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Zusammenfassung
Die Theorie der spektralen Netze wurde von D. Gaiotto, G.W. Moore and A. Neitzke [6–9]
während ihrer Forschung über supersymmetrische Feldtheorie in der Physik entwickelt.
Diese Konstruktion ist aber auch vom großen Interesse für die Differentialgeometrie,
insbesondere für die Theorie der geometrischen Strukturen auf Flächen.
In dieser Masterarbeit wird die Konstruktion von Darstellungen der Fundamentalgruppe
einer Fläche in eine Matrix-Lie-Gruppe mit Hilfe der Nicht-Abelisierungsabbildung
spektraler Netze diskutiert. Insbesondere wird der Fall der kleinen spektralen Netze
untersucht. Kleine spektrale Netze von Rang 2 und 3 werden besonders ausführlich
studiert. Es wird der Zusammenhang zwischen spektralen Netzen und projektiver
Geometrie analysiert. Wir zeigen, dass ein flacher Zusammenhang und eine Triangulation
der Fläche uns die Familie der projektiven Invarianten liefern, und zwar Doppelverhältnisse
für spektrale Netze von Rang 2 und Fock-Goncharov Koordinaten [4] für spektrale
Netze von Rang 3. Wir untersuchen, inwiefern diese projektiven Invarianten den
flachen Zusammenhang auf der Fläche bestimmen, und zeigen, dass spektrale Netze
Koordinaten auf der Charaktervarietät der Fundamentalgruppe einer Fläche mit Werten
in einer Matrix-Lie-Gruppe liefern. Insbesondere stimmen diese Koordinaten mit
Doppelverhältnissen im Fall der spektralen Netze von Rang 2 und mit Fock-Goncharov
Koordinaten in einigen Fällen von spektralen Netzen von Rang 3 überein. Zum Schluss
führen wir andere Koordinaten ein, die ähnlich zu Fock-Goncharov Koordinaten sind, aber
natürlicher in unserem Fall sind, weil sie mit den Homotopiekonstanten von geschlossenen
Kurven auf der Fläche übereinstimmen. Wir untersuchen auch, wie sich diese Koordinaten
ändern, wenn wir eine andere Triangulation der Fläche wählen.

Abstract
The theory of spectral networks was developed by D. Gaiotto, G.W. Moore and A. Neitzke
[6–9] during their research of the theory of supersymmetry in physics. But this construction
is also of interest in differential geometry, especially for the theory of geometric structures
on surfaces.
In the present master thesis the construction of representations of the fundamental group
of a surface in a matrix Lie group using the non abelianisation map and spectral networks
is discussed. Especially, the case of small spectral networks is investigated. Small spectral
networks of rank 2 and 3 are discussed in detail and the connection between spectral
networks and projective geometry is analyzed. We show that a flat connection and a
triangulation of the surface define a collection of projective invariants, namely, cross ratios
for spectral networks of rank 2 and Fock-Goncharov coordinates [4] for spectral networks
of rank 3. We explore to what extent these projective invariants define a flat connection
on the surface and show that spectral networks yield coordinates on the character variety
of the fundamental group of a surface with values in a matrix Lie group. In particular,
these coordinates correspond to cross ratios in the case of spectral networks of rank 2
and to Fock-Goncharov coordinates in some cases of small spectral networks of rank 3.
Finally, we define other coordinates, which are similar to Fock-Goncharov coordinates, but
are more natural in our case because they agree with homotopy constants of closed curves
on the surface. We also investigate how these coordinates change if we choose another
triangulation of the surface.
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1 Introduction

1.1 Basic notions

We consider a closed orientable surface S̄ of genus g with a finite collection
P = {s1, ..., sn}, n ∈ N of marked points. We also consider the surface S = S̄ \ P
and assume that the Euler characteristic of S is negative. We name the points in
P the punctures of S. For each point p ∈ S and Q ⊆ P there is the natural group
homomorphism rQ,p : π1(S, p)→ π1(S ∪Q, p) of fundamental groups of S and S ∪Q
with respect to the point p ∈ S. This homomorphism is surjective, because each
curve on S̄ can be homotopically deformed to the curve which does not contain any
punctures.

Definition 1.1. The closed curve γ : [0, 1] → S with γ(0) = γ(1) = p is called
peripheral if there exist s ∈ P such that r{s},p([γ]) is the identity of π1(S ∪ {s}, p).

Remark 1.2. Obviously, the property "to be peripheral" for a closed curve does not
depend on the choice of base point and is an invariant by free homotopy in S.

Further, we consider a Lie group G which is one of the following groups GL(k,K),
SL(k,K) or PGL(k,K) where K is the field R or C, k ∈ N. We denote by
Hom∗(π1(S), G) the space of all completely reducible representations from the
fundamental group π1(S) of the surface S into the Lie group G. The Lie group
G acts on Hom∗(π1(S), G) by conjugation.

Definition 1.3. The quotient space

X(π1(S), G) := Hom∗(π1(S), G)/G

is called character variety.

Remark 1.4. We can define a topology on X(π1(S), G) in a following way. We
choose p ∈ S and some generators [γ1], ..., [γl] of π1(S, p). We consider a following
map:

Hom∗(π1(S, p), G) → Gl

ρ 7→ (ρ([γ1], ..., ρ([γl]))
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This map is injective, and we can use this map to define the topology on
Hom∗(π1(S, p), G) as a subspace topology
The topology on X(π1(S, p), G) is defined as the quotient topology by the action of

G. One can prove that this topology does not depend on the choices of p ∈ S and of
generators [γ1], ..., [γl]. So we get a topology on X(π1(S), G).

We want to study X(π1(S), G) using the theory of flat connections on vector
bundles.
We consider a vector bundle π : E → S over the surface S whose fiber Ep for each

p ∈ S is isomorphic to Ck with the isomorphism θp : Ep → Ck. Further, we will also
write only E for a vector bundle if the surface S and the projection map π is fixed
and if this does not cause confusion.
We consider a connection ∇ on the vector bundle E. We denote the vector bundle

E with a connection ∇ by (E,∇).

Definition 1.5. A flat bundle is a vector bundle with a flat connection.

For the curve γ : [0, 1] → S we denote Tγ : Eγ(0) → Eγ(1) the parallel transport
operator along γ.

Definition 1.6. A subbundle E ′ over S of the vector bundle E over S is called
parallel if for each x ∈ E ′ and for each curve γ : [0, 1]→ S such that γ(0) = π(x)

Tγ(x) ∈ E ′.

Definition 1.7. A vector bundle E over S is called completely reducible if for
each parallel subbundle E ′ of E there is a parallel subbundle E ′′ over S such that
E = E ′ ⊕ E ′′.

Proposition 1.8. Let S a smooth manifold. There is a bijection Ψ between the
set Hom(π1(S), GL(k,C))/GL(k,C) of all representations from the fundamental
group π1(S) of S into GL(k,C) modulo conjugation by GL(k,C) and the set of
all isomorphism classes of flat vector bundles over S of rank k.
The restriction of Ψ on the character variety X(π1(S), GL(k,C)) yield the

bijection between X(π1(S), GL(k,C)) and the set of all isomorphic classes of flat
completely reducible vector bundles over S of rank k.

P r o o f . First, we fix the base point p ∈ S. For each loop γ : [0, 1] → S,
γ(0) = γ(1) = p the parallel transport Tγ is an element of GL(k,C). Because the
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connection ∇ is flat, Tγ only depends on the homotopy class [γ] ∈ π1(S, p). So we
can define a representation ρp,∇ : π1(S, p)→ GL(k,C) as

ρp,∇([γ]) = θp ◦ Tγ ◦ θ−1
p

for all [γ] ∈ π1(S).
If we consider another base point p′, then the representation changes by

conjugation with θp′Tδθ
−1
p ∈ GL(k,C), where δ : [0, 1] → S a curve such that

δ(0) = p, δ(1) = p′.
If we consider another vector bundle π̃ : Ẽ → S bundle, which is isomorphic to

E with an bundle isomorphism L : E → E ′, then the representation changes by
conjugation with θ̃pLpθ−1

p ∈ GL(k,C), where θ̃p : Ẽp → Ck a linear isomorphism.
If we consider another linear isomorphism θ′p : Ep → Ck, then the representation

changes by conjugation with θ′pθ−1
p ∈ GL(k,C).

So we have a well-defined map which take an isomorphic class of flat vector bundle
over S and give us the element of Hom(π1(S), GL(k,C))/GL(k,C).
In particular, let E be a completely reducible. Each invariant subspace V ⊆ Ck of

ρp,∇ generate by parallel transport along all curves on S the parallel subbundle E ′

of E. Therefore, there is a subbundle E ′′ of E such that E = E ′⊕E ′′. In particular,
Ep = E ′p ⊕ E ′′p . Therefore, θp(E ′′p ) is complementary invariant spaces of ρp,∇ for V .
So is ρp,∇ completely reducible representation.
If E is not completely reducible, then we have a parallel subbundle E ′

of E, which does not have a complementary parallel subbundle. If the
corresponding representation ρp,∇ is completely reducible, then the set θp(E ′p) have a
complementary invariant subspace V ⊆ Ck. So we can by E ′′p = θ−1

p (V ) the parallel
subbundle of E generate, which is obviously a parallel complement to E ′, what is
impossible. Therefore, ρp,∇ is also not completely reducible.
We can do a converse. If a representation ρ : π1(S)→ GL(k,C) is given then we

can construct a vector bundle E over S and a flat connection ∇ such that ρ = ρp,∇

for some p ∈ S.
We consider the universal covering S̃ of S with the projection map pr : S̃ → S

and consider the trivial vector bundle S̃×Ck with the standard product connection,
which is flat. The fundamental group π1(S, p) acts on S̃ by deck transformations
D[γ] : S̃ → S̃ for [γ] ∈ π1(S, p). It acts also on the fiber Ck by representation ρ. We
consider the following diagonal action:

∆: π1(S, p) → S̃ × Ck

[γ] 7→
(
(q̃, v) 7→ (D[γ](q̃), ρ([γ−1])v)

)

8



Further, we take the quotient S̃×Ck/∆. Because the action of π1(S, p) on S̃×Ck

is diagonal and S is homeomorphic to S̃/π1(S, p), the quotient is a vector bundle
over S. Because the action of π1(S, p) on Ck is linear and the connection on S̃ ×Ck

is flat, the push forward connection on S is flat.
If we consider the representation ρg = gρg−1 for some g ∈ GL(k,C), then we get

the bundle isomorphism

L : S̃ × Ck/∆→ S̃ × Ck/∆d

[q, v] 7→ [q, g(v)]

where ∆g is the corresponding to ρg diagonal action. It is easy to see that this is a
well-defined bundle isomorphism.
So we get the map which takes the isomorphic class of the representation

ρ : π1(S)→ GL(k,C) and gives us the isomorphic class of flat vector bundles.
Moreover, it is easy to see that for all representations ρ : π1(S, p) → GL(k,C) is

ρp,∇ρ = ρ for all p ∈ S
We have also to show that for each vector bundle with a flat connection (E,∇)

the constructed vector bundle (S̃ × Ck/∆,∇ρp,∇) is isomorphic to (E,∇).
First we define the bundle map L̃ : S̃ × Ck → E. We fix p̃ ∈ pr−1(p). Let

q̃ ∈ S̃, we consider the curve γ̃ : [0, 1] → S̃ such that γ̃(0) = p̃, γ̃(1) = q̃. The
corresponding curve γ = pr ◦ γ̃ joins the points p ∈ S and q = pr(q̃) ∈ S. We define
L̃(q̃, v) = Tγθ

−1
p (v). Because S̃ is simply connected and the connection on E is flat,

for fixed q̃ this construction does not depend on γ̃ and is smooth. Moreover, the
diagram

S̃ × Ck L−→ E

↓π̃ ↓π

S̃
pr−→ S

commute. So we get the well-defined bundle map.
The map L̃ is also ∆-invariant. If we take (q̃, v), (q̃′, v′) ∈ S̃ × Ck such that

(q̃, v) = ∆(q̃′, v′), then there is an element [β] ∈ π1(S, p) and a deck transformation
D such that q̃′ = D(q̃) such that ∆([β]) = (D, ρ([β−1])) for ρ = ρp,∇. Moreover, if
we fix the curves γ̃ and γ̃′, which join p̃ and q̃, resp. q′ an consider the lift β̃ of β
to S̃ with β̃(0) = p and the lift γ̃1 of γ such that γ̃′(0) = β̃(1), then β̃ ∗ γ̃1 ≡ γ̃′,
because D ◦ γ̃ ≡ γ̃1 and S̃ is simply connected.
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Fig. 1.1: Picture in S̃ and projection on S.

So we get

L̃(q̃′, v′) = L̃(γ̃′(1), v′) = L̃(β̃ ∗ γ̃1(1), ρ([β−1])v) = Tβ∗γ ◦ θ−1
p (ρ([β−1])v) =

= Tβ∗γ ◦ θ−1
p ◦ θp ◦ T−1

β ◦ θ
−1
p (v)) = Tβ∗γ ◦ Tβ−1 ◦ θ−1

p (v) = Tγθ
−1
p (v) = L̃(q̃, v)

Therefore, there is the unique well-defined bundle map L : S̃ × Ck/∆ → E such
that L̃ = L ◦ ε, where ε : S̃ × Ck → S̃ × Ck/∆ the natural projection. Because
S̃ ×Ck/∆ and E are vector bundles over the same manifold S and by construction
Lp is a linear isomorphism for each p ∈ S, L is a bundle isomorphism.
So we have a bijection between Hom(π1(S), GL(k,C)/GL(k,C) and the set of all

isomorphic classes of flat vector bundles over S of rank k.
If we have the completely reducible representation ρ, then with this representation

we construct the corresponding flat bundle (E,∇) like above, which gives us the
other representation ρp,∇. This representation is conjugate to ρ and is, therefore,
completely reducible. How is proved above, (E,∇) is also completely reducible.

Definition 1.9. For p ∈ S the representation ρp,∇ in the proof of the proposition
1.8 is called a holonomy representation of π1(S, p).

Remark 1.10. As we have seen in the proof of the proposition 1.8, if we change
the base point p ∈ S, then the representation changes only by conjugation in
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GL(k,C). So the element in Hom(π1(S), GL(k,C))/GL(k,C) only depends on the
flat connection.

