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Zusammenfassung

Die Theorie der spektralen Netze wurde von D. Gaiotto, G. W. Moore and A. Neitzke [6-9]
wahrend ihrer Forschung iiber supersymmetrische Feldtheorie in der Physik entwickelt.
Diese Konstruktion ist aber auch vom grofien Interesse fiir die Differentialgeometrie,
insbesondere fiir die Theorie der geometrischen Strukturen auf Flachen.

In dieser Masterarbeit wird die Konstruktion von Darstellungen der Fundamentalgruppe
einer Fldche in eine Matrix-Lie-Gruppe mit Hilfe der Nicht-Abelisierungsabbildung
spektraler Netze diskutiert. Insbesondere wird der Fall der kleinen spektralen Netze
untersucht. Kleine spektrale Netze von Rang 2 und 3 werden besonders ausfiihrlich
studiert. Es wird der Zusammenhang zwischen spektralen Netzen und projektiver
Geometrie analysiert. Wir zeigen, dass ein flacher Zusammenhang und eine Triangulation
der Flache uns die Familie der projektiven Invarianten liefern, und zwar Doppelverhéltnisse
fiir spektrale Netze von Rang 2 und Fock-Goncharov Koordinaten [4] fiir spektrale
Netze von Rang 3. Wir untersuchen, inwiefern diese projektiven Invarianten den
flachen Zusammenhang auf der Flache bestimmen, und zeigen, dass spektrale Netze
Koordinaten auf der Charaktervarietdt der Fundamentalgruppe einer Fldche mit Werten
in einer Matrix-Lie-Gruppe liefern.  Insbesondere stimmen diese Koordinaten mit
Doppelverhéltnissen im Fall der spektralen Netze von Rang 2 und mit Fock-Goncharov
Koordinaten in einigen Féllen von spektralen Netzen von Rang 3 iiberein. Zum Schluss
fiihren wir andere Koordinaten ein, die dhnlich zu Fock-Goncharov Koordinaten sind, aber
natiirlicher in unserem Fall sind, weil sie mit den Homotopiekonstanten von geschlossenen
Kurven auf der Fléache iibereinstimmen. Wir untersuchen auch, wie sich diese Koordinaten
dndern, wenn wir eine andere Triangulation der Flache wahlen.

Abstract

The theory of spectral networks was developed by D. Gaiotto, G. W. Moore and A. Neitzke
[6-9] during their research of the theory of supersymmetry in physics. But this construction
is also of interest in differential geometry, especially for the theory of geometric structures
on surfaces.

In the present master thesis the construction of representations of the fundamental group
of a surface in a matrix Lie group using the non abelianisation map and spectral networks
is discussed. Especially, the case of small spectral networks is investigated. Small spectral
networks of rank 2 and 3 are discussed in detail and the connection between spectral
networks and projective geometry is analyzed. We show that a flat connection and a
triangulation of the surface define a collection of projective invariants, namely, cross ratios
for spectral networks of rank 2 and Fock-Goncharov coordinates [4] for spectral networks
of rank 3. We explore to what extent these projective invariants define a flat connection
on the surface and show that spectral networks yield coordinates on the character variety
of the fundamental group of a surface with values in a matrix Lie group. In particular,
these coordinates correspond to cross ratios in the case of spectral networks of rank 2
and to Fock-Goncharov coordinates in some cases of small spectral networks of rank 3.
Finally, we define other coordinates, which are similar to Fock-Goncharov coordinates, but
are more natural in our case because they agree with homotopy constants of closed curves
on the surface. We also investigate how these coordinates change if we choose another
triangulation of the surface.
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1 Introduction

1.1 Basic notions

We consider a closed orientable surface S of genus g with a finite collection
P ={s1,...,5,}, n € N of marked points. We also consider the surface S = S\ P
and assume that the Euler characteristic of S is negative. We name the points in
P the punctures of S. For each point p € S and ) C P there is the natural group
homomorphism ¢ ,: m(S,p) = m(SUQ, p) of fundamental groups of S and SUQ
with respect to the point p € S. This homomorphism is surjective, because each
curve on S can be homotopically deformed to the curve which does not contain any

punctures.

Definition 1.1. The closed curve ~v: [0,1] — S with v(0) = ~(1) = p is called
peripheral if there exist s € P such that ris ,([Y]) is the identity of m (S U {s},p).

Remark 1.2. Obuiously, the property "to be peripheral” for a closed curve does not

depend on the choice of base point and is an invariant by free homotopy in S.

Further, we consider a Lie group G which is one of the following groups GL(k, K),
SL(k,K) or PGL(k,K) where K is the field R or C, £ € N. We denote by
Hom™(m(S),G) the space of all completely reducible representations from the
fundamental group m(S) of the surface S into the Lie group G. The Lie group
G acts on Hom™(7(5), G) by conjugation.

Definition 1.3. The quotient space
X (m(5),G) := Hom*(m(5),G)/G
is called character variety.

