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Abstract. This article is concerned with spatial homology truncation for path
connected CW-complexes and the following question: Which continuous maps between
two compact pseudomanifolds with isolated singularities induce continuous maps between
the corresponding intersection spaces, and when is this assignment functorial? Chapter
1 deals with the construction of a spatial homology truncation functor for path connec-
ted CW-complexes, which extends existing results for simply connected CW-complexes.
In Chapter 2 we partially use the results of the first chapter to present different ap-
proaches to the problem of inducing maps between intersection spaces. Finally, the
induced maps between reduced homology groups of intersection spaces and the in-
duced maps between intersection homology groups will be assembled in a morphism of
reflective diagrams.
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Notation

Let Top be the category of topological spaces and continuous maps. By a map between
topological spaces, we always mean a contiuous map (unless otherwise stated). Let
HoTop be the homotopy category of topological spaces (i.e. the category of topolo-
gical spaces and homotopy classes of continuous maps).

A 3-diagram Γ of spaces (see [5, page 3f]) is a diagram in Top of the form

X
f←− A

g−→ Y.

Its realization |Γ| is defined by the pushout of f and g, namely

|Γ| = (X
⊔

Y )/(f(a) ∼ g(a), for all a ∈ A).

If f : A ↪→ X is an inclusion, then we will also write |Γ| = Y ∪gX. A morphism Γ→ Γ′

of 3-diagrams of spaces is a commutative diagram in Top of the form

X A Y

X ′ A′ Y ′.

f

ξ α

f ′ g′

g

η

By the universal property of the pushout, every morphism Γ → Γ′ of 3-diagrams in-
duces a map |Γ| → |Γ′| between realizations, such that the obvious diagrams commute.
If f : A ↪→ X is an inclusion, Z := X ′ = A′ = Y ′ and f ′ = g′ = idZ , then we will also
write η ∪g ξ : Y ∪g X → Z for the induced map between realizations.

The unit interval [0, 1] will be denoted by I. The cone of a topological space X is
defined by cone(X) = (X× I)/(X×{0}). Let f : X → Y be a morphism in Top. The
mapping cylinder cyl(f) of f is defined as the realization of

X × I at 1←−−↩ X f−→ Y.

The mapping cone cone(f) of f : X → Y is defined as the realization of

cone(X)
at 1←−−↩ X f−→ Y.

In the following, CW denotes the category of CW-complexes and cellular maps. CW0

denotes the full subcategory of path connected CW-complexes and CW1 denotes the
full subcategory of simply connected CW-complexes. Let HoCW be the category of
CW-complexes and homotopy classes of cellular maps. Finally, let HoCWn be the
category of CW-complexes and rel n-skeleton homotopy classes of cellular maps. If
f : K → L is a cellular map between CW-complexes, then its restriction to n-skeletons
is denoted by fn : Kn → Ln. The basepoint of the n-sphere Sn will be denoted by s0.
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Introduction

This article is concerned with spatial homology truncation for path connected CW-
complexes and the following question: Which continuous maps between two compact
pseudomanifolds with isolated singularities induce continuous maps between the cor-
responding intersection spaces, and when is this assignment functorial?

A spatial homology truncation (Moore approximation) of a given CW-complex K in de-
gree k > 0 is a cellular map ek : K<k → K from a suitable CW-complexK<k toK, such
that ek induces an isomorphism on (cellular) homology groups in dimensions below k
and the homology groups of K<k vanish in dimensions k and higher. In Chapter 1, we
focus on the construction of a spatial homology truncation functor (see [1, page viii]).
This is motivated by the necessity of spatial homology truncation for CW-complexes in
the construction of intersection spaces and by the above question concerning functorial
properties of the intersection space construction (see Chapter 2). For this purpose, let
p : Top → HoTop denote the natural projection functor. (Thus, p is the identity on
objects and sends a continuous map to its homotopy class.) Moreover, let i : C→ Top
be a functor from a category C to Top. (C is called a category of spaces; in practice,
C is a subcategory of Top and i is the inclusion functor, or objects in C are spaces
equipped with some extra structure and i is the forgetful functor.) A spatial homology
truncation functor is a covariant functor

t<k : C→ HoTop

together with a natural transformation embk : t<k → pi, such that for all objects L in
C, embk(L) : t<k(L)→ pi(L) is (the homotopy class of) a spatial homology truncation
of pi(L) in degree k. (In our setting, all spaces will be CW-complexes.) If t<k is not a
functor but only a covariant assignment of objects and morphisms, then we will refer
to it as a spatial homology truncation assignment. In [1, Chapter 1], the construction
of such an assignment is carried out for simply connected CW-complexes and k ≥ 3.
(The assumption of simple connectivity allows the application of the Hurewicz and
the Whitehead theorem.) One might be tempted to choose C = CW1 and i as the
inclusion functor. However, [1, Section 1.1.1, page 3ff] gives an example of simply
connected CW-complexes X and Y , such that for obvious choices of t<3X and t<3Y
it is not possible to choose emb3(X) : t<3X → X and emb3(Y ) : t<3Y → Y in such
a way that t<3 can be defined consistently on all cellular maps X → Y (such that
emb3 becomes a natural transformation). Note that these difficulties do not occur in
the Eckmann-Hilton dual of the problem, which involves Postnikov approximations
instead of Moore approximations (for more details, see [1, Section 1.1.1, page 3]). The
“lack of functoriality” for Moore approximations is solved by the introduction of the
category CWk⊃∂ of k-boundary split CW-complexes. Its objects are pairs consisting
of an object K in CW1 and a direct sum complement in Ck(K) of the group Zk(K)
of k-cycles of K. Its morphisms are morphisms in CW1 which preserve the chosen
sum complements. The choice C = CWk⊃∂ (and i the forgetful functor) results in the
construction of a spatial homology truncation assignment t<k : CWk⊃∂ → HoCWk−1,
which is a spatial homology truncation functor on suitable subcategories of CWk⊃∂
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(see [1, Theorem 1.41, page 51]).
In Section 1.1, we show that spatial homology truncations ek : K<k → K exist for any
given CW-complex K and k > 0. Section 1.2 carries over the essential steps of the
spatial homology truncation machine presented in [1] to path connected CW-complexes.
This will result in the construction of a spatial homology truncation assignment

t0<k : CW0
k⊃∂ → HoCWk−1,

which extends t<k : CWk⊃∂ → HoCWk−1 and is a spatial homology truncation func-
tor on suitable subcategories of CW0

k⊃∂ (see Theorem 1.20). For this purpose, the
category CW0

k⊃∂ is introduced as a suitable extension of CWk⊃∂ to path connected
spaces. Objects in CW0

k⊃∂ are objects in CW0 equipped with some extra structure,
which is preserved by the morphisms. As a byproduct, it will be shown in Section
1.3 that every path connected CW-complex is homotopy equivalent rel 2-skeleton to a
CW-complex which has a cell-basis for its group of n-cycles for all n ≥ 3.

Given an integer n ≥ 2 and a perversity p, the intersection space construction can
be applied to an n-dimensional compact topological pseudomanifold X with isolated
singularities after specification of a CW-structure and a homology truncation in di-
mension k = n − 1 − p (n) for every link of X. If we take these pseudomanifolds
equipped with the required extra structure as the objects of a category P (n, p) whose
morphisms are continuous maps (with some additional properties) between them, then
the intersection space construction can be seen as an assignment on the object level:

ObP (n, p)→ ObHoTop.

Chapter 2 focuses on the problem to extend this assignment to a covariant functor
P∗ (n, p) → HoTop on suitable subcategories P∗ (n, p) of P (n, p). Section 2.1 deals
with the problem in cut-off degree k = 1. Section 2.2 uses canonical maps for an
approach to the problem in the case of pseudomanifolds X with a single isolated singu-
larity. In Section 2.3, we restrict our attention to pseudomanifolds in P (n, p), whose
links are equipped with a CW-structure, such that the group of k-cycles has a cell-basis,
and take advantage of the fact that in this case the required spatial homology trunca-
tion in dimension k can be taken to be an inclusion of a suitable subcomplex. We will
see in Section 2.4 that the independence of choices of the homotopy type of an intersec-
tion space is connected with the existence of a functor P∗ (n, p)→ HoTop with certain
properties. This viewpoint will be applied to pseudomanifolds with links in the interleaf
category. Section 2.5 uses the results on functoriality of spatial homology truncation
(see Chapter 1) to define, for suitable continuous maps between pseudomanifolds, in-
duced maps between the corresponding intersection spaces in a functorial way, if all
involved links are completed to objects in a suitable subcategory of CW0

k⊃∂ and have
vanishing (k + 1)st homotopy group. Finally, Section 2.6 uses some of the constructed
functors P∗ (n, p)→ HoTop to induce morphisms between k-reflective diagrams. This
relates the homomorphisms induced on reduced homology groups of intersection spaces
to the homomorphisms that can be induced on intersection homology groups.
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1 Spatial Homology Truncation for Path Connected CW-Complexes

Recall that, by [1, Proposition 1.6, page 12], every simply connected CW-complex K
can be completed to a homological n-truncation structure (K,K/n, hK , K<n) for all
integers n ≥ 3 (see [1, Definition 1.4, page 11] and Definition 1.5). This proposition is
central for the spatial homology truncation machine presented in [1, Chapter 1.1]. In
the proof, the assumption of simple connectivity is used twice. Firstly, the Hurewicz
theorem is applied in order to identify πn (Ln, Ln−1) and Cn (L) for simply connected
CW-complexes L and n ≥ 3 via the Hurewicz map throughout the proof. Secondly,
the homological version of the Whitehead theorem is used to conclude that a certain
cellular map h′ : Kn → K/n constructed in the proof is a homotopy equivalence (hK
is finally taken to be a suitable homotopy inverse of h′).

The result of Section 1.1 is the existence of a Moore approximation en : K<n → K for
any CW-complex K and any integer n > 0 (see Corollary 1.4). If K is path connected
and n ≥ 2, then it can be achieved that K<n is n-dimensional and en restricts to the
identity map on (n − 1)-skeletons (compare Proposition 1.3). The proof will make
use of Proposition 1.1. This proposition states that every choice of basis in Cn (K)
can be realized by an n-dimensional CW-complex L satisfying Ln−1 = Kn−1 and a
cellular map h : L→ Kn which restricts to the identity map on Kn−1 and induces an
isomorphism Cn (L)

∼=−→ Cn (K) sending the cell-basis of Cn (L) to the chosen basis
of Cn (K). Modifying the proof of [1, Proposition 1.6, page 12], the general form of
the Hurewicz theorem will be applied for n ≥ 2 to conclude that the Hurewicz homo-
morphism πn (Kn, Kn−1) → Cn (K) is surjective. However, Example 1.2 shows that
the map h : L → Kn constructed in the proof of Proposition 1.1 is in general not a
homotopy equivalence.
In Section 1.2, we introduce categories CW0

n⊃∂ for n ≥ 3 (Definition 1.7), such that
• CWn⊃∂ is a full subcategory of CW0

n⊃∂ (see Example 1.8).
• every path connected CW-complex can be completed to an object in CW0

n⊃∂ (see
Remark 1.9). (Objects (K,ΣK) in CW0

n⊃∂ will be objects K in CW0 equipped
with some extra structure ΣK .)

In order to generalize [1, Theorem 1.41, page 51] to path connected spaces, we extend
t<n : CWn⊃∂ → HoCWn−1 to a spatial homology truncation assignment

t0<n : CW0
n⊃∂ → HoCWn−1

(see Theorem 1.20). In particular, we construct a natural transformation emb0
n : t0<n →

t0<∞, where t0<∞ : CW0
n⊃∂ → HoCWn−1 is the natural projection functor. (Define t0<∞

as the composition of the forgetful functor CW0
n⊃∂ → CW0 and the natural projection

functor CW0 → HoCWn−1.) For every object (K,ΣK) in CW0
n⊃∂,

emb0
n(K,ΣK) : t0<n(K,ΣK)→ t0<∞(K,ΣK) = K

is a spatial homology truncation of K in degree n. If (K,ΣK) = (K,YK) is an object
in CWn⊃∂, then emb0

n(K,YK) = embn(K,YK).
In Section 1.3, we will conclude from Proposition 1.13 and the Whitehead theorem
that every path connected CW-complex is homotopy equivalent rel 2-skeleton to a
CW-complex having a cell-basis for its group of n-cycles for all n ≥ 3.
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1.1 Existence of Moore Approximations for Path Connected CW-Complexes

A spatial homology truncation (Moore approximation) of a given CW-complex K in
degree k > 0 is a pair (K<k, ek), where K<k is a CW-complex and ek : K<k → K is
a cellular map, which induces isomorphisms Hr (K<k)

∼=−→ Hr (K) for r < k and such
that Hr (K<k) = 0 for r ≥ k (compare [5, page 6]). The purpose of this section is to
show that Moore approximations exist for all CW-complexes K and all integers k > 0.

First, recall some basic facts about the Hurewicz map. Let n ≥ 1 be an integer.
Given a pointed pair (X,A, x0), the Hurewicz map is defined by

Hur : πn (X,A, x0)→ Hn (X,A) , Hur ([f ]) = f∗ (ν) ,

where f∗ : Hn (Dn, ∂Dn) → Hn (X,A) is induced by f : (Dn, ∂Dn, s0) → (X,A, x0)
and ν is a fixed generator of Hn (Dn, ∂Dn) ∼= Z. The Hurewicz map is natural: If
ϕ : (X,A, x0) → (Y,B, y0) is a map of pointed pairs, then the following diagram
commutes (note that ϕ∗Hur([f ]) = ϕ∗f∗(ν) = (ϕ◦f)∗(ν) = Hur([ϕ◦f ]) = Hurϕ∗([f ])):

πn (X,A, x0) πn (Y,B, y0)

Hn (X,A) Hn (Y,B) .

Hur

ϕ∗

Hur

ϕ∗

The Hurewicz map is a group homomorphism for n ≥ 2 by [2, Proposition 4.36, page
369]. If n ≥ 2 and K is a CW-complex with basepoint k0 ∈ Kn−1, then there is in
particular the Hurewicz homomorphism

Hur : πn
(
Kn, Kn−1, k0

)
→ Hn

(
Kn, Kn−1

)
, Hur ([f ]) = f∗ (ν) .

Let
{
enγ
}
be the set of n-cells of K. The characteristic maps

χ
(
enγ
)

: (Dn, ∂Dn)→
(
Kn, Kn−1

)
induce homomorphisms on homology groups:

χ
(
enγ
)
∗ : Hn (Dn, ∂Dn)→ Hn

(
Kn, Kn−1

)
.

By [3, Lemma 10.1, page 201], a basis of the free abelian group Hn (Kn, Kn−1) is given
by {χ

(
enγ
)
∗ (ν)}. We make the following identification:

Hn

(
Kn, Kn−1

)
=
⊕
γ

Z χ
(
enγ
)
∗ (ν)

∼=−→
⊕
γ

Z enγ = Cn (K) ,

χ
(
enγ
)
∗ (ν) 7→ enγ ∀ γ.

The following proposition shows that for a path connected CW-complex, every choice
of basis in the nth cellular chain group (n ≥ 2) can be realized topologically.
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1.1 Proposition. Let n ≥ 2 be an integer and let K be a path connected CW-
complex. Given a basis {θα} of Cn (K), there exist
• an n-dimensional CW-complex L satisfying Ln−1 = Kn−1 and
• a cellular map h : L→ Kn which restricts to the identity map on Kn−1 and such

that h induces an isomorphism on the nth cellular chain groups:

h∗ : Cn (L)
∼=−→ Cn (Kn)

which sends the cell-basis of Cn (L) to the given basis {θα} of Cn (Kn).
In particular, the cellular map h induces a chain isomorphism. Therefore, it induces
an isomorphism Hr (L) ∼= Hr (Kn) for all integers r.

Proof. Choose a basepoint x0 ∈ Kn−1. The general form of the Hurewicz theorem
[2, Theorem 4.37, page 371] is applied to the pointed CW-pair (Kn, Kn−1, x0): Since
Kn − Kn−1 has only cells of dimension n > n − 1, the pair (Kn, Kn−1) is (n− 1)-
connected according to [2, Corollary 4.12, page 351]. Moreover, Kn−1 and Kn are path
connected, since n ≥ 2. (Note that if X is a CW-complex and m ≥ 1 is an integer, then
X is path connected if and only if Xm is path connected.) Therefore, by the general
form of the Hurewicz theorem, the following Hurewicz homomorphism is surjective:

Hur : πn
(
Kn, Kn−1, x0

)
� Cn (K) .

For every α choose a preimage [ϑα] ∈ πn (Kn, Kn−1, x0) of θα ∈ Cn (K) represented by

ϑα :
(
Dn, Sn−1, s0

)
→
(
Kn, Kn−1, x0

)
, where Hur([ϑα]) = θα.

Using the restrictions aα := ϑα|Sn−1 : Sn−1 → Kn−1 and taking new n-cells wα, define

L := Kn−1 ∪
⋃
aα

wα, where [χ (wα)] ∈ πn
(
L,Kn−1, x0

)
.

Again, there is a corresponding surjective Hurewicz homomorphism

Hur : πn
(
L,Kn−1, x0

)
� Cn (L) , where Hur([χ (wα)]) = χ (wα)∗ (ν) = wα.

Since χ (wα) |Sn−1 = aα = ϑα|Sn−1 , the morphism of 3-diagrams of spaces

Kn−1
⊔
α S

n−1
⊔
αD

n

Kn−1 Kn−1 Kn

⊔
aα

= ⊔
aα

= incl

incl

⊔
ϑα

induces a map h : (L,Kn−1, x0)→ (Kn, Kn−1, x0) with the following properties:

h (x) = x ∀ x ∈ Kn−1, h ◦ χ (wα) = ϑα ∀ α.

The following diagram commutes by naturality of Hurewicz maps:
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πn (L,Kn−1, x0) πn (Kn, Kn−1, x0)

Cn (L) Cn (Kn) .

Hur

h∗

Hur

h∗

All in all, every n-cell wα ∈ Cn (L) satisfies

h∗ (wα) = h∗Hur([χ (wα)]) = Hurh∗([χ (wα)]) = Hur([h ◦ χ (wα)]) = Hur([ϑα]) = θα.

Compared to the proof of the original proposition, see [1, Proposition 1.6, page 12],
the proof of Proposition 1.1 is different in the following way. The homotopy extension
property is used in the original proof to construct a map h′ : Kn → K/n (

∧
= L), which

turns out to be a homotopy equivalence by application of the homological version
of the Whitehead theorem, and h is taken to be its homotopy inverse. The present
proof, however, yields a direct construction of h with the desired properties, which
does not make use of the homotopy extension property and the homological version of
the Whitehead theorem. The map h obtained in the proof of Proposition 1.1 is not a
homotopy equivalence in general, as the following example shows. (Nonetheless, the
proof of Proposition 1.13 shows that if h is constructed more carefully, then it can
be achieved that h is a homotopy equivalence.) The following example serves as the
leading example for Chapter 1.

Example. 1.2 Let n ≥ 2 and consider the n-dimensional path connected CW-complex
K := S1 ∨ Sn. It consists of a single 0-cell x0, which is taken as a basepoint for K,
a single 1-cell and a single n-cell θ. Thus, {θ} forms a basis of Cn (K). Following the
construction in the proof of Proposition 1.1, we will construct a space L and a map
h : L→ K with the desired properties, such that h is not a homotopy equivalence.

Consider the universal cover K̃ p−→ K of K. By [2, Example 4.27, page 364] K̃
consists of the real line R with a copy Snk of the n-sphere attached at every integer
point k ∈ R and p is the obvious covering map, which maps all integers to x0 and
which restricts to identity maps Snk = Sn. Let ek be the n-cell of the CW-complex K̃
corresponding to the n-sphere Snk .

By naturality of Hurewicz maps, the map p : (K̃,R, 0) → (K,S1, x0) of pointed pairs
induces the commutative diagram

πn(K̃,R, 0) πn (K,S1, x0)

Cn(K̃) Cn (K) (∗).

Hur ∼=

p∗ ∼=

Hur

p∗
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Let us look at the marked isomorphisms. The left Hurewicz map is an isomorphism by
the Hurewicz theorem [2, Theorem 4.37, page 371], since R is simply connected. Next,
we show that p∗ : πn(K̃,R, 0) → πn (K,S1, x0) is an isomorphism. This follows from
the following commutative diagram with exact rows, which is obtained by naturality
of the long exact sequence of homotopy groups:

πn (R, 0) πn(K̃, 0) πn(K̃,R, 0) πn−1 (R, 0)

πn (S1, x0) πn (K, x0) πn (K,S1, x0) πn−1 (S1, x0) .