Remark 1.11. In case k = 1 GL(1,C) ∼= C∗ is an abelian group, therefore,
the representation sends all commutators in π1(S) to identity, so we have a
representation of the first homology group H1(S,Z) into C∗:

X(π1(S), GL(1,C)) = Hom(H1(S,Z),C∗).

H1(S,Z) is the free Z-module of dimension l = 2g + n − 1, where g is the genus
of S, n is the number of punctures. So we can take a basis (e1, ..., el) of H1(S,Z)

over Z. Then each representation ρ ∈ Hom(H1(S,Z),C∗) is well-defined by the tuple
(ρ(e1), ..., ρ(el)) ∈ (C∗)l. The map ρ 7→ (ρ(e1), ..., ρ(el)) is bijective and it gives us
an exact description of X(π1(S), GL(1,C)):

X(π1(S), GL(1,C)) ∼= (C∗)l

To describe the general case X(π1(S), GL(k,C)), we want to use the abelian case.
To do this, we will find another surface Σ and a map

X(π1(Σ), GL(1,C))→ X(π1(S), GL(k,C)) (1.1)

Definition 1.12. Each map, which satisfies (1.1), is called a non-abelianisation
map.

Remark 1.13. In this work we want to describe some non-abelianisation maps
that are finite-to-one and have an open dense image. This will give coordinates on
character varieties.

1.2 Decorated character variety

In this section we want to construct an extension of the character variety which we
will use to define coordinates on the character variety.
First, we consider a representation ρ ∈ Hom∗(π1(S), G), where G is one of Lie

groups GL(k,K), SL(k,K) or PGL(k,K), which satisfies the following conditions:
1. For each peripheral element g ∈ π1(S) the matrix ρ(g) has an invariant

flag D(g) = (V1(g), ..., Vk(g)), where dim(Vi(g)) = i, i ∈ {1, ..., k}. For one
representation there can be a lot of choices of flags for each g. We can fix this
choice by fixing of the following map:

D : {g ∈ π1(S) | g is peripheral} → {F | F is a flag of Kk}
g 7→ D(g) = (V1(g), ..., Vk(g))

.
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The map D must satisfy the following properties:
a) If g1, g2 ∈ π1(S) are two peripheral elements conjugated by h ∈ π1(S),

hg1h
−1 = g2, then

ρ(h)(D(g1)) = D(g2)

b) For every k ∈ Z \ {0} and for every peripheral element g ∈ π1(S)

D(g) = D(gk)

By these properties, for every puncture, one have to choose only one flag, then
the flags associated to the other peripheral elements going to the same punctures
are determined. We call this map D decoration of ρ.
2. For each peripheral element g ∈ π1(S) the matrix ρ(g) is conjugated to a

matrix of the following form:

diag(Jλ1,m1 , ..., Jλr,mr),

where all mi ∈ N, m1 + ...+mr = k, Jλi,mi is a Jordan block mi×mi corresponding
to the eigenvalue λi and all λi ∈ C∗ are different.
We consider the set

Homd(π1(S), G) :=

{
(ρ,D)

∣∣∣ ρ is completely reducible and satisfies 1,2,
D decoration of ρ

}
We call elements of Homd(π1(S), G) decorated representations. We have a
natural projection

Homd(π1(S), G) → Hom∗(π1(S), G)

(ρ,D) 7→ ρ
.

The Lie group G acts by conjugations on representations and on flags of Kk.

Definition 1.14. The quotient space

Xd(π1(S), G) := Homd(π1(S), G)/G

is called decorated character variety. We denote by [ρ,D] the element of the
decorated character variety, which contains the decorated representation (ρ,D).

Remark 1.15. We also have a natural projection:

Xd(π1(S), G) → X(π1(S), G)

[ρ,D] 7→ [ρ]
.

One can prove that this projection is a finite-to-one map and has an open dense
image.
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We want to study the character variety using Fock-Goncharov coordinates, which
we will define later. Fock-Goncharov coordinates are not defined on the decorated
character variety but on a dense subset of it. To construct this subset, we need to
fix an ideal triangulation T of S. If we choose two triangles with a common side,
we get 4 peripheral curves [see fig. 1.2].

Fig. 1.2: Picture in S

Definition 1.16. Two flags F1 = (V1, ..., Vk) and F2 = (W1, ...,Wk) of Kk are called
transversal if

dim(Vl +Wm) = min{l +m, k} for l,m ∈ {1, ..., k}.

Definition 1.17. Let [ρ,D] ∈ Xd(π1(S), G). We say that flags of [ρ,D] are
transversal with respect to the triangulation T if for each two triangles with
a common side the corresponding 4 peripheral curves have pairwise transversal flags
by decorated representation (ρ,D).

Remark 1.18. The property "to be transversal" for two flags is invariant by the
action of G. Therefore, the definition above is correct.

We denote by Xd(π1(S), G, T ) the set of all decorated representation which are
transversal with respect to the triangulation T . This is an open dense subset of
Xd(π1(S), G).
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Remark 1.19. In this thesis we describe Xd(π1(S), PGL(2,C), T ) and
Xd(π1(S), PGL(3,C), T ) using spectral networks and Fock-Goncharov coordinates.
Because of remark 1.15 and because Xd(π1(S), G, T ) is open and dense in
Xd(π1(S), G) this description will give us local coordinates on an open dense subset
of X(π1(S), PGL(2,C)) and X(π1(S), PGL(3,C)).

1.3 Regular homotopy

To construct the non-abelianisation map we will use branched coverings of S and
some kind of path lifting rule. But in contrast to coverings, the path lifting to
branched coverings is not homotopically invariant. So we need to modify the path
lifting for branched coverings. To do this, we need first consider the regular paths
instead of continuous paths.

Definition 1.20. A path γ : [0, 1] → S is called regular if γ ∈ C1([a, b]) and
γ̇(t) 6= 0 for all t ∈ [0, 1].

Definition 1.21. We say that two regular paths γ1, γ2 : [0, 1] → S have the same
extremes if γ1(0) = γ2(0), γ1(1) = γ2(1), γ̇1(0) = γ̇2(0), γ̇1(1) = γ̇2(1).

Definition 1.22. Two regular paths with same extremes γ1, γ2 : [0, 1] → S are
called regular homotopic if they are connected by a smooth homotopy H : [0, 1]×
[0, 1]→ S such that

H(t, 0) = γ1(t)

H(t, 1) = γ2(t)

H(0, s) = γ1(0) = γ2(0)

H(1, s) = γ1(1) = γ2(1)

∂H

∂t
(0, s) = γ̇1(0) = γ̇2(0)

∂H

∂t
(1, s) = γ̇1(1) = γ̇2(1)

∂H

∂t
(t, s) 6= 0

for all s, t ∈ [0, 1].
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Fig. 1.3: Regular homotopy H of paths γ1 and γ2 with same extremes

If we have a regular path γ on S, we can lift it to the the unit tangent bundle US
of S:

γU : [0, 1] → U

t 7→
(
γ(t),

γ̇(t)

‖γ̇(t)‖

)
Remark 1.23. To define the unit tangent bundle of S, we need a Riemannian metric
on S. But, obviously, the unit tangent bundle does not depend on the metric.

Because for surfaces with punctures π1(US) = Z× π1(S), the fundamental group
of the unit tangent bundle fits in the following exact sequence:

0→ Z→ π1(US)→ π1(S)→ 0.

Definition 1.24. For two regular paths γ1, γ2 with the same extremes which are
homotopic in the usual sense, the number

w(γ1, γ2) = γU1 (γU2 )−1 ∈ Z

is called winding number.

Remark 1.25. The winding number is unique defined up to a sign. If we choose
the orientation of the surface S, we can define the sign of winding number. On the
fig. 1.4 we can see how we can calculate the winding number of two curves by the
standard orientation of the plane.
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Fig. 1.4: Winding number w(γU1 , γ
U
2 ) = −1.

Remark 1.26. Winding number is antisymmetric: w(γU1 , γ
U
2 ) = −w(γU2 , γ

U
1 ).

The relation "to be regular homotopic" on the set of all regular paths on the
surface S is an equivalence relation which we denote ρ.
The object which is very close to the fundamental group of the unit tangent bundle

is the regular fundamental group:

Definition 1.27. Let S is a surface, p ∈ S, v ∈ TpS. The set

πreg1 (S, p, v) = {γ | γ is a regular path on S, γ(0) = γ(1) = p, γ̇(0) = γ̇(1) = v}/ρ

on which the multiplication is defined as a concatenation of curves is called the
regular fundamental group of S with respect to p ∈ S and v ∈ TpS.

Remark 1.28. Up to regular homotopy the neutral element e of πreg1 (S, p, v) looks
like on fig. 1.5.
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Fig. 1.5: Neutral element of πreg1 (S, p, v).

It is easy to see that the regular fundamental group, like the usual fundamental
group, is well defined and for all p, p′ ∈ S and all v ∈ TpS, v′ ∈ Tp′S the groups
πreg1 (S, p, v) and πreg1 (S, p′, v′) are isomorphic. So we can consider the πreg1 (S) as the
isomorphy class of πreg1 (S, p, v).
The connection between the fundamental group of the unit tangent bundle and

the regular fundamental group of the surface is given by the following theorem
(Smale) [3]:

Theorem 1.29 (Smale). The map

θ : πreg1 (S, p, v)→ π1(US, (p, v))

[γ] 7→ [(γ, γ̇)]

is a group isomorphism.

Remark 1.30. The non-trivial part in this theorem is to prove that for two
homotopic curves in US the corresponding regular curves in S are regularly
homotopic in S.

With this theorem we have the following exact sequence:

0→ Z→ πreg1 (S)→ π1(S)→ 0.

In general, for closed surfaces this sequence does not split, but for surfaces with
punctures it always splits.
We can take a quotient relative to the subgroup 〈2〉 ⊆ Z. So we get the other

exact sequence
0→ Z/2Z→ πs1(S)→ π1(S)→ 0,
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where πs1(S) := πreg1 (S)/〈2〉. This sequence always splits also for closed surfaces,
and a choice of spitting is equivalent to a spin structure.
We need the following construction of the semigroup ring, which is very similar

to the well-known group ring construction in algebra.

Definition 1.31. Let H be a semigroup, written multiplicatively, and let R be a
ring. We consider R̃[H] defined as the set of mappings f : H → R of finite support.
This set has a natural structure of an R-module.
To turn R̃[H] into a ring, we define the product of f and g to be the mappings:

f · g : x 7→

{ ∑
uv=x f(u)g(v), if u, v ∈ H exist such that x = uv

0, otherwise
.

The summation is well defined because f and g are of finite support, and the ring
axioms are readily verified.
The zero element 0H ∈ H is an element of H such that 0Hu = u0H = 0H for all

u ∈ H. Obviously, if a zero element exist in H, then this is unique.
Further, we consider the ideal O = (0H) where 0H is the zero element of H if this

exist (if H does not contain the zero element then O = {0}). The semigroup ring
of H over R, which we will denote by R[H], is the quotient ring R̃[H]/O.

Some variations in the notation and terminology are in use. In particular, the
mappings such as f : H → R are sometimes written as what are called "formal
linear combinations of elements of H, with coefficients in R":

∑
h∈H

f(h)h,

or simply

∑
h∈H

fhh,

where the sum is always finite because for almost all f(h) = fh = 0.
Now we are ready to define some important algebraic objects over the surface S.

We use definitions from [1].
The set REGPATHS(S) of all regular paths γ in S up to regular homotopy

ρ supplemented with the formal symbol 0 have the following natural semigroup
structure. The multiplication in REGPATHS(S) is the concatenation if it is
possible and 0 otherwise, we also define the left and right multiplication of an element
with 0 as 0.
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We can also consider the corresponding semigroup ring Z[REGPATHS(S)] as
in definition 1.31. By construction, for all p ∈ S and all v ∈ TpS we have natural
inclusions

πreg1 (S, p, v) ↪→ REGPATHS(S) ↪→ Z[REGPATHS(S)].

Similarly we can construct the semigroup PATHS(S) of all paths on S up to
homotopy with the formal symbol 0 and then the semigroup ring Z[PATHS(S)].
Also for all p ∈ S we have natural inclusions

π1(S, p) ↪→ PATHS(S) ↪→ Z[PATHS(S)].

Moreover, because each regular path is continuous and the relation
ρ of regular homotopy is finer then the relation of usual homotopy,
we have the natural surjective projection (semigroup homomorphism)
τ : REGPATHS(S) → PATHS(S) which can be continued to the surjective
ring homomorphism τ : Z[REGPATHS(S)]→ Z[PATHS(S)].
Further, we consider the ideal

I =

({
γ1 − (−1)w(γ1,γ2)γ2

∣∣∣ γ1, γ2 ∈ REGPATHS(S)

are homotopic and have same extremes

})
.

Fig. 1.6: Example of γ1 and γ2 such that γ1 − (−1)w(γ1,γ2)γ2 ∈ I.

Now we are ready to define homotopy path algebra of the surface. We use the
definition from [1].
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Definition 1.32. The quotient ring

HPA(S) = Z[REGPATHS(S)]/I

is called homotopy path algebra of S.

Because for γ1, γ2 ∈ πreg(S, p, v), (p ∈ S, v ∈ TpS) we have: γ1−γ2 ∈ I if and only
if γ1γ

−1
2 ∈ 〈2〉, the fundamental group with signs πs1(S, p, v) of S can be included as

a subset in the homotopy path algebra HPA(S) of S.
We consider the natural projection π : REGPATHS(S) → HPA(S). Because

we identify by I only elements with same extremes, so the tangent vectors at the
extreme points of elements π([γ]) for γ ∈ REGPATHS(S) are well defined. This
gives us the possibility to give the following definition:

Definition 1.33. Let V : S → TS be a non-zero tangent vector field. For every
[γ] ∈ PATHS(S) the set π(τ−1([γ])) has two elements that agree with V at the
extremes. A semigroup homomorphism σ : PATHS(S)→ HPA(S) is called a spin
structure with respect to the vector field V if σ([γ]) agree with V at the extremes
and

σ([γ]) ∈ π(τ−1([γ]))

for every [γ] ∈ PATHS(S).