Remark 1.4. We can define a topology on X (m(S),G) in a following way. We

choose p € S and some generators [y1],...,[vi] of m1(S,p). We consider a following
map:
Hom*(m(S,p),G) — G!
p = (p(Imls - ()



This map 1is injective, and we can wuse this map to define the topology on
Hom™(m1(S, p), G) as a subspace topology

The topology on X (m1(S,p), G) is defined as the quotient topology by the action of
G. One can prove that this topology does not depend on the choices of p € S and of
generators [v1], ..., [y]. So we get a topology on X (m1(S),G).

We want to study X (m(S5),G) using the theory of flat connections on vector
bundles.

We consider a vector bundle 7: E — S over the surface S whose fiber £, for each
p € S is isomorphic to C* with the isomorphism 6,: E, — C*. Further, we will also
write only £ for a vector bundle if the surface S and the projection map 7 is fixed
and if this does not cause confusion.

We consider a connection V on the vector bundle . We denote the vector bundle
E with a connection V by (E, V).

Definition 1.5. A flat bundle is a vector bundle with a flat connection.

For the curve v: [0,1] — S we denote T,: E ) — E,(1) the parallel transport

operator along ~.

Definition 1.6. A subbundle E' over S of the vector bundle E over S is called
parallel if for each x € E' and for each curve v: [0,1] — S such that y(0) = m(x)

T,(z) € E'.

Definition 1.7. A vector bundle E over S is called completely reducible if for
each parallel subbundle E' of E there is a parallel subbundle E” over S such that
E=Fo®FL".

Proposition 1.8. Let S a smooth manifold. There is a bijection ¥ between the
set Hom(m(S), GL(k,C))/GL(k,C) of all representations from the fundamental
group m(S) of S into GL(k,C) modulo conjugation by GL(k,C) and the set of
all isomorphism classes of flat vector bundles over S of rank k.

The restriction of ¥ on the character variety X(m(S),GL(k,C)) yield the
bijection between X (m1(S), GL(k,C)) and the set of all isomorphic classes of flat

completely reducible vector bundles over S of rank k.

Proof. First, we fix the base point p € S. For each loop ~: [0,1] — S,
7(0) = v(1) = p the parallel transport 7, is an element of GL(k,C). Because the



connection V is flat, 7', only depends on the homotopy class [y] € m1(S,p). So we
can define a representation p,v: m1(S,p) = GL(k,C) as

pov([]) = 0,0 T, 00,

for all [y] € m(5).

If we consider another base point p’, then the representation changes by
conjugation with 6,750, € GL(k,C), where §: [0,1] — S a curve such that
6(0) =p, 6(1) =p". ~

If we consider another vector bundle 7: E — S bundle, which is isomorphic to
E with an bundle isomorphism L: E — FE’, then the representation changes by
conjugation with 0~pr9; e GL(k,C), where ép: Ep — C* a linear isomorphism.

If we consider another linear isomorphism 0,,: £, — C*, then the representation
changes by conjugation with 6,0, L'e GL(k,C).

So we have a well-defined map which take an isomorphic class of flat vector bundle
over S and give us the element of Hom(m (S), GL(k,C))/GL(k,C).

In particular, let £ be a completely reducible. Each invariant subspace V' C C* of
ppv generate by parallel transport along all curves on S the parallel subbundle E’
of E. Therefore, there is a subbundle E” of E such that £ = E'@® E”. In particular,
E, = E,® E]. Therefore, 0,(E)) is complementary invariant spaces of p, v for V.
So is pp v completely reducible representation.

If F is not completely reducible, then we have a parallel subbundle E’
of E, which does not have a complementary parallel subbundle. If the
corresponding representation p, v is completely reducible, then the set HP(E;) have a
complementary invariant subspace V C C*. So we can by Bl =0 (V) the parallel
subbundle of E generate, which is obviously a parallel complement to E’, what is
impossible. Therefore, p, v is also not completely reducible.

We can do a converse. If a representation p: m(S) — GL(k,C) is given then we
can construct a vector bundle F over S and a flat connection V such that p = p, v
for some p € S.

We consider the universal covering S of S with the projection map pr: S — S
and consider the trivial vector bundle S x C* with the standard product connection,
which is flat. The fundamental group m(S,p) acts on S by deck transformations
Dy S — S for [y] € m(S,p). It acts also on the fiber C* by representation p. We

consider the following diagonal action:

A: m(S,p) — S x Ck
h = (Gv) = (Dr(@), p([y)v))



Further, we take the quotient S x C*/A. Because the action of 7 (S, p) on S x C*
is diagonal and S is homeomorphic to S/m(S,p), the quotient is a vector bundle
over S. Because the action of 71 (S, p) on C* is linear and the connection on S x C
is flat, the push forward connection on S is flat.