∼=

p∗p∗ ∼=

∼=

The marked isomorphisms can be explained as follows. The covering map p : (K̃, 0)→
(K, x0) induces an isomorphism p∗ : πn(K̃, 0)

∼=−→ πn (K, x0) by [2, Proposition 4.1,
page 342]. As R is contractible, the map πn(K̃, 0) → πn(K̃,R, 0) is an isomorphism
by exactness of the first row. By exactness of the second row, the map πn (K, x0) →
πn (K,S1, x0) is an isomorphism for n ≥ 3, since the higher homotopy groups of S1

vanish. In the case n = 2 it suffices to show that π2 (K,S1, x0)→ π1 (S1, x0) is the zero
map. This is true by exactness of the following portion of the long exact homotopy
sequence of the pair (K,S1, x0),

π2

(
K,S1, x0

)
→ π1

(
S1, x0

) ∼=−→ π1 (K, x0) ,

where the inclusion S1 ↪→ K = S1∨S2 induces an isomorphism on fundamental groups
by the Seifert-Van Kampen theorem.

The element T := 2e0 − e1 ∈ Cn(K̃) satisfies p∗ (T ) = 2θ − θ = θ ∈ Cn (K). Fol-
lowing the isomorphisms in diagram (∗), T corresponds to a homotopy class

[ϑ] := p∗Hur−1 (T ) ∈ πn
(
K,S1, x0

)
, where Hur([ϑ]) = p∗(T ) = θ.

Therefore, [ϑ] is a preimage of θ under the Hurewicz homomorphism

Hur : πn
(
K,S1, x0

)
� Cn (K) = Zθ.

We may assume that ϑ|Sn−1 is the constant map mapping all points to x0, because the
representative ϑ : (Dn, Sn−1, s0) → (K,S1, x0) is homotopic to such a map through
maps (Dn, Sn−1, s0) → (K,S1, x0). The reason is that for n ≥ 3, the restriction
ϑ|Sn−1 : (Sn−1, s0) → (S1, x0) is nullhomotopic rel s0, since πn−1 (S1, x0) vanishes in
this case. For n = 2, ϑ|S1 is also nullhomotopic rel s0, since it was shown above that
the restriction map π2 (K,S1, x0)→ π1 (S1, x0) is the zero map.

The choice of ϑ can be used in the proof of Proposition 1.1 to construct the desired
cellular map h : L → K. For the n-dimensional CW-complex L we get back the ori-
ginal CW-complex K by choice of ϑ. The cellular map h : K → K is the unique map
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which restricts to the identity map on S1 and satisfies h ◦ χ (θ) = ϑ.

By the lifting criterion [2, Proposition 1.33, page 61], the composition h ◦ p : (K̃, 0)→
(K, x0) can be lifted under p : (K̃, 0)→ (K, x0) to a map h̃ : (K̃, 0)→ (K̃, 0):

(K̃, 0) (K̃, 0)

(K, x0) (K, x0).

p

h̃

p

h

Note that h̃ restricts to the identity map on R ⊂ K̃. (This can be seen as follows:
Take any x ∈ R and choose a path γ : I → R ↪→ K̃ between γ (0) = 0 and γ (1) = x.
By the path lifting property [2, page 60], γ is the unique lift of p ◦ γ : I → S1 ↪→ K

which sends 0 ∈ I to 0 ∈ K̃. But p ◦ h̃ ◦ γ = h ◦ p ◦ γ = p ◦ γ (h restricts to the identity
map on S1). Thus, h̃ ◦ γ is also a lift of p ◦ γ sending 0 to 0. By uniqueness, h̃ ◦ γ = γ.
Evaluation at 1 ∈ I yields h̃ (x) = x.) In particular, h̃ is cellular, and we claim that

h̃∗ : Cn(K̃)→ Cn(K̃), h̃∗ (ek) = 2ek − ek+1 ∀ k ∈ Z (∗∗).

Let us prove (∗∗) for k = 0 first. Consider the following commutative diagram, which
results from p◦h̃ = h◦p and the naturality of Hurewicz maps (the marked isomorphisms
have already been explained):

πn (K,S1, x0) πn(K̃,R, 0) Cn(K̃)

πn (K,S1, x0) πn(K̃,R, 0) Cn(K̃).

p∗ ∼=

h∗ h̃∗

p∗ ∼= Hur ∼=

Hur ∼=

h̃∗

The element [χ (θ)] ∈ πn (K,S1, x0) satisfies h∗ [χ (θ)] = [h ◦ χ (θ)] = [ϑ]. We show that
the elements [χ (θ)] and [ϑ] in πn (K,S1, x0) correspond to e0 and T in Cn(K̃) under the
isomorphism Hur ◦p−1

∗ . The second corresopondence is clear by definition of [ϑ]. To see
the first correspondence, note that the element [χ (e0)] ∈ πn(K̃,R, 0) is mapped by Hur

to e0 ∈ Cn(K̃) and by p∗ to [χ (θ)] ∈ πn (K,S1, x0). All in all, h̃∗ (e0) = T = 2e0 − e1.

To prove (∗∗) for arbitrary k ∈ Z, consider the cellular deck transformation τk : K̃ →
K̃, which is given by the shift x 7→ x+ k for x ∈ R ⊂ K̃ and restricts to identity maps
Snm = Snm+k for all m. Hence, τk ◦ χ (em) = χ (em+k) for all m. Thus, τk induces the
automorphism on Cn(K̃), which is given by the shift em 7→ em+k for all m. Note that
(∗∗) follows from h̃ ◦ τk = τk ◦ h̃. This is clear on R ⊂ K̃, where h̃ restricts to the
identity map. It remains to show that h̃◦ τk ◦χ (em) = τk ◦ h̃◦χ (em) for all m. In fact,
both sides of the equation are lifts of h ◦ p ◦ χ (ek) : Sn → K under p : K̃ → K which
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send s0 to k. Thus, they must agree by the unique lifting property [2, Proposition 1.34,
page 62].

Finally, we use (∗∗) to show that h is not a homotopy equivalence. Otherwise, by
[2, Exercise 2, page 358], h induces an isomorphism on πn (K, x0). The covering map
p induces an isomorphism p∗ : πn(K̃, 0)

∼=−→ πn (K, x0) (n ≥ 2). Therefore, h̃ induces an
isomorphism on πn(K̃, 0). This homotopy group can be identified with Hn(K̃) via the
Hurewicz isomorphism, because K̃ is (n− 1)-connected. Consequently, h̃ induces an
isomorphism on Hn(K̃) = Cn(K̃) (note that ker ∂

(K̃)
n = Cn

(
K̃
)
and im ∂

(K̃)
n+1 = 0). But

h̃∗ : Cn(K̃)→ Cn(K̃) cannot be surjective, since the cell e0 are not in the image of h̃∗.
Otherwise, for suitable integers a < b, ck and dk (without loss of generality, ca 6= 0),

e0 = h̃∗

(
b∑

k=a

ckek

)
(∗∗)
=

b∑
k=a

ck (2ek − ek+1) = 2caea +
b+1∑

k=a+1

dkek.

Since {ek}k∈Z forms a basis of Cn(K̃), it follows from ca 6= 0 that a = 0 and dk = 0 for
all k. Hence, 2c0 = 1, which is impossible, since c0 is an integer.

The following proposition shows the existence of Moore approximations for any path
connected CW-complex and any integer ≥ 2.

1.3 Proposition. Let K be a path connected CW-complex. Given an integer n ≥ 2,
there exists an n-dimensional CW-complex K<n such that (K<n)n−1 = Kn−1 and a
cellular map en : K<n → K which restricts to idKn−1 and such that en induces an
isomorphism en∗ : Hr (K<n)

∼=−→ Hr (K) for r < n and Hr (K<n) = 0 for r ≥ n.

Proof. Since im ∂n (⊂ Cn−1 (K)) is free abelian, one can choose a splitting

s : im ∂n → Cn (K)

of ∂n : Cn (K) � im ∂n. Writing Zn (K) = ker ∂n and Y = im s, we have

Cn (K) = Zn (K)⊕ Y.

Choose bases {ζβ} of Zn (K) and {ηα} of Y . This yields a basis {ζβ}∪{ηα} of Cn (K).
Application of Proposition 1.1 to K and to this basis of Cn (K) yields
• an n-dimensional CW-complex L with (n− 1)-skeleton Kn−1 and
• a cellular map h : L → Kn which restricts to the identity map on Kn−1 and

which induces an isomorphism

h∗ : Cn (L)
∼=−→ Cn (Kn)

sending the cell-basis of Cn (L) to the given basis {ζβ} ∪ {ηα} of Cn (Kn).
Since h : L→ Kn is cellular, it induces the commutative diagram

11



Cn (L) Cn (Kn)

Cn−1 (L) Cn−1 (Kn) .

∂n

h∗

∂n

h∗

The map h∗ in the first line is an isomorphism. Since h : L → Kn restricts to the
identity map on the common (n− 1)-skeleton Kn−1, the map h∗ in the second line is
given by the identity map on Cn−1 (L) = Cn−1 (Kn). Thus, commutativity implies that
the isomorphism h∗ : Cn (L)

∼=−→ Cn (Kn) restricts to an isomorphism

h∗| : Zn (L)
∼=−→ Zn (Kn) .

The inverse map h∗|−1 = h−1
∗ | : Zn (Kn)

∼=−→ Zn (L) sends the basis {ζβ} of Zn (Kn) to
a basis {h−1

∗ (ζβ)} of Zn (L). This basis consists of n-cells of L by construction of h.
Thus, the n-dimensional CW-complex L has a basis of cells for its group of n-cycles.
By [1, Lemma 1.2, page 6], L is n-segmented (see [1, Definition 1.1, page 6]). By
[1, Proposition 1.3, page 7], there is a unique subcomplex K<n ⊂ L satisfying the
properties (1.1) and (1.2) of [1, Definition 1.1, page 6] and such that (K<n)n−1 = Kn−1.
(K<n is obtained from L by taking away the n-cycle cells.) The cellular map

en : K<n
i
↪−→ L

h−→ Kn j
↪−→ K

has the required properties, where i : K<n ↪→ L and j : Kn ↪→ K are the inclusions:
For r ≥ n one has Hr (K<n) = 0 by property (1.1) of [1, Definition 1.1, page 6].
For r < n the induced map en∗ : Hr (K<n)→ Hr (K) factorizes as

en∗ : Hr (K<n)
i∗−→ Hr (L)

h∗−→ Hr (Kn)
j∗−→ Hr (K) ,

where i∗ is an isomorphism by property (1.2) of [1, Definition 1.1, page 6] and j∗ is
an isomorphism, since cells of dimension > n have no influence on Hr(K) for r < n.
Finally, h∗ is an isomorphism, since h induces a chain isomorphism.

1.4 Corollary. Given a CW-complex K and an integer n > 0, there exists a Moore
approximation en : K<n → K.

Proof. If K is path connected and n ≥ 2, then the claim follows from Proposition 1.3.
If K is path connected and n = 1, then one can take e1 to be the inclusion of a 0-cell
K<1 = k0 ↪→ K. In the general case, write K as the disjoint union of its connected
components K(α). Then, K(α) is a connected CW-complex for every α and in partic-
ular path connected. For every α, take a Moore approximation e

(α)
n : K

(α)
<n → K(α).

Then,
⊔
α e

(α)
n :

⊔
αK

(α)
<n →

⊔
αK

(α) = K is a valid Moore approximation of K by the
additivity axiom for homology (see [3, Definition 6.1, page 183]).
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1.2 Spatial Homology Truncation for Path Connected CW-Complexes

Let n ≥ 3 be an integer. The following definition extends the concept of a homological
n-truncation structure (see [1, Definition 1.4, page 11]) to path connected spaces:

Definition. 1.5 A (homological) n-truncation structure is a quadruple (K,K/n, hK , K<n),
where
1. K is a path connected CW-complex.
2. K/n is an n-dimensional CW-complex with (K/n)n−1 = Kn−1 and such that Zn (K/n)

has a cell-basis.
3. hK : K/n→ Kn is a cellular map which restricts to the identity map on Kn−1 and

which is a homotopy equivalence rel Kn−1.
4. K<n ⊂ K/n is the uniquely determined subcomplex with properties (1.1) and (1.2)

of [1, Definition 1.1, page 6] and such that (K<n)n−1 = Kn−1.

Next, we define the rel (n− 1)-skeleton homotopy categoryHoCW0
⊃<n, which contains

HoCW⊃<n (see [1, page 26f]) as a full subcategory:

Definition. 1.6 The categoryHoCW0
⊃<n consists of the following objects and morph-

isms:
• Objects in HoCW0

⊃<n are n-truncation structures as in Definition 1.5.
• A morphism F : (K,K/n, hK , K<n) → (L,L/n, hL, L<n) in HoCW0

⊃<n is a
quadruple F = ([f ], [fn], [f/n], [f<n]) represented by a diagram

K<n K/n Kn K

L<n L/n Ln L,

iK = incl

f/n

hK jK = incl

ffnf<n

iL = incl hL jL = incl

such that all squares commute up to homotopy rel Kn−1. (This agrees with the
definition of morphisms in HoCW⊃<n. Note that fn 6= fn in general.)

The main step in the proof of [1, Theorem 1.41, page 51] is the construction of a
covariant assignment τ<n : CWn⊃∂ → HoCW⊃<n of objects and morphisms (see [1,
page 29ff]). In order to generalize this theorem to path connected CW-complexes (see
Theorem 1.20), we extend the category CWn⊃∂ of n-boundary-split CW-complexes
(compare [1, Definition 1.22, page 28]) to the category CW0

n⊃∂ (see Definition 1.7 and
Example 1.8). Objects in CW0

n⊃∂ will be objects in CW0 equipped with some extra
structure, such that every object in CW0 can be completed to an object in CW0

n⊃∂
(see Remark 1.9). Afterwards, we will extend τ<n to a covariant assignment

τ 0
<n : CW0

n⊃∂ → HoCW0
⊃<n

of objects and morphisms (see Corollary 1.19). The definition of τ 0
<n on objects will

make use of Proposition 1.13, which generalizes [1, Proposition 1.6, page 12]. Its
definition on morphisms will make use of Proposition 1.14, which is a generalized
version of the compression theorem [1, Theorem 1.32, page 35].
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First, recall some facts about covering spaces of CW-complexes.
Every CW-complex is Hausdorff by [2, Proposition A.3, page 522] and locally contract-
ible by [2, Proposition A.4, page 523]. In particular, every CW-complex is locally path
connected and semilocally 1-connected (see [3, Definition 8.3, page 155]).
Let p : X → Y be a covering map (see [3, Definition 3.1, page 139]). If Y is a CW-
complex, then we will assume in the following that X is the CW-complex obtained
by taking as characteristic maps all possible lifts of all characteristic maps of Y (com-
pare [3, Theorem 8.10, page 198]). Note that p becomes a cellular map satisfying
p−1 (Y m) = Xm for all m ≥ 0. The restriction pm : Xm → Y m to m-skeletons is again
a covering map for all m ≥ 1 (Xm and Y m are path connected for m ≥ 1).
Now let p : X → Y and p′ : X ′ → Y ′ be covering maps, where Y and Y ′ are CW-
complexes. Assume that X is simply connected. If f : Y → Y ′ is a cellular map, then
the composition f ◦ p has a lift f̃ under p′, which is unique after specifying the image
of one point by [3, Corollary 4.2, page 144]:

X X ′

Y Y ′.

f̃

p′p

f

In other words, if x ∈ X and x′ ∈ X ′ are points such that f (p (x)) = p′ (x′), then there
is a unique map f̃ : X → X ′ which sends x to x′ and makes the previous diagram
commute. Note that f̃ is cellular, because for all m ≥ 0 we have

f̃(Xm) ⊂ (p′−1 ◦ p′ ◦ f̃)(Xm) = (p′−1 ◦ f ◦ p)(Xm) ⊂ p′−1 (Y ′m) = X ′m.

If g : Xm → X ′m is a lift of fm ◦ pm under the covering map p′m for some m ≥ 1,
then there exists a unique lift f̃ of f ◦ p under p′ which restricts to g on m-skeletons.
(Choose x ∈ Xm and let f̃ : X → X ′ be the unique lift of f ◦ p under p′ which sends x
to g (x). Its restriction f̃m : Xm → X ′m to m-skeletons is a lift of fm ◦ pm under p′m,
which agrees with g at x. Hence, f̃m = g by uniqueness.)
Finally, note that every path connected CW-complex K has a universal cover pK :
K̃ → K by [3, Theorem 8.4, page 155].

Definition. 1.7 The category CW0
n⊃∂ consists of the following objects and morph-

isms:
• Objects in CW0

n⊃∂ are quadruples
(
K,YK , K, qK

)
, where

1. K is a path connected CW-complex.
2. YK ⊂ Cn (K) is a subgroup which arises as the image of some splitting of the

boundary map ∂n : Cn (K) � im ∂n (⊂ Cn−1 (K)).
3. K is an n-dimensional CW-complex, such that

(i) Kn−1
= K̃n−1 and K ⊂ K̃n, where pK : K̃ → K is the universal cover

of K. (Hence, pn−1
K : K̃n−1 → Kn−1 is the universal cover of Kn−1 and

pnK : K̃n → Kn is the universal cover of Kn, since n ≥ 3.)
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(ii) pnK ◦ jK ◦χ
(
enγ
)

= χ
(
enγ
)
for all γ, where

{
enγ
}
are the n-cells of K,

{
enγ
}

are the n-cells of K and jK : K ↪→ K̃n denotes the inclusion.
4. qK = pnK ◦ jK : K → Kn. (Thus, qK is uniquely determined by K.)

Since Kn−1
= K̃n−1, the restriction of qK to (n− 1)-skeletons is pn−1

K : K̃n−1 → Kn−1.
By 3 (ii), we have qK ◦ χ

(
enγ
)

= χ
(
enγ
)
for all γ. Thus, qK induces the isomorphism

qK∗ : Cn
(
K
) ∼=−→ Cn (K) , enγ 7→ enγ . We define the composition

uK : Cn (K)
q−1
K∗−−→ Cn

(
K
) jK∗
↪−−→ Cn(K̃n).

• Morphisms
(
K,YK , K, qK

)
→
(
L, YL, L, qL

)
in CW0

n⊃∂ are pairs (f, f̃), which
consist of a cellular map f : K → L and a lift f̃ : K̃n → L̃n of fn ◦ pnK under pnL,

K̃n L̃n

Kn Ln,

f̃

pnLpnK

fn

such that the induced homomorphism f̃∗ : Cn(K̃n) → Cn(L̃n) maps uK (YK)
into uL (YL). The composition with a second morphism (g, g̃) :

(
L, YL, L, qL

)
→(

P, YP , P , qP
)
is defined by (g, g̃) ◦ (f, f̃) = (g ◦ f, g̃ ◦ f̃).

Let us motivate the definition of objects and morphisms in CW0
n⊃∂.

If (K,YK) is an object in CWn⊃∂, then the identification πn(Kn, Kn−1) ∼= Cn(K)
via the Hurewicz isomorphism allows us to think of any element of Cn(K) as (the
homotopy class of) a map (Dn, Sn−1)→ (Kn, Kn−1). This observation plays a central
role in the proof of [1, Proposition 1.6, page 12]. If

(
K,YK , K, qK

)
is an object in

CW0
n⊃∂, then K can be seen as the topological realization of a chosen splitting of the

(now surjective) Hurewicz map Hur : πn(Kn, Kn−1, k0) � Cn(K) (where k0 ∈ Kn−1

is a fixed basepoint). Via this splitting we can still identify elements of Cn(K) with
elements of πn(Kn, Kn−1, k0). (This was already done in the proof of Proposition 1.1.)
The splitting which corresponds to K is explicitly given by uK : Cn(K) → Cn(K̃n)
after the identifications

Cn(K̃n)
Hur−1 ∼=−−−−−→ πn(K̃n, K̃n−1)

pnK∗
∼=−−−−→ πn(Kn, Kn−1, k0).