By construction ofHPA(S) for each element of 0 6= [γ] ∈ PATHS(S) and for each
non-zero tangent vector field V : S → TS the set π(τ−1([γ])) ⊆ HPA(S) contains
exactly two elements x and −x which at extreme points agree with a vector field V .
Moreover, the set π(τ−1(PATHS(S))) generates HPA(S). We consider a subring
of HPA(S) which is generated by elements of π(REGPATHS(S)), which agree
with the vector field V at extreme points. We denote this subring by HPA(S, V ).
Using a spin structure σ we can construct a ring homomorphism

σ′ : HPA(S, V ) → Z[PATHS(S)] by its definition on generators: for each element
[γ] ∈ PATHS(S) and x ∈ π(τ−1([γ])) ∩HPA(S, V ) let

σ′(x) :=

{
[γ], σ([γ]) = x

−[γ], σ([γ]) = −x

So we have σ′ ◦ σ = idPATHS(S). The map σ′ is also called a spin structure with
respect to the vector field V .
Also a spin structure σ with respect to the vector field V gives us a group

homomorphism π1(S, p)→ πs1(S, p, V (p)) for each p ∈ S because for fixed p ∈ S the
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group π1(S, p) is contained in PATHS(S), πs1(S, p, V (p)) is contained in HPA(S, V )

and because of σ([γ]) ∈ π(τ−1([γ])) ⊆ πs1(S, p, V (p)) for every [γ] ∈ π1(S, p), we get
σ(π1(S, p)) ⊆ πs1(S, p, V (p)).

1.4 Non-abelianisation map

We consider a surface S with punctures, π : Σ→ S is a branched covering. Let p ∈ S,
0 6= v ∈ TpS. Let W be a non-zero vector field on Σ such that Dqπ(W (q)) = v for
all q ∈ π−1(p).
We want to construct a non-abelianisation map

X(π1(Σ), GL(1,C))→ X(π1(S), GL(k,C)).

We will do it using spectral networks, namely, the spectral network will give us a
map πs1(S, p, v)→ HPA(Σ,W ), which actually is a path lifting rule form S to Σ.
If we take an element of X(π1(Σ), GL(1,C)), so by proposition 1.8 we get a flat

connection on Σ. If we also fix spin structures on S and Σ, then we get a sequence
which gives us the representation π1(S, p)→ GL(k,C):

π1(S, p)
spin str.−−−−→
on S

πs1(S, p, v) −→
[∗]

HPA(Σ,W )
spin str.−−−−→
on Σ

spin str.−−−−→
on Σ

Z(PATHS(Σ))
flat conn.−−−−−→
on Σ

GL(k,C)

The equivalence class of this representation is an element of the character variety
X(π1(S), GL(k,C)), so the definition of the non-abelianisation is complete, except
for the path lifting rule [*], which we will define in the second chapter using spectral
networks.
An equivalent way to construct this representation is using twisted connections.

The usual flat connection ∇ can be considered as a map which takes an element
[γ] ∈ PATHS(S) and gives a linear map Tγ : Eγ(0) → Eγ(1) which we interpret
as a parallel transport operator along γ. We can extend this map to the map
from Z(PATHS(S)) to the set L(E) =

⊕
p,q∈S L(Ep, Eq) where L(Ep, Eq) is the

set of all linear maps from Ep to Eq. On L(E) the multiplication can be defined
in the following way: for A ∈ L(Ep, Eq), B ∈ L(Er, Es), (p, q, r, s ∈ S) we define
BA ∈ L(Ep, Es) the usual composition of two linear maps if q = s and 0 otherwise.
With this multiplication L(E) becomes a ring and ∇ becomes a ring homomorphism
from Z(PATHS(S)) to L(E).
Let σ′ : HPA(S, V )→ Z[PATHS(S)] is a spin structure. The composition ∇◦σ′

gives us a ring homomorphism from HPA(S, V ) to L(E).

21



Definition 1.34. A ring homomorphism

∇T : HPA(S, V ) → L(E)

x 7→ Ax

such that Ax ∈ L(Eγ(0), Eγ(1)) for all x = π([γ]), [γ] ∈ REGPATHS(S, V ) is called
twisted connection on E.

Remark 1.35. The restriction of the twisted connection ∇T : HPA(S, V )→ L(E)

on πs1(S, p, V (p)) gives us a group homomorphism ρ∇T : πs1(S, p, V (p)) → GL(Ep)

which is called twisted representation.

Remark 1.36. A twisted connection can be also defined in the following way:
Let πS : E → S be a vector bundle of rank k over S, πUS : E ′ → US a vector

bundle of rank k over the unit tangent bundle US of S, θ : E ′ → E a smooth map,
such that for each (p, v) ∈ UT the restriction of θ on the fiber E ′(p,v)

θ(p,v) : E ′(p,v) → Ep

is a linear isomorphism and the following diagram commutes:

E ′
θ−−−−−→ E

πUS

y
yπS

US
natural−−−−−→

projection
S

A fiber UpS of US over p ∈ S is diffeomorphic to S1, which fundamental group is
isomorphic to Z. We fix v ∈ UpS and an isomorphism π1(UpS, v) → Z and choose
a loop δp in UpS, which corresponds to 1 by this isomorphism.
A flat connection on E ′ is called a twisted connection on E if for all p ∈ S the

parallel transport operator Tδp = −idE′
(p,v)

.
It is easy to see that this definition does not depend on the choice of δp because

the connection is flat, and does not depend on the choice of v ∈ UpS and of
isomorphism π1(UpS, v) → Z because UpS is connected and Aut(Z) = {±idZ},
therefore, Tδ−1

p
= −id−1

v = −idv.
A twisted connection on E defines a map PATHS(US) → L(E ′), which sends

the homotopy class of a curve on US to the parallel transport operator along this
curve. Because the connection is flat, this operator does not depend on a choice of
this curve in a homotopy class.
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Using this definition we can define the twisted connection as in definition 1.34.
First, we have an natural map

REGPATHS(S) → PATHS(US)

[γ] 7→ [(γ, γ̇)]

For the element [(γ, γ̇)] we get an parallel transport operator

T ′γ : E ′(γ(0),γ̇(0)) → E ′(γ(1),γ̇(1)).

Using θ we get a linear map

Tγ = θ(γ(1),γ̇(1)) ◦ T ′γ ◦ θ−1
(γ(0),γ̇(0)) : Eγ(0) → Eγ(1).

So we have a map
REGPATHS(S) → L(E)

[γ] 7→ Tγ
.

This map can be uniquely extended by Z-linearity to the map

Z[REGPATHS(S)]→ L(E).

And it is also easy to prove that the ideal I goes by this map to 0. So we can take
a quotient and get the well defined map HPA(S) → L(E). The restriction of this
map on HPA(S, V ) gives us a twisted connection in sense of definition 1.34.

With spin structures on S and twisted connection on Σ we get a sequence which
gives us the representation π1(S, p)→ GL(k,C):

π1(S, p)
spin str.−−−−→
on S

πs1(S, p, v) −→
[∗]

HPA(Σ,W )
twisted conn.−−−−−−−→

on Σ
GL(k,C), (1.2)

where p ∈ S, v ∈ TpS andW is a non-zero vector field on Σ such thatDqπ(W (q)) = v

for all q ∈ π−1(p). The map [∗] from πs1(S, p, v) to HPA(Σ,W ) is given by the
spectral network.
Because the spin structure on Σ gives us the twisted connection on the vector

bundle over Σ, further, by considering of spectral networks, we will assume that the
twisted connection and corresponding twisted representation on Σ is given.

1.5 Spin structure associated with a vector field

Using a non-zero vector field V on S we can construct a spin structure. Because
S has punctures, a non-zero vector field on S always exists. In this section we will
assume that every regular curve γ on S agrees with V at extreme points.
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Let γ : [a, b] → S be a regular curve. We consider a Riemanian metric g on
S, then for each p ∈ S we have the ortonormal basis (e1(p), e2(p)), such that
e1(p) = V (p)/‖V (p)‖ and g(ei(p), ej(p)) = δij for all p ∈ S. Moreover, the vector
field e2 can be chosen so that for all p ∈ S the basis (e1(p), e2(p)) is positive oriented
with respect to the orientation of S. In this basis we have

γ̇(t) = x(t)e1(γ(t)) + y(t)e2(γ(t)).

So we have the well-defined smooth map

γ′ : [a, b] → S1

t 7→ (x(t), y(t))

‖γ̇(t)‖

which is a curve in S1 and γ′(a) = γ′(b) = (1, 0). This curve defines an element in
the fundamental group π1(S1, (1, 0)) which is isomorphic to Z by an isomorphism
θ : π1(S1, (1, 0))→ Z. This isomorphism is unique if we assume that θ([α]) = 1 ∈ Z
for α(t) = (cos(t), sin(t)), t ∈ [0, 2π].

Definition 1.37. The number

W (γ, V ) := θ([γ′])

we call the winding number of γ with respect to the vector field V .

Remark 1.38. It is easy to see that for the definition of the winding number actually
we do not need the vector field on the whole surface. It is enough to have the vector
field along γ.

Remark 1.39. The regular homotopy H : [a, b] × [0, 1] → S of two regular curves
γ1, γ2 : [a, b] → S with the same extremes compatible with V induces the homotopy
H ′ : [a, b]× [0, 1]→ S1 of γ′1 : [a, b]→ S1 and γ′2 : [a, b]→ S1 by the formula

H ′(t, s) :=
(x(t, s), y(t, s))

‖∂H
∂t

(t, s)‖
,

where
∂H

∂t
(t, s) = x(t, s)e1(H(t, s)) + y(t, s)e2(H(t, s)).

Therefore, the winding number is invariant by regular homotopy.

Remark 1.40. For two regular curves γ1, γ2 such that

0 6= [γ1][γ2] ∈ REGPATHS(S)

we have W (γ1 ∗ γ2, V ) = W (γ1, V ) +W (γ2, V ).
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Lemma 1.41. For each p ∈ S there exist a regular closed curve δ compatible with
V , which is homotopic to {p} and W (δ, V ) = 1.

P r o o f . We choose a chart (U, x) of S such that p ∈ U , U open in S,
contractible, x : U → Ũ ⊆ R2 is a homeomorphism, φ(p) = (0, 0), Dpx(V (p)) = ∂

∂x1
.

If we fix some 0 < ε < 1, then we can assume that U is small enough that
Dpx(V (q)) = r(q) ∂

∂x1
+ s(q) ∂

∂x2
with |r(q)− 1| < ε, |s(q)| < ε.

We consider a curve β(t, ε) := (R sin(t),−R cos(t)+R), t ∈ [0, 2π] where R = R(ε)

is smooth in ε and small enough so that β is contained in Ũ . Then the curve
δ := x−1 ◦ β is contained in U . Obviously, δ(t, ε) is homotopic to {p} for each ε

because U is contractible.

β̇(t, ε) = (R cos(t), R sin(t)).

Because for ε small enough the vector field Dx(V ) is close to ∂
∂x1

, the
curve δ′(·, ε) : [0, 2π] → S1 is close to α(t) = (cos(t), sin(t)). That means
δ′(t, ε) = (X(t, ε), Y (t, ε)), X, Y are smooth functions of two variables and

lim
ε→0

δ′(t, ε) = α′(t)

for all t ∈ [0, 2π]. So we have that α is homotopic to δ′(·, ε) for all ε small enough.
Therefore,

W (δ, V ) = θ([δ′]) = θ([α]) = 1.

Remark 1.42. Analogously we can prove that for all n ∈ Z there exist a regular
closed curve δn compatible with V , which is homotopic to {p} and W (δn, V ) = n.

Lemma 1.43. For each two regular curves γ1, γ2 : [a, b]→ S with the same extremes
and which are homotopic in the usual sense we have

W (γ2, V )−W (γ1, V ) = w(γ2, γ1).

P r o o f . Two regular curves with the same extremes, which are homotopic, are
regular homotopic if and only if their winding numbers agree. We consider the curve
δw from remark 1.42 for p := γ1(a) and w := w(γ2, γ1). Then

w(γ1 ∗ δw, γ1) = w(γ2, γ1) = w.

Therefore, w(γ1 ∗ δw, γ2) = 0. This means that γ2 and γ1 ∗ δw are regular homotopic
because δ is homotopic to p and therefore γ2 is homotopic to γ1 ∗ δw and they have
the same extremes.
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Further, W (γ1 ∗ δw, V ) = W (γ1, V ) +w. Because the winding number is invariant
by regular homotopy, we have W (γ1 ∗ δw, V ) = W (γ2, V ). Therefore,

W (γ2, V )−W (γ1, V ) = w(γ2, γ1).

From lemma 1.43 follows that for two regular paths γ1 and γ2 with the same
extremes belong to the same class of HPA(S, V ) if and only if the number
W (γ2, V ) −W (γ1, V ) = w(γ2, γ1) is even. For each continuous path γ : [a, b] → S

we can always choose a regular path γ∗ compatible with V which is homotopic to γ.
Either W (γ∗, V ) or W (δ ∗ γ∗, V ) is even, where δ is a regular path from lemma 1.41
for p = γ(0).
We define the spin structure σ : PATHS(S)→ HPA(S, V ) in the following way:

σ([γ]) is the class of γ∗ in HPA(S, V ) if W (γ∗, V ) is even, or the class of δ ∗ γ∗ in
HPA(S, V ) otherwise. By this definition the element in HPA(S, V ) is well defined
and does not depend on the choice of γ∗ because π(τ−1([γ])) ⊆ HPA(S, V ) contains
exactly two elements namely π([γ∗]) and π([δ∗γ∗]) and we choose the unique element
ofHPA(S, V ) which contains regular curves with even winding numbers with respect
to V . Moreover, the map σ satisfies all conditions of the spin structure. We call this
spin structure associated with the vector field V .
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2 Small spectral networks

2.1 The definition of small spectral network

We consider a closed orientable surface S̄ with punctures P = {s1, ..., sn}, n ∈ N
and we also consider the surface S = S̄ \ P (as in the first chapter). Let π : Σ̄→ S̄

a k : 1 branched covering of S̄. We consider also the corresponding restriction
π : Σ → S where P ′ = π−1(P ) is the set of punctures on Σ = Σ̄ \ P ′. We assume
that the branched covering is not ramified over the punctures. Therefore, we denote
by B the set of branch points on S, and B′ = π−1(B).
We assume that every branch point is simple. That means every branch point

b ∈ B has an open neighborhood U such that

π−1(U) =
k−1∐
i=1

Vi,

where Vi are open neighborhoods of one of the pre-images of b in Σ, π|Vi : Vi → U is
an homeomorphism for i = 1, ..., k − 2, and π|Vk−1

: Vk−1 → U looks like z → z2.
We assume also, that for each s ∈ P an order on the fiber π−1(s) = {s(1)

i , ..., s
(k)
i }

of p is given: s(1)
i < s

(2)
i < ... < s

(k)
i . This order on the fiber over s is an additional

structure on the covering.
Now we are ready to define spectral networks. In this thesis we use the definition

from [1]. This definition looks different from the one given in [6], but it is actually
equivalent.