If we consider the representation p? = gpg~! for some g € GL(k,C), then we get

the bundle isomorphism

L: SxCF/A— SxCk/A
g, v] = g, 9(v)]

where AY is the corresponding to p? diagonal action. It is easy to see that this is a
well-defined bundle isomorphism.

So we get the map which takes the isomorphic class of the representation
p: m(S) = GL(k,C) and gives us the isomorphic class of flat vector bundles.

Moreover, it is easy to see that for all representations p: (S, p) — GL(k,C) is
ppv, = p forallp e S

We have also to show that for each vector bundle with a flat connection (£, V)
the constructed vector bundle (S x C¥/A,V,, _) is isomorphic to (E, V).

First we define the bundle map L: S x C¥ — E. We fix € pr-'(p). Let
G € S, we consider the curve 7: [0,1] — S such that 5(0) = p, (1) = §. The
corresponding curve v = pr o7 joins the points p € S and ¢ = pr(§) € S. We define
L(g,v) = T,6,*(v). Because S is simply connected and the connection on E is flat,

for fixed ¢ this construction does not depend on 4 and is smooth. Moreover, the

diagram
Sxck L g
ifr "
s s

commute. So we get the well-defined bundle map.

The map L is also A-invariant. If we take (§,v),(¢,v’) € S x CF such that
(G,v) = A(¢',v"), then there is an element [5] € m1(S,p) and a deck transformation
D such that ¢ = D(q) such that A([S]) = (D, p([87])) for p = p,v. Moreover, if
we fix the curves 7 and 7/, which join $ and §, resp. ¢’ an consider the lift 3 of 3
to S with 3(0) = p and the lift 4; of v such that 4/(0) = B(l), then § %9, = 7/,
because D o4 =4, and S is simply connected.



Fig. 1.1: Picture in S and projection on S.

So we get

L(@,v") = L7 (1),0") = LB+ 71(1), p([87'])v) = Tpuy 0 6, (p([8710) =
= Tpuy 00, 00,0 15" 00, (v) = Tpuy 0 Tg-1 060, (v) = 1,6, (v) = L(G,v)

Therefore, there is the unique well-defined bundle map L: S x C* /A — E such
that L = Loe, where e: S x CF — § x C*/A the natural projection. Because
S x C*/A and E are vector bundles over the same manifold S and by construction
L, is a linear isomorphism for each p € S, L is a bundle isomorphism.

So we have a bijection between Hom(m(5), GL(k,C)/GL(k,C) and the set of all
isomorphic classes of flat vector bundles over S of rank k.

If we have the completely reducible representation p, then with this representation
we construct the corresponding flat bundle (E, V) like above, which gives us the
other representation p,v. This representation is conjugate to p and is, therefore,

completely reducible. How is proved above, (£, V) is also completely reducible. [

Definition 1.9. For p € S the representation p,v in the proof of the proposition
1.8 is called a holonomy representation of m1(S,p).

Remark 1.10. As we have seen in the proof of the proposition 1.8, if we change

the base point p € S, then the representation changes only by conjugation in
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GL(k,C). So the element in Hom(m(S), GL(k,C))/GL(k,C) only depends on the

flat connection.

Remark 1.11. In case k = 1 GL(1,C) = C* is an abelian group, therefore,
the representation sends all commutators in m (S) to identity, so we have a

representation of the first homology group H,(S,7Z) into C*:

X (m(S),GL(1,C)) = Hom(H,(S,Z),C").
H{(S,Z) is the free Z-module of dimension | = 2g +n — 1, where g is the genus

of S, n is the number of punctures. So we can take a basis (e, ...,e;) of Hi(S,Z)
over Z. Then each representation p € Hom(H1(S,Z),C*) is well-defined by the tuple
(pler), ..., p(er)) € (C)L. The map p — (p(er), ..., p(er)) is bijective and it gives us
an exact description of X (m(S), GL(1,C)):

X(m(9),GL(1,C)) = (C*)!

To describe the general case X (m(S), GL(k,C)), we want to use the abelian case.

To do this, we will find another surface > and a map
X(m(%),GL{,C)) = X(m(S), GL(k,C)) (1.1)

Definition 1.12. Fach map, which satisfies (1.1), is called a non-abelianisation

map.

Remark 1.13. In this work we want to describe some non-abelianisation maps
that are finite-to-one and have an open dense image. This will give coordinates on

character varieties.

1.2 Decorated character variety

In this section we want to construct an extension of the character variety which we
will use to define coordinates on the character variety.
First, we consider a representation p € Hom"(m(S),G), where G is one of Lie
groups GL(k,K), SL(k, K) or PGL(k, K), which satisfies the following conditions:
1. For each peripheral element g € m;(S) the matrix p(g) has an invariant
flag D(g) = (Vi(9),...,Vk(g)), where dim(V;(g)) = 4, ¢ € {1,...,k}. For one
representation there can be a lot of choices of flags for each g. We can fix this

choice by fixing of the following map:
D: {gem(9)]|gis peripheral} — {F | F is a flag of K*}

g — D(g9) = (Vi(g), .-, Vi(9))

11



The map D must satisfy the following properties:
a) If g1,92 € m(S) are two peripheral elements conjugated by h € m(95),
hgih™t = g,, then
p(h)(D(g1)) = D(g2)

b) For every k € Z\ {0} and for every peripheral element g € m(.5)

By these properties, for every puncture, one have to choose only one flag, then
the flags associated to the other peripheral elements going to the same punctures
are determined. We call this map D decoration of p.