Given k0, the second identification is only well-defined up to the choice of a lift
k̃0 ∈ K̃n−1 of k0 under pK . Equivalently, it is well-defined up to an automorphism of
πn(Kn, Kn−1, k0) which comes from the free action of π1(Kn−1, k0) on πn(Kn, Kn−1, k0).
(In fact, πn(Kn, Kn−1, k0) is a free π1(Kn−1, k0)-module with basis the homotopy classes
of the characteristic maps of the n-cells of K after application of change-of-basepoint
isomorphisms, see [2, Lemma 4.38, page 371].) In the following, however, we will prefer
the approach given in Definition 1.7. The reason is that in the proof of Proposition 1.13
(the counterpart of [1, Proposition 1.6, page 12]) we will apply the Whitehead theorem
to the simply connected spaces K to construct the desired homotopy equivalence.
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If (f, f̃) :
(
K,YK , K, qK

)
→
(
L, YL, L, qL

)
is a morphism in CW0

n⊃∂, then the condi-
tion f̃∗uK(YK) ⊂ uL(YL) corresponds to the statement that fn∗ : πn(Kn, Kn−1, k0) →
πn(Ln, Ln−1, f(k0)) maps the image of YK under a suitable splitting uK into the image
of YL under a suitable uL. This is exactly the condition on relative homotopy groups
that is needed to generalize the compression theorem [1, Theorem 1.32, page 35] (see
Proposition 1.14). Again, the splittings are only well-defined up to the choice of lifts of
the basepoints. This corresponds to the fact that fn can be lifted to f̃ in several ways.

Example. 1.8 Note that CWn⊃∂ is a full subcategory of CW0
n⊃∂. In fact, if (K,YK)

is an object in CWn⊃∂, then Kn−1 and Kn are simply connected. Therefore, pn−1
K =

idKn−1 , pnK = jK = qK = idKn and uK = idCn(K). Thus, (K,YK , K
n, idKn) is the unique

completion of (K,YK) to an object in CW0
n⊃∂. Moreover, if (K,YK) and (L, YL)

are objects in CWn⊃∂, then all morphisms (K,YK , K
n, idKn) → (L, YL, L

n, idLn) in
CW0

n⊃∂ are of the form (f, fn), where f : K → L is a cellular map such that the
induced homomorphism f̃∗ = f∗ : Cn(K) → Cn(L) satisfies f∗ (YK) ⊂ YL. Thus,
(f, fn) corresponds to the morphism f : (K,YK)→ (L, YL) in CWn⊃∂.

Remark. 1.9 Every path connected CW-complex K can be completed to an ob-
ject

(
K,YK , K, qK

)
in CW0

n⊃∂ by choosing YK and K with the required properties.
The choice of YK as the image of a splitting of the boundary map ∂n : Cn (K) �
im ∂n (⊂ Cn−1 (K)) is always possible, since im ∂n is free abelian. In order to construct
the desired K, note that the characteristic maps of the n-cells of K̃ are all possible lifts
under pnK : K̃n → Kn of the characteristic maps of the n-cells

{
enγ
}
of K. For every

γ, choose one lift of χ
(
enγ
)
under pnK and denote the corresponding n-cell of K̃n by enγ .

Then K can be taken to be the subcomplex K̃n−1 ∪
⋃
γ e

n
γ of K̃n.

Example. 1.10 For n ≥ 3 and K := S1 ∨ Sn, we have introduced the universal cover
p : K̃ → K in Example 1.2. Choose any integer k and set K := R ∨ Snk and qK : K ↪→
K̃

p−→ K. Then,
(
K, 0, K, qK

)
is an object in CW0

n⊃∂. (Note that Zn (K) = Cn (K) =
Zθ, where θ is the single n-cell of K, and we have to choose YK = 0.) Recall that in
Example 1.2 we have constructed a cellular map h : K → K and a lift h̃ : K̃ → K̃ of h◦p
under p. Since YK = 0, this yields a morphism (h, h̃) :

(
K, 0, K, qK

)
→
(
K, 0, K, qK

)
in CW0

n⊃∂. The homomorphism jK∗ : Cn
(
K
)
↪→ Cn(K̃) induced by the inclusion

jK : K ↪→ K̃ is explicitly given by Zek ↪→
⊕

m∈Z Zem. The induced homomorphism
h̃∗ : Cn(K̃)→ Cn(K̃) does not map the image of jK∗ into the image of jK∗, because it
was shown that h̃∗ (jK∗ (ek)) = h̃∗ (ek) = 2ek − ek+1 /∈ Zek for the single n-cell ek of K.
Equivalently, h̃∗ does not map the image of uK : Cn (K) ↪→ Cn(K̃) into the image of
uK . The following proposition deals with the question when this property is satisfied.

1.11 Proposition. Let
(
K,YK , K, qK

)
and

(
L, YL, L, qL

)
be objects in CW0

n⊃∂. Let
(f, f̃) be a pair, which consists of a cellular map f : K → L and a lift f̃ : K̃n → L̃n of
fn ◦ pnK under pnL. The following statements are equivalent:
(i) There is an extension f : K → L of f̃n−1 : K̃n−1 → L̃n−1, such that the following

diagram commutes up to homotopy rel K̃n−1:
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K L

Kn Ln.

f

qLqK

fn

(ii) The following diagram commutes:

Cn (K) Cn(K̃n)

Cn (L) Cn(L̃n).

uK

f̃∗f∗

uL

(iii) The induced homomorphism f̃∗ : Cn(K̃n) → Cn(L̃n) maps the image of uK :

Cn (K) ↪→ Cn(K̃n) into the image of uL : Cn (L) ↪→ Cn(L̃n).

(iv) The composition K
jK
↪−→ K̃n f̃−→ L̃n is homotopic rel K̃n−1 to a map into L ⊂ L̃n.

Moreover, if these statements hold, then it follows from (ii) that the pair (f, f̃) is a
morphism

(
K,YK , K, qK

)
→
(
L, YL, L, qL

)
in CW0

n⊃∂ if and only if the induced map
f∗ : Cn (K) → Cn (L) satisfies f∗ (YK) ⊂ YL. (This is exactly the condition required
for morphisms in CWn⊃∂.)

Proof. (i) ⇒ (ii). Take a basepoint k̃0 ∈ K̃n−1 and set k0 = pK(k̃0), l0 = (f ◦ pK)(k̃0)

and l̃0 = f̃(k̃0). Consider the following commutative diagram, where the equality signs
are identifications via Hurewicz isomorphisms (K̃n−1 and L̃n−1 are simply connected):

Cn (K) Cn(K) = πn(K, K̃n−1, k̃0) πn(Kn, Kn−1, k0) πn(K̃n, K̃n−1, k̃0) = Cn(K̃n)

Cn (L) Cn(L) = πn(L, L̃n−1, l̃0) πn(Ln, Ln−1, l0) πn(L̃n, L̃n−1, l̃0) = Cn(L̃n).

qK∗ ∼=

f∗ f∗

qL∗qL∗ ∼=

qK∗

fn∗ f̃∗

pnL∗
∼=

pnK∗
∼=

The map pnK∗ (analogously, pnL∗) in the diagram is an isomorphism. (Apply the 5-
lemma to the ladder of commutative squares between long exact homotopy sequences,
which is induced by pnK : (K̃n, K̃n−1, k̃0) → (L̃n, L̃n−1, l̃0). Use that covering maps
induce isomorphisms on higher homotopy groups.) The first line equals the inclusion
uK : Cn (K) ↪→ Cn(K̃n) (analogously, the second line is uL : Cn (L) ↪→ Cn(L̃n)). This
follows from the following commutative diagram:

Cn (K) Cn(K) = πn(K, K̃n−1, k̃0) πn(K, K̃n−1, k̃0)

Cn(K̃n) Cn(K̃n) = πn(K̃n, K̃n−1, k̃0) πn(Kn, Kn−1, k0)

qK∗ ∼=

uK jK∗

pnK∗
∼==

=

qK∗
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(ii)⇒ (iii). This is clear by commutativity.
(iii) ⇒ (iv). The composition f̃ ◦ jK restricts to f̃n−1 : K̃n−1 → L̃n−1(⊂ L) on
(n− 1)-skeletons. It suffices to show that the composition

(enγ , ∂e
n
γ)

χ(enγ )
−−−→ (K, K̃n−1)

jK−→ (K̃n, K̃n−1)
f̃−→ (L̃n, L̃n−1)

is homotopic rel ∂enγ to a map into L for all γ. Proceeding analogously as in the proof
of [1, Theorem 1.32, page 35ff], these homotopies can then be used to construct the
desired rel K̃n−1 homotopy between f̃ ◦ jK and a map into L. Consulting the following
part of the exact homotopy sequence of the triple (L̃n, L, L̃n−1),

πn(L, L̃n−1)
jL∗−−→ πn(L̃n, L̃n−1) −→ πn(L̃n, L),

it is sufficient to show that [f̃ ◦ jK ◦χ(enγ)] ∈ πn(L̃n, L̃n−1) lies in the image of jL∗ for all
γ. (Then, the composition f̃ ◦ jK ◦χ(enγ) represents zero in πn(L̃n, L, l̃0) and is thus ho-
motopic rel ∂enγ to a map into L.) Identify the relative homotopy groups πn(K, K̃n−1)

and πn(K̃n, K̃n−1) with the corresponding cellular chain groups via Hurewicz iso-
morphisms (K̃n−1 is simply connected) and do the same for L. Then the element
[f̃ ◦ jK ◦ χ(enγ)] ∈ πn(L̃n, L̃n−1) corresponds to the image of enγ ∈ Cn

(
K
)
under

Cn
(
K
) jK∗−−→ Cn(K̃n)

f̃∗−→ Cn(L̃n).

By (iii), f̃∗ maps the image of uK into the image of uL. Note that the image of uK
equals the image of jK∗ : Cn

(
K
)
↪→ Cn(K̃n) and the image of uL equals the image of

jL∗ : Cn
(
L
)
↪→ Cn(L̃n). Thus, f̃∗(jK∗(enγ)) lies in the image of jL∗ : Cn(L) ↪→ Cn(L̃n).

(iv) ⇒ (i). By assumption, f̃ ◦ jK is homotopic rel K̃n−1 to a map f : K → L.
Therefore, f restricts to f̃n−1 : K̃n−1 → L̃n−1 on (n− 1)-skeletons. Now,

qL ◦ f = pnL ◦ jL ◦ f ' pnL ◦ f̃ ◦ jK = fn ◦ pnK ◦ jK = fn ◦ qK rel K̃n−1.

1.12 Lemma. Let qK : K → K and qL : L → L be cellular maps between n-
dimensional CW-complexes. Assume that qK ◦ χ (eα) = χ (eα) for all α, where {eα}
are the n-cells of K and {eα} are the n-cells of K.
(i) If fn−1 : Kn−1 → Ln−1 and g : K → L are cellular maps such that

K
n−1

L
n−1

Kn−1 Ln−1

gn−1

qn−1
Lqn−1

K

fn−1

18



commutes, then fn−1 extends to a map f : K → L such that f ◦ qK = qL ◦ g.
(ii) Let fi : K → L, i = 1, 2, be extensions of a cellular map fn−1 : Kn−1 → Ln−1

and let gi : K → L, i = 1, 2, be extensions of a cellular map gn−1 : K
n−1 → L

n−1,
such that the following diagram commutes up to homotopy rel Kn−1 for i = 1, 2:

K L

K L

gi

qLqK

fi

If g1 ' g2 rel Kn−1, then f1 ' f2 rel Kn−1.
(iii) Assume that Kn−1 = Ln−1 and Kn−1

= L
n−1 and that qL ◦χ

(
e′β
)

= χ
(
e′β
)
for all

β, where
{
e′β
}
are the n-cells of L and

{
e′β
}
are the n-cells of L. Let f : K → L

be an extension of idKn−1 and let g : K → L be an extension of id
K
n−1 , such that

the following diagram commutes up to homotopy rel Kn−1:

K L

K L

g

qLqK

f

If g is a homotopy equivalence rel Kn−1, then f is a homotopy equivalence rel
Kn−1.

Proof. (i). Consider the following morphism of 3-diagrams of spaces:

Kn−1
⊔
α ∂eα =

⊔
α ∂eα

⊔
α eα

L L L

⊔
χ(eα)|

incl ◦ fn−1 incl ◦ fn−1 ◦
⊔
χ(eα)|

= =

incl

qL ◦ g ◦
⊔
χ(eα)

The right square commutes, since qL ◦g : K → L restricts to qn−1
L ◦gn−1 = fn−1 ◦qn−1

K :

K
n−1 → Ln−1 and qn−1

K ◦ χ (eα) | = χ (eα) | for all α. The realization of the first line is
just K. Thus, the morphism of 3-diagrams of spaces induces a map f : K → L. By
construction, f extends fn−1 and is thus cellular. In order to show f ◦ qK = qL ◦ g, it
remains to show that for every α and every x ∈ int (Dn) the following equality holds:

(qL ◦ g) (χ (eα) (x)) = (f ◦ qK) (χ (eα) (x)) .

The left hand side is just the definition of f (χ (eα) (x)). This equals the right hand
side, because qK (χ (eα) (x)) = χ (eα) (x).
(ii). For every α and for i = 1, 2, observe that

fi ◦ χ (eα) = fi ◦ qK ◦ χ (eα) ' qL ◦ gi ◦ χ (eα) rel ∂eα = ∂eα.
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The assumption g1 ' g2 rel Kn−1 yields qL ◦ g1 ◦χ (eα) ' qL ◦ g2 ◦χ (eα) rel ∂eα. Thus,
for every α, we can fix a homotopy

Hα : eα × I → L rel ∂eα

between Hα
0 = f1 ◦ χ (eα) and Hα

1 = f2 ◦ χ (eα). Now let H : K × I → L be the
homotopy that is induced by the following morphism of 3-diagrams of spaces:

⊔
α eα × I

⊔
α ∂eα × I Kn−1 × I

L L L

incl

⊔
Hα

⊔
Hα|

= =

⊔
χ(eα)|×idI

incl ◦ fn−1 ◦ proj1

Then, H is a rel Kn−1 homotopy between H0 = f1 and H1 = f2.
(iii). Choose a homotopy inverse g′ : L→ K of g which extends id

K
n−1 and such that

g ◦ g′ ' idL rel Kn−1 and g′ ◦ g ' idK rel Kn−1. By (i), there exists an extension
f ′ : L→ K of idKn−1 such that f ′ ◦ qL = qK ◦ g′. (Use that qn−1

K = qn−1
L , which follows

from qL ◦ g ' f ◦ qK rel Kn−1 after restriction to (n− 1)-skeletons.) By (ii), we have
f ◦ f ′ ' idL rel Kn−1 and f ′ ◦ f ' idK rel Kn−1.

In order to define τ 0
<n on objects, one needs a counterpart of [1, Proposition 1.6, page

12] for path connected CW-complexes K:

1.13 Proposition. Given an object (K,YK , K, qK) in CW0
n⊃∂, there exists a com-

mutative diagram of n-dimensional CW-complexes and cellular maps

K<n K/n K

K<n K/n Kn

iK hK

qKqK/nqK<n

iK hK

such that the following properties are satisfied:
• (K,K/n, hK , K<n) is an n-truncation structure and YK = hK∗iK∗Cn (K<n).
• iK and hK restrict to the identity map idK̃n−1 on (n− 1)-skeletons.
• The following are morphisms in CW0

n⊃∂:

(iK , ĩK) :
(
K<n, Cn (K<n) , K<n, qK<n

)
→
(
K/n, iK∗Cn (K<n) , K/n, qK/n

)
,

(hK , h̃K) :
(
K/n, iK∗Cn (K<n) , K/n, qK/n

)
→
(
K,YK , K, qK

)
,

where ĩK is the unique lift of iK ◦ pK<n under pK/n and h̃K is the unique lift of
hK ◦ pK/n under pnK such that ĩK and h̃K restrict to idK̃n−1 on (n− 1)-skeletons.
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Proof. We start with the construction of the desired diagram. Choose bases {ζβ} of
Zn (K) and {ηα} of YK , which yields a basis {ζβ} ∪ {ηα} of Cn (K). It corresponds to
a basis

{
ζβ
}
∪ {ηα} of Cn(K) under the isomorphism qK∗ : Cn(K)

∼=−→ Cn (K). Now
apply Proposition 1.1 to the path connected (even simply connected) n-dimensional
CW-complex K and to the basis

{
ζβ
}
∪ {ηα} of Cn

(
K
)
to obtain

• an n-dimensional CW-complex K/n with (n− 1)-skeleton K̃n−1.
• a cellular map hK : K/n → K which restricts to the identity map on K̃n−1 and

which induces an isomorphism hK∗ : Cn(K/n)
∼=→ Cn

(
K
)
sending the cell basis

of Cn(K/n) to the basis
{
ζβ
}
∪ {ηα} of Cn

(
K
)
.

Consequently, hK induces an isomorphism Hr(K/n) ∼= Hr

(
K
)
for all integers r. Since

K̃n−1 is simply connected (n ≥ 3), K and K/n are also simply connected. Therefore,
hK is a homotopy equivalence by the homological version of the Whitehead theorem.
By [2, Proposition 0.19, page 16], hK is a homotopy equivalence rel K̃n−1.
Let {fnδ } be the n-cells of K/n. For every δ set

dδ := pn−1
K ◦ χ(f

n

δ )| : Sn−1 → Kn−1.

Taking new n-cells {fnδ }, define the n-dimensional CW-complex

K/n := Kn−1 ∪
⋃
dδ

fnδ .

The morphism of 3-diagrams of spaces

K̃n−1
⊔
δ ∂f

n

γ

⊔
δ f

n

δ

Kn−1
⊔
δ ∂f

n
δ

⊔
δ f

n
δ

⊔
χ(fnδ )|

pn−1
K =⊔

dδ incl

incl

=

induces a cellular map qK/n : K/n → K/n such that qK/n ◦ χ(f
n

δ ) = χ (fnδ ) for all δ.
Note that both qK and qK/n restrict to pn−1

K and hK restricts to idK̃n−1 on (n − 1)-
skeletons. Thus, by Lemma 1.12 (i), there exists a cellular map hK : K/n→ Kn which
extends the identity map on Kn−1 and fits into the commutative diagram

K/n K

K/n Kn

hK

qKqK/n

hK

Moreover, hK is a homotopy equivalence rel Kn−1 by Lemma 1.12 (iii), since hK is a
homotopy equivalence rel K̃n−1. The previous diagram induces a commutative diagram
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{fnδ } ⊂ Cn(K/n) Cn
(
K
)

⊃
{
ζβ
}
∪ {ηα}

{fnδ } ⊂ Cn (K/n) Cn (K) ⊃ {ζβ} ∪ {ηα}

hK∗ ∼=

qK∗ ∼=qK/n∗ ∼=

hK∗

The diagram also shows the bases which correspond to each other under the marked
isomorphisms. All in all, hK∗ is an isomorphism sending the cell-basis {fnδ } of Cn (K/n)

to the basis {ζβ} ∪ {ηα} of Cn (K). The isomorphism hK∗ : Cn (K/n)
∼=−→ Cn (K) re-

stricts to an isomorphism hK∗| : Zn (K/n)
∼=−→ Zn (K) (this is shown as in the proof of

Proposition 1.3, using that hK restricts to the identity map on Kn−1). Thus, the basis
{ζβ} of Zn (K) corresponds under the inverse of hK∗ to a basis

{
ζ ′β
}
of Zn (K/n) which

is a subset of {fnδ } and the basis {ηα} of YK corresponds to the remaining n-cells {η′α}
in {fnδ }. This shows that K/n has a basis of cells for its n-cycle group.
As always, define iK : K<n ↪→ K/n as the inclusion of the subcomplex which is obtained
from K/n by taking away the n-cells

{
ζ ′β
}
. Analogously, let iK : K<n ↪→ K/n be the

inclusion of the subcomplex which is obtained from K/n by taking away the n-cells
that correspond to

{
ζ ′β
}
via qK/n∗. Then qK/n restricts to a map qK<n : K<n → K<n.

This finishes the contruction of the desired diagram.
It remains to check the three stated properties. By construction, (K,K/n, hK , K<n)
is an n-truncation structure (see Definition 1.5). The equation hK∗iK∗Cn (K<n) = YK
follows, since the isomorphism hK∗ : Cn (K/n) → Cn (Kn) restricts to an isomorph-
ism between the subgroup iK∗Cn (K<n) of Cn (K/n) spanned by the n-cells {η′α} and
YK . The second property is clear by construction of iK and hK . Concerning the third
property, all involved quadruples are objects in CW0

n⊃∂ (see Definition 1.7). The pairs
(iK , ĩK) and (hK , h̃K) satisfy property (i) of Proposition 1.11. Thus, they are morph-
isms in CW0

n⊃∂ by the conclusion of the proposition.

Now we can proceed to define τ 0
<n on objects (see Corollary 1.19). Given an object

(K,YK , K, qK) in CW0
n⊃∂, we use Proposition 1.13 to choose a completion to a com-

mutative diagram with the stated properties, and set

τ 0
<n(K,YK , K, qK) = (K,K/n, hK , K<n) .

In the special case that K is simply connected, the above completion just means to
complete (K,YK) to an n-truncation structure, so in this case we are free to choose

τ 0
<n(K,YK , K, qK) = τ<n(K,YK).