Definition 2.1. A small spectral network W of rank k over S is a graph on Σ̄,
that means a finite collection of injective regular paths {ph : [−1, 1]→ Σ̄}h∈H (H is
a finite set of indices) satisfying the following conditions:
1. π(ph(t)) = π(ph(−t)) ∀t ∈ [−1, 1]

2. π(ph(0) ∈ B is a branch point
3. π(ph(1)) = π(ph(−1)) = sj ∈ P (for some j) is a puncture and ph(−1) < ph(1)

with respect to the order on π−1(sj)
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Fig. 2.1: The picture in S̄ left, in Σ̄ right.

4. A neighborhood of the branch points looks like

Fig. 2.2: The picture in S̄ left, in Σ̄ right.

5. Different paths ph and ph′ in Σ̄ can meet only at a point ph(t) = ph′(t
′) which

is
a) a branch point (which means t = t′ = 0),
b) a puncture (which means t, t′ ∈ {−1, 1}),
or in following case:
c) t · t′ > 0. In this case we also need that the intersection is transverse and the

path ph does not intersect any line of the spectral network at the point ph(−t) and
the path ph′ does not intersect any line of the spectral network at the point ph′(−t′).

Fig. 2.3: The picture in Σ̄.
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We denote
WΣ =

⋃
h∈H

ph([−1, 1]) ⊆ Σ̄,

WS =
⋃
h∈H

π(ph([−1, 1])) ⊆ S̄.

Remark 2.2. For small spectral networks the following intersection of paths is
forbidden:

Fig. 2.4: The picture in Σ̄.

In general spectral networks this intersection is allowed. It is called a joint. In
this case every time there is a joint, one additional path must be added to the spectral
network.

Proposition 2.3. The intersection described in remark 2.2 and in definition 2.1 (5c)
can not occur by spectral networks of rank 2.

P r o o f . This fact follows directly from the axiom (5c) in definition 2.1.

Fig. 2.5: The picture in S.
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If we assume that there are two paths ph and ph′ such that there exist t, t′ ∈ (0, 1)\
{0} and

π(ph(t)) = π(ph(−t)) = π(ph′(t
′) = π(ph′(t

′),

then because π : Σ→ S has exactly two sheets, there are only two possibilities:

ph(t) = ph′(t
′) and ph(−t) = ph′(−t′)

or
ph(t) = ph′(−t′) and ph(−t) = ph′(t

′).

Fig. 2.6: The picture in Σ.

Both of them are prohibited by the axiom (5c) in the definition of the spectral
network.

Remark 2.4. From the proposition 2.3 follows that all spectral networks of rank 2
are small.

2.2 Path lifting using spectral network

Let π : Σ̄ → S̄ be a k : 1 branched covering satisfying the conditions above and
let W be a small spectral network of rank k on Σ. We want to construct a map
πs1(S, p, v)→ HPA(Σ, V ′), where p ∈ S, v ∈ TpS, V ′ is a non-zero vector field on Σ

such that Dqπ(W (q)) = v for all q ∈ π−1(p).
We consider a smooth path γ : [0, 1] → S such that [γ] ∈ πs1(S, p, v). To lift this

path to Σ we split it in pieces γ = γ1 ∗ γ2 ∗ ... ∗ γn such that each γi intersects the
spectral network at most once. Here and later with ∗ we denote the concatenation
of smooth curves.
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If γi does not intersect the spectral network, then we lift it in the usual way and
get k lifts γ(j)

i , j ∈ {1, ..., k} in Σ which also do not intersect spectral network. We
can construe regular paths γ(j)

i as elements of HPS(Σ) (as it is done in the first
chapter).
If γi intersects the spectral network, then there are only two standard lifts γ(j)

i

and γ(l)
i of γi, which intersect a path of the spectral network. We denote this path

ph. In this case we have to add to the usual lifts a new path γ′i, like on fig. 2.7. We
can also construe regular paths γ(j)

i and γ′i as elements of HPS(Σ) (as it is done in
the first chapter).

Fig. 2.7: The picture in Σ̄ left, in S̄ right.

Definition 2.5. The lift γ̃ in Σ with respect to the spectral network W of the curve
γ is the product of all lifts of γi in HPA(Σ):

γ̃ =
( k∑
i=1

γ
(i)
1 + γ′1

)
· ... ·

( k∑
i=1

γ(i)
n + γ′n

)
,

where γ′i = 0 for pieces γi which do not intersect the spectral network.

Lemma 2.6. This path lifting rule is invariant by regular homotopy.

P r o o f . To prove that we need to check the homotopic invariance of the path
lifting in the following three cases (see fig.2.8) because up to regular homotopy we
can always decompose every curve in a product of curves of these kinds.
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Fig. 2.8: The picture in S̄.

Case 1.

Fig. 2.9: The picture in S̄.

We have to lift two curves γ1 and γ2 to Σ with the path lifting rule of the spectral
network. Because γ2 does not intersect the spectral network, its standard lifts do
not do it as well. Therefore, we have the lift of γ2 in HPA(Σ):

k∑
i=1

γ
(i)
2 .

For γ1 we also get k standard lifts but in this case exactly two of them intersect the
spectral network [see fig. 2.10]:
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Fig. 2.10: The picture in Σ̄.

Therefore, we have to add two new lifts γ′ and γ′′. So we have the lift in the
HPA(Σ):

k∑
i=1

γ
(i)
1 + γ′ + γ′′.

But in HPA(Σ) we have that γ′ = −γ′′, because γ′ and γ′′ have the same extremes
and w(γ′, γ′′) = ±1 (the sign depends on the orientation on the surface). Therefore,
we get the lift in HPA(Σ):

k∑
i=1

γ
(i)
1 ,

which agree with
k∑
i=1

γ
(i)
2

inHPA(Σ) because γ(i)
1 is regularly homotopic to γ(i)

2 for all i ∈ {1, ..., k} as standard
lifts of homotopic curves with the same base point.
Case 2.
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Fig. 2.11: The picture in S̄.

We have to lift two curves γ1 and γ2 to Σ with the path lifting rule of the spectral
network. Because γ2 does not intersect the spectral network, its standard lifts do
not do it as well. Therefore, we have the lift of γ2 in HPA(Σ):

k∑
i=1

γ
(i)
2 .

For γ1 we also get k standard lifts but in this case exactly two of them intersect the
spectral network [see fig. 2.12]:
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Fig. 2.12: The picture in Σ̄.

Therefore, we have to add 6 new lifts. Schematically we can draw our lift as:

Fig. 2.13: The picture in Σ̄.

So we can see that this lift agree with the lift of γ2
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Fig. 2.14: The picture in Σ̄.

Case 3.

Fig. 2.15: The picture in S̄.

Because of proposition 2.3 the covering Σ has at least 3 sheets. If we lift this
picture to Σ, we can get three possible pictures, namely, two cases where ph and ph′
intersect each other, which distinguish by the position of the intersection point and
the branch point. In the case 3.1. the branch point is located before the intersection
point with respect to orientation of lines of spectral network. In the case 3.2. the
branch point is located after the intersection point with respect to orientation of
lines of spectral network. In the case 3.3. lines ph and ph′ do not intersect.
Case 3.1. We have exactly 3 standard lifts of γ1 which intersect spectral network

in the following position:
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Fig. 2.16: The picture in Σ̄.

Therefore, we have to add 4 new lifts. Schematically we can draw our lift as:

Fig. 2.17: The picture in Σ̄.

So we can see that this lift agree with the lift of γ2, which consist only of standard
lifts.
Case 3.2. We have exactly 3 standard lifts of γ1 which intersect spectral network

in following position:
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Fig. 2.18: The picture in Σ̄.

Therefore, we have to add 4 new lifts. Schematically we can draw our lift as:

Fig. 2.19: The picture in Σ̄.

So we can see that this lift agree with the lift of γ2, which consist only of standard
lifts.
Case 3.3. If the covering Σ has at least 4 sheets, then it can be possible that we

have exactly 4 lifts of γ1 which intersect two lines ph and ph′ of spectral networks
but these lines ph and ph′ do not intersect each other. This case is similar to case 1
applied twice.
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Fig. 2.20: The picture in Σ̄.

Remark 2.7. For the kind of intersection, which is forbidden in remark 2.2, the
path lifting rule defined in this section is not homotopically invariant.

2.3 Non-abelianisation map

Now we are ready to construct a non-abelianisation map using spectral networks.
We consider a surface S with punctures P = {s1, ..., sn}, a k : 1 branched covering
π : Σ̄→ S̄. We take some element of the character variety X(π1(Σ), GL(1,C)) which
yields us a line bundle πΣ : E → Σ over Σ with a flat connection ∇′. We also fix a
spectral network W on Σ.
Further, we fix p ∈ S \WS, v ∈ TpS, a non-zero vector field V ′ on Σ such that

Dqπ(V ′(q)) = v for all q ∈ π−1(p)

Using a spin structure on Σ, which we can construct using the vector field V ′ on
Σ, and proposition 1.8 we get a flat twisted connection on E.
We construct a representation ρ : π1(S, p)→ GL(k,C). We consider:

Vp :=
k⊕
i=1

Epi ,

where {p1, . . . pk} = π−1(p), Ep = π−1
Σ (pi). We have the natural basis of Vp, namely

(e1, ..., ek), where (ei) is a basis of Epi .
If we consider a regular curve γ on S such that [γ] ∈ πs1(S, p, v), we can lift it to

Σ with respect to the spectral network W . So we get an element x ∈ HPA(Σ, V ′),
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which is by definition a finite sum of some curves γr on Σ, r ∈ I, I is a finite index
set such that

γr(0), γr(1) ∈ π−1(p) (2.1)

and
x =

∑
r∈I

γr.

We consider a vector w =
∑k

i=1 aiei ∈ Vp, i ∈ {1, .., k}. Because of (2.1) the twisted
connection gives us the element

∇′(x) =
∑
r∈I

Tγr ∈
⊕

p̃,q̃∈π−1(p)

L(Ep̃, Eq̃),

where Tγr are parallel transport operators along γr given by twisted connection on
Σ.
For each γr such that γr(0) = pi, γr(1) = pj, i, j ∈ {1, ..., k} we can consider

Tγrei = tkej ∈ Epj . We can extend Tγr to a linear map on Vp by the following rule:

Tγrel =

{
tkej, l = i

0, l 6= i

We define the map by Tγ : Vp → Vp by the rule Tγ =
∑

r∈I Tγk . By construction
this map is linear and since the path lifting using spectral network is homotopically
invariant and the connection on Σ is flat, Tγ depends only on the homotopy class of
γ in π1(S, p, v).
So we get a map ρ : πs1(S, p, v) → GL(Vp) which is a group homomorphism. It

means that we have a the twisted representation. After using of a spin structure on
S we get an element in the character variety X(π1(S), GL(k,C)).
So we see that an element of the character variety X(π1(Σ), GL(1,C)), spin

structures on S and Σ and a spectral network W yield an element of the character
variety X(π1(S), GL(k,C)).

π1(S, p)
spin str.−−−−→
on S

πs1(S, p, v)
spectral−−−−→
network

HPA(Σ,W )
twisted conn.−−−−−−−→

on Σ
GL(k,C)

So we get a non-abelianisation map.

2.4 Invariant flag

In this section we show that the parallel transport operator along a peripheral curve
on S always has a natural invariant flag. This means that a spectral network over
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S always yields a natural map X(π1(Σ), GL(1,C))→ Xd(π1(S), GL(k,C)). We will
use this map later to define coordinates on the character variety X(π1(S), GL(k,C)).
We fix a base point p on S and consider a regular peripheral curve γ on S around

a puncture s ∈ P with γ(0) = γ(1) = p [see fig. 2.21].

Fig. 2.21: The picture in S (left) and in Σ (right).

We lift this curve to Σ with respect to the spectral network. So we get k standard
lifts γ(i), i ∈ {1, ..., k}, γ(i) goes around si ∈ P ′ and some additional curves βl, l ∈ I,
I is an index set. We assume that the order of spectral network on punctures s1, ...sk

agree with the natural order on {1, ..., k}. That means that si < sj if and only if
i < j.
By definition of the spectral network the paths of spectral networks on Σ go form

a puncture with a smaller number to a puncture with a bigger number. Therefore,
the parallel transport along each βl gives us a linear map Tβl : Epi → Epj with i < j.
We get the linear map Tγ : Vp → Vp, whose matrix T γ in the basis (e1, ..., ek),

where (ei) is a basis of Epi have an lower triangular form:

T γ =


g1 0 ... 0

∗ g2 ... 0

.. ... ... ...

∗ ∗ ... gk

 ,

where gi are homotopy constants of standard lifts γ(i). That means that the flag

Fγ =


〈ek〉

〈ek−1, ek〉
...

〈e1, ..., ek〉


is an invariant by Tγ. This flag depends on the spectral network and on the base
point but not on the flat connection on Σ. In the next section we show how the
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matrix T γ changes if we change the base point p ∈ S and so we will see how this
invariant flag changes if we change a base point.
So we have shown that the map defined in the section 2.3 is actually a map

X(π1(Σ), GL(1,C))→ Xd(π1(S), GL(k,C)).

2.5 Properties of a non-abelianisation map given

by spectral networks

Remark 2.8. The non-abelianisation map described in the section 2.3 is a
continuous finite-to-one map.
There is a hypothesis that for each surface S with punctures a k : 1 branched

covering π : Σ→ S exists such that

dim(X(π1(Σ), GL(1,C))) = dim(X(π1(S), GL(k,C)))

If this is right, then the non-abelianisation map described in the section 2.3 has an
open image.
It is possible to show that this map is a finite-to-one map. One can

define symplectic structures on X(π1(Σ), GL(1,C)) and Xd(π1(S), GL(k,C))

and show that the map X(π1(Σ), GL(1,C)) → Xd(π1(S), GL(k,C))

from the section 2.4 is a local symplectomorphism (see [6]). This
proves that this map is locally injective, and because the natural map
Xd(π1(S), GL(k,C)) → X(π1(S), GL(k,C)) is a finite-to-one map, the
non-abelianisation map X(π1(Σ), GL(1,C)) → X(π1(S), GL(k,C)) from the
section 2.3 is a finite-to-one map.
In cases k = 2 and k = 3 it can be shown using Fock-Goncharov coordinates that

this map has a dense image.