2. For each peripheral element g € 7(S) the matrix p(g) is conjugated to a
matrix of the following form:

diag(JAhml, ceey J)\T,mr)7

where all m; € N, my +... +m, = k, Jy, m, is a Jordan block m; x m; corresponding
to the eigenvalue \; and all \; € C* are different.

We consider the set

Homd(m(S), G) = {(,0, D) p is completely reducible and satisfies 1,2,}

D decoration of p

We call elements of Hom?(7,(S),G) decorated representations. We have a

natural projection
Hom(m(S),G) — Hom*(m(S),G)
(p, D) = p '
The Lie group G acts by conjugations on representations and on flags of K*.
Definition 1.14. The quotient space
XU (9),G) := Hom"(m,(9),G) /G

is called decorated character variety. We denote by [p, D] the element of the

decorated character variety, which contains the decorated representation (p, D).

Remark 1.15. We also have a natural projection:
Xd(ﬂl(5>7G) - X<7T1(S)7G>
[p. D] = ol

One can prove that this projection is a finite-to-one map and has an open dense

mage.

12



We want to study the character variety using Fock-Goncharov coordinates, which
we will define later. Fock-Goncharov coordinates are not defined on the decorated
character variety but on a dense subset of it. To construct this subset, we need to
fix an ideal triangulation T of S. If we choose two triangles with a common side,

we get 4 peripheral curves [see fig. 1.2].

Fig. 1.2: Picture in S

Definition 1.16. Two flags Fy = (V4,..., Vi) and Fy = (W, ..., Wy,) of K* are called

transversal if
dim(V; + Wy,) = min{l + m, k} for i,m € {1, ..., k}.

Definition 1.17. Let [p, D] € X%(m(S),G). We say that flags of [p, D] are
transversal with respect to the triangulation T if for each two triangles with
a common side the corresponding 4 peripheral curves have pairwise transversal flags

by decorated representation (p, D).

Remark 1.18. The property "to be transversal” for two flags is invariant by the

action of G. Therefore, the definition above is correct.

We denote by X¢(m(S),G,T) the set of all decorated representation which are
transversal with respect to the triangulation 7. This is an open dense subset of
XU(mi(8), G).

13



Remark 1.19. In this thesis we describe X%(m(S), PGL(2,C),T) and
X471 (S), PGL(3,C),T) using spectral networks and Fock-Goncharov coordinates.
Because of remark 1.15 and because X% (S),G,T) is open and dense in

X4y (S),G) this description will give us local coordinates on an open dense subset

of X (m(S), PGL(2,C)) and X (m(S), PGL(3,C)).

1.3 Regular homotopy

To construct the non-abelianisation map we will use branched coverings of S and
some kind of path lifting rule. But in contrast to coverings, the path lifting to
branched coverings is not homotopically invariant. So we need to modify the path
lifting for branched coverings. To do this, we need first consider the regular paths

instead of continuous paths.

Definition 1.20. A path v: [0,1] — S is called regular if v € C*([a,b]) and
A(t) # 0 for all t € [0,1].

Definition 1.21. We say that two regular paths ~1,7: [0,1] — S have the same
extremes if 11(0) = 72(0), 1(1) =72(1), 71(0) = 12(0), (1) = J2(1).

Definition 1.22. Two regular paths with same extremes ~yi,72: [0,1] — S are
called regular homotopic if they are connected by a smooth homotopy H : [0, 1] x
[0,1] — S such that

O 0,5) = 41(0) = (0
O (1,5) = (1) = (1)
o0H
W(ta‘g)?'éo

for all s, t € ]0,1].

14



H(t,s)
|

y1(t) = H(t,0)
y2(t) = H(t, 1)

Fig. 1.3: Regular homotopy H of paths v; and 7, with same extremes

If we have a regular path v on S, we can lift it to the the unit tangent bundle US
of S:

AYeo0,1] — U
i(0)
b (W)’Wt)u)

Remark 1.23. To define the unit tangent bundle of S, we need a Riemannian metric

on S. But, obviously, the unit tangent bundle does not depend on the metric.

Because for surfaces with punctures m (US) = Z x m1(.5), the fundamental group

of the unit tangent bundle fits in the following exact sequence:
0—=>7Z—mUS)— m(S) —0.

Definition 1.24. For two regular paths i,y with the same extremes which are

homotopic in the usual sense, the number

wimn, 1) =7 (y) " €Z
15 called winding number.