In the special case that K has a basis of cells for its group of n-cycles and YK is
generated by those n-cells of K which are not cycles, one can choose K/n = Kn,
K/n = K and hK = idKn , hK = idK , qK/n = qK (the remaining spaces K<n and K<n

in the diagram are then uniquely determined and all properties in Proposition 1.13 are
satisfied by the resulting diagram). As in the definition of τ<n on objects in [1, page
29], we will assume in this case that

τ 0
<n(K,YK , K, qK) = (K,Kn, idKn , K<n) .
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The following version of the compression theorem [1, Theorem 1.32, page 35] enables
us to define the assignment τ 0

<n on morphisms:

1.14 Proposition. Let (f, f̃) :
(
K,YK , K, qK

)
→
(
L, YL, L, qL

)
be a morphism in

CW0
n⊃∂. If the involved objects are completed to commutative diagrams

K<n K/n K L L/n L<n

K<n K/n Kn Ln L/n L<n

iK hK

qKqK/nqK<n

iK hK fn

iLhL

qL qL/n qL<n

iLhL

with the properties of Proposition 1.13, then there exist cellular maps f/n : K/n →
L/n and f<n : K<n → L<n such that:
• The following diagram commutes up to homotopy rel Kn−1:

K<n K/n Kn K

L<n L/n Ln L

iK

f/n

hK incl

ffnf<n

iL hL incl

Thus, f/n and f<n extend fn−1 and the following is a morphism in HoCW0
⊃<n:

([f ] , [fn] , [f/n] , [f<n]) : (K,K/n, hK , K<n)→ (L,L/n, hL, L<n) .

• The following are morphisms in CW0
n⊃∂:

(f/n, f̃/n) :
(
K/n, iK∗ (Cn (K<n)) , K/n, qK/n

)
→
(
L/n, iL∗ (Cn (L<n)) , L/n, qL/n

)
,

(f<n, f̃<n) :
(
K<n, Cn (K<n) , K<n, qK<n

)
→
(
L<n, Cn (L<n) , L<n, qL<n

)
,

where f̃/n is the unique lift of f/n◦ pK/n under pL/n and f̃<n is the unique lift of
f<n◦pK<n under pL<n , such that f̃/n and f̃<n restrict to f̃n−1 on (n− 1)-skeletons.

Proof. It suffices to construct cellular maps f/n : K/n → L/n and f<n : K<n → L<n
with the following properties (where f̃/n and f̃<n are defined as above):
(1) fn ◦ hK ' hL ◦ f/n rel Kn−1.
(2) f/n ◦ iK ' iL ◦ f<n rel Kn−1.
(3) (f̃/n)∗ : Cn(K̃/n)→ Cn(L̃/n) maps uK/niK∗ (Cn (K<n)) into uL/niL∗ (Cn (L<n)).
(4) (f̃<n)∗ : Cn(K̃<n)→ Cn(L̃<n) maps uK<n (Cn (K<n)) into uL<n (Cn (L<n)).
Choose a cellular homotopy inverse h′L for hL which restricts to the identity map on
Ln−1 and such that hLh′L ' idLn rel Ln−1 and h′LhL ' idL/n rel Ln−1. If we define

f/n := h′L ◦ fn ◦ hK : K/n→ L/n,

then hL ◦ f/n = hL ◦ h′L ◦ fn ◦ hK ' fn ◦ hK rel Kn−1, which is (1). Thus, if we choose
k0 ∈ Kn−1 and set l0 := f (k0) ∈ Ln−1, then the following diagram commutes (the map
f<n will be constructed later; the dashed arrow does not yet exist):
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πn (K<n, K
n−1, k0) πn (K/n,Kn−1, k0) πn (Kn, Kn−1, k0)

πn (L<n, L
n−1, l0) πn (L/n, Ln−1, l0) πn (Ln, Ln−1, l0) (∗)

iK∗ hK∗ ∼=

fn∗(f/n)∗

iL∗ hL∗ ∼=

(f<n)∗

Recall that ĩK is the unique lift of iK ◦ pK<n under pK/n and h̃K is the unique lift of
hK ◦ pK/n under pnK , such that ĩK and h̃K restrict to idK̃n−1 on (n− 1)-skeletons (̃iL
and h̃L are defined analogously). Let f̃/n be the unique lift of f/n ◦ pK/n under pL/n,
which restricts to f̃n−1 on (n− 1)-skeletons. Let k̃0 ∈ K̃n−1 be a lift of k0 under pnK
and set l̃0 := f̃(k̃0) ∈ L̃n−1. Under the inverses of the isomorphisms

pX∗ : πn(X̃, K̃n−1, k̃0)
∼=−→ πn

(
X,Kn−1, k0

)
,

pY ∗ : πn(Ỹ , L̃n−1, l̃0)
∼=−→ πn

(
Y, Ln−1, l0

)
,

where X ∈ {K<n, K/n,K
n} and Y ∈ {L<n, L/n, Ln}, the previous diagram corres-

ponds to the following commutative diagram (the map f̃<n will be constructed later;
the dashed arrow does not yet exist):

πn(K̃<n, K̃
n−1, k̃0) πn(K̃/n, K̃n−1, k̃0) πn(K̃n, K̃n−1, k̃0)

πn(L̃<n, L̃
n−1, l̃0) πn(L̃/n, L̃n−1, l̃0) πn(L̃n, L̃n−1, l̃0) (∗∗)

ĩK∗ h̃K∗ ∼=

f̃∗(f̃/n)∗

ĩL∗ h̃L∗ ∼=

(f̃<n)∗

If we identify the relative homotopy groups in this diagram with the corresponding cel-
lular chain groups via Hurewicz isomorphisms (K̃n−1 and L̃n−1 are simply connected),
then this diagram fits into the following commutative diagram (the commutativity of
the four remaining squares follows from property (ii) of Proposition 1.11):

Cn (K<n) Cn (K/n) Cn (Kn)

Cn(K̃<n) Cn(K̃/n) Cn(K̃n)

Cn(L̃<n) Cn(L̃/n) Cn(L̃n)

Cn (L<n) Cn (L/n) Cn (Ln) (∗ ∗ ∗)

iK∗

uK/n

(f̃/n)∗

hK∗ ∼=

uKuK<n

ĩK∗ h̃K∗ ∼=

f̃∗

uL<n

ĩL∗ h̃L∗ ∼=

iL∗

uL/n

hL∗ ∼=

uL

(f̃<n)∗
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By assumption, f̃∗ maps uK (YK) = uKhK∗iK∗ (Cn (K<n)) = h̃K∗uK/niK∗ (Cn (K<n))

into uL (YL) = uLhL∗iL∗ (Cn (L<n)) = h̃L∗uL/niL∗ (Cn (L<n)). Thus, (f̃/n)∗ = (h̃L∗)
−1f̃∗h̃K∗

maps uK/niK∗ (Cn (K<n)) = ĩK∗uK<n (Cn (K<n)) into uL/niL∗ (Cn (L<n)) = ĩL∗uL<n (Cn (L<n)),
which shows (3). If {yα} are the n-cells of K<n and {yα} are the corresponding n-cells
of K<n ⊂ K̃<n, then we see in particular that (f̃/n)∗̃iK∗uK<n (yα) = (f̃/n)∗̃iK∗ (yα) lies
in the image of ĩL∗ for all α. Setting k0 := χ (yα) (s0), this corresponds to the statement
that in diagram (∗) the element

(f/n)∗iK∗ [χ (yα)] ∈ πn
(
L/n, Ln−1, l0

)
lies in the image of iL∗ : πn (L<n, L

n−1, l0)→ πn (L/n, Ln−1, l0) for all α. Following the
proof of the original compression theorem, one can conclude that f/n◦ iK is homotopic
rel Kn−1 to a cellular map f<n into L<n ⊂ L/n, which finishes the construction of
f<n and shows (2). Consequently, the commutative diagram (∗) can now be extended
by the dashed arrow induced by f<n. Let f̃<n be the unique lift of f<n ◦ pK<n under
pL<n , which restricts to f̃n−1 on (n− 1)-skeletons. The commutative diagrams (∗∗) and
(∗ ∗ ∗) can now be extended by the dashed arrows induced by f̃<n. By (3), we know
that (f̃/n)∗ maps uK/niK∗ (Cn (K<n)) = ĩK∗uK<n (Cn (K<n)) into uL/niL∗ (Cn (L<n)) =

ĩL∗uL<n (Cn (L<n)). By commutativity of (∗ ∗ ∗), one concludes that

(f̃/n)∗̃iK∗uK<n (Cn (K<n)) = ĩL∗(f̃<n)∗uK<n (Cn (K<n)) ⊂ ĩL∗uL<n (Cn (L<n)) .

Since ĩL is the inclusion L̃<n ↪→ L̃/n, the induced map ĩL∗ : Cn(L̃<n) → Cn(L̃/n) is
injective, so (4) holds.

Given a morphism (f, f̃) :
(
K,YK , K, qK

)
→
(
L, YL, L, qL

)
in CW0

n⊃∂, we follow [1,
page 48] to define τ 0

<n(f, f̃). If (f, f̃) is the identity morphism, then we define

τ 0
<n(f, f̃) = idτ0<n(K,YK ,K,qK) .

Otherwise, we apply Proposition 1.14 to the completions of
(
K,YK , K, qK

)
and

(
L, YL, L, qL

)
to diagrams with the properties of Proposition 1.13, which were chosen in the defin-
ition of τ 0

<n on objects. Thus, we obtain cellular maps f<n : K<n → L<n and
f/n : K/n → L/n with the stated properties (by construction, f/n = h′L ◦ fn ◦ hK ,
where h′L is a homotopy inverse rel Ln−1 for hL) and define

τ 0
<n(f, f̃) = ([f ] , [fn] , [f/n] , [f<n]) .

In the special case that K and L are simply connected, we are free to choose

τ 0
<n(f, f̃) = τ<n (f) .

All in all, we have defined a covariant assignment τ 0
<n : CW0

n⊃∂ → HoCW0
⊃<n of

objects and morphisms, which extends τ<n : CWn⊃∂ → HoCW⊃<n (see Corollary
1.19). Although the definition τ 0

<n on objects depends on the choice of a completion
of an object (K,YK , K, qK) to a diagram with the properties of Proposition 1.13, the
fourth component K<n constructed like this is well defined up to rel (n− 1)-skeleton
homotopy equivalence (compare [1, Scholium 1.26, page 33]):
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1.15 Corollary. If we choose two completions of an object (K,YK , K, qK) in CW0
n⊃∂

to commutative diagrams

K<n K/n K K/n′ K
′
<n

K<n K/n Kn K/n′ K ′<n

iK hK

qKqK<n

iK hK

i
′
Kh

′
K

q′K<n

i′Kh′K

qK/n q′
K/n

with the properties of Proposition 1.13, then K<n and K ′<n are homotopy equivalent
rel (n− 1)-skeleton.

Proof. Application of Proposition 1.14 to the identity morphism

(idK , idK̃n) : (K,YK , K, qK)→ (K,YK , K, qK)

in CW0
n⊃∂ yields cellular maps f/n : K/n → K/n′ and f<n : K<n → K ′<n such that

the diagram

K<n K/n Kn

K ′<n K/n′ Kn

iK

f/n

hK

=f<n

i′K h′K

commutes up to homotopy rel Kn−1 and a morphism

(f<n, f̃<n) :
(
K<n, Cn (K<n) , K<n, qK<n

)
→ (K ′<n, Cn (K ′<n) , K

′
<n, qK′<n)

in CW0
n⊃∂, where f̃<n is the unique lift of f<n◦pK<n under pK′<n , such that f̃<n restricts

to idK̃n−1 on (n− 1)-skeletons. We claim that f<n induces an isomorphism

f<n∗ : Cn (K<n)
∼=−→ Cn (K ′<n) .

Consider the commutative diagram

Cn (K<n) Cn (K/n) Cn (Kn)

Cn (K ′<n) Cn (K/n′) Cn (Kn)

iK∗

(f/n)∗

hK∗ ∼=

=f<n∗

i′K∗ h′K∗
∼=

Injectivity of f<n∗ follows from the injectivity of iK∗ and hK∗. For the surjectivity of
f<n∗, use hK∗iK∗ (Cn (K<n)) = YK = h′K∗i

′
K∗ (Cn (K ′<n)) and (f/n)∗ = (h′K∗)

−1 ◦ hK∗
to write

i′K∗f<n∗(Cn (K<n)) = (f/n)∗ iK∗ (Cn (K<n)) = i′K∗ (Cn (K ′<n)) .
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By injectivity of i′K∗ we obtain f<n∗(Cn (K<n)) = Cn (K ′<n).

Being a morphism in CW0
n⊃∂, the pair (f<n, f̃<n) satisfies f̃<n∗uK<n (Cn (K<n)) ⊂

uK′<n (Cn (K ′<n)). This is property (iii) of Proposition 1.11. Thus, by property (i) of
the same proposition, there exists an extension f<n : K<n → K

′
<n of (f̃<n)n−1 = idK̃n−1 ,

such that qK′<n ◦ f<n ' f<n ◦ qK<n rel K̃n−1. We claim that f<n induces isomorphisms

f<n∗ : Cm(K<n)
∼=−→ Cm(K

′
<n) ∀ m ≥ 0.

For m 6= n this is clear, because K<n and K
′
<n are n-dimensional and f<n restricts

to idK̃n−1 on (n− 1)-skeletons. For m = n this follows from commutativity of the
following diagram:

Cn(K<n) Cn(K
′
<n)

Cn (K<n) Cn (K ′<n)

f<n∗

q′K<n∗
∼=qK<n∗

∼=

f<n∗ ∼=

Thus, f<n induces isomorphisms on all homology groups. Since K<n and K
′
<n are

simply connected, f<n is a homotopy equivalence by the homological version of the
Whitehead theorem. By [2, Proposition 0.19, page 16], f<n is a homotopy equivalence
rel K̃n−1. By Lemma 1.12 (iii), one can conclude from qK′<n ◦ f<n ' f<n ◦ qK<n rel
K̃n−1 that f<n is a homotopy equivalence rel Kn−1.

For morphisms inHoCW⊃<n, n-compression rigidity is defined in terms of eigenhomo-
topies, compare [1, Definition 1.33, page 40], which involves the concept of virtual cell
groups, compare [1, Definition 1.10, page 18]. Although one could try to adapt these
definitions to arbitrary path connected CW-complexes, the interpretation of virtual cell
groups as sitting between two actual cellular chain groups gets lost, because it relies
on Hurewicz isomorphisms, which are only available for simply connected spaces. For
our purpose, n-compression rigidity for morphisms in HoCW0

⊃<n is defined in the fol-
lowing way, which is equivalent to the original definition for morphisms in HoCW⊃<n
by [1, Proposition 1.34, page 40]:

Definition. 1.16 Amorphism ([f ] , [fn] , [f/n] , [f<n]) : (K,K/n, hK , K<n)→ (L,L/n, hL, L<n)
inHoCW0

⊃<n is called n-compression rigid if any two cellular maps g1, g2 : K<n → L<n
such that the diagram

K<n K/n

L<n L/n

iK

f/ngi

iL
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homotopy commutes rel Kn−1 for i = 1, 2 are homotopic rel Kn−1.
A subcategory C ⊂ CW0

n⊃∂ is called n-compression rigid, if every morphism in C has
an n-compression rigid image under τ 0

<n.

The following lemma is a variation of [1, Lemma 1.43, page 53].

1.17 Lemma. Let X, Y and Y ′ be CW-complexes, where X is k-dimensional, k ≥ 1,
and Y , Y ′ are path connected. Assume that g1, g2 : X → Y are two maps that agree
on Xk−1 and f : Y → Y ′ is a map such that the induced map f∗ : πk (Y ) → πk (Y ′)
is injective (i.e. f∗ : πk (Y, y0) → πk (Y ′, f (y0)) is injective for one and hence for all
y0 ∈ Y ). If f ◦ g1 ' f ◦ g2 rel Xk−1, then g1 ' g2 rel Xk−1.

Proof. The (k + 1)-dimensional CW-complex Z = X×I has k-skeleton Zk = (X × I)k =
(X × ∂I) ∪

(
Xk−1 × I

)
. Since g1|Xk−1 = g2|Xk−1 , one can define the map

g = (g1 × {0} ∪ g2 × {1}) ∪ (g1|Xk−1 × idI) : Zk → Y.

By assumption, there is a rel Xk−1 homotopy X × I = Z → Y ′ between f ◦ g1 and
f ◦ g2. This homotopy restricts on Zk to f ◦ g : Zk → Y ′. In other words, for every
(k + 1)-cell ek+1 of Z, the composition

Sk
χ(ek+1)|
−−−−−→ Zk f◦g−→ Y ′

can be extended over Dk+1 and is thus nullhomotopic rel s0 ∈ Sk. Therefore,[
f ◦ g ◦ χ

(
ek+1

)
|
]

= 0 ∈ πk (Y ′, f (y0)) ,

where y0 denotes the image of the basepoint s0 ∈ Sk under g ◦χ
(
ek+1

)
|. By injectivity

of f∗ : πk (Y, y0) → πk (Y ′, f (y0)), one can conclude that
[
g ◦ χ

(
ek+1

)
|
]
is zero in

πk (Y, y0). Therefore, the composition

Sk
χ(ek+1)|
−−−−−→ Zk g−→ Y

is nullhomotopic rel s0 for all (k + 1)-cells ek+1 of Z and can thus be extended over
Dk+1. As a consequence, g can be extended to a rel Xk−1 homotopy Z × I → Y
between g1 and g2.

We record the following sufficient conditions for a morphism in HoCW0
⊃<n to be n-

compression rigid (see [1, Corollary 1.45, page 55] and [1, Corollary 1.49, page 58] for
morphisms in HoCW⊃<n).

1.18 Proposition. Amorphism ([f ] , [fn] , [f/n] , [f<n]) : (K,K/n, hK , K<n)→ (L,L/n, hL, L<n)
in HoCW0

⊃<n is n-compression rigid if one of the following holds:
• iL∗ : πn (L<n)→ πn (L/n) is injective.
• ∂n : Cn (K)→ Cn−1 (K) is the zero map.
• ∂n : Cn (L)→ Cn−1 (L) is injective.
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Proof. Assume that g1, g2 : K<n → L<n are two cellular maps such that iL◦gi ' f/n◦iK
rel Kn−1 for i = 1, 2. Thus, iL ◦ g1 ' iL ◦ g2 rel Kn−1. In particular, iL ◦ g1 and iL ◦ g2

agree on Kn−1. Since iL : L<n ↪→ L/n is an inclusion, one can conclude that g1 and g2

agree on Kn−1 = (K<n)n−1.
• For the first statement, the claim that g1 ' g2 rel Kn−1 follows from Lemma 1.17.
• The second statement follows from the observation that K<n = Kn−1 (since
∂n = 0, all n-cells are cycle cells and YK = 0 is unique) and that g1 and g2 agree
on Kn−1 as shown above.
• For the proof of the third statement, note that L/n = L<n (Zn (L) = 0 has a cell

basis and YL = Cn (L) is unique) and thus iL = idL/n.

The results of the present section can be summed up in the following

1.19 Corollary. Let n ≥ 3 be an integer. There is a covariant assignment

τ 0
<n : CW0

n⊃∂ → HoCW0
⊃<n

of objects and morphisms, which restricts to τ<n on CWn⊃∂. Moreover, τ 0
<n is a functor

on n-compression rigid subcategories C ⊂ CW0
n⊃∂ (the proof is analogous to the proof

of [1, Corollary 1.40, page 50]).

Now, we proceed analogous to [1, page 50f]. Let P 0
4 : HoCW0

⊃<n → HoCWn−1 be
the functor given by projection to the fourth component. By composition with τ 0

<n, we
define the covariant assignment of objects and morphisms

t<n = P 0
4 ◦ τ 0

<n : CW0
n⊃∂ → HoCWn−1.

If
(
K,YK , K, qK

)
is an object inCW0

n⊃∂, then τ 0
<n

(
K,YK , K, qK

)
= (K,K/n, hK , K<n)

is an n-truncation structure. We define the natural transformation emb0
n : t0<n → t0<∞

on
(
K,YK , K, qK

)
by the rel Kn−1 homotopy class K<n → K of the composition

K<n ↪→ K/n
hK−→ Kn ↪→ K.

Finally, one arrives at the following counterpart of [1, Theorem 1.41, page 51]:

1.20 Theorem. Let n ≥ 3 be an integer. There is a spatial homology truncation
assignment t0<n : CW0

n⊃∂ → HoCWn−1 with natural transformation emb0
n : t0<n →

t0<∞, which extend t<n and embn. Moreover, t0<n is a spatial homology truncation
functor on all n-compression rigid subcategories C ⊂ CW0

n⊃∂.