2.6 Change of the base point

Let π : Σ̄→ S̄ be a n : 1 branched covering, πΣ : E → Σ be a line bundle with a flat
connection ∇ and let W be a small spectral network of rank n ∈ N on Σ.
We fix the point p ∈ S and the tangent vector v ∈ TpS. This gives us the

representation of πs1(S, p, v) in GL(Vp) that means we have the group homomorphism
Γp : πs1(S, p, v)→ GL(Vp) where πs1(S, p, v) is the fundamental group with signs of S
with the base point p and tangent vector v. We denote by e the neutral element of
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this group. If two curves represent the same element of πs1(S, p, v), we will denote
this with the symbol ≡ .

The (twisted) flat connection on S (resp. on Σ) gives us for each regular path γ the
parallel transport operator which we will denote Tγ. With respect to bases in start
and finish points the operator Tγ has the matrix which we will denote T γ = (tγij).

In this paragraph we want to find out how this representation changes if we change
the base point p ∈ S and the corresponding tangent vector v ∈ TpS.
We choose the other point p′ ∈ S and the tangent vector v′ ∈ Tp′S and choose

two smooth curves ξ : [0, 1] → S and η : [0, 1] → S with ξ(0) = η(1) = p,
ξ(1) = η(0) = p′, ξ̇(0) = η̇(1) = v, ξ̇(1) = η̇(0) = v′ and ξ ∗ η = ±e ∈ πs1(S, p, v) [see
fig. 2.22]. Then for each element α′ ∈ πs1(S, p′, v′) we have α := ξ∗α′∗η ∈ πs1(S, p, v).
Then

Tα = TηTα′Tξ.

Fig. 2.22: The picture in S.

We want to find out how the maps Tξ and Tη look like. The goal of this paragraph
is to proof the following proposition:

Proposition 2.9. There are bases of Ep and E ′p such that the matrix T ξ and T η

of the parallel transport operator Tξ and Tη in these bases looks like T ξ = (tξji),
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T η = (tηji) where

tξji =
1

ljνji

∑
β∈Ξji

b̃,

tηji =
1

kiνji

∑
β∈Hji

b̃

(the sense of all coefficients will be defined later).

P r o o f . To prove this, we have to lift ξ and η to Σ with respect to the spectral
network. We will prove the proposition for ξ, the proof for η is analog.
The lift of ξ is an element ξ̂ ∈ HPA(Σ) which we can write

ξ̂ =
∑
β∈Ξ

β

where Ξ is the set of curves on Σ such that β(0) ∈ π−1(p), β(1) ∈ π−1(p),
β̇(0) = (Dβ(0)π)−1(v) β̇(1) = (Dβ(1)π)−1(v′) for all β ∈ Ξ. The maps (Dβ(0)π)−1

and (Dβ(1)π)−1 are well-defined because π is a diffeomorphism in a neighborhood
of all r ∈ π−1(p) =: {p1, ..., pn} and r′ ∈ π−1(p′) =: {p′1, ..., p′n}. We denote also
vi = (Dpiπ)−1(v) and v′i = (Dp′i

π)−1(v′).
Further, for each pi the set Ξ always contains the standard lift (without respect

to spectral network) with the start point pi and end point p′i which we denote ξi (we
can always number the points of π−1(p′) so that this is satisfied).
The same applies for η. We have the lift η̂ ∈ HPA(S) and the set H of lifts and n

standard lifts ηi with ηi(0) = p′i. Moreover, because of ξ ∗η = ±e we have ηi(1) = pi.
Because

Vp =
n⊕
i=1

Epi

the choice of the basis (ei) of each Epi gives us a basis of Vp. The same applies to
the point p′: (e′i) is the basis of Ep′i , and (e′1, ..., e

′
n) is the basis of Vp′ . With respect

to these two bases the map Tξ is represented by the matrix T ξ = (tξij)i,j=1,...,n.
We denote

Ξji = {β ∈ Ξ | β(0) = pi, β(1) = p′j}.

Then each β ∈ Ξji gives us the number (one dimensional matrix) b such that
Tβ(ei) = be′j, and, obviously, the element tξji of T ξ is exactly the sum of all this
b for all β ∈ Ξji:

tξji =
∑
β∈Ξji

b.
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Therefore, we need to compute the numbers b. For vector bundles with flat
connection is much easier to compute these numbers for closed curves. Hence, we
can complement each β ∈ Ξji with the fixed smooth curve with start point p′j and
end point pi.
First of all, we can go from p′j to pj along ηj and then from pj we have to go to

pi. For this reason, we choose for each pare (pi, pj) the smooth curve γij : [0, 1]→ Σ

such that γ(0) = pi, γ(1) = pj, γ̇(0) = vi, γ̇(1) = v′j. We denote

Tγijei = νijej, Tξiei = kie
′
i, Tηie

′
i = liei.

The numbers ki, li, νij are given by flat connection ∇′ on Σ. For simplicity, we
assume that γii is the trivial curve then νii = 1 for all i = 1, ..., n.

Fig. 2.23: The picture in Σ.

We consider the curve β̃ = β ∗ ηj ∗γji. For this curve we can compute the number
b̃ such that Tβ̃ei = b̃ei and then because of b̃ = bljνji we have

b =
b̃

ljνji
.

Therefore,

tξji =
1

ljνji

∑
β∈Ξji

b̃. (2.2)

The same applies for η:

tηji =
1

kiνji

∑
β∈Hji

b̃.
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Remark 2.10. Because of independent choice of the bases of TpS and Tp′S we can
always choose the basis (e′1, ..., e

′
n) of Tp′S so that ki = 1 or li = 1. For this reason,

we can assume e′i = Tξiei or e′i = T−1
ηi
ei.

Moreover, because ξ ∗ η = ±e, if ki = 1, then li = ±1 and

e′i = Tξiei and e
′
i = ±T−1

ηi
ei.

Remark 2.11. If Ξ contains only standard lift of ξ and H contains only standard
lift of η we have

tξii = ki, t
η
ii = li, t

ξ
ji = tηji = 0(i 6= j).

This case we have if ξ and η do not intersect the spectral network. With remark
2.10 we can assume in this case that T ξ = 1n = ±T η.

Now we can find out how the elements of the matrix Tα
′

= (tα
′
ij ) of operator

Tα′ : Vp′ → Vp′ look like.
We denote α̂′ ∈ HPA(Σ) the lift of α′ in Σ with respect to spectral network.

Then
α̂′ =

∑
β∈A′

β

where A′ is the set of all lifts of α′. Let A′ji ⊆ A′ is the set of all lifts β of α′ such
that β(0) = p′i, β(1) = p′j.

Corollary 2.12.

tα
′

ji =
kjliνij
dji

∑
β∈A′ji

b̃,

where Tδjiei = djiei and δji = γij ∗ ξj ∗ γ′ji ∗ ηi

P r o o f . We know that
tα
′

ji =
∑
β∈A′ji

b

where Tβe′i = be′j for β ∈ A′ji.
If also for each pare (p′i, p

′
j) the smooth curve γ′ij : [0, 1] → Σ is chosen such that

γ′(0) = p′i, γ
′(1) = p′j, γ̇

′(0) = v′i, γ̇
′(1) = v′j [see fig. 2.24] and

Tγ′ije
′
i = ν ′ije

′
j,
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Fig. 2.24: The picture in Σ.

then we can write β̃ := β ∗ γ′ji and Tβ̃e′i = b̃e′j where b̃ = bν ′ji. Therefore,

tα
′

ji =
1

ν ′ji

∑
β∈A′ji

b̃.

We want to eliminate ν ′ji. We denote δji = γij ∗ ξj ∗ γ′ji ∗ ηi then dji = νijkjν
′
jili

where Tδjiei = djiei. Therefore,

ν ′ji =
dji

kjliνij

tα
′

ji =
kjliνij
dji

∑
β∈A′ji

b̃.

2.7 Fock-Goncharov coordinates

In this section we introduce Fock-Goncharov coordinates, which parameterize the
space Pn3 of pairs of convex n-gons in RP2, one inscribed into the other, and
considered up to the action of PSL(3,R) [4].
We consider the pair of convex n-gons in RP2, one inscribed into the other and

cut the inscribed polygon into triangles and mark two distinct points on every edge
of the triangulation except the edges of the polygon. Mark also one point inside
each triangle. The following theorem proved in [4] gives us the canonical bijection
between Pn3 and assignments of positive real numbers to the marked points.
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Theorem 2.13. There exists a canonical bijective correspondence between the space
Pn3 and assignments of positive real numbers to the marked points.

Definition 2.14. The assignments of numbers to the marked points from the
theorem 2.13 are called Fock-Goncharov coordinates on Pn3 .

We show how this canonical bijection works. First, we consider the case of P3
3 .

We consider the pair of triangles as a collection of three lines lA, lB, lC in RP2 with a
point pA, pB, pC on each of lines. On each line li (i ∈ {A,B,C}) we have two points
pij, pik of intersection with two other lines lj and lk ({j, k} = {A,B,C} \ {i}) [see
fig. 2.25]. Moreover, for each line li we have two point pj, pk ({j, k} = {A,B,C}\{i})
which do not lie on this line. These two points define us the line ljk which intersects
li in the point pi,jk. So we get 4 points of each line.

Fig. 2.25: Picture in RP2.

The coordinate XABC which we also denote by X if the triangle is fixed is defined
as a cross ratio

XABC = X = −[pi, pi,jk, pij, pik],

where {i, j, k} = {A,B,C}. Because the cross ratio is a projective invariant, this
does not depend on the choice of i ∈ {A,B,C} and on the choice of the affine chart.
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Further, we consider the case of P4
3 . In this case we have to choose one of two

possible triangulation of the quadrangle. With respect to this triangulation two
coordinates XABC and XDBC which we also denote by Y if the frangulation is fixed.
We also define the coordinate ZBC which we also denote by Z if the triangulation
is fixed as a cross ratio

ZBC = Z = [pCB, pC,AB, pC , pC,DB],

where pCB which is an intersection point of lines lC and lB, pC,AB which is an
intersection point of lines lC and pApB and pC,DB which is an intersection point of
lines lC and pDpB (see fig. 2.26). Because the cross ratio is a projective invariant,
this does not depend on the choice of the affine chart.

Fig. 2.26: Picture in RP2.

In the same way the coordinate ZCB which we also denote by W is defined:

ZCB = W = [pBC , pB,DC , pB, pB,AC ],

where pBC which is an intersection point of lines lB and lC , pB,AC which is an
intersection point of lines lB and pApC and pB,DC which is an intersection point of
lines lB and pDpC .
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Finally, in general case, if we have the pair of n-gons in RP2, one inscribed into
the other, we cut the inscribed polygon into triangles. For each triangle of this
triangulation the X -coordinate is defined, for each pair of triangles with a common
side two Z-coordinates are defined. So we get the collection of Fock-Goncharov
coordinates described in the theorem 2.13.
Now we want to describe, how Fock-Goncharov coordinates change if we change

the triangulation. We consider the simplest case if change the triangulation only in
one quadrangle [see fig. 2.27]. This transformation is called flip. We can always get
the general case as a sequence of flips.
In [4] the formulas are given, which express how coordinatesX ′, Y ′, Z ′,W ′ depend

on X, Y , Z, W :

X ′ =
1 + Z

XZ(1 +W )
, Y ′ =

1 +W

YW (1 + Z)
,

Z ′ = X
1 +W +WY +WY Z

1 + Z + ZX + ZXW
,

W ′ = Y
1 + Z + ZX + ZXW

1 +W +WY +WY Z
.
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Fig. 2.27: Flip. Picture in RP2.
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2.8 Fock-Goncharov coordinates and invariant flag

We consider the surface S with punctures P = {s1, ..., sn}, an ideal triangulation
T of S and an element [ρ,D] ∈ Xd(π1(S), G, T ) like in the section 1.2, where G is
one of the following groups GL(3, K), SL(3, K), PGL(3, K), K ∈ {R,C}. If we fix
p ∈ S, then we can choose a representation ρ : π1(S, p)→ G of the class [ρ,D].
For the matrix ρ([γ]), where γ is a peripheral closed curve, an invariant flag

Fρ(γ) = (V1(γ), V2(γ), V3(γ)) is fixed, where dim(Vi(γ)) = i, i ∈ {1, 2, 3}.
Because flags of representation are transversal, for two triangles ABC and DBC

we get two triangles pApBpC and pDpBpC in KP2 with the common side pBpC , which
are inscribed in the 4-gon generated by lines lA, lB, lC , lD.

Fig. 2.28: The picture in KP2.

We can define the corresponding Fock-Goncharov coordinates X, Y , Z, W as in
the previous section, but in this case all points have coordinates in K and, therefore,
X, Y , Z,W can also take values inK. Moreover, these coordinates do not depend on
the choice of representation in the class [ρ,D] because they are projective invariants
and, therefore, are invariant by conjugation of corresponding matrices. So we see
that an element [ρ,D] of the decorated character variety Xd(π1(S), G, T ) yields us
a collection of Fock-Goncharov coordinates.

Definition 2.15. We say that for the ideal triangulation of S a collection of
Fock-Goncharov coordinates is defined if for each pair of triangles (T1, T2) with a
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common side a tuple (X, Y, Z,W ) ∈ K4 is defined so that the corresponding tuple
for (T2, T1) is (Y,X,W,Z).

We will see later that an ideal triangulation of S and a corresponding for this
triangulation collection of Fock-Goncharov coordinates define a representation of
π1(S) but only into the group PGL(3, K).

2.9 Free group representation

We consider a surface S with punctures. Let T be an ideal triangulation of S. We
number its elements by {1, ..., r} ⊆ N.

T = {Ti | i ∈ {1, ..., r}}.