Remark 1.25. The winding number is unique defined up to a sign. If we choose
the orientation of the surface S, we can define the sign of winding number. On the
fig. 1.4 we can see how we can calculate the winding number of two curves by the

standard orientation of the plane.

15



Fig. 1.4: Winding number w(7¥,7Y) = —1.

Remark 1.26. Winding number is antisymmetric: w(yY,7Y) = —w (7, 7).

The relation "to be regular homotopic" on the set of all regular paths on the
surface S is an equivalence relation which we denote p.
The object which is very close to the fundamental group of the unit tangent bundle

is the regular fundamental group:

Definition 1.27. Let S is a surface, p € S, v € T,S. The set

reg

(S, p,v) = {7 | v is a regular path on S,v(0) = (1) = p,¥(0) = 4(1) = v}/p
on which the multiplication is defined as a concatenation of curves is called the
regular fundamental group of S with respect top € S and v € T,,S.

reg

Remark 1.28. Up to reqular homotopy the neutral element e of 7;(S, p,v) looks
like on fig. 1.5.

16



Fig. 1.5: Neutral element of 71 (S, p, v).

It is easy to see that the regular fundamental group, like the usual fundamental
group, is well defined and for all p,p’ € S and all v € T,,S, v' € TS the groups

1 9(S, p,v) and 71 (S, p/,v’) are isomorphic. So we can consider the 7;(.S) as the

isomorphy class of m“(S, p,v).
The connection between the fundamental group of the unit tangent bundle and
the regular fundamental group of the surface is given by the following theorem

(Smale) [3]:
Theorem 1.29 (Smale). The map

6: mI(S,p,v) = m((US,(p,v))
[ = [(v: )]

1S a group isomorphism.

Remark 1.30. The non-trivial part in this theorem 1is to prove that for two
homotopic curves in US the corresponding reqular curves in S are reqularly

homotopic in S.

With this theorem we have the following exact sequence:
0—7Z— m“S) = m(S) = 0.

In general, for closed surfaces this sequence does not split, but for surfaces with
punctures it always splits.
We can take a quotient relative to the subgroup (2) C Z. So we get the other
exact sequence
0— Z/)2Z — 7;(S) = m(S) — 0,

17



where 75(S) := m“(S)/(2). This sequence always splits also for closed surfaces,
and a choice of spitting is equivalent to a spin structure.
We need the following construction of the semigroup ring, which is very similar

to the well-known group ring construction in algebra.

Definition 1.31. Let H be a semigroup, written multiplicatively, and let R be a
ring. We consider R[H] defined as the set of mappings f: H — R of finite support.
This set has a natural structure of an R-module.

To turn R[H] into a ring, we define the product of f and g to be the mappings:

F = Y wves J(Wg(v), ifu,v e H exist such that x = uv
cg: .
g 0, otherwise

The summation is well defined because f and g are of finite support, and the ring
axioms are readily verified.

The zero element Oy € H is an element of H such that Ogu = w0y = Oy for all
u € H. Obuviously, if a zero element exist in H, then this is unique.

Further, we consider the ideal O = (0g) where Oy is the zero element of H if this
exist (if H does not contain the zero element then O = {0}). The semigroup ring
of H over R, which we will denote by R[H], is the quotient ring R[H]/O.

Some variations in the notation and terminology are in use. In particular, the
mappings such as f: H — R are sometimes written as what are called "formal

linear combinations of elements of H, with coefficients in R":

> f(h)h,

heH

or simply

> b,

heH

where the sum is always finite because for almost all f(h) = f, = 0.

Now we are ready to define some important algebraic objects over the surface S.
We use definitions from [1].

The set REGPATHS(S) of all regular paths 7 in S up to regular homotopy
p supplemented with the formal symbol 0 have the following natural semigroup
structure. The multiplication in REGPATHS(S) is the concatenation if it is
possible and 0 otherwise, we also define the left and right multiplication of an element
with 0 as 0.
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We can also consider the corresponding semigroup ring Z|[REGPATHS(S)] as
in definition 1.31. By construction, for all p € S and all v € T},S we have natural

inclusions
7 9(S,p,v) = REGPATHS(S) <= Z[REGPATHS(S)].

Similarly we can construct the semigroup PATHS(S) of all paths on S up to
homotopy with the formal symbol 0 and then the semigroup ring Z[PATHS(S)].

Also for all p € S we have natural inclusions
m(S,p) — PATHS(S) — Z|PATHS(S)].

Moreover, because each regular path is continuous and the relation
p of regular homotopy is finer then the relation of usual homotopy,
we have the mnatural surjective projection (semigroup homomorphism)
7: REGPATHS(S) — PATHS(S) which can be continued to the surjective
ring homomorphism 7: Z[REGPATHS(S)] — Z|[PATHS(S)].