Remark. 1.21 (dependence on choices) Let K be a path connected CW-complex. Let
(K,YK , K, qK) and (K,Y ′K , K

′
, q′K) be two completions to objects inCW0

n⊃∂. What can
be said about the connection between their images under τ 0

<n? IfK is simply connected,
then [1, Proposition 1.25, page 30] characterizes algebraically when K<n and K ′<n are
homotopy equivalent rel Kn−1. In general, K<n and K ′<n are not homotopy equivalent
(even if K is simply connected, see Example 2.17). Now assume that YK = Y ′K . If
(idK , idK̃n) : (K,YK , K, qK) → (K,YK , K

′
, q′K) happens to be a morphism in CW0

n⊃∂,
then one can apply the proof of Corollary 1.15 to this morphism. In conclusion, K<n

and K ′<n are homotopy equivalent rel Kn−1.
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1.3 Path Connected CW-Complexes and Normality

Following [6, Definition 8.1, page 53], a simply connected CW-complex K is called
normal, if K has a filtration K2 ⊂ ... ⊂ Kn ⊂ ... ⊂ ∪nKn = K into simply connected
subcomplexes such that (using the inclusions ir : Kr ↪→ K)

Hr (Kn) = 0, for r > n,

ir∗ : Hr (Kn)
∼=−→ Hr (K) , for r ≤ n.

It turns out that every simply connected CW-complex is homotopy equivalent to a
normal CW-complex (see [6, Theorem 8.2, page 53]). The result of this section is
that every path connected CW-complex K is homotopy equivalent rel 2-skeleton to a
CW-complex L whose group of n-cycles has a cell-basis for all n ≥ 3 (see Proposition
1.24). In consequence, L has a filtration L2 ⊂ ... ⊂ Ln ⊂ ... ⊂ ∪nLn = L into path
connected subcomplexes with the above properties for homology groups (one obtains
Ln for n ≥ 2 by removing the (n+ 1)-cycle cells of Ln+1, see [1, Lemma 1.2, page 6]).
The result is obtained by adapting the proof of [6, Theorem 8.2, page 53] to the case
of path connected CW-complexes K. Roughly speaking, the n-truncation structures
which can be constructed separately for every dimension n ≥ 3 by Proposition 1.13
are now put together in a single space L. Under certain conditions involving funda-
mental groups, a given path connected CW-complex is even homotopy equivalent to
a CW-complex whose group of n-cycles has a cell-basis for all n ≥ 2 (see Remark 1.25).

The following lemma is a direct consequence of [6, Proposition 6.8, page 41].

1.22 Lemma. Let f : X → Y be a homotopy equivalence between n-dimensional
CW-complexes, n ≥ 0. If X is the n-skeleton of an (n+ 1)-dimensional CW-complex
X ′, then there exists an (n+ 1)-dimensional CW-complex Y ′ with n-skeleton Y and
an extension f ′ : X ′ → Y ′ of f such that f ′ is a homotopy equivalence.

The following lemma follows from Whitehead’s theorem.

1.23 Lemma. Let f : X → Y be a cellular map between path connected CW-
complexes. If for all integers n > 0 there exists an integer m > n such that the
restriction fm : Xm → Y m to m-skeletons is a homotopy equivalence, then f is a
homotopy equivalence.

Proof. Choose a point x0 ∈ X and let y0 := f (x0) ∈ Y . It suffices to show that
f induces isomorphisms f∗ : πn (X, x0) → πn (Y, y0) for all n ≥ 0. Then the lemma
follows from Whitehead’s theorem [2, Theorem 4.5, page 346].
For n = 0 this is true, because π0 (X, x0) and π0 (Y, y0) vanish for path connected X
and Y . For n > 0 choose an integer m > n such that the restriction fm : Xm → Y m to
m-skeletons is a homotopy equivalence. The map of pointed pairs f : (X,Xm, x0) →
(Y, Y m, y0) induces the following commutative diagram by naturality of the long exact
sequence of homotopy groups (i : Xm ↪→ X and j : Y m ↪→ Y are the inclusions):

30



πn+1 (X,Xm, x0) πn (Xm, x0) πn (X, x0) πn (X,Xm, x0)

πn+1 (Y, Y m, y0) πn (Y m, y0) πn (Y, y0) πn (Y, Y m, y0)

∂ i∗

f∗

incl∗

fm∗

j∗∂

incl∗

As the pair (X,Xm) is m-connected, πn+1 (X,Xm, x0) and πn (X,Xm, x0) vanish be-
cause of m ≥ n + 1 > n > 0. Thus, i∗ is an isomorphism by exactness of the
first row. Analogously, j∗ is an isomorphism. Moreover, the homotopy equivalence
fm : Xm → Y m induces an isomorphism fm∗ : πn (Xm, x0) → πn (Y m, y0) by [2, Exer-
cise 2, page 358]. Consequently, f∗ : πn (X, x0)→ πn (Y, y0) is also an isomorphism by
commutativity.

1.24 Proposition. Given a path connected CW-complex K, there exist
• a CW-complex L with L2 = K2 and such that Zn (L) has a cell-basis for all
n ≥ 3.
• a homotopy equivalence q : K → L rel K2 such that q is cellular and the restric-

tion qn : Kn → Ln to n-skeletons is the identity map for n = 2 and a homotopy
equivalence for n > 2.

Proof. In a first step, we construct inductively a sequence of CW-complexes

K = K2
h<3−→ K3 −→ ... −→ Kn

h<n+1−→ Kn+1 −→ ...

with the following properties for all n ≥ 2:
• (Kn)n = (Kn+1)n and the group of (n+ 1)-cycles of Kn+1 has a cell-basis.
• h<n+1 : Kn → Kn+1 is a cellular map such that the restriction (h<n+1)m :

(Kn)m → (Kn+1)m to m-skeletons is the identity map for m = n and a homotopy
equivalence for m > n.

Assume that the sequence has already been constructed up to Kn (for n = 2, take
K2 = K). We wish to construct Kn+1 and h<n+1 : Kn → Kn+1 with the desired
properties. By Remark 1.9, Kn can be completed to an object in CW0

n+1⊃∂. By
Proposition 1.13, there exist
• an (n+ 1)-dimensional CW-complex Kn/n + 1 with (Kn/n+ 1)n = (Kn)n and

such that its group of (n+ 1)-cycles has a cell-basis.
• a cellular map h′ : (Kn)n+1 → Kn/n + 1 which restricts to the identity map on

the common n-skeleton (Kn)n and which is a homotopy equivalence rel (Kn)n.
Using Lemma 1.22, we expand h′ inductively over the skeletons of Kn and obtain
• a CW-complex Kn+1 with (Kn+1)n+1 = Kn/n+ 1.
• a cellular map h<n+1 : Kn → Kn+1 such that the restriction (h<n+1)m : (Kn)m →

(Kn+1)m to m-skeletons is h′ for m = n + 1 and a homotopy equivalence for
m > n+ 1.

One can check that Kn+1 and h<n+1 satisfy the desired properties:
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• (Kn+1)n = (Kn/n+ 1)n = (Kn)n and Zn+1 (Kn+1) = Zn+1 (Kn/n+ 1) has a
cell-basis.
• h<n+1 : Kn → Kn+1 is cellular, (h<n+1)n = (h′)n is the identity map on (Kn)n,

(h<n+1)n+1 = h′ is a homotopy equivalence and (h<n+1)m is a homotopy equival-
ence for m > n+ 1.

In a second step, we construct L and q : K → L with the desired properties. Since
(Kn)n = (Kn+1)n ⊂ (Kn+1)n+1 for all n ≥ 2, there exists a unique CW-complex L
with Ln = (Kn)n for all n ≥ 2. In particular, L2 = (K2)2 = K2. By construction,
Zn+1 (L) = Zn+1 (Ln+1) = Zn+1

(
(Kn+1)n+1) has a cell-basis for all n ≥ 2. A homotopy

equivalence q : K → L rel K2 can be constructed as follows. For all n ≥ 2, the
composition

qn+1 : Kn+1 = (K2)n+1 (h<3)n+1

−→ (K3)n+1 −→ ... −→ (Kn)n+1 (h<n+1)n+1

−→ (Kn+1)n+1 = Ln+1

is a homotopy equivalence satisfying

(qn+1)n =

{
(h<n+1)n ◦ qn = qn for n > 2,

idK2 for n = 2.

Now define the cellular map q : K → L by qn+1 = qn+1 for all n ≥ 2. Thus,
qn : Kn → Ln is a homotopy equivalence for n > 2 and q2 = idK2 . q is a homo-
topy equivalence by Lemma 1.23. (Note that L is path connected, because L2 = K2 is
path connected.) q is a homotopy equivalence rel K2 by [2, Proposition 0.19, page 16].

Remark. 1.25 We state conditions under which a path connected CW-complex K is
homotopy equivalent to a CW-complex L such that Zn (L) has a cell-basis for all n ≥ 2.
Assume that K2 is homotopy equivalent to a two-dimensional CW-complex P 2 such
that Z2 (P 2) has a cell-basis. Then, by Lemma 1.22 and Lemma 1.23, K is homotopy
equivalent to a CW-complex P with 2-skeleton P 2 (thus, Z2 (P ) has a cell-basis).
Finally, by Proposition 1.24, P is homotopy equivalent to the desired CW-complex L
(note that P 2 = L2).
• If the inclusion K1 ↪→ K2 induces an isomorphism π1 (K1, k0) ∼= π1 (K2, k0)

on fundamental groups (for one and hence for all basepoints k0 ∈ K1), then
Z2 (K2) = C2 (K2) (thus, Z2 (K2) has a cell-basis). To show this, let {e2

α} be the
2-cells of K and consider the following portion of the exact homotopy sequence
of the pointed pair (K2, K1, kα) (kα := χ (e2

α) (s0)):

π2

(
K2, K1, kα

) ∂−→ π1

(
K1, kα

) ∼=−→ π1

(
K2, kα

)
.

Thus, ∂ ([χ (e2
α)]) = [χ (e2

α) |] = 0 in π1 (K1, kα) for all α. The connecting homo-
morphism δ : C2 (K) = H2 (K2, K1)→ H1 (K1) satisfies

δ
(
e2
α

)
= δHur

([
χ
(
e2
α

)])
= Hur ∂

([
χ
(
e2
α

)])
= 0.

Therefore, e2
α is in the kernel of ∂2 : C2 (K)→ C1 (K) for all α.
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• If K2 is finite and π1 (K2) (= π1 (K)) is finite abelian, one can write π1 (K) =
Z/m1 × ...×Z/mn with mi|mi+1 and m1 > 1. By [7, page 123], K2 is homotopy
equivalent to a CW-complex

P 2 := Kr ∨
∨

S2,

where r is relatively prime to m1 and Kr is the model of a twisted presentation

Pr = 〈a1, ..., ar|am1
1 , ..., amnn , [ar1, a2] , [ai, aj] for i < j, (i, j) 6= (1, 2)〉

of π1 (K) (see [7, page 108]). By definition, Kr is obtained from a bouquet of
1-spheres, where each 1-sphere corresponds to a generator of Pr, by attaching for
every relation in Pr a 2-sphere via the attaching map given by the relation. It
is clear that the 2-cells corresponding to the commutator relations of Pr form a
cell-basis of Z2(Kr). (Note that every non-trivial linear combination of 2-cells,
which correspond to relations of the form amii , has non-trivial image in C1(Kr)
under the boundary operator.) Thus, Z2 (P 2) has a cell-basis.
• If K2 is compact and π1 (K) is free, then K2 is homotopy equivalent to a finite

bouquet P 2 of one- and two-dimensional spheres by [7, Theorem 3.9, page 120].
Thus, Z2 (P 2) = C2 (P 2) has a cell-basis.

Remark. 1.26 The fact that every simply connected CW-complex is homotopy equi-
valent to a normal CW-complex leads to the construction of a homology decomposition
for a given homotopy type (compare [6, page 55ff]). The required k-invariants are
obtained from [6, Theorem 7.1’, page 47], where simple connectivity is assumed. The
question whether a homology decomposition including k-invariants can also be obtained
for path connected CW-complexes is not answered by the previous discussion.
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2 Induced Maps between Intersection Spaces

Let n ≥ 2 be an integer and let p be a perversity. Then the cut-off degree k =
n− 1− p (n) is an integer satisfying 1 ≤ k ≤ n− 1.

Definition. 2.1 The categoryP (n, p) consists of the following objects and morphisms:
• Objects are triples (X,Σ,Λ), where

1. X is an n-dimensional compact topological pseudomanifold with only isolated
singularities. Let σ ⊂ X be the (finite) set of singular points of X and let λ
be the set of corresponding links. This yields a bijection σ ∼−→ λ, x 7→ Lx.
We assume that all links L ∈ λ are path connected.

2. Σ is a set of pairs (x, cone (Lx)), such that every singularity x ∈ σ has been
equipped (in one way) with a small cone neighbourhood in X,

x ∈ int(cone (Lx)) ⊂ cone (Lx) = (Lx × I) / (Lx × {0}) ⊂ X,

and such that the neighbourhoods cone (Lx) ⊂ X are pairwise disjoint.
We use the notation M := X −

⊔
L∈λ int(cone (L)) and ∂M =

⊔
L∈λ L.

3. Λ is a set of triples (L,L<k, fL), such that every link L ∈ λ has been equipped
(in one way) with a CW-structure and with a spatial homology truncation
fL : L<k → L in degree k (see Section 1.1).
If k = 1 or if k = 2 and L ∈ λ is simply connected, then we assume that
fL is the inclusion of a 0-cell L<k ↪→ L. This yields a valid spatial homology
truncation of L in degree k (compare [1, Section 1.1.5, page 24]).

• Morphisms (X,Σ,Λ)→ (X ′,Σ′,Λ′) are continuous maps F : X → X ′, such that
F (M) ⊂M ′ and for every L ∈ λ there is an L′L ∈ λ′ with F (L) ⊂ L′L.

Remark. 2.2 The links of an n-dimensional compact topological pseudomanifold X
with isolated singularities are closed (n− 1)-dimensional topological manifolds. It is a
non-trivial requirement that they possess the structure of a CW-complex (compare [1,
Remark 2.9, page 112]). But if a link L of X has been equipped with the structure of
a CW-complex, then it can be completed to a triple (L,L<k, fL) by Corollary 1.4.

The definition of P (n, p) is motivated as follows. Let (X,Σ,Λ) be an object in P (n, p).
Let j : ∂M ↪→ M be the inclusion. The fixed CW-structures and spatial homology
truncations fL : L<k → L for all links L ∈ λ can be used to define the following map,
which is a spatial homology truncation of ∂M in degree k:

f : (∂M)<k :=
⊔
L∈λ

L<k

⊔
L∈λ fL−−−−−→

⊔
L∈λ

L = ∂M.

The intersection space construction yields the following assignment on the object level:

I : ObP (n, p) → ObHoTop, I (X,Σ,Λ) = cone (j ◦ f) .

The goal of the following sections is to define subcategories P∗ (n, p) of P (n, p) and
functors I∗ : P∗ (n, p) → HoTop, which agree with I on objects. (In Section 2.5,
objects and morphisms in P∗ (n, p) will be equipped with some extra structure. In
this case, P∗ (n, p) → P (n, p) denotes the forgetful functor instead of the inclusion
functor.)
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2.1 Induced Maps in Low Dimensions

This section treats the case of cut-off degree k = 1. Recall the construction of I (X,Σ,Λ)
for an object (X,Σ,Λ) in P (n, p). For every link L ∈ λ we take a copy IL of the unit
interval [0, 1]. We identify in M

⊔
L∈λ IL all endpoints 0 ∈ IL to a single point ∗

and for every L ∈ λ the point 1 ∈ IL with the chosen 0-cell L<1 ∈ L ⊂ ∂M . In
the following, we present two subcategories P∗ (n, p) of P (n, p) together with functors
I∗ : P∗ (n, p)→ HoTop, which are defined by (X,Σ,Λ) 7→ I (X,Σ,Λ) on objects.
• Let P• (n, p) be the subcategory of P (n, p) with the same objects as in P (n, p)

and whose morphisms F : (X,Σ,Λ) → (X ′,Σ′,Λ′) preserve the chosen 0-cells of
the links, that is F (L<1) = (L′L)<1 for all L ∈ λ (recall that F (L) ⊂ L′L). A
continuous map F : I (X,Σ,Λ)→ I (X ′,Σ′,Λ′) is obtained by setting

F (x) =


∗′, for x = ∗,
x (∈ IL′L), for x ∈ (0, 1) ⊂ IL,

F (x) (∈M ′), for x ∈M.

Setting I•(F ) = F obviously defines a functor I• : P• (n, p)→ Top.
• Let P1 (n, p) be the full subcategory of P (n, p), whose objects (X,Σ,Λ) have

the property that all links L ∈ λ are simply connected. Given a morphism
F : (X,Σ,Λ) → (X ′,Σ′,Λ′) in P1 (n, p), choose for every L ∈ λ a path φL :
[0, 1]→ L′L between φL (0) = (L′L)<1 and φL (1) = F (L<1) (∈ L′L). A continuous
map F : I (X,Σ,Λ)→ I (X ′,Σ′,Λ′) is obtained by setting

F (x) =


∗′, for x = ∗,
2x (∈ IL′L), for x ∈ (0, 1/2) ⊂ IL,

φL (2x− 1) (∈ L′L), for x ∈ [1/2, 1) ⊂ IL,

F (x) (∈M ′), for x ∈M.

The class
[
F
]
in HoTop does not depend on the choice of the paths φL. (If

φ′L is any other path for some L ∈ λ, then the paths [1/2, 1] → L′L given by
x 7→ φL (2x− 1) and x 7→ φ′L (2x− 1) are homotopic rel endpoints, since L′L is
simply connected.) Sending F to the induced morphism

[
F
]
in HoTop defines

a functor I1 : P1 (n, p) → HoTop. (If H := G ◦ F is the composition with
a second morphism G : (X ′,Σ′,Λ′) → (X ′′,Σ′′,Λ′′), then G ◦ F and H agree
on M and map ∗ to ∗′′. For every L ∈ λ, the restrictions of G ◦ F and H to
[0, 1] = IL ⊂ I (X,Σ,Λ) yield two paths in L′′L ∨ IL′′L ⊂ I (X ′′,Σ′′,Λ′′) between ∗′′
and G(F (L<1)). They are homotopic rel endpoints, since L′′L∨IL′′L ' L′′L is simply
connected. Given the identity morphism F on (X,Σ,Λ), choose φL = constL<1 for
all L ∈ λ. The resulting map F is homotopic to the identity map on I (X,Σ,Λ).)

Remark. 2.3 The approach of Section 2.1 also applies to the case k = 2 and objects
(X,Σ,Λ) in P (n, p) with simply connected links, since L<2 are 0-cells of L for all L ∈ λ.
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2.2 Induced Maps for Spaces with Exactly One Isolated Singularity

Let us consider objects in P (n, p) with exactly one isolated singularity.

Definition. 2.4 The subcategory Pone (n, p) of P (n, p) consists of the following ob-
jects and morphisms:
• Objects (X,Σ,Λ) are objects in P (n, p), such that X has exactly one singularity.

(We use the notation σ = {x} and λ = {L}.)
• Morphisms F : (X,Σ,Λ) → (X ′,Σ′,Λ′) are morphisms in P (n, p), which are

either identity morphisms or satisfy F (X) ⊂ X ′ − x′.

Let us check that Pone (n, p) is closed under composition G ◦ F of morphisms F :
(X,Σ,Λ) → (X ′,Σ′,Λ′) and G : (X ′,Σ′,Λ′) → (X ′′,Σ′′,Λ′′). This is clear if G is an
identity morphism. Otherwise, (G ◦ F )(X) ⊂ G(X ′) ⊂ X ′′ − x′′.
In the following, we construct a functor

Ione : Pone (n, p)→ HoTop,

which agrees with I on objects. In order to define Ione on morphisms, we will use the
following maps for a given object (X,Σ,Λ) in Pone (n, p):
• Let q : X − x → M be the projection map, which restricts to the identity map

on M and is given on L× (0, 1) ⊂ X − x by q(a, t) = (a, 1) ∈ L× {1} ⊂M . Let
i : M ↪→ X and l : X−x ↪→ X be the inclusions. Note that the composition i◦ q
is homotopic to l.
• The canonical maps

b : M → I (X,Σ,Λ) , c : I (X,Σ,Λ) → X̂ (:= X/σ = X),

are defined as follows (compare [1, page 157]). b is just the inclusion M ↪→
I (X,Σ,Λ) = cone(j ◦ fL). (Note that f = fL.) c : I (X,Σ,Λ) = cone(j ◦ fL) →
cone(j) = X is induced by the following 3-diagram of spaces:

cone(L<k) L<k M

cone(L) L M

at 1

cone(fL) fL

at 1 j

j◦fL

=

Note that the canonical maps fit into the commutative diagram

M I (X,Σ,Λ)

X.

b

c
i

Let F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) be a morphism in Pone (n, p).
If F is the identity morphism on (X,Σ,Λ), then we set

Ione (F ) = [idI(X,Σ,Λ)] ∈ HoTop.
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Otherwise, if F is not an identity morphism, then it restricts to a map F | : X → X ′−x′.
Define Ione (F ) to be the homotopy class in HoTop of the composition

I (X,Σ,Λ)
c−→ X

F |−→ X ′ − x′ q′−→M ′ b′−→ I (X ′,Σ′,Λ′) .