The natural order on the set {1, ..., r} induce a total order % on triangles on T . This
order % is an additional structure on T .
Let C be the set of all sides of triangulation. We generate a free group FC by this

set. Sometimes we will identify elements of FC with words over C ∪C−1. Moreover,
for each element b ∈ FC there is the unique shortest word over C ∪ C−1 which
represents b.
We also consider a point p ∈ S which does not lie on lines of triangulation. We

want to construct a representation χ : π1(S, p)→ FC .
To do this, we consider a loop γ : [0, 1] → S, γ(0) = γ(1) = p. We say that γ

changes the triangle by t = t0 if γ(t0) is contained on the line of triangulation and
there exist ε > 0 such that for all t ∈ (t0 − ε, t0) and for all t′ ∈ (t0, t0 + ε) γ(t) and
γ(t′) lie in different triangles.
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Fig. 2.29: The picture in S.

Without loss of generality we can always assume that γ changes the triangle at
all points t0 such that γ(t0) lies on a line of triangulation, because in [γ] ∈ π1(S, p)

there always exist such curve.
We assume, that γ changes the triangle by following values of parameter t0, ..., tr.

So we get a sequence of pairs of triangles (Ti0 , Ti1),...,(Tir , Ti0) with a common sides
c0, ..., cr ∈ C. With this sequence we can associate an element

cγ = cε0r · ... · c
ε0
0 ∈ FC ,

where εl = 1 if il < il+1 and εl = −1 otherwise.
It is easy to see that cγ1∗γ2 = cγ2cγ1 for two loops γ1, γ2. To show that the map

χ : π1(S, p) → FC

[γ] 7→ cγ

is an injective representation, we need the following proposition:

Proposition 2.16. Let p ∈ S and [γ] ∈ π1(S, p).
1. The element cγ depends only on the homotopy class [γ].
2. If [γ] 6= [δ], then cγ 6= cδ.

P r o o f . The triangulation T of S induces a triangulation T ′ on the universal
covering π : S ′ → S. We also choose a point p′ ∈ π−1(p).
With the triangulation T ′ we can associate a directed graph Γ, whose vertices

are triangles of T ′ and edges are common sides of triangles which are oriented
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consistent to the order on T . That means that for each two triangles T ′, T ′′ ∈ T ′

with a common side the corresponding edge starts in a triangle T ′ if π(T ′) = Ti,
π(T ′′) = Tj and i < j [see fig. 2.30]. Because S ′ is connected, the graph Γ is also
connected.

Fig. 2.30: Orientation in Γ.

By uniformization theorem the universal covering of S is homeomorphic to R2

because S is not compact. Each line of triangulation on S ′ divide R2 in two connected
components. For the graph Γ that means that, if we remove one edge, then the graph
fall in two components. That means that Γ is a tree. Moreover, Γ can be construed
as a subgraph of a Cayley graph Γ(FC , C) if we identify 1 ∈ FC with T ′ ∈ T ′ such
that p′ ∈ T ′. Because FC is free generated by C, the graph Γ(FC , C) is also a tree.
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Fig. 2.31: Graph Γ.

Fig. 2.32: Grapth Γ(FC , C).

We have to prove that cγ = 1 for each loop γ on S with γ(0) = γ(1) = p which is
null homotopic. We have a unique lift γ′ on S ′ such that γ′(0) = γ′(1) = p′. For γ′

we can construct a path in Γ. We start in a vertex T ′ ∈ T ′ such that p′ ∈ T ′ and
every time if γ′ changes the triangle we goes along an edge, witch corresponds to the
side of triangulation T ′, which γ′ intersects. The path finishes also in the triangle
T ′ because p′ ∈ T ′. That means that the corresponding finish vertex in the Cayley
graph Γ(FC , C) is identity. Therefore, cγ = 1. This proves (1).
To prove (2) we also use the universal covering π : S ′ → S. Let γ : [0, 1] → S be

a loop and cγ = 1. The corresponding to γ path in Γ is trivial. Therefore, the lift
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of γ to S ′ starts and finishes in the same triangle in S ′. This means that the lift of
γ is a loop in S ′. Because S ′ is simply connected, the lift of γ is trivial and so γ is
also trivial. This proves (2).

Definition 2.17. We call the representation

χ : π1(S, p) ↪→ FC

[γ] 7→ cγ

free group representation with respect to the order % on T .

Remark 2.18. We have shown that the fundamental group can be construed as a
subgroup of a free group. By Nielsen–Schreier theorem every subgroup of a free group
is free. So we get a well known fact that the fundamental group of a surface with
punctures is free (namely, of rank 2g + n− 1).

Remark 2.19. The correspondence γ 7→ cγ can be extended in a similar way for
each curve which starts in p and finishes in a point q which does not lie on the line
of triangulation. This correspondence is also invariant by homotopy. If we consider
all possible curves γ with this condition and generate elements cγ ∈ FC, we get a
subset of FC, we denote this subset FC(S, p).
By construction, for all words b ∈ FC(S, p) all prefixes of b are contained in

FC(S, p) because we can always restrict the corresponding path γ on the appropriate
subinterval. Therefore, the corresponding to this subset subgraph of Γ(FC , C) is
connected. In particular, this is a tree because Γ(FC , C) is it.

For this semigroup we can define the following map. We consider the universal
covering π : S ′ → S of S and corresponding triangulation T ′. We denote by P ′ the
set of all vertices of triangulation of T ′. We choose a lift p′ ∈ π−1(p). This lies in a
triangle T ′0 on S ′ with vertices s′1, s′2, s′3 ∈ P ′.
We consider two triangles T ′1 and T ′2 of triangulation T ′ with vertices r′1, r′2, r′3 ∈ P ′

and r′4, r′2, r′3 ∈ P ′ with a common side c′ = r′2r
′
3. We consider c = π(c′) and define

a map fc : {r′1, r′2, r′3, r′4} → {r′1, r′2, r′3, r′4}: fc(r
′
1) = r′4, fc(r′2) = r′3, fc(r′3) = r′2,

fc(r
′
4) = r′1. Obviously, fc = f−1

c .
If we choose s′ ∈ P ′, then there exist a path γ′ in S ′, which starts in p′ and finishes

in a triangle T ′, witch has s′ as a vertex. For this π(γ′) we have a corresponding path
in Cayley-Graph Γ(FC , C) with start point in 1, which corresponds to an element
in cγ = cεmm ...cε11 ∈ FC(S, p), where εi ∈ {−1, 1}. We define the action

ψ : FC(S, p)× {s′1, s′2, s′3} → P ′

(cγ, s
′
i) 7→ fcm ◦ ... ◦ fc1(s′i)
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Remark 2.20. By construction, because fci ◦ fci = id, this map is well defined
(does not depend on representation of cγ by a word over C ∪ C−1). Because S ′ is
connected, this map is surjective. This map is also injective in the second variable
if the first variable is fixed.
Moreover, because the graph Γ is a tree, for every s′ ∈ P ′ there exists the shortest

path in Γ form T ′0 to a triangle which has s′ as a vertex. For this shortest path in Γ

there exist unique up to homotopy curve γ′ on S ′, which starts in p′ and finishes in
a triangle whose vertex s′ is.
This path corresponds to a path in the subgraph of the Cayley-Graph Γ(FC , C)

which generates by FC(S, p) witch starts in 1. We consider the corresponding for this
path shortest word b ∈ FC(S, p). It is uniquely defined and s′ ∈ ψ(b, {s′1, s′2, s′3}). So
we can define the inverse map ψ′ : P ′ → FC(S, p) × {s′1, s′2, s′3}, which gives us the
unique shortest word b ∈ FC(S, p) and the unique vertex s′i, i ∈ {1, 2, 3} such that
ψ(b, s′i) = s′

We will use this map further when we construct a representation of π1(S, p) using
Fock-Goncharov coordinates.
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3 Examples of small spectral networks

3.1 Spectral network of rank 2

In this example we consider a spectral network of rank 2 over the surface S. We
want to find the eigenvectors of parallel transport operators along peripheral curves
on S.
We consider the surface S, a 2:1 branched covering π : Σ→ S and the line bundle

πΣ : E → Σ over Σ with a flat connection. We assume that the spectral network W
over S is given, which induces a twisted representation πs1(S, p, v) → GL(2,C) for
p ∈ S, v ∈ TpS as in the chapter 2.3.
For each branch point b on S we have exactly three punctures, which are connected

with b by lines of the spectral network. In this way the spectral networkW yields an
ideal triangulation of S with the property that each triangle on S contains exactly
one branch point like on the fig. 3.1. In Σ we have to glue along red sides.
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Fig. 3.1: Spectral network of rank 2. Picture in S above, picture in Σ below.

We choose two triangles with vertices Ã, B̃, C̃ and D̃, B̃, C̃ in S. In each triangle
we have one branch point Õ1 and Õ2. The lifted to Σ points we denote O1 = π−1(Õ1),
O2 = π−1(Õ2), {A,A′} = π−1(Ã), {B,B′} = π−1(B̃), {C,C ′} = π−1(C̃),
{D,D′} = π−1(D̃). We assume the following order on the spectral network:
A < A′, B < B′, C < C ′, D < D′.
Further, we choose points p, p′ ∈ S \ B such that p lies in the triangle Õ1B̃C̃,

v ∈ TpS, v′ ∈ Tp′S. We also choose curves ξ, η in S such that ξ(0) = η(1) = p,
ξ(1) = η(0) = p′, ξ̇(0) = η̇(1) = v, ξ̇(1) = η̇(0) = v′ and ξ ∗ η ≡ −e.
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In Σ we consider {p1, p2} = π−1(p), vi = Dpiπ
−1(v), i ∈ {1, 2} and choose

curves γ12 and γ21 such that γ12(0) = γ21(1) = p1, γ21(0) = γ12(1) = p2,
γ̇12(0) = γ̇21(1) = v1, γ̇12(1) = γ̇21(0) = v2 and γ12 ∗ γ21 ≡ −e.
Now we calculate the matrix T ξ for two special chosen curves ξ.
Case 1: p and p′ lie in the triangle ÃB̃C̃ [see fig. 3.2].
Because the curves ξ and η intersect the spectral network only once, we have

ξ ∗ η ≡ −e. By lifting of ξ to Σ we get three curves: two standard lifts ξ1 and ξ2

and one curve β which starts in p2 and finishes in p′1. Therefore,

T ξ =

(
k1 b

0 k2

)
where Tβ(e2) = be′1.

Fig. 3.2: Spectral network of rank 2. Picture in S left, picture in Σ right.

Because β ∗ η1 ∗ γ12 ≡ −e, we have with (2.2):

b = − 1

l1ν12

= −k1ν21.

With remark 2.10 we can assume k1 = k2 = −l1 = −l2 = 1, therefore,

T ξ =

(
k1 −k2ν21

0 k2

)
= [ki = 1] =

(
1 −ν21

0 1

)
. (3.1)
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Case 2: p and p′ lie in the different adjacent triangles [see fig. 3.3].

Fig. 3.3: Spectral network of rank 2. Picture in S above, picture in Σ below.

Because of ξ ∗ η ≡ −e, by lifting of ξ to Σ we get three curves: two standard lifts
ξ1 and ξ2 and one curve β which starts in p1 and finishes in p′2. Therefore,

T ξ =

(
k1 0

b k2

)
where Tβ(e1) = be′2.
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Fig. 3.4: Spectral network of rank 2. Picture in Σ. The curve δ.

Because β ∗ η2 ∗ γ21 ≡ −δ [see fig. 3.3 and fig. 3.4], we have with (2.2):

b = − d

l2ν21

= −dk2ν12.

where Tδe1 = de1. With remark 2.10 we can assume k1 = k2 = −l1 = −l2 = 1,
therefore,

T ξ =

(
k1 0

−dk2ν12 k2

)
= [ki = 1] =

(
1 0

−dν12 1

)
. (3.2)

Now we are ready to calculate the eigenvectors of peripheral curves on S. We
consider now four peripheral curves αA, αB, αC , αD [see fig. 3.5].
The parallel transport operator each of these curves always has one eigenvector

which is independent on the spectral network and depends only on the surface Σ.
Curve αB. For this curve the eigenvector is easy to see. In the basis (e1, e2) it is

vB = e1

and the matrix of parallel transport operator along αB in this basis has a form

TαB =

(
b′ ∗
0 ∗

)
,
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Fig. 3.5: The picture in S.

where b′ is the representation of α1,B in C∗.
Curve αC. For this curve the eigenvector is also easy to see. In the basis (e1, e2)

it is
vC = e2

TαC =

(
∗ 0

∗ c′

)
,

where c′ is the representation of α2,C in C∗.
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Fig. 3.6: The picture in Σ.

Curve αA. To determine the eigenvector for αA we apply the case 1. We change
the base point and consider the curve β [see fig. 3.7].

Fig. 3.7: The picture in S (left) and in Σ (right).
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The eigenvector of Tβ is e′2. Because αA ≡ −ξ ∗ β ∗ η we have

TαA = T−1
ξ TβTξ.

Using (3.1) we get the eigenvector of TαA is

vA = T−1
ξ e′2 = ν21e1 + e2.

Curve αD. To determine the eigenvector for αD we apply the case 2 and choose
the other point p′ like in case 2, choose the curve β′ [see fig. 3.8]. For γ′12, γ

′
21 we

assume Tγ′ije
′
i = ν ′ije

′
j. The eigenvector of Tβ′ is vβ′ = e′1.

Fig. 3.8: The picture in S (above) and in Σ (below).
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We use (3.2), then the eigenvector of TαD is

vD = T−1
ξ e′1 = e1 + dν12e2.

3.2 Spectral networks of rank 2 and cross ratios.

As we have seen in the previous paragraph, the ideal triangulation of the surface
with punctures yields the collection of eigenvectors in C2 of the parallel transport
along peripheral curves. Namely, for each pair of triangles with a common side we
have four eigenvectors.
The projectivisation yields for each eigenvector a point in CP1. So we get four

point in CP1. We can consider the cross ratio of these points.
We choose the affine chart with respect to the basis (e1, e1 + e2). Then the

eigenvectors vB, vC , vA, vD correspond to complex numbers xB, xC , xA, xD:

xi =
v1
i

v1
i + v2

i

.

xB = 1, xC = 0, xA =
ν21

1 + ν21

, xD =
1

dν12 + 1
,

where d is the holonomy along the curve δ. We consider the cross ratio

[xA, xD, xB, xC ] =

(
1

dν12 + 1
− 1

)
ν21

1 + ν21

1

dν12 + 1

(
ν21

1 + ν21

− 1

) =
dν12ν21

−1
= d

The constant d depends only on the flat connection ∇′ on Σ and does not depend
on the spectral network.
We can see that an ideal triangulation of S and a flat connection on Σ define

the collection of cross ratios on S. Conversely, if an ideal triangulation on S and
the collection of numbers (cross ratios) for each pair of triangles with common
side on S with respect to this triangulation are given, we get the numbers d

for each pair of triangles with common side. We can construct a representation
ρ : π1(S, p)→ PGL(2,C), p ∈ S, p do not lie on lines of triangulation in the following
way.
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Fig. 3.9: The picture in S.