Further, we consider the ideal

o € REGPATHS(S
T = <{71 — (=1)u02)A, 712 (S5) }) '

are homotopic and have same extremes

Y1

Fig. 1.6: Example of v, and 7, such that v, — (—=1)*0112)q, € T.

Now we are ready to define homotopy path algebra of the surface. We use the

definition from [1].
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Definition 1.32. The quotient ring
HPA(S) =Z|REGPATHS(S)]/T
is called homotopy path algebra of S.

Because for v1,72 € 779(S,p,v), (p € S, v € T,,S) we have: 3 —v, € T if and only
if 71751 € (2), the fundamental group with signs 75(S, p, v) of S can be included as
a subset in the homotopy path algebra HPA(S) of S.

We consider the natural projection m: REGPATHS(S) — HPA(S). Because
we identify by Z only elements with same extremes, so the tangent vectors at the
extreme points of elements 7([y]) for v € REGPATHS(S) are well defined. This

gives us the possibility to give the following definition:

Definition 1.33. Let V: S — TS be a non-zero tangent vector field. For every
[v] € PATHS(S) the set n(t7*([7])) has two elements that agree with V at the
extremes. A semigroup homomorphism o: PATHS(S) — HPA(S) is called a spin
structure with respect to the vector field V' if o([y]) agree with V' at the extremes

and

a((]) € 7(=7H([])
for every [y] € PATHS(S).

By construction of HPA(S) for each element of 0 # [y] € PAT HS(S) and for each
non-zero tangent vector field V: S — TS the set w(771([y])) € HPA(S) contains
exactly two elements x and —x which at extreme points agree with a vector field V.
Moreover, the set w(77'(PATHS(S))) generates HPA(S). We consider a subring
of HPA(S) which is generated by elements of 7(REGPATHS(S)), which agree
with the vector field V' at extreme points. We denote this subring by HPA(S, V).

Using a spin structure o we can construct a ring homomorphism
o': HPA(S,V) — Z[PATHS(S)] by its definition on generators: for each element
[v] € PATHS(S) and x € n(7~([7])) N HPA(S, V) let

) { M. o) =2

—[l o)) = —=

So we have 0’ o 0 = idparms(s)- The map o’ is also called a spin structure with
respect to the vector field V.
Also a spin structure o with respect to the vector field V' gives us a group

homomorphism (S, p) — 75 (S, p, V(p)) for each p € S because for fixed p € S the

20



group 71 (S, p) is contained in PATHS(S), ©5(S, p, V(p)) is contained in HPA(S,V)
and because of o([y]) € 7(77([7])) C (S, p, V(p)) for every [y] € m(S5,p), we get
0-(71—1<Sap)) - Wf(svpa V(p))

1.4 Non-abelianisation map

We consider a surface S with punctures, 7: ¥ — S is a branched covering. Let p € S,
0# v e T,S. Let W be a non-zero vector field on ¥ such that D,7(W(q)) = v for
all g € 7 1(p).

We want to construct a non-abelianisation map
X(m(£), GL(1,C)) - X(mi(S), GL(k,C)).

We will do it using spectral networks, namely, the spectral network will give us a
map 7% (S, p,v) = HPA(X, W), which actually is a path lifting rule form S to X.

If we take an element of X (m(X), GL(1,C)), so by proposition 1.8 we get a flat
connection on Y. If we also fix spin structures on S and X, then we get a sequence
which gives us the representation (S, p) — GL(k,C):

(5, p) % Ty (S, p,v) o HPA(Z, W) %

spin str. Z(PATHS(E)) flat co;m. GL(]C,C)

on X

The equivalence class of this representation is an element of the character variety
X (m(S),GL(k,C)), so the definition of the non-abelianisation is complete, except
for the path lifting rule [*|, which we will define in the second chapter using spectral
networks.

An equivalent way to construct this representation is using twisted connections.
The usual flat connection V can be considered as a map which takes an element
[v] € PATHS(S) and gives a linear map T,: E o) — [, which we interpret
as a parallel transport operator along . We can extend this map to the map
from Z(PATHS(S)) to the set L(E) = @D, e L(Ep, Ey) where L(Ep, E,) is the
set of all linear maps from E, to E,. On L(E) the multiplication can be defined
in the following way: for A € L(E,, E,), B € L(E,, Ey), (p,q,r,s € S) we define
BA € L(E,, E;) the usual composition of two linear maps if ¢ = s and 0 otherwise.
With this multiplication L(E) becomes a ring and V becomes a ring homomorphism
from Z(PATHS(S)) to L(E).

Let o': HPA(S,V) — Z[PATHS(S)] is a spin structure. The composition Voo’
gives us a ring homomorphism from HPA(S,V) to L(E).
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Definition 1.34. A ring homomorphism

V7. HPA(S,V) — L(E)
T — A,

such that A, € L(Ey ), Eyy) for all x = w([7]), [v] € REGPATHS(S,V) is called
twisted connection on E.