In order to check functoriality, let G : (X ′,Σ′,Λ′)→ (X ′′,Σ′′,Λ′′) be a second morphism
in Pone (n, p). One has to show that Ione (G ◦ F ) = Ione (G) ◦ Ione (F ). This is clear if
at least one of the morphisms F and G is an identity morphism. Otherwise, one has

Ione (G) ◦ Ione (F ) = [b′′ ◦ q′′ ◦G| ◦ (c′ ◦ b′) ◦ q′ ◦ F | ◦ c]
= [b′′ ◦ q′′ ◦G| ◦ (i′ ◦ q′) ◦ F | ◦ c]
= [b′′ ◦ q′′ ◦ (G| ◦ l′ ◦ F |) ◦ c]
= [b′′ ◦ q′′ ◦ (G ◦ F ) | ◦ c]
= Ione (G ◦ F ) .

Let J : Pone (n, p)→ Top be the forgetful functor. (J maps objects to the underlying
spaces and morphisms to the underlying continuous maps.) Let p : Top→ HoTop be
the natural projection functor. We construct a natural transformation

Ione −→ p ◦ J.

We map a given object (X,Σ,Λ) in Pone (n, p) to the homotopy class of the canonical
map [c] : I(X,Σ,Λ) → X in HoTop. It remains to show that for every morphism
F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) in Pone (n, p), the following diagram commutes in HoTop:

I (X,Σ,Λ) I (X ′,Σ′,Λ′)

X X ′

Ione(F )

[c′][c]

[F ]

This is clear, if F is an identity morphism. Otherwise, the diagram factorizes as

I (X,Σ,Λ) X X ′ − x′ M ′ I (X ′,Σ′,Λ′)

X X X ′ X ′ X ′

[c] [F |] [q′] [b′]

[c′][i′][l′][idX ][c]

[idX ] [F ] [idX′ ] [idX′ ]
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2.3 Induced Maps for Links Having a Basis of Cells for Their k-Cycle Group

In the present section, we will restrict our attention to objects in P (n, p), such that
every link is equipped with a CW-structure, whose group of k-cycles has a basis of
cells. In this case, the spatial homology truncations fL : L<k → L of the links L can
be taken to be inclusions. The definition of the appropriate subcategory PCyl (n, p) of
P (n, p) is based on a category Cyl (k). The latter is supposed to model the morphisms
in PCyl (n, p) near the isolated singularities of the pseudomanifolds:

Definition. 2.5 The categoryCyl (k) consists of the following objects and morphisms:
• Objects in Cyl (k) are path connected CW-complexes P , such that the group
Zk (P ) of k-cycles of P has a basis of k-cells. Let eP : P<k ↪→ P be the inclusion
of the CW-complex P<k obtained from P k by removing all k-cycle cells.
• Morphisms F : P → Q in Cyl (k) are maps of triples

F : (P × I, P × {0} , P × {1})→ (Q× I,Q× {0} , Q× {1}) ,

which satisfy F
(
P k−1 × I

)
⊂ Qk−1 × I and F (P<k × {0}) ⊂ Q<k × {0}.

Example. 2.6 (objects in Cyl (k)) A CW-complex K certainly has a basis of cells for
its group of k-cycles, if the boundary map ∂k : Ck (K) → Ck−1 (K) is either injective
or the zero map, since then the kernel of ∂k is either 0 or Ck (K). In particular, this
is the case if K has at most one k-cell ek. (If the image of ek under ∂k is not zero,
then ∂k is injective, as Ck−1 (K) is free abelian.) Moreover, the product complex of
two CW-complexes, whose boundary maps in the cellular chain complex are all zero,
has again this property. The following oriented closed path connected manifolds admit
CW-structures with at most one cell in every dimension:
• m-spheres for m ≥ 1: Sm = e0 ∪ em.
• lens spaces Lp for p ≥ 2: Lp = e0 ∪ e1 ∪p e2 ∪ e3.
• real projective spaces of odd dimension m ≥ 1: RPm = e0 ∪ ... ∪ em.
• complex projective spaces of dimension 2m, m ≥ 1: CPm = e0 ∪ e2 ∪ ... ∪ e2m.

Example. 2.7 (morphisms in Cyl (k)) Let k ≥ 3 and let P and Q be objects in
Cyl (k). Choose completions

(
P, YP , P , qP

)
and

(
Q, YQ, Q, qQ

)
to objects in CW0

k⊃∂
(see Definition 1.7), such that YP ⊂ Ck (P ) and YQ ⊂ Ck (Q) are generated by those k-
cells, which are not cycle cells. We show that every morphism (f, f̃) :

(
P, YP , P , qP

)
→(

Q, YQ, Q, qQ
)
in CW0

k⊃∂ induces a morphism F : P → Q in Cyl (k), such that the
restriction F | : P = P × {1} → Q × {1} = Q is equal to f . By Section 1.2, there
is a cellular map f<k : P<k → Q<k, such that the following diagram commutes up to
homotopy rel (k − 1)-skeleton:

P<k P

Q<k Q.

eP

ff<k

eQ
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(emb0
k : t0<k → t0<∞ is a natural transformation by Theorem 1.20. By construction of

τ 0
<k, we have emb0

k

(
P, YP , P , qP

)
= [eP ] and emb0

k

(
Q, YQ, Q, qQ

)
= [eQ]. Thus, one can

take f<k as a representative of t0<k(f, f̃).) Choose a rel P k−1 homotopyH : P<k×I → Q
between H0 = eQ ◦ f<k and H1 = f ◦ eP . By the homotopy extension property of the
CW-pair (P, P<k), the map

P × {1} ∪ P<k × I
f∪H−−→ Q

can be extended to a map F ′ : P×I → Q. The following map has all desired properties:

F : P × I → Q× I, F (p, t) = (F ′ (p, t) , t) .

Definition. 2.8 The subcategory PCyl (n, p) of P (n, p) consists of the following ob-
jects and morphisms:
• Objects in PCyl (n, p) are objects (X,Σ,Λ) in P (n, p), such that every link L ∈ λ

is an object in Cyl (k) and the chosen spatial homology truncations fL are the
inclusions eL : L<k ↪→ L, which were introduced in Definition 2.5.
• Morphisms in PCyl (n, p) are morphisms F : (X,Σ,Λ) → (X ′,Σ′,Λ′) in P (n, p),

which satisfy the following property: For every L ∈ λ there is a morphism FL :
L→ L′L in Cyl (k), such that F restricts for every L to the map F̂L : cone (L)→
cone (L′L), which is induced from FL by collapsing the ends of the cylinders at 0

to points. (By continuity, the maps F̂L determine the maps FL uniquely.)

In order to define a functor ICyl : PCyl (n, p)→ HoTop, which agrees with I on objects,
we need some definitions. Given eP : P<k → P , let πP denote the projection

πP : P
⊔

(P<k × I)→
(
P
⊔

(P<k × I)
)
/ (eP (x) ∼ (x, 1) ∀x ∈ P<k) = cyl (eP ) .

Define the following subspaces of cyl (eP ):

AP := πP (P<k × {0}) ,
BP := πP (P ) ,

CP := πP
(
P k−1 × I

)
.

Note that πP restricts to a homeomorphism

σP : P
∼=→ BP .

The restriction of πP to P<k × I will be denoted by

ρP : (P<k × I, P<k × {0} , P<k × {1}) ↪→ (cyl (eP ) , AP , BP ) .

Note that the following diagram commutes:

P<k P<k × {1}

P BP .

=

ρP |eP

σP
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2.9 Lemma. For every object P in Cyl (k), the inclusion EP : cyl (eP ) ↪→ P × I is a
homotopy equivalence.

Proof. The inclusions i : P
σP−→ BP ↪→ cyl (eP ) and EP ◦ i : P = P × {1} ↪→ P × I are

homotopy equivalences. Homotopy inverses are given by the projection q : P × I → P
to the first component for EP ◦ i and q ◦ EP : cyl(eP ) → P for i. Thus, EP is a
homotopy equivalence with homotopy inverse i ◦ q.

For the following discussion, we introduce some appropriate categories. The category
HoCyl models “cylinders” as spaces with two fixed disjoint subspaces, which represent
the two ends of the cylinder. Morphisms inHoCyl are homotopy classes of maps which
preserve the ends of the cylinders and are rel the second subspace. This enables us to
glue larger spaces to the second subspaces in a functorial way, which is implemented
by the category HoGlue and the functor glue : HoGlue → HoCylrefl. The category
HoCylrefl will be used in Section 2.6 to construct maps between reflective diagrams.
Let F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) be a morphism in PCyl (n, p). The above categories are
needed to explain how a collection of suitable maps {L× I → L′L × I}L∈λ in HoCyl,
which will be assigned to F , induces a continuous map I(X,Σ,Λ) → I(X ′,Σ′,Λ′).
(First, the functor glue : HoGlue → HoCylrefl is used to glue the manifolds M and
M ′ along their boundaries to the second subspaces of the cylinders {L× I}L∈λ and
{L′ × I}L′∈λ′ . Afterwards, the upper subspaces of the cylinders are collapsed to a
point by using a collapsing functor coll : HoCylrefl → HoTop.) This will reduce the
construction of a functor ICyl : PCyl (n, p)→ HoTop, which agrees with I on objects, to
the problem of constructing a functor Tk : Cyl (k)→ HoCyl with suitable properties
(see Proposition 2.14).

Definition. 2.10 The category HoCyl consists of the following objects and morph-
isms: Objects are triples (X,A,B) of topological spaces, where A and B are disjoint
(possibly empty) subspaces of X. Morphisms (X,A,B) → (X ′, A′, B′) are rel B ho-
motopy classes [F ] of maps F : (X,A,B) → (X ′, A′, B′) (i.e. F and F̃ are equivalent
if and only if there exists a homotopy rel B between F and F̃ which maps A into A′
at all times). The composition of two morphisms [F ] : (X,A,B) → (X ′, A′, B′) and
[F ′] : (X ′, A′, B′)→ (X ′′, A′′, B′′) is given by [F ′] ◦ [F ] := [F ′ ◦ F ].

Definition. 2.11 The categoryHoCylrefl consists of the following objects and morph-
isms: Objects are quadruples (X,A,B,C) of topological spaces, where A, B and C are
subspaces of X, such that B ⊂ A. Morphisms (X,A,B,C) → (X ′, A′, B′, C ′) are rel
C homotopy classes [F ] of maps F : (X,A,B,C)→ (X ′, A′, B′, C ′).

Definition. 2.12 The category HoGlue consists of the following objects and morph-
isms: Objects are quadruples (X0, A,B0, B), where (X0, A,B0) is an object in HoCyl
and B0 ⊂ B is a subspace. Morphisms ([F0] , ρ) : (X0, A,B0, B) → (X ′0, A

′, B′0, B
′)

consist of a morphism [F0] : (X0, A,B0) → (X ′0, A
′, B′0) in HoCyl and a morphism

ρ : B → B′ in Top, which restricts to ρ| = F0| : B0 → B′0. The composition
with a second morphism ([F ′0] , ρ′) : (X ′0, A

′, B′0, B
′) → (X ′′0 , A

′′, B′′0 , B
′′) is given by

([F ′0] , ρ′) ◦ ([F0] , ρ) := ([F ′0] ◦ [F0] , ρ′ ◦ ρ).
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Now, define the functor glue : HoGlue→ HoCylrefl

• on objects by glue (X0, A,B0, B) = (X,X0, A,B), where X denotes the realiza-
tion of the 3-diagram X0 ←↩ B0 ↪→ B of spaces.
• on morphisms ([F0] , ρ) : (X0, A,B0, B)→ (X ′0, A

′, B′0, B
′) by glue ([F0] , ρ) = [F ],

where F : (X,X0, A,B)→ (X ′, X ′0, A
′, B′) is induced by

X0 B0 B

X ′0 B′0 B′.

incl

F0 F0|

incl incl

incl

ρ

Assume that there is a covariant functor

Tk : Cyl (k) −→ HoCyl,

such that the following two properties are satisfied:
• For every object P in Cyl (k) one has Tk (P ) = (cyl (eP ) , AP , BP ).
• For every morphism F : P → Q in Cyl (k), the following diagram commutes:

P × {1} = P BP

Q× {1} = Q BQ.

F |

σP ∼=

Tk(F )|

σQ ∼=

Given a morphism F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) in PCyl (n, p), one has

Tk (L) = (cyl (eL) , L<k, L) ∀L ∈ λ,
Tk (L′) = (cyl (eL′) , L

′
<k, L

′) ∀L′ ∈ λ′.

The following diagram commutes in Top:⊔
L∈λ L = ∂M M

⊔
L′∈λ′ L

′ = ∂M ′ M ′.

incl

F |⊔
Tk(FL)|=

⊔
FL|

incl

All in all, F gives rise to a morphism(⊔
L∈λ

Tk (FL) , F |

)
:
(
cyl (f) , (∂M)<k , ∂M,M

)
→
(
cyl (f ′) , (∂M ′)<k , ∂M

′,M ′)
in HoGlue, where f =

⊔
L∈λ eL and (∂M)<k =

⊔
L∈λ L<k × {0} (⊂ cyl(f)).

Since Tk is a functor, this yields a functor

Tk : PCyl (n, p) −→ HoGlue,

which is given
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• on objects (X,Σ,Λ) in PCyl (n, p) by Tk (X,Σ,Λ) =
(
cyl (f) , (∂M)<k , ∂M,M

)
.

• on morphisms F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) inPCyl (n, p) by Tk (F ) =
(⊔

L∈λ Tk (FL) , F |
)
.

The composition of functors

ĨCyl(k) = glue ◦Tk : PCyl (n, p) → HoCylrefl

is given on objects by

ĨCyl(k) (X,Σ,Λ) =
(
cyl (j ◦ f) , cyl (f) , (∂M)<k ,M

)
,

where j : ∂M ↪→M is the inclusion. Define the collapsing functor

coll : HoCylrefl −→ HoTop

• on objects (X,A,B,C) in HoCylrefl by coll(X,A,B,C) = X/B.
• on morphisms [ϕ] : (X,A,B,C)→ (X ′, A′, B′, C ′) inHoCylrefl by coll([ϕ]) = [ϕ],

where ϕ : X/B → X ′/B′ is induced by ϕ after passing to quotient spaces.
Finally, define the covariant functor

ICyl = coll ◦̃ICyl(k) : PCyl (n, p) −→ HoTop.

Note that ICyl agrees with I on objects.

In the following, we will construct such a functor Tk with the desired properties. By
the first property, Tk is already given on objects. We go on to define Tk on morphisms
in Cyl (k). For every object P in Cyl (k), one has the inclusions

AP ∪BP ∪ CP ⊂ cyl (eP )
EP
↪−→ P × I.

Note that every morphism F : P → Q in Cyl (k) satisfies F (AP ) ⊂ AQ, F (BP ) ⊂ BQ

and F (CP ) ⊂ CQ. Consequently, F (AP ∪BP ∪ CP ) ⊂ AQ ∪BQ ∪ CQ (⊂ cyl(eQ)).
Given a morphism F : P → Q in Cyl (k), we will construct a map

F< : cyl (eP )→ cyl (eQ) ,

such that the diagram

cyl (eP ) P × I

cyl (eQ) Q× I

F<

EP= incl

F

EQ= incl

commutes up to homotopy rel AP∪BP∪CP . Note that this implies that F< agrees with
F on AP ∪BP ∪CP . (EP and EQ are inclusions.) Thus, F< (AP ) ⊂ AQ, F< (BP ) ⊂ BQ,
F< (CP ) ⊂ CQ and F< (AP ∪BP ∪ CP ) ⊂ AQ ∪ BQ ∪ CQ. In particular, F< induces
a morphism [F<] : (cyl (eP ) , AP , BP ) → (cyl (eQ) , AQ, BQ) in HoCyl. This will be
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used as the definition of Tk on morphisms. First, we use the compression lemma to
construct a map F< as above. In Proposition 2.13 we show that [F<] is a well-defined
morphism in HoCyl. Finally, we will show in Proposition 2.14 that this defines a
covariant functor Tk : Cyl (k)→ HoCyl with the desired properties.

In order to construct F<, we apply the compression lemma [2, Lemma 4.6, page 346]:
Consider the map

F ◦ EP : (cyl (eP ) , AP ∪BP ∪ CP )→ (Q× I, cyl (eQ))

between CW-pairs, where cyl (eQ) 6= ∅ is path connected. The complement

cyl (eP )− AP ∪BP ∪ CP = (P<k × I)− (P<k × I)k

has only cells of dimension (k + 1). Since the inclusion EQ : cyl (eQ) ↪→ Q × I is a
homotopy equivalence by Lemma 2.9, it follows from the long exact homotopy sequence
of the pair (Q× I, cyl (eQ)) that πk+1 (Q× I, cyl (eQ)) = 0. Thus, there is a map

F< : cyl (eP )→ cyl (eQ) ,

such that F ◦ EP is homotopic rel AP ∪BP ∪ CP to EQ ◦ F<. The map F< induces a
well-defined morphism in HoCyl:

2.13 Proposition. Let F : P → Q be a morphism in Cyl (k). Suppose that F< :
cyl (eP )→ cyl (eQ) is a continuous map such that the following diagram commutes up
to homotopy rel AP ∪BP ∪ CP ⊂ cyl (eP ):

cyl (eP ) P × I

cyl (eQ) Q× I

F<

EP= incl

F

EQ= incl

If G< is a second map with the same property, then [F<] = [G<] in HoCyl. (Here, we
take the homotopy classes of the maps F<, G< : (cyl (eP ) , AP , BP )→ (cyl (eQ) , AQ, BQ).)

Proof. By assumption, the compositions

EQ ◦ F<, EQ ◦G< : cyl (eP )→ Q× I

are homotopic rel AP ∪ BP ∪ CP , since they are both homotopic to F ◦ EP rel AP ∪
BP ∪CP . Thus, EQ ◦F< and EQ ◦G< agree on AP ∪BP ∪CP . Since EQ is injective, it
follows that F< and G< agree on AP ∪BP ∪CP . Using that F : P → Q is a morphism
in Cyl (k), we showed above that F< (AP ) ⊂ AQ, F< (BP ) ⊂ BQ and F< (CP ) ⊂ CQ
(and analogous for G<). In particular, it follows from F< (BP ) , G< (BP ) ⊂ BQ, that
F< and G< restrict to the same map

D : BP → BQ.
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Next, we apply Lemma 1.17 to the following setting. DefineX := P<k×I, Y := cyl (eQ)
and Y ′ := Q× I. X is an (k + 1)-dimensional CW-complex and the CW-complexes Y
and Y ′ are path connected. By composition with the inclusion ρP : P<k×I ↪→ cyl (eP ),
define the maps

g1 := F< ◦ ρP , g2 := G< ◦ ρP : X → Y.

Note that ρP
(
Xk
)
⊂ AP ∪BP ∪CP . (This follows from Xk = P<k ×{0, 1} ∪ P k−1× I

and ρP (P<k × {0}) = AP , ρP (P<k × {1}) ⊂ BP and ρP
(
P k−1 × I

)
= CP .) Since F<

and G< agree on AP ∪ BP ∪ CP , one can conclude that g1 and g2 agree on Xk. The
map f := EQ : Y → Y ′ induces an isomorphism f∗ : πk+1 (Y )→ πk+1 (Y ′), because EQ
is a homotopy equivalence (see Lemma 2.9). Composition with f yields the maps

f ◦ g1, f ◦ g2 : X → Y ′,

which are homotopic rel Xk, because EQ◦F< is homotopic to EQ◦G< rel AP ∪BP ∪CP
and ρP

(
Xk
)
⊂ AP∪BP∪CP . Therefore, by Lemma 1.17, g1 = F<◦ρP and g2 = G<◦ρP

are homotopic via a rel Xk homotopy. On P<k×{1} ⊂ Xk, the maps g1 and g2 restrict
to the same map

P<k × {1}
ρP |
↪−→ BP

D−→ BQ.