First, we fix a ideal triangulation T of S and some total order % on triangles of this
triangulation. Further, we choose the pair of triangles with vertices p1, p2, p4, p3 ∈ S
and the common side c = p2p3. For this pair of triangles the number d is defined.
We associate pi (for i = 1, 2, 3, 4) with points x1 = [0 : 1], x2 = [1 : 1], x3 = [1 : 0],
x4 = [d : 1] in CP1. So we have a unique Möbius transformation φ, which
x1, x2, x3 sends to x4, x3, x2. This transformation corresponds to an unique element
M ∈ PGL(2,C). We also fix the number ε, which is equal to 1 if the triangle p1p2p3

is smaller then p4p3p2 with respect to %, and is equal to −1 otherwise.

Fig. 3.10: The picture in PC1. Action of φ.
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We consider a group homomorphism κ : FC → PGL(2,C), which is defined on
generators of FC in a following way κ(c) := M ε for all sides c of triangulation T .
Further, we consider the universal covering π : S ′ → S of S and corresponding

triangulation T ′. We denote by P ′ the set of all vertices of triangulation of T ′. We
want to construct a function f : P ′ → CP1. First, we choose a lift p′ ∈ π−1(p). This
lies in a triangle T0 on S ′ with vertices s′1, s′2, s′3. We define f for these three points
in the following way: f(s′1) := [0 : 1], f(s′2) := [1 : 1], f(s′3) := [1 : 0]. We use
the map ψ from the section 2.9 and assume that the order % agree with the order %
in the section 2.9. If we choose s′ ∈ P ′, then by remark 2.20 there exist a unique
shortest word b ∈ FC(S, p) and unique i ∈ {1, 2, 3} such that ψ(b, si) = s′. Because
b and i are unique, we define f(s′) := κ(b)(f(si)).
Now we are ready to construct a representation ρ : π1(S, p) → PGL(2,C). We

take an element g ∈ π1(S, p). We can consider this element as a deck transformation
of S ′, which also acts on P ′ and g(s′i) = r′i ∈ P ′, i ∈ {1, 2, 3}. There exist a
unique element ρ(g) ∈ PSL(2,C) such that ρ(f(si)) = f(ri). By this rule the map
ρ : π1(S, p) → PGL(2,C) is well defined, and it is easy to see that this is a group
homomorphism, so we get a representation.

Remark 3.1. Because the order % on T and choice of sign of ε are consistent, the
constructed representation ρ : π1(S, p)→ PGL(2,C) does not depend on this order.
Moreover, this representation depends only on a triangulation T and on cross ratios,
which are given with respect to this triangulation.

3.3 Spectral network of rank 2 over the sphere

with three punctures

The simplest interesting case of example 3.1 is a spectral network of rank 2 over the
sphere with three punctures. In this case the spectral network on S consist only of
two triangles with vertices in punctures Ã, B̃, C̃, so we need to identify the point Ã
with the point D̃, the edge ÃB̃ with the edge D̃B̃ and the edge ÃC̃ with the edge
D̃C̃ (see figures of example 3.1).
Thus we consider S = S2\{Ã, B̃, C̃}. On S we can consider the ideal triangulation

with vertices in Ã, B̃, C̃. We get two triangles. In each triangle we have one branch
point Õ1 and Õ2. We denote the points lifted to Σ by O1 = π−1(Õ1), O2 = π−1(Õ2),
{A,A′} = π−1(Ã), {B,B′} = π−1(B̃), {C,C ′} = π−1(C̃). We assume the following
order on the spectral network A < A′, B < B′, C < C ′.
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We chose a base point p with a base vector in the triangle Õ1B̃C̃. We want
to describe the parallel transport operators for curves αB, αC , α1A, α2A around the
point B, C and A. For A we consider two different curves (see figure 3.11).

Fig. 3.11: The picture in S.

In Σ we choose the basis (e1) in p1 and (e2) in p2 and curves γ12 and γ21. In our
case γ12 ∗ γ21 ≡ −e ∈ π(S, p1, v1). Therefore, ν12ν21 = −1. The value of one of these
constants can be freely chosen. For each point A,A′, B,B′, C, C ′ the flat connection
∇′ on Σ defines constants a, a′, b, b′, c, c′ which characterize the parallel transport
along the corresponding peripheral curve around each of these points in the positive
sense.
Curve αB. We denote TαB = (tij) (only for this case). The lift of the curve

αB gives us 4 curves. We have one curve α1B around B′ with start and end in p1,
therefore,

t11 = −b′.

We have one curve α2B around B with start and end in p2, therefore,

t22 = −b.
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And finally, we have two curves β1, β2 with start in p2 and finish in p1. To compute
the corresponding numbers for this curves we have to complete these curves with
γ12. So we have

t12 =
−b′ + a′bb′c

ν12

.

We do not have curves from p1 to p2, therefore,

t21 = 0.

Fig. 3.12: The picture in Σ.

So we have the matrix:

TαB =

(
−b′ b′−a′bb′c

ν12

0 −b

)
Curve αC. Similarly to the curve αB:

TαC =

(
−c 0

c′−ab′cc′
ν21

−c′

)

Curve α1A. To find out how the parallel transport operator for the curve α1A

looks like, we use the case 1 and we choose the new base point p′ in the triangle
O1CA

′, and two curves ξ and η which connect p and p′. Further, we consider the
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curve β (like figure 3.7 of example 3.1). Then α1A ≡ −ξ ∗ β ∗ η and ξ ∗ η ≡ −e.
Then Tη = −T−1

ξ and
Tα1A

= T−1
ξ TβTξ.

To compute the matrix T β of the parallel transport operator Tβ in basis (e′1, e
′
2)

we choose the curves γ′12, γ
′
21 such that γ′12 ∗ γ′21 ≡ −e and then the computing of T β

is similar to cases 1 and 2. So we write:

T β =

(
−a 0

a−aa′bc′
ν′21

−a′

)
where Tγ′ije

′
i = ν ′ije

′
j, i, j ∈ {1, 2} and ν ′12ν

′
21 = −1.

We also need to compute T ξ. We use (3.1) from example 3.1.

T ξ =

(
1 −ν21

0 1

)
We also need to express ν ′ij in terms of νij, ki. To do this we note that

ξ1 ∗ γ′12 ∗ η2 ∗ γ21 ≡ e.

Therefore,
1 = k1ν

′
12l2ν21 = −k1ν

′
12k
−1
2 ν21 = k1ν

′
12k
−1
2 ν−1

12 ,

ν ′12 =
k2

k1

ν12 = [ki = 1] = ν12

and also
ν ′21 =

k1

k2

ν21 = [ki = 1] = ν21.

Now we can compute Tα1A :

Tα1A = (T ξ)−1T βT ξ =

(
−aa′bc′ −ν21(a′ − aa′bc′)
a−aa′bc′
ν21

−a− a′ + aa′bc′

)

Curve α2A. Here we use the case 2 of example 3.1 (see figure 3.8). The calculation
is very similar to the curve α1A, therefore, we write the answer:

Tα2A = (T ξ)−1T βT ξ =

(
1 0

−dν12 1

)−1(
−a′ a′−aa′bc′

dν12

0 −a

)(
1 0

−dν12 1

)
=

=

(
−a− a′ + aa′b′c a−aa′b′c

dν12

−dν12(a′ − aa′b′c) −aa′b′c

)
.
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In this case we have d = ab′c′, therefore,

Tα2A =

(
−a− a′ + aa′b′c aa′bc−a(a′)2bb′c2

ν12

−ν12(aa′b′c′ − a2a′(b′)2cc′) −aa′b′c

)
.

We can summarize the results of this section in the following proposition.

Proposition 3.2. The representation of the fundamental group of the sphere with
three punctures to GL(2,C) given by a spectral network of rank 2 up to conjugation
is generated by following matrices:

TαB =

(
−b′ b′−a′bb′c

ν12

0 −b

)
,

TαC =

(
−c 0

c′−ab′cc′
ν21

−c′

)
,

Tα1A =

(
−aa′bc′ −ν21(a′ − aa′bc′)
a−aa′bc′
ν21

−a− a′ + aa′bc′

)
,

Tα2A =

(
−a− a′ + aa′b′c aa′bc−a(a′)2bb′c2

ν12

−ν12(aa′b′c′ − a2a′(b′)2cc′) −aa′b′c

)
,

where αB, αC, α1A, α2A are peripheral curves [see fig. 3.11]; a, b, c, a′, b′, c′

are complex constants, which satisfy the condition aa′bb′cc′ = 1 and are given by
the spectral network; ν12, ν21 are complex constants, which satisfy the condition
ν12ν21 = −1, and the value of one of these constants can be freely chosen.

3.4 Small spectral network of rank 3.

In this example we consider a special case of a spectral network of rank 3 over the
surface S.
We consider the surface S, a 3 : 1 branched covering π : Σ→ S and a line bundle

πΣ : E → Σ over Σ with a flat connection. We consider an ideal triangulation of S
and assume that there is a spectral network W on S with the following properties:
for each triangle of the triangulation there are exactly three branch points, which
are contained in this triangle and the pictures of this triangle in S and its lift in Σ

look like on the fig. 3.13, 3.14, 3.15.
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Fig. 3.13: The picture in S.

The spectral network W induces a twisted representation πs1(S, p, v)→ GL(3,C)

for p ∈ S, v ∈ TpS as in the chapter 2.3.
We chose a triangle ÃB̃C̃ in S. This triangle has three branch point Õ1, Õ2, Õ3

[see fig. 3.13].
We denote the points lifted to Σ by Oi = π−1(Õi) for i = 1, 2, 3,
{A,A′, A′′} = π−1(Ã), {B,B′, B′′} = π−1(B̃), {C,C ′, C ′′} = π−1(C̃). We assume the
following order on the spectral network: A < A′ < A′′, B < B′ < B′′, C < C ′ < C ′′.
We also choose point p ∈ S \ B, v ∈ TpS. π−1(p) = {p1, p2, p3}. We denote by ei
the basis of Epi .
We can draw the covering Σ in two ways. On the fig. 3.14 three sheets of the

covering are drawn which we glue along the dotted lines of the same color.
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Fig. 3.14: The picture in Σ.

We can also draw the flat picture of the covering Σ which we can use further [see
fig. 3.15].
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Fig. 3.15: The picture in Σ.

As in the case of a spectral network of rank 2 we want to study the parallel
transport along peripheral curves αA, αB, αC around the points Ã, B̃, C̃ namely for
each parallel transport operator we want to find the invariant flag. To do this we
lift these curves in Σ.
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Fig. 3.16: The picture in S.

Curve αB. Because of B < B′ < B′′ vector e3 is the eigenvector of TαB and the
space 〈e3, e1〉 is invariant 2-space of TαB . So we have the invariant flag

FB :=

 〈e3〉
〈e3, e1〉
Vp

 .

Curve αC. Because of C < C ′ < C ′′ vector e2 is the eigenvector of TαB and the
space 〈e2, e1〉 is invariant 2-space of TαB . So we have the invariant flag

FC :=

 〈e2〉
〈e2, e1〉
Vp


Curve αA. To find the invariant flag of TαA , we choose the other base point p′,

tangent vector v′ (like on the fig. 3.17). π−1(p′) = {p′1, p′2, p′3}. The basis of Ep′i we
denote e′i (i = 1, 2, 3). We chose also two curves ξ, η which connect p and p′. The
corresponding standard lifts are ξ1, ξ2, ξ3, η1, η2, η3.
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Fig. 3.17: The picture in S (up), in Σ (down).
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First of all, we consider the curve α′A. The invariant flag of the operator Tα′A is
easy to find. The eigenvector is e′3, the invariant 2-space is 〈e′3, e′1〉.
Because αA ≡ −ξ ∗α′A ∗ η we have TαA = TηTα′ATξ. Moreover, because ξ ∗ η ≡ −e

we have TηTξ = −id. Therefore, to find the invariant flag of TαA we need to calculate
the matrix T ξ of the operator Tξ in bases (e1, e2, e3) and (e′1, e

′
2, e
′
3). To do this we

chose 6 curves γij (i, j = 1, 2, 3, i 6= j) which connect pi and pj [see fig. 3.18] so
that γ31 ∗ γ12 = γ32 and γ21 ∗ γ13 ≡ −γ23 and denote Tγijei = νijej. Because of
γij ∗ γji ≡ −e we have νijνji = −1. Because of γ31 ∗ γ12 = γ32 we have ν31ν12 = ν32.

Fig. 3.18: The picture in Σ.

There is only one (standard) lift ξ2 of ξ with the base point p2, therefore, tξ22 = k2,
tξ12 = tξ32 = 0.
There are two lifts ξ1 (standard lift) and β1 [see fig. 3.19] of ξ with the base point

p2. Because ξ1 ends in p1, we have tξ22 = k2. Because β1 ends in p2 and β∗η1∗γ12 ≡ e

we apply (2.2):

tξ21 =
1

l2ν21

, tξ31 = 0.
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Fig. 3.19: The picture in Σ.
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There are 4 lifts of ξ with start in p3: standard lift ξ3, two lifts β2, β3 which ends
in p1 and one lift β4 which ends in p2 [see fig. 3.19]. Because β2 ∗ η1 ∗ γ13 ≡ δ−1 and
β3 ∗ η1 ∗ γ13 ≡ e we have with (2.2):

tξ13 =
1− d−1

l1ν13

Because β4 ∗ η2 ∗ γ23 ≡ e we have with (2.2):

tξ23 =
1

l2ν23

Therefore,

T ξ =

 k1 0 1+d−1

l1ν13
1

l2ν21
k2

1
l2ν23

0 0 k3

 .

With remark 2.10 we assume ki = −li = 1 and apply νij = −ν−1
ji and ν31ν12 = ν32.