Remark 1.35. The restriction of the twisted connection VT : HPA(S,V) — L(E)
on m(S,p,V(p)) gives us a group homomorphism pyr: ©5(S,p,V(p)) — GL(E,)

which is called twisted representation.

Remark 1.36. A twisted connection can be also defined in the following way:

Let mg: E — S be a vector bundle of rank k over S, nys: E' — US a vector
bundle of rank k over the unit tangent bundle US of S, 0: E' — E a smooth map,
such that for each (p,v) € UT the restriction of 0 on the fiber Ef, ,

Q(W)): Eép’v) — Ep
is a linear isomorphism and the following diagram commutes:

g %, E

|

Us na‘tur(‘zl g
projection

A fiber U,S of US over p € S is diffeomorphic to S*, which fundamental group is
isomorphic to Z. We fiz v € U,S and an isomorphism m (U,S,v) — Z and choose
a loop 6, in U,S, which corresponds to 1 by this isomorphism.

A flat connection on E' is called a twisted connection on E if for all p € S the
parallel transport operator Tj, = _idEEp,v)'

It is easy to see that this definition does not depend on the choice of 0, because
the connection is flat, and does not depend on the choice of v € U,S and of
isomorphism w1 (UpS,v) — Z because U,S is connected and Aut(Z) = {Fidz},
therefore, Tsn = —id; ' = —id,.

A twisted connection on E defines a map PATHS(US) — L(E'), which sends
the homotopy class of a curve on US to the parallel transport operator along this
curve. Because the connection is flat, this operator does not depend on a choice of

this curve in a homotopy class.
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Using this definition we can define the twisted connection as in definition 1.3/.

First, we have an natural map

REGPATHS(S) — PATHS(US)
[7] — (7, 9]

For the element [(vy,7)] we get an parallel transport operator

/

)
T Eo)400) = Eiya0))-

Using 0 we get a linear map
-1 .
Ty = 06040 © Ty 200 500 B = Br)-

So we have a map
REGPATHS(S) — L(E)
[7] = T,

This map can be uniquely extended by Z-linearity to the map
ZI|REGPATHS(S)] — L(E).

And it is also easy to prove that the ideal T goes by this map to 0. So we can take
a quotient and get the well defined map HPA(S) — L(E). The restriction of this
map on HPA(S,V) gives us a twisted connection in sense of definition 1.34.

With spin structures on S and twisted connection on ¥ we get a sequence which
gives us the representation m (S, p) — GL(k,C):
™1 (S,p) B W (S,p,v) — HPA(S, W) S22 GL(K,C), (1.2)

on

wherep € S, v € T,,S and W is a non-zero vector field on ¥ such that D,7(W(q)) = v
for all ¢ € 771(p). The map [*] from 75(S,p,v) to HPA(X, W) is given by the
spectral network.

Because the spin structure on ¥ gives us the twisted connection on the vector
bundle over ¥, further, by considering of spectral networks, we will assume that the

twisted connection and corresponding twisted representation on > is given.

1.5 Spin structure associated with a vector field

Using a non-zero vector field V' on S we can construct a spin structure. Because
S has punctures, a non-zero vector field on S always exists. In this section we will

assume that every regular curve v on S agrees with V' at extreme points.
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Let v: [a,b] — S be a regular curve. We consider a Riemanian metric g on
S, then for each p € S we have the ortonormal basis (e1(p),ez2(p)), such that
e1(p) = V(p)/IIV(p)| and g(ei(p),e;(p)) = d;; for all p € S. Moreover, the vector
field es can be chosen so that for all p € S the basis (e1(p), e2(p)) is positive oriented

with respect to the orientation of S. In this basis we have

1) = z()er(v(1)) + y(B)eay(1)).

So we have the well-defined smooth map

v la,b] — St
R CONT0)

1@l

which is a curve in S' and 7/(a) = +/(b) = (1,0). This curve defines an element in
the fundamental group m1(S?, (1,0)) which is isomorphic to Z by an isomorphism
0: 7 (S, (1,0)) — Z. This isomorphism is unique if we assume that ([a]) =1 € Z
for a(t) = (cos(t),sin(t)),t € [0, 27].

Definition 1.37. The number
W(y, V) :=0([v])
we call the winding number of v with respect to the vector field V.

Remark 1.38. [t is easy to see that for the definition of the winding number actually
we do not need the vector field on the whole surface. It is enough to have the vector

field along 7.

Remark 1.39. The regular homotopy H: [a,b] x [0,1] — S of two regular curves
Y,72: [a,b] = S with the same extremes compatible with V' induces the homotopy
H': [a,b] x [0,1] = S* of 7 : [a,b] — S and ~4: [a,b] — S* by the formula

(40 o (0105)0(0.5)
D= TG

where
88_];](75, 3) = m(tv S>€1<H(t7 5)) + y(t’ S>62<H(t’ S))

Therefore, the winding number is invariant by reqular homotopy.