Hence, the homotopy rel Xk between g1 and g2 can be extended to a homotopy rel
Xk ∪BP ⊂ cyl(eP ) between g1∪D : cyl(eP )→ cyl(eQ) and g2∪D : cyl(eP )→ cyl(eQ).
(If J : X × I → Y denotes the rel Xk homotopy between g1 and g2, then the desired
homotopy rel Xk ∪BP between g1∪D and g2∪D is at t ∈ I induced by the morphism

P<k × I P<k × {1} BP

cyl(eQ) BQ BQ

D◦ρP |

incl

ρP |

D

==

incl

Jt

of 3-diagrams.) Since g1∪D = F<, g2∪D = G< and Xk∪BP = AP ∪BP ∪CP , we can
conclude that F<, G< : (cyl (eP ) , AP , BP ) → (cyl (eQ) , AQ, BQ) are equal in HoCyl.

Let us now construct the desired functor Tk : Cyl (k) → HoCyl. Given an object P
in Cyl (k), the first property requires the definition

Tk (P ) := (cyl (eP ) , AP , BP ) .

Given a morphism F : P → Q inCyl (k), the above construction of F< and Proposition
2.13 yield a well-defined morphism in HoCyl:

Tk (F ) := [F<] : Tk (P )→ Tk (Q) .

The second property is also satisfied, because F< agrees with F on BP .

2.14 Proposition. Tk is a covariant functor with the desired properties.
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Proof. If F : P → P is an identity morphism, then F< can also be chosen to be the
identity map on cyl(eP ). Thus, Tk (F ) = [F<] is also an identity morphism.
It remains to show that for any two morphisms F : P → Q and G : Q→ R in Cyl (k)
with composition H := G ◦ F , one has

Tk (H) = Tk (G) ◦ Tk (F ) .

By construction of Tk, the morphisms Tk (F ), Tk (G) and Tk (H) in HoCyl can be
represented by maps

F< : (cyl(eP ), AP , BP ) → (cyl(eQ), AQ, BQ),

G< : (cyl(eQ), AQ, BQ) → (cyl(eR), AR, BR),

H< : (cyl(eP ), AP , BP ) → (cyl(eR), AR, BR),

such that there are homotopies

α : EQ ◦ F< ' F ◦ EP rel AP ∪BP ∪ CP ,
β : ER ◦G< ' G ◦ EQ rel AQ ∪BQ ∪ CQ,
γ : ER ◦H< ' H ◦ EP rel AP ∪BP ∪ CP .

We have to show that [H<] = [G< ◦ F<] in HoCyl. The first two homotopies α and β
imply that ER ◦G< ◦F< is homotopic to H ◦EP rel AP ∪BP ∪CP . Such a homotopy
can be constructed as follows. First, we use β to obtain a rel AP ∪BP ∪CP homotopy
(ER ◦G<) ◦ F< ' (G ◦ EQ) ◦ F<. (Note that F< (AP ∪BP ∪ CP ) ⊂ AQ ∪ BQ ∪ CQ
and β is rel AQ ∪BQ ∪CQ.) Second, we use α to obtain a rel AP ∪BP ∪CP homotopy
G ◦ (EQ ◦ F<) ' G ◦ (F ◦ EP ). Using γ, we find that both ER ◦H< and ER ◦G< ◦F<

are homotopic to H ◦EP rel AP ∪BP ∪CP . Thus, the claim follows from the application
of Proposition 2.13 to H< and G< ◦ F<.

Remark. 2.15 Our construction of the functor ICyl : PCyl (n, p) → HoTop does not
directly use that all links of objects in PCyl (n, p) have a basis of cells for their k-
cycle groups. We only use that Lk−1 ⊂ L<k ⊂ Lk for all links L ∈ λ of objects
(X,Σ,Λ) in PCyl (n, p) (and choose the spatial homology truncations fL : L<k → L to
be inclusions.) This is equivalent to saying that there is a direct sum complement Y
of Zk(L) in Ck(L), such that Y has a basis of k-cells for all links L. Thus, this is more
general than to require that all links of an object in PCyl (n, p) have a basis of k-cells
for their k-cycle group. (In this case, the remaining k-cells form a basis of a direct
sum complement of Zk(L).) However, there is in general no canonical choice for the
subcomplex L<k ⊂ L. But if we require that the k-cycle group of L has a cell-basis,
then Lk−1 ⊂ L<k ⊂ Lk is unique by [1, Proposition 1.3, page 7]. If we work with the
weaker assumptions, then we have to give up this kind of uniqueness. Thus, we have
to record the choice of L<k in the definition of objects in Cyl(k). (The definition of
morphisms in Cyl(k) is based on the knowledge of the truncations L<k.)
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2.4 Dependence on Choices

Assume that X = (X,Σ,Λ) and X ′ = (X,Σ,Λ′) are two objects in P (n, p). Note that
the only difference lies in the chosen CW-structures and spatial homology truncations
for the links of X. Thus, idX : X → X ′ and idX : X ′ → X are isomorphisms in P (n, p),
which are inverse to each other. Assume that X and X ′ are objects of a subcategory
P∗ (n, p) of P (n, p), such that there is a functor

I∗ : P∗ (n, p)→ HoTop,

which agrees on objects with the assignment I. If idX : X → X ′ and idX : X ′ → X
are morphisms in P∗ (n, p), then X and X ′ are isomorphic objects in P∗ (n, p). Thus,
I∗ (X ) and I∗ (X ′) are isomorphic objects in HoTop. This means that the choices of
CW-structures and homology truncations for the links of X, which complete (X,Σ, λ)
to the objects X and X ′ in P∗ (n, p), result in homotopy equivalent intersection spaces
of X. If all completions of (X,Σ, λ) to objects in P (n, p) would be objects in P∗ (n, p)
and if we knew that for all completions X and X ′ of (X,Σ, λ) to objects in P (n, p),
idX : X → X ′ and idX : X ′ → X were morphisms in P∗ (n, p), then we could conclude
that the homotopy type of the intersection space of X was independent of the choices
involved in its construction.

Example. 2.16 Recall that the interleaf category ICW is the full subcategory of
CW1, whose objects have finitely generated even-dimensional homology and vanishing
odd-dimensional homology for any coefficient group (see [1, Definition 1.62, page 71]).
Let PICW (n, p) be the subcategory of P (n, p), which consists of the following objects
and morphisms:
• Objects (X,Σ,Λ) are objects in P (n, p), such that all links L ∈ λ are objects in
ICW and all homology truncations L<k are simply connected. (Hence, the maps
fL : L<k → L satisfy the properties (T1)-(T3) of [1, page 132]. By [1, Lemma
2.25, page 132], the truncations L<k are also objects in ICW.)
• The set of morphisms from an object (X,Σ,Λ) to an object (X ′,Σ′,Λ′) inPICW (n, p)

consists of idX , if X = X ′ and Σ = Σ′, and is else empty.
Using the proof of [1, Theorem 2.26, page 132], one can define a functor

IICW : PICW (n, p)→ HoTop,

which agrees on objects with the assignment I : ObP (n, p) → ObHoTop. For
every object (X,Σ,Λ) in PICW (n, p), the proof of the theorem yields a reference
model Iref (X,Σ, λ) for the perversity p intersection space of X. The construction of
Iref (X,Σ, λ) uses that all links of X are in the interleaf category, but it does not make
use of the fixed CW-structures and homology truncations of the links. Moreover, the
proof yields a homotopy equivalence I (X,Σ,Λ)→ Iref (X,Σ, λ), because all homology
truncations fL : L<k → L satisfy the properties (T1)-(T3) of [1, page 132]. Now we
proceed as follows. For all objects (X,Σ,Λ) in PICW (n, p), we fix a homotopy equi-
valence h (X,Σ,Λ) : I (X,Σ,Λ) → Iref (X,Σ, λ) and a homotopy inverse h (X,Σ,Λ).
If F = idX : (X,Σ,Λ) → (X,Σ,Λ′) is a morphism in PICW (n, p), then the following
definition yields the desired functor:

IICW (F ) =
[
h (X,Σ,Λ′) ◦ h (X,Σ,Λ)

]
: I (X,Σ,Λ)→ I (X,Σ,Λ′) .
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Example. 2.17 The proof of [1, Theorem 2.26, page 132] shows that for an object
L in the interleaf category and an integer k > 0, any two simply connected spatial
homology truncations of L in degree k are homotopy equivalent. (More precisely, a
homotopy equivalence ε : L → E(L) to a finite CW-complex E (L) with only even-
dimensional cells is used in the the proof. It is then shown that if a map f : L<k → L
satisfies properties (T1)-(T3) of [1, page 132] with respect to k and L, then there is
a homotopy equivalence ẽ : L<k → E (L)k−1.) However, the following example shows
that in general the homotopy type of a spatial homology truncation t<m (K,Y ) of a
simply connected CW-complexK in a dimensionm ≥ 3 does depend on the completion
of K to an object (K,Y ) in CWm⊃∂.
Define the 5-dimensional simply connected CW-complex

K =
(
S3 ∨ S4

)
∪α e5

a ∪β e5
b ,

where the attaching maps are defined by the compositions

α : ∂e5
a = S4 2−→ S4 ↪→ S3 ∨ S4,

β : ∂e5
b = S4 c−→ S4 ∨ S4 γ∨2−−→ S3 ∨ S4,

where c collapses the equator S3 ⊂ S4 to a point and the homotopy class of γ :
S4 → S3 is the generator of π4 (S3) = Z/2. Obviously, ∂5e

5
a = ∂5e

5
b = 2e4 and

Z5 (K) = Z (e5
a − e5

b) ⊂ C5 (K) = Ze5
a ⊕ Ze5

b . Two possible choices for direct sum
complements are given by Ya = Ze5

a and Yb = Ze5
b . This yields two completions of K to

objects (K,Ya) and (K,Yb) in CW5⊃∂. Following the construction of the 5-truncations
t<5 (K,Ya) and t<5 (K,Yb) (see the proof of [1, Proposition 1.6, page 12]), we are free
to choose the cell-bases {η(a)} = {e5

a} for Ya and {η(b)} = {e5
b} for Yb and obtain

K
(a)
<5 = t<5 (K,Ya) =

(
S3 ∨ S4

)
∪α e5

a = S3 ∨
(
S4 ∪2 e

5
a

)
,

K
(b)
<5 = t<5 (K,Yb) =

(
S3 ∨ S4

)
∪β e5

b .

We claim that K(a)
<5 and K

(b)
<5 are not homotopy equivalent. The attaching maps α

and β yield the same boundary maps in the cellular chain complexes, so the homotopy
types ofK(a)

<5 andK(b)
<5 cannot be kept apart by comparing homology groups. SinceK(a)

<5

and K(b)
<5 have the same 4-skeleton, they have identical homotopy groups in dimensions

≤ 3. We consider their homotopy groups in dimension 4. Using the list of elementary
complexes in [4, page 129] and the table of their homotopy groups [4, page 133],
• S4 ∪2 e

5
a is of type 8 with n = 3 and q′ = 1, so π4 (S4 ∪2 e

5
a) = Z/2.

• (S3 ∨ S4) ∪β e5
b is of type 10 with n = 3 and q′ = 1, so π4(K

(b)
<5) = Z/4.

Application of [4, Theorem 4.2, page 131] with r = 2, n = 3 and s = 4 to K(1) = S3

and K(2) = S4 ∪2 e
5
a (note that K(a)

<5 = K(1) ∨K(2) and 1 < s < 2n− 1) finally yields

π4(K
(a)
<5 ) = π4

(
S3
)
⊕ π4

(
S4 ∪2 e

5
a

)
= Z/2⊕ Z/2 6= Z/4 = π4(K

(b)
<5).
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2.5 Induced Maps for Links in a Compression Rigid Category

We assume k ≥ 3 for the cut-off degree. For every object
(
P, YP , P , qP

)
in CW0

k⊃∂ (see
Definition 1.16) we fix a representative

eP : P<k = t0<k
(
P, YP , P , qP

)
−→ t0<∞

(
P, YP , P , qP

)
= P

of the homotopy class emb0
k

(
P, YP , P , qP

)
in HoCWk−1. (emb0

k : t0<k → t0<∞ is the
natural transformation between the covariant assignment t0<k : CW0

k⊃∂ → HoCWk−1

and the natural projection functor t0<∞ : CW0
k⊃∂ → HoCWk−1, see Theorem 1.20.)

We fix a k-compression rigid subcategoryC ⊂ CW0
k⊃∂, such that all objects

(
P, YP , P , qP

)
in C satisfy πk+1 (P ) = 0. Based on the choice of C, we will define a category PC (n, p)
(see Definition 2.19) together with a forgetful functor

FC : PC (n, p)→ P (n, p) .

Objects (X,Σ,ΛC) in PC (n, p) come from suitable objects (X,Σ,Λ) in P (n, p) by
completion of all links of X to objects in C. Morphisms in PC (n, p) are morphisms in
P (n, p) which preserve these completions of the links. We will then use the covariant
functor t0<k : C→ HoCWk−1 (C is k-compression rigid!) to construct a functor

IC : PC (n, p)→ HoTop,

such that I (FC (X,Σ,ΛC)) = IC (X,Σ,ΛC) for all objects in PC (n, p). By an analog-
ous argument as in Section 2.3, it suffices to construct a covariant functor

TC : C→ HoCyl,

such that the following conditions are satisfied:
• For every object

(
P, YP , P , qP

)
inC, one has TC

(
P, YP , P , qP

)
= (cyl (eP ) , AP , BP ).

• For every morphism (f, f̃) :
(
P, YP , P , qP

)
→
(
Q, YQ, Q, qQ

)
in C, the following

diagram commutes:

P BP

Q BQ.

f

σP ∼=

TC(f,f̃)|

σQ ∼=

The first condition already defines TC on objects. The assumptions made for the sub-
category C ⊂ CW0

k⊃∂ are used in the construction of TC on morphisms as follows. TC
will be well-defined on morphisms, because πk+1 (P ) = 0 for all objects

(
P, YP , P , qP

)
in C. To show that TC is a functor, we will finally use that t0<n is a functor on C.

Example. 2.18 The following are closed orientable aspherical topological manifolds,
which have a CW-structure, such that all boundary maps vanish:
• the one-sphere S1 = e0 ∪ e1.
• the closed oriented surface of genus g ≥ 1: Xg = e0 ∪ e1

a1
∪ e1

b1
∪ ...∪ e1

ag ∪ e
1
bg
∪ e2.

48



Finite products of these spaces are again closed orientable aspherical topological man-
ifolds, which have a CW-structure, such that all boundary maps vanish. If we choose
C as a subcategory of CW0

k⊃∂, such that for all objects
(
P, YP , P , qP

)
of C the CW-

complex P is of this type, then C is a k-compression rigid category by Proposition
1.18. Moreover, for all objects

(
P, YP , P , qP

)
in C we have πk+1 (P ) = 0, since P is

aspherical.

Definition. 2.19 The category PC (n, p) consists of the following objects and morph-
isms:
• Objects in PC (n, p) are triples (X,Σ,ΛC) with the following property: There ex-

ist an object (X,Σ,Λ) in P (n, p) and for every L ∈ λ a completion
(
L, YL, L, qL

)
to an object in C, such that ΛC is the set of these completions and fL is the fixed
representative eL : L<k → L of the class emb0

k

(
L, YL, L, qL

)
for all L ∈ λ. In

particular, (X,Σ,Λ) is uniquely determined by (X,Σ,ΛC) and will be denoted
by FC (X,Σ,ΛC). This yields an assignment on the object level:

FC : ObPC (n, p)→ ObP (n, p) .

• Morphisms (X,Σ,ΛC) → (X ′,Σ′,Λ′C) in PC (n, p) are pairs (F,Φ), where F :
FC (X,Σ,ΛC) → FC (X ′,Σ′,Λ′C) is a morphism in P (n, p) and Φ is a set of
completions

(fL, f̃L) :
(
L, YL, L, qL

)
−→ (L′L, YL′L , L

′
L, qL′L)

of the restrictions fL := F | : L→ L′L to morphisms in C. The composition with a
second morphism (F ′,Φ′) : (X ′,Σ′,Λ′C) → (X ′′,Σ′′,Λ′′C) is given by (F ′ ◦ F,Φ′′),
where Φ′′ is the set of all compositions (f ′L′L

◦ fL, f̃ ′L′L ◦ f̃L) in C. The projection
to the first component FC (F,Φ) = F yields a forgetful functor

FC : PC (n, p)→ P (n, p) .

Let (f, f̃) :
(
P, YP , P , qP

)
→
(
Q, YQ, Q, qQ

)
be a morphism in C. Choose a repres-

entative f<k : P<k → Q<k of the rel (k − 1)-skeleton homotopy class t0<k(f, f̃). As
emb0

k : t0<k → t0<∞ is a natural transformation, the following diagram commutes up to
homotopy rel (k − 1)-skeleton:

P<k P

Q<k Q.

f<k

eP

f

eQ

Since eP and eQ restrict to idPk−1 and idQk−1 on (k − 1)-skeletons, f<k agrees with
the cellular map fk−1 on P k−1. Hence, f<k is cellular. (The CW-complexes P<k and
Q<k are k-dimensional.) Let H : P<k × [1/2, 1]→ Q be a rel P k−1 homotopy between
H1/2 = eQ ◦ f<k and H1 = f ◦ eP . Let

F< : (cyl (eP ) , AP , BP )→ (cyl (eQ) , AQ, BQ)

be the map that is induced by the following morphism of 3-diagrams of spaces:
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P<k × [0, 1/2] P<k P ∪eP P<k × [1/2, 1]

Q<k × I Q<k Q

at 1/2

f<k×(t7→2t) f<k

at 1 eQ

at 1/2

f∪ePH

(Here the space P ∪eP P<k× [1/2, 1] is the realization of P<k× [1/2, 1]
at 1←−−↩ P<k

eP−→ P .)
Now define the following morphism in HoCyl:

TC(f, f̃) = [F<] .

2.20 Proposition. The construction of TC(f, f̃) is independent of all choices (namely
the choice of the representative f<k of t0<k(f, f̃) and the choice of the homotopy H).
Moreover, TC : C→ HoCyl is a functor.

Proof. Given a morphism (f, f̃) :
(
P, YP , P , qP

)
→
(
Q, YQ, Q, qQ

)
in C, we show first

that TC(f, f̃) does not depend on the choices of f<k and H. Suppose that f ′<k is
a second representative of the rel (k − 1)-skeleton homotopy class t0<k(f, f̃) and that
H ′ : P<k × [1/2, 1] → Q is a rel P k−1 homotopy between H ′1/2 = eQ ◦ f ′<k and H ′1 =

f ◦ eP = H1. Then the construction above yields a map F<′ : (cyl (eP ) , AP , BP ) →
(cyl (eQ) , AQ, BQ) and one has to show that [F<] =

[
F<′

]
in HoCyl.

As [f<k] = t0<k(f, f̃) = [f ′<k] inHoCWk−1, there exists a rel (k − 1)-skeleton homotopy
E : P<k × [0, 1/2]→ Q<k between E0 = f ′<k and E1/2 = f<k. The rel P k−1 homotopies
eQ ◦E : P<k× [0, 1/2]→ Q and H : P<k× [1/2, 1]→ Q satisfy (eQ ◦ E)1/2 = eQ ◦f<k =
H1/2. Therefore, one can fix a homotopy

L : (P<k × [1/2, 1])× I −→ Q

between L0 = H and the “concatenation” L1 = (eQ ◦ E)∗H. (L1 is a rel P k−1 homotopy
between (L1)1/2 = (eQ ◦ E)0 = eQ ◦ f ′<k and (L1)1 = H1 = f ◦ eP .) Explicitly, we set

Ls (x, t) =

{
(eQ ◦ E)2t− 1

2
− s

2
(x) , for 1/2 ≤ t ≤ s/4 + 1/2,

H 2t−s
2−s

(x) , for s/4 + 1/2 ≤ t ≤ 1.