Moreover, we can choose ν31 = ν12 = ν32 = 1. Therefore,

T ξ =

 1 0 (1 + d−1)ν31

ν12 1 ν32

0 0 1

 =

1 0 1 + d−1

1 1 1

0 0 1

 . (3.3)

Then

(T ξ)−1 =

 1 0 −d−1 − 1

−1 1 d−1

0 0 1

 . (3.4)

Therefore, the invariant flag of TαA is

FA := T−1
ξ

 〈e′3〉
〈e′3, e′1〉
Vp′

 =

=

 〈−(d−1 + 1)ν31e1 + ν32d
−1e2 + e3〉

〈−(d−1 + 1)ν31e1 + ν32d
−1e2 + e3, e1 − ν12e2〉

Vp

 =

=

 〈−(d−1 + 1)e1 + d−1e2 + e3〉
〈−(d−1 + 1)e1 + d−1e2 + e3, e1 − e2〉

Vp

 .
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So for each triangle of the triangulation of S we get exactly one non-trivial curve
in Σ. We have seen by studying of the spectral network of rank 2 that one triangle
does not give us non-trivial curves in Σ, but if we consider two triangles with the
common side together, we get a non-trivial curve in Σ.
Now we consider the same situation but for the spectral network of rank 3. On

fig. 3.20 we can see the picture in S and on fig. 3.21 we can see the corresponding
picture in Σ, we glue sides of the same color.

Fig. 3.20: The picture in S.
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Fig. 3.21: The picture in Σ.

On fig. 3.22 we can see four independent in curves: δ, δ′, ζB and ζC . Each of these
curves gives us the number which defines the parallel transport along the curve. We
denote these numbers d, d′, zB and zC .
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Fig. 3.22: The picture in Σ.

We can also draw three-dimensional pictures of Σ (without lines of spectral
network):
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Fig. 3.23: The picture in Σ.

We can make a different picture of the same surface:

Fig. 3.24: The picture in Σ.

85



For the points Ã, B̃ and C̃ we have also found the invariant flags FA, FB, FC .
Now we want to find the invariant flag corresponding to the point D̃.
To do this, we choose the base point p like on the fig. 3.25, choose a peripheral

curve αD and calculate the invariant flag of the parallel transport along the curve
αD in the basis (e1, e2, e3) of Ep.

Fig. 3.25: The picture in S.

First of all, we change the base point. We choose the point p′ in the triangle D̃B̃C̃
and curves ξ and η which connect p and p′ and ξ∗η ≡ e [see fig. 3.26] We also choose
the curve α′D such that αD = ξ ∗ α′D ∗ η.
Because of symmetry we can calculate the invariant flag of α′D in basis (e′1, e

′
2, e
′
3)

at the point p using the invariant flag of αA

FD :=

 〈−(d′ + 1)ν ′31e
′
1 + ν ′32d

′e′2 + e′3〉
〈−(d′ + 1)ν ′31e

′
1 + ν ′32d

′e′2 + e′3, e
′
1 − ν ′12e

′
2〉

Vp′

 .

Because ξ and η do not intersect spectral network, we can identify using
remark 2.11 the basis (e1, e2, e3) at the point p with the basis (e′1, e

′
2, e
′
3) at the
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Fig. 3.26: The picture in S.

point p′ by parallel transport along ξ, so we only have to calculate ν ′ij. To do this,
we have to consider the corresponding curves γ′ij such that Tγ′ije

′
i = ν ′ije

′
j.
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Fig. 3.27: The picture in Σ.

On the fig. 3.27 one can see that γ′31 ∗ η1 ∗ γ13 ∗ ξ3 ≡ ζC , therefore,

ν ′31 =
zC
ν13

= −zCν31 = −zC .

Analogously, γ′12 ∗ η2 ∗ γ21 ∗ ξ1 ≡ ζB and

ν ′12 =
zB
ν21

= −zBν12 = −zB.
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And also ν ′32 = ν ′31ν
′
12 = zBzC . So we get:

FD :=

 〈(d′ + 1)zCe1 + zBzCd
′e2 + e3〉

〈(d′ + 1)zCe1 + zBzCd
′e2 + e3, e1 + zBe2〉

Vp


3.5 Small spectral networks of rank 3 and

Fock-Goncharov coordinates.

As we have seen in the previous paragraph, the ideal triangulation of the surface
with punctures yields the collection of invariant flags in C3 of the parallel transport
along curves which go around punctures. Namely, for each triangle we have three
punctures and so we get three invariant flags and for each pair of triangles with
common side we have four invariant flags.

The projectivisation yields for each invariant flag a line and a point on this line
in CP2. So for two triangles ÃB̃C̃ and D̃B̃C̃ of the triangulation of S with the
common side B̃C̃ we have four lines lA, lB, lC and lD and four points pA ∈ lA,
pB ∈ lB, pC ∈ lC , pD ∈ lD in CP2 (see fig. 3.28), which gives us four Fock-Goncharov
coordinates X, Y , Z and W [4], which we have discussed in the section 2.7.

Fig. 3.28: The picture in CP2.

First of all, we calculate the homogeneous coordinates of the points pi ∈ CP2,
i ∈ {A,B,C,D}:
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pA = [−d−1 − 1 : d−1 : 1],

pB = [0 : 0 : 1],

pC = [0 : 1 : 0],

pD = [(d′ + 1)zC : zBzCd
′ : 1],

Further, we determine the lines li ⊆ CP2, i ∈ {A,B,C,D}.

lA = 〈[−d−1 − 1 : d−1 : 1], [1 : −1 : 0]〉,

lB = 〈[0 : 0 : 1], [1 : 0 : 0]〉,

lC = 〈[0 : 1 : 0], [1 : 0 : 0]〉,

lD = 〈[(d′ + 1)zC : zBzCd
′ : 1], [1 : zB : 0]〉.

If we fix three lines corresponding to one of the triangles ÃB̃C̃ or D̃B̃C̃, then on
each line li (i ∈ {A,B,C}) we have two points pij, pik of intersection with two other
lines lj and lk ({j, k} = {A,B,C} \ {i}) [see fig. 2.25]. Moreover, for each line li we
have two point pj, pk ({j, k} = {A,B,C} \ {i}) which do not lie on this line. These
two points define us the line ljk which intersects li in the point pi,jk. So we get 4
points of each line.

Fig. 3.29: The picture in CP2.
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The coordinate X is defined as the cross ratio of 4 points pi, pij, pik, pi,jk
({i, j, k} = {A,B,C}). Because the cross ratio is a projective invariant, this does not
depend on the choice of i ∈ {A,B,C} and the choice of the affine chart. We calculate
this number for i = C in the affine chart with respect to the basis (e2, e3, e1+e2+e3).
We get pC = (1, 0) and the line lB is defined by equation (0, 1)t, t ∈ R and line lC

is defined by equation (1, 0)t, t ∈ R. Therefore, pCB = (0, 0). With respect to this
chart lA is the infinite line, which intersects lC in infinite point pCA. The line lAB
is defined by the equation (0, 1) + t(d−1, 1), t ∈ R which intersects lC in the point
pC,AB = (−d−1, 0). So we get the cross ration

X = −[pC , pC,AB, pCA, pCB] = − 0− 1

0 + d−1
= d. (3.5)

Because of symmetry we can get the coordinate Y as the cross ratio for the points
pB, pB,CD, pBD and pBC from the equation (3.5):

Y = −[pB, pB,CD, pBD, pBC ] = d′.

The coordinate Z is defined as a cross ratio of the points pC , pCB which is an
intersection point of lines lC and lB, pC,AB which is an intersection point of lines
lC and pApB and pC,DB which is an intersection point of lines lC and pDpB (see
fig. 3.30).
To calculate Z, we use the other affine chart with respect to the basis (e1, e3, e2).

In this chart pB is the infinite point, lB is the infinite line, pC = (0, 0), lC is defined
by equation (1, 0)t, t ∈ R, pA = (−d− 1, d), pD = (zBzCd

′)−1(zC(d′ + 1), 1).
In the chosen affine chart we have pCB is a infinite point,

pC,AB = (−d− 1, 0),

pC,DB =

(
d′ + 1

zBd′
, 0

)
.

So we can calculate Z:

Z = [pCB, pC,AB, pC , pC,DB] = 1 +
1 + d′

(1 + d)d′zB
.

Analogously we get the coordinate W

W = [pBC , pB,DC , pB, pB,AC ] = 1 +
1 + d

(1 + d′)dzC
.

We can see that an ideal triangulation of S and a flat connection on Σ define the
collection of Fock-Goncharov coordinates on S. Conversely, if an ideal triangulation
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Fig. 3.30: The picture in CP2.

T on S and a collection of Fock-Goncharov coordinates with respect to this
triangulation are given, we get the numbers d, d′, zB, zC for each pair of triangles
with common side. We can construct a representation ρ : π1(S, p) → PGL(3,C),
p ∈ S, p do not lie on lines of triangulation in the following way.
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Fig. 3.31: The picture in S.

First, we fix some total order % on triangles of this triangulation and choose a pair
of triangles with vertices Ã, B̃, D̃, C̃ ∈ S and the common side c = B̃C̃. For this pair
of triangles the numbers d, d′, zB, zC are defined by Fock-Goncharov coordinates. We
assume that by projectivization invariant flags Fi for i ∈ {Ã, B̃, C̃, D̃} go to points
of CP2:

pA = [−d−1 − 1 : d−1 : 1],

pB = [0 : 0 : 1],

pC = [0 : 1 : 0],

pD = [(d′ + 1)zC : zBzCd
′ : 1],

and lines:
lA = 〈[−d−1 − 1 : d−1 : 1], [1 : −1 : 0]〉,

lB = 〈[0 : 0 : 1], [1 : 0 : 0]〉,

lC = 〈[0 : 1 : 0], [1 : 0 : 0]〉,

lD = 〈[(d′ + 1)zC : zBzCd
′ : 1], [1 : zB : 0]〉.

We have a unique projective transformation φ, witch sends pA to pD, lA to lD and
fix other two points and lines. This transformation corresponds to a unique element
M ∈ PGL(3,C). In this way we get a bijective correspondence between the set
of all pairs of triangles on S with a common side and PGL(3,C). We also fix the
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number ε, which is equal to 1 if the triangle ÃB̃C̃ is smaller then D̃B̃C̃, and is equal
to −1 otherwise.
We consider a group homomorphism κ : FC → PGL(3,C), which is defined on

generators of FC in a following way κ(c) := M ε for all sides c of triangulation T .
Further, we consider the universal covering π : S ′ → S of S and corresponding

triangulation T ′. We denote by P ′ the set of all vertices of triangulation of T ′. We
want to construct two function f1 and f2, such that f2 sends each element s′ ∈ P ′

to a line f2(s′) in CP2 and f1 sends s′ to a point f1(s′) ∈ f2(s′).
First, we choose a lift p′ ∈ π−1(p). This lies in a triangle T0 on S ′ with vertices

s′1, s′2, s′3. We define f1 and f2 for this three points in a following way:

f1(s′1) := [1 : 0 : 1], f1(s′2) := [0 : 1 : 1], f1(s′3) := [1 : 1 : 0],

f2(s′1) := 〈[1 : 0 : 1], [0 : 0 : 1]〉 ,

f2(s′2) := 〈[0 : 1 : 1], [0 : 0 : 1]〉 ,

f2(s′3) := 〈[1 : 1 : 0], [1 : 0 : 0]〉 .

We use the map ψ from the section 2.9 and assume that the order % agree with the
order % in the section 2.9. If we choose s′ ∈ P ′, then by remark 2.20 there exist a
unique shortest word b ∈ FC(S, p) and unique i ∈ {1, 2, 3} such that ψ(b, si) = s′.
Because b and i are unique, we define fj(s′) := κ(b)(fj(si)), j ∈ {1, 2}.

Now we are ready to construct a representation ρ : π1(S, p) → PGL(3,C). We
take an element g ∈ π1(S, p). We can consider this element as a deck transformation
of S ′, which also acts on P ′ and g(s′i) = r′i ∈ P ′, i ∈ {1, 2, 3}. There exist a unique
element ρ(g) ∈ PGL(3,C) such that ρ(fj(s

′
i)) = fj(r

′
i) for all i ∈ {1, 2, 3}, j ∈ {1, 2}.

By this rule the map ρ : π1(S, p) → PGL(3,C) is well defined, and it is easy to see
that this is a group homomorphism, so we get a representation.

Remark 3.3. Because the order % on T and choice of sign of ε are consistent,
the constructed representation ρ : π1(S, p) → PGL(3,C) does not depend on this
order. Moreover, this representation depends only on a triangulation T and on
Fock-Goncharov coordinates, which are given with respect to this triangulation.

3.6 Other coordinates associated with spectral

networks of rank 3

How we have seen, if we fix two triangles ÃB̃C̃ and D̃B̃C̃ with a common side, then
four Fock-Goncharov coordinates are defined by homotopy constants d, d′, zB, zC .
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Two coordinates X and Y agree with constants d and d′. Two other coordinates Z
and W depend on d, d′ and zB resp. zC . Now we are going to give an interpretation
of zB and zC which is similar to Fock-Goncharov coordinates. Instead of two points
pC,AB and pC,DB we consider two points pCA and pCD which are points of intersection
lC and lA resp. lD (see fig. 3.32). The new U -coordinate we define as

U = −[pC , pCB, pCA, pCD]

Analogously, we define V -coordinate:

V = −[pB, pBC , pBD, pBA]

Fig. 3.32: Picture in CP2.

Now we calculate these coordinates for our pair of quadrangle given by spectral
network. In the chart with respect to the basis (e1, e3, e2) the point pCA = (−1, 0),
pCB is infinite point, pC = (0, 0), pCD = (z−1

B , 0). Therefore,

U = zB.

Analogously, we get
V = zC .
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We can see that these new coordinates determine Fock-Goncharov coordinates
and vice versa, but in our case these coordinates are more natural because they
correspond to homotopy classes of curves on Σ.
We also want to see, how this new coordinates change if we change the

triangulation. Like in the case of Fock-Goncharov coordinates we consider only
the case of a flip [see fig. 3.33].
A simple affine geometric calculation gives us transformation formulas of

coordinates:

X ′ =
(1 + U)V

(1 + V )Y
, Y ′ =

(1 + V )U

(1 + U)X
,

U ′ =
Y + V (1 + Y + U)

(X + U(1 +X + V ))Y
, V ′ =

X + U(1 +X + V )

(Y + V (1 + Y + U))X
.

Remark 3.4. These changes of coordinates are positive. This means that the minus
sign does not appear in transformation formulas, as in the original Fock-Goncharov
coordinates.
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Fig. 3.33: Flip. Picture in CP2.
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