x) = 3x^2 - 18x + 15$ (blau).

(c) Hier ist

$$f(x) = x^3 - 9x^2 + 15x - 3$$
$$f'(x) = 3x^2 - 18x + 15$$
$$f''(x) = 6x - 18$$

Damit wird

$$3x^2 - 18x + 15 = 0$$
 | $: 3x^2 - 6x + 5$ = 0 Vieta
(x - 1)(x - 5) = 0

•
$$x_1 = 1$$
, $y_1 = f(1) = 4$, $f''(1) = -12 < 0$: $H(1|4)$.

•
$$x_2 = 5$$
, $y_2 = f(5) = -28$, $f''(5) = 12 > 0$: $T(5|-28)$.

Man schaue sich die Schaubilder von f und f' (Abb. 1 rechts) an; dort, wo dsa Schaubild von f Hoch- bzw. Tiefpunkte hat, liegen die Nullstellen von f'.

(d) Hier ist

$$f(x) = x^3 - 3x^2 - 9x + 10$$
$$f'(x) = 3x^2 - 6x - 9$$
$$f''(x) = 6x - 6$$

Ableitung gleich 0 setzen:

$$3x^{2} - 6x - 9 = 0$$
 | : 3
 $x^{2} - 2x - 3 = 0$ Vieta
 $(x+1)(x-3) = 0$

•
$$x_1 = -1$$
, $y_1 = f(-1) = 15$, $f''(-1) = -12 < 0$: $H(-1|15)$.

•
$$x_2 = 3$$
, $y_2 = f(3) = -17$, $f''(3) = 12 > 0$: $T(3|-17)$.