Let M : cyl (eP )× I → cyl (eQ) be the homotopy which is given for every s ∈ I by the
map that is induced by the following morphism of 3-diagrams of spaces:

P<k × [0, 1/2] P<k P ∪eP P<k × [1/2, 1]

Q<k × I Q<k Q

at 1/2

E 1−s
2
×(t 7→2t) E 1−s

2

at 1 eQ

at 1/2

f∪eP Ls
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The map f ∪eP Ls is well-defined, because (Ls)1 = H1 = f ◦ eP . The right square
commutes, because (Ls)1/2 = (eQ ◦ E) 1−s

2
= eQ ◦E 1−s

2
. The homotopy M is rel BP and

satisfies Ms (AP ) ⊂ AQ and Ms (BP ) ⊂ BQ for every s ∈ I. Therefore, [F<] = [M0] =
[M1] in HoCyl. (Note that M0 = F<, because L0 = H and E1/2 = f<k.)
Now, we apply [1, Lemma 1.43, page 53] to the maps L1, H

′ : P<k × [1/2, 1]→ Q. The
CW-complex P<k × [1/2, 1] is of dimension (k + 1). The CW-complex Q is (k + 1)-
simple because of the condition πk+1 (Q) = 0. Moreover, L1 and H ′ agree on the
k-skeleton (P<k × [1/2, 1])k = P k−1 × [1/2, 1] ∪ P<k × {1/2} ∪ P<k × {1}, because
H ′1/2 = eQ ◦ f ′<k = (L1)1/2 and H ′1 = H1 = (L1)1 and for every t ∈ [1/2, 1] one has
H ′t|Pk−1 = H ′1|Pk−1 = (L1)1 |Pk−1 = (L1)t |Pk−1 (the homotopies H ′ and L1 are rel P k−1).
The obstruction cocycle

ω (L1, H
′) ∈ Ck+2 ((P<k × [1/2, 1])× I; πk+1 (Q))

vanishes, as πk+1 (Q) = 0. Consequently, there exists a rel (P<k × [1/2, 1])k homotopy

N : (P<k × [1/2, 1])× I → Q, N0 = L1, N1 = H ′.

Let M ′ : cyl (eP )× I → cyl (eQ) be the homotopy which is given for each s ∈ I by the
map that is induced by the following morphism of 3-diagrams of spaces:

P<k × [0, 1/2] P<k P ∪eP P<k × [1/2, 1]

Q<k × I Q<k Q

at 1/2

f ′<k×(t7→2t) f ′<k

at 1 eQ

at 1/2

f∪ePNs

The map f ∪eP Ns is well-defined, because N is rel P<k × {1} ⊂ (P<k × [1/2, 1])k and
thus Ns|P<k×{1} = N0|P<k×{1} = (L1)1 = f ◦ eP for every s ∈ I. The right square
commutes, because N is rel P<k × {1/2} ⊂ (P<k × [1/2, 1])k and hence Ns|P<k×{1/2} =
N0|P<k×{1/2} = (L1)1/2 = eQ ◦ f ′<k for every s ∈ I. Note that M ′

0 = M1 and M ′
1 = F<′ .

Moreover, M ′
s (AP ) ⊂ AQ and M ′

s (BP ) ⊂ BQ for every s ∈ I and M ′ is rel BP . There-
fore, [F<] = [M1] = [M ′

0] = [M ′
1] =

[
F<′

]
in HoCyl.

It remains to show that TC is a functor. For an identity morphism id(P,YP ,P ,qP ) =

(idP , idP̃k) in C, one has t0<k(idP , idP̃k) =
[
idP<k

]
by definition of τ 0

<k on identity
morphisms. Thus, one can choose idP<k as a representative of t0<k(idP , idP̃k) and
H = eP × idI . The resulting map F< : cyl (eP )→ cyl (eP ) is homotopic rel AP ∪BP to
idcyl(eP ). Thus, TC(idP , idP̃k) = [id(cyl(eP ),AP ,BP )] in HoCyl. Now suppose that (f, f̃) :(
P, YP , P , qP

)
→
(
Q, YQ, Q, qQ

)
and (g, g̃) :

(
Q, YQ, Q, qQ

)
→
(
R, YR, R, qR

)
are morph-

isms in C with composition (h, h̃) = (g ◦ f, g̃ ◦ f̃) :
(
P, YP , P , qP

)
→
(
R, YR, R, qR

)
. We

choose representatives f<k and g<k of the homotopy classes t0<k(f, f̃) and t0<k (g, g̃) in
HoCWk−1. By Theorem 1.20, the assignment t0<k : CW0

k⊃∂ → HoCWk−1 restricts to
a functor on the compression rigid subcategory C. Therefore,

t0<k(h, h̃) = t0<k(g ◦ f, g̃ ◦ f̃) = t0<k(g, g̃) ◦ t0<k(f, f̃) = [g<k] ◦ [f<k] = [g<k ◦ f<k]
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in HoCWk−1. This shows that g<k ◦ f<k represents the rel (k − 1)-skeleton homotopy
class t0<k(h, h̃). If we choose a rel P k−1 homotopy eQ ◦ f<k ' f ◦ eP and a rel Qk−1

homotopy eR ◦ g<k ' g ◦ eQ, then the construction above yields maps F< : cyl (eP )→
cyl (eQ) and G< : cyl (eQ)→ cyl (eR). We define the composition

D : P<k × [1/4, 1]
α−→ cyl (eP )

G<◦F<−−−−→ cyl (eR) .

The map α is given by the composition

P<k × [1/4, 1] ↪→ P
⊔

P<k × I
πP−→ P ∪eP P<k × I = cyl (eP ) .

In fact, we have defined a map D : P<k × [1/4, 1]→ R (⊂ cyl (eR)), because

(G<◦F<)(P ∪eP P<k× [1/4, 1]) ⊂ G<(Q∪eQQ<k× [1/2, 1]) ⊂ R (⊂ cyl (eR)).

We observe that D : P<k × [1/4, 1] → R is a homotopy rel P k−1 between D1/4 =
eR ◦ (g<k ◦ f<k) and D1 = g ◦ f ◦ eP = h ◦ eP . (To see that D is rel P k−1, we use that
eP restricts to idPk−1 on (k − 1)-skeletons. Thus, we have P k−1 × I ⊂ cyl(eP ) (and
analogous for Q). Since (f<k)

k−1 = fk−1, the map F< : cyl (eP )→ cyl (eQ) restricts to

P k−1 × I → Qk−1 × I, (x, t) 7→

{
(f(x), 2t), for 0 ≤ t ≤ 1/2,

(f(x), 1), for 1/2 < t ≤ 1

(and analogous for G<). Thus, D(x, t) = (g ◦ f)(x) for (x, t) ∈ P k−1 × [1/4, 1].)
Let K : cyl (eP )× I → cyl (eQ) be the homotopy which is given for each s ∈ I by the
map that is induced by the following morphism of 3-diagrams of spaces:

P<k × [0, s+1
4

] P<k P ∪eP P<k × [ s+1
4
, 1]

R<k × I R<k R.

at s+1
4

(g<k◦f<k)×(t7→ 4
s+1

t) g<k◦f<k

at 1 eR

at s+1
4

h∪eP (D◦βs)

Here, the map βs : P<k × [ s+1
4
, 1] → P<k × [1/4, 1] is defined by βs(x, t) = (x, 3t−s

3−s ).
The map h ∪eP (D ◦ βs) is well-defined, because (D ◦ βs)1 = D1 = h ◦ eP . The right
square commutes, because D1/4 = eR ◦ (g<k ◦ f<k). We have constructed a rel AP ∪BP

homotopy K : cyl (eP ) × I → cyl (eQ) between K0 = G< ◦ F< and H< := K1. Note
that TC(h, h̃) = [H<] by construction of TC. Therefore, in HoCyl, we get

TC(h, h̃) = [H<]
K
= [G< ◦ F<] = [G<] ◦ [F<] = TC(g, g̃) ◦ TC(f, f̃).

Remark. 2.21 The part of the previous proof that shows the independence of TC
of all choices does not make use of the assumption that C is a compression-rigid
category. Therefore, the only condition that is needed to show that IC is well-defined
on morphisms is the condition that πk+1 of the links vanishes. In this case, one still
gets covariant assignments TC and IC.
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2.6 Induced Morphisms between Reflective Diagrams

Let F : (X,Σ,Λ) → (X ′,Σ′,Λ′) be a morphism in P(n, p). On the one hand, we
have seen in the previous sections that if F lies in a suitable subcategory P∗(n, p)
of P(n, p), then we can induce a well-defined homotopy class of continuous maps
I∗(F ) : IpX → IpX ′ in HoTop. This class will furthermore induce homomorphisms
H̃∗(I

pX)→ H̃∗(I
pX ′) between reduced integral homology groups. On the other hand,

the intersection homology of the n-dimensional compact topological pseudomanifold X
with only isolated singularities is given by (see Remark 2.23)

IHp
r (X) =


Hr(M), r < k,

im(α), r = k,

Hr(M,∂M), r > k,

where α : Hk(M) → Hk(M,∂M) is induced by the inclusion M ↪→ (M,∂M). Since
F : X → X ′ is a continuous map which satisfies F (M) ⊂ M ′ and F (∂M) ⊂ ∂M ′,
F induces homomorphisms IHp

r (X) → IHp
r (X ′) for all r. (If r = k, then we can

restrict the induced homomorphism Hk(M,∂M)→ Hk(M
′, ∂M ′) to a homomorphism

im(α) → im(α′).) What can be said about the relation between the induced ho-
momorphisms on reduced homology groups of intersection spaces and on intersection
homology groups?

Following the proof of [1, Theorem 2.12, page 114ff], we assign to every object (X,Σ,Λ)
in P(n, p) a k-reflective diagram (see [1, Definition 2.1, page 107f]) written as a braid

H̃k+1(IpX) Hk(∂M) H̃k(IpX) Hk−1(∂M) H̃k−1(IpX)Hk+1(∂M) Hk−2(∂M)

H̃k+1(IpX) IHp
k+1(X) Hk(∂M) Hk−1(∂M) IHp

k−1(X) H̃k−1(IpX)0 0

Hk+1(∂M) 0 Hk(M) Hk(M,∂M) 0 Hk−2(∂M)IHp
k+2(X) IHp

k−2(X)

IHp
k (X)

0 0

α+

=

α

=

0

==

α−

α′− α′+

= =

The thick arrows indicate the k-reflective diagram in its original form. The intersection
homology groups IHp

∗ (X) are calculated as above. We will show that (under a cer-
tain factorization condition for I∗ : P∗(n, p)→ HoTop) morphisms in P∗(n, p) induce
morphisms (see [1, Definition 2.2, page 109]) between the associated k-reflective dia-
grams. The latter morphisms will then assemble the induced homomorphisms of our
interest (see Proposition 2.22). In the proof, we will start with an induced morphism
between braid diagrams. Among the induced homomorphisms between correspond-
ing homology groups we will analyze those which are required to obtain a morphism
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between k-reflective diagrams.

Some of the functors I∗ of Chapter 2 factorize over HoCylrefl (see Definition 2.11):

P∗(n, p) HoTop

HoCylrefl (∗).

I∗

Ĩ∗ coll

Here, Ĩ∗ : P∗(n, p)→ HoCylrefl is a covariant functor, such that
• Ĩ∗(X,Σ,Λ) = (cyl(j ◦ f), cyl(f), (∂M)<k,M) for all objects (X,Σ,Λ) in P∗(n, p).
• Ĩ∗(F )|M = F |M for all morphisms F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) in P∗(n, p).

Moreover, coll : HoCylrefl → HoTop is the covariant functor defined in Section 2.3:
• coll(X,A,B,C) = X/B for all objects (X,A,B,C) in HoCylrefl.
• coll([ϕ]) = [X/B

ϕ−→ X ′/B′] for all morphisms [ϕ] : (X,A,B,C)→ (X ′, A′, B′, C ′).
The factorization (∗) applies to the functors I• and I1 of Section 2.1, to the functor ICyl

of Section 2.3 and to the functors IC of Section 2.5 (use FC in the notation).

2.22 Proposition. Let I∗ : P∗(n, p)→ HoTop be a functor, which factorizes as in (∗).
Then every morphism F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) in P∗(n, p) induces a morphism from
the k-reflective diagram associated to (X,Σ,Λ) to the k-reflective diagram associated
to (X ′,Σ′,Λ′), such that the homomorphisms
• H̃∗(IpX)→ H̃∗(I

pX ′) are induced by I∗(F ) : IpX → IpX ′.
• IHp

∗ (X)→ IHp
∗ (X

′) are induced by F : X → X ′ (as explained above).
• H∗(∂M)→ H∗(∂M

′), Hk(M)→ Hk(M
′), Hk(M,∂M)→ Hk(M

′, ∂M ′)
are induced by the following restrictions of F :
∂M → ∂M ′, M →M ′, (M,∂M)→ (M ′, ∂M ′).

This assignment is obviously functorial.

Proof. Let F : (X,Σ,Λ)→ (X ′,Σ′,Λ′) be a morphism in P∗(n, p). We have

Ĩ∗(X,Σ,Λ) = (cyl(j ◦ f), cyl(f), (∂M)<k,M),

Ĩ∗(X
′,Σ′,Λ′) = (cyl(j′ ◦ f ′), cyl(f ′), (∂M ′)<k,M

′).

The braid diagram of a triple (A,B,C) of spaces with C ⊂ B ⊂ A is given by

Hk+1(A,C) Hk(B) Hk(A,C) Hk−1(B) Hk−1(A,C)Hk+1(B) Hk−2(B)

Hk+1(A) Hk+1(A,B) Hk(B,C) Hk−1(C) Hk−1(A) Hk−1(A,B)Hk+1(C) Hk−2(B,C)

Hk+1(B,C) Hk(C) Hk(A) Hk(A,B) Hk−1(B,C) Hk−2(C)Hk+2(A,B) Hk−2(A)
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(The thick arrows already indicate the construction of the above k-reflective diagram.)
Following the first half of the proof of [1, Theorem 2.12, page 114], the k-reflective
diagrams associated to (X,Σ,Λ) and (X ′,Σ′,Λ′) are constructed from the braids of

(A,B,C) := (cyl(j ◦ f), cyl(f), (∂M)<k),

(A′, B′, C ′) := (cyl(j′ ◦ f ′), cyl(f ′), (∂M ′)<k).

In fact, these braids agree with the braids which are considered in the original proof:
• Hr(f) = Hr(B,C) and Hr(j ◦ f) = Hr(A,C) by definition.
• Hr((∂M)<k) = Hr(C) remains unchanged.
• The following identifications are induced by inclusions:

Hr(M) = Hr(A), Hr(∂M) = Hr(B), and (Hr(j) =)Hr(M,∂M) = Hr(A,B).

(These inclusions are homotopy equivalences, whose homotopy inverses are the
obvious projections.)

We choose a representative of the homotopy class Ĩ∗(F ) in HoCylrefl:

F̃ : (A,B,C,M) −→ (A′, B′, C ′,M).

The map F̃ : (A,B,C) −→ (A′, B′, C ′) of triples induces a well-defined morphism
between braid diagrams. (This is a consequence of naturality of long exact homology
sequences for pairs and triples). We investigate the induced homomorphisms between
objects of the thick subdiagrams:
• Hr(B)→ Hr(B

′) and Hr(A)→ Hr(A
′):

By assumption, we have the following commutative diagrams:

∂M ∂M ′ M M ′

B B′ and A A′.

F̃ |=F |

inclincl

F̃ |

F̃ |=F |

inclincl

F̃

All vertical inclusions are homotopy equivalences. Thus, they induce isomorph-
isms on homology groups. Under their inverses, the induced maps

F̃ |∗ : Hr(B)→ Hr(B
′) and F̃∗ : Hr(A)→ Hr(A

′)

correspond to

F |∗ : Hr(∂M)→ Hr(∂M
′) and F |∗ : Hr(M)→ Hr(M

′).

• Hr(A,B)→ Hr(A
′, B′):

By assumption, we have the following commutative diagram:

(M,∂M) (M ′, ∂M ′)

(A,B) (A′, B′).

F̃ |=F |

inclincl

F̃ |
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By the 5-lemma and the previous item, the vertical inclusions of pairs induce
isomorphisms on homology groups. Under their inverses, the induced map

F̃ |∗ : Hr(A,B)→ Hr(A
′, B′)

corresponds to
F |∗ : Hr(M,∂M)→ Hr(M

′, ∂M ′).

• Hr(A,C) → Hr(A
′, C ′): (Take note of the identification Hr(A,C) = Hr(A) for

r > k and Hr(A,C) = Hr(A,B) for r < k!)
We have the following commutative diagram in HoTop:

(A,C) (A′, C ′)

(I(X,Σ,Λ), ∗) (I(X ′,Σ′,Λ′), ∗′).

[F̃ ]

[proj][proj]

coll([F̃ ])

The vertical quotient maps induce isomorphisms on homology groups (see [2,
Proposition 2.22, page 124]). Under these isomorphisms, the induced map

F̃∗ : Hr(A,C)→ Hr(A
′, C ′)

corresponds to

coll([F̃ ])∗ = coll(̃I∗(F ))∗
(∗)
= (I∗(F ))∗ : H̃r(I

pX)→ H̃r(I
pX ′).

• Finally, in dimension k, the commutative diagram

Hk(M) Hk(M,∂M)

Hk(M
′) Hk(M

′, ∂M ′)

α

F |∗F |∗

α′

factorizes as

Hk(M) im(α) Hk(M,∂M)

Hk(M
′) im(α′) Hk(M

′, ∂M ′),

α|

(F |∗)|

incl

F |∗F |∗

α′| incl

where im(α) = IHp
k(X) and im(α′) = IHp

k(X ′).

Remark. 2.23 (intersection homology and placid maps) Let (X,Σ,Λ) be an object in
P(n, p). We assume that X is equipped with the stratification

X = Xn ⊃ Xn−1 = ... = X0 = σ ⊃ X−1 = ∅,
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where σ ⊂ X denotes the (finite) set of singular points of X. (Thus, the strata of X
are given by X−σ and the points of σ.) In [8, Proposition 4.4.1, page 55], it is deduced
from the definition of intersection homology that

IHp
r (X) =


Hr(X − σ), r < k,

im(β), r = k,

Hr(X), r > k,

where β : Hk(X − σ)→ Hk(X) is induced by the inclusion X − σ ↪→ X.
In [8, Definition 4.8.1, page 61], a continuous map F : X → X ′ between topologically
stratified spaces is called placid, if for every stratum T of X ′ the preimage F−1(T ) is
a union of strata of X, and codimF−1(T ) ≥ codimT .
If (X,Σ,Λ) and (X ′,Σ′,Λ′) are objects in P(n, p), then a continuous map F : X → X ′

is placid if and only if F−1(σ′) ⊂ σ. (If F is placid, then we have codimF−1(x′) ≥
codimx′ = n for all x′ ∈ σ′. Thus, F−1(x′) must be a union of strata ofX with codimen-
sion ≥ n. These are points in σ. Conversely, assume that F−1(σ′) ⊂ σ. Then, the claim
is clear for all x′ ∈ σ′. Since codim(X ′− σ′) = 0, it remains to show that F−1(X ′− σ′)
is a union of strata of X. This follows from X − σ ⊂ X − F−1(σ′) = F−1(X ′ − σ′).)
The condition F−1(σ′) ⊂ σ is equivalent to F (X − σ) ⊂ X ′ − σ′.
Now, let us assume that F : X → X ′ is placid, i.e. F (X − σ) ⊂ X ′ − σ′. Then, F
induces homomorphisms IHp

r (X)→ IHp
r (X ′) for all r. (If r = k, then we can restrict

the induced homomorphism Hk(X)→ Hk(X
′) to a homomorphism im(β)→ im(β′).)

How is this related to the intersection homology groups which were used in the consid-
erations above? Using excision and homotopy invariance, one can show that we have
in fact used the same intersection homology groups in Proposition 2.22 (see [8, Remark
4.4.2, page 56] and compare to the diagram below). Now, we will show that all identi-
fications are compatible with the homomorphisms induced by F between intersection
homology groups, if we assume that F (C) ⊂ C ′, where C :=

⊔
L∈λ cone(L) ⊂ X.

Let F : (X,Σ,Λ) → (X ′,Σ′,Λ′) be a morphism in P(n, p), such that F is placid and
satisfies F (C) ⊂ C ′. Thus, the continuous map F : X → X ′ satisfies:

F (M) ⊂M ′, F (∂M) ⊂ ∂M ′, F (C) ⊂ C ′, F (X − σ) ⊂ X ′ − σ′.
All claimed compatibilities will result from the following commutative diagram:

Hr(M) Hr(X − σ) Hr(X) Hr(X,C) Hr(M,∂M)

Hr(M
′) Hr(X

′ − σ′) Hr(X
′) Hr(X

′, C ′) Hr(M
′, ∂M ′).

∼= ϕ1

F |∗

ϕ2
∼= ϕ3

F∗F∗F |∗

∼= ϕ′1 ϕ′2
∼= ϕ′3

∼= ϕ4

F |∗

∼= ϕ′4

All horizontal maps are induced by inclusions. ϕ1 is an isomorphism by homotopy
invariance. ϕ3 is an isomorphism for r > 0. (The homology groups of C in the
long exact homology sequence of the pair (X,C) vanish in positive degrees.) ϕ4 is an
isomorphism by excision and homotopy invariance. (Excise open cone neighbourhoods
of the singular points.) If r = k, then ϕ2 = β and the composition of the first line is α.
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