Remark 1.40. For two regular curves vy,vs such that
0 # [1][y2] € REGPATHS(S)

we have W (v %79, V) = W(y, V) + W(y, V).
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Lemma 1.41. For each p € S there exist a regqular closed curve & compatible with
V', which is homotopic to {p} and W(§,V) = 1.

Proof. We choose a chart (U,z) of S such that p € U, U open in S,
contractible, z: U — U C R? is a homeomorphism, ¢(p) = (0,0), D,z(V (p)) = 8%1.
If we fix some 0 < ¢ < 1, then we can assume that U is small enough that
Dyr(V(q)) = r(q) 5% + s(q) 52 with |r(q) — 1] <, [s(q)] <&
We consider a curve 3(t,e) := (Rsin(t), —Rcos(t)+R),t € [0, 27| where R = R(¢)
is smooth in ¢ and small enough so that 3 is contained in U. Then the curve
§ := x7' o B is contained in U. Obviously, §(,¢) is homotopic to {p} for each e

because U is contractible.

B(t,e) = (Rcos(t), Rsin(t)).

Because for ¢ small enough the vector field Dxz(V) is close to 8%1, the
curve §'(-,e): [0,2r] — S' is close to «a(t) = (cos(t),sin(t)). That means
§(tye) = (X(t,e),Y(te)), X,Y are smooth functions of two variables and

lim 0'(t,e) = o/ (¢)

e—0

for all t € [0, 27]. So we have that a is homotopic to ¢'(-, ) for all € small enough.

Therefore,

W(,V) = 0([0']) = 0([a]) = 1.
O

Remark 1.42. Analogously we can prove that for all n € Z there exist a reqular

closed curve &, compatible with V', which is homotopic to {p} and W(9,,V) =n.

Lemma 1.43. For each two regular curves v1,va: [a,b] — S with the same extremes

and which are homotopic in the usual sense we have

W(727 V) - W(Vh V) = w(727'71)'

Proof. Two regular curves with the same extremes, which are homotopic, are
regular homotopic if and only if their winding numbers agree. We consider the curve

0y from remark 1.42 for p := v1(a) and w := w(v2,71). Then

w(Y1 * 0w, 1) = W(Y2,71) = w.

Therefore, w(7y; * 0y, 72) = 0. This means that ~, and 7; * ,, are regular homotopic
because ¢ is homotopic to p and therefore v, is homotopic to ~v; * d,, and they have

the same extremes.
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Further, W (y; %6y, V) = W (71, V) +w. Because the winding number is invariant
by regular homotopy, we have W (~y; 0, V) = W (72, V). Therefore,

W(727 V) - W(717 V) = w(727'71)'
O

From lemma 1.43 follows that for two regular paths v, and +, with the same
extremes belong to the same class of HPA(S,V) if and only if the number
W(ve, V) — W(y1,V) = w(va,7) is even. For each continuous path v: [a,b] — S
we can always choose a regular path v* compatible with V' which is homotopic to 7.
Either W (~y*, V) or W(d x~*, V) is even, where ¢ is a regular path from lemma 1.41
for p = ~(0).

We define the spin structure o: PATHS(S) — HPA(S,V) in the following way:
o([v]) is the class of v* in HPA(S,V) if W(y*,V) is even, or the class of § * v* in
HPA(S,V) otherwise. By this definition the element in HPA(S, V) is well defined
and does not depend on the choice of v* because 7(77!([y])) € HPA(S, V) contains
exactly two elements namely 7([y*]) and 7([0*v*]) and we choose the unique element
of HPA(S, V') which contains regular curves with even winding numbers with respect
to V. Moreover, the map o satisfies all conditions of the spin structure. We call this

spin structure associated with the vector field V.
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2 Small spectral networks

2.1 The definition of small spectral network

We consider a closed orientable surface S with punctures P = {sy,...,s,}, n € N
and we also consider the surface S = S\ P (as in the first chapter). Let 7: ¥ — S
a k : 1 branched covering of S. We consider also the corresponding restriction
m: Y — S where P’ = 771(P) is the set of punctures on ¥ = ¥\ P’. We assume
that the branched covering is not ramified over the punctures. Therefore, we denote
by B the set of branch points on S, and B’ = 7~ !(B).

We assume that every branch point is simple. That means every branch point
b € B has an open neighborhood U such that

k-1
~(U) =]V
i=1
where V; are open neighborhoods of one of the pre-images of b in X, 7|y, : V; — U is
an homeomorphism for i = 1,...,k — 2, and 7|y,_,: Vi1 — U looks like z — 2%

We assume also, that for each s € P an order on the fiber 77!(s) = {s(l) . sgk)}

W< s? << s

of p is given: s, < s . This order on the fiber over s is an additional
structure on the covering.

Now we are ready to define spectral networks. In this thesis we use the definition
from [1|. This definition looks different from the one given in [6], but it is actually

equivalent.

Definition 2.1. A small spectral network W of rank k over S is a graph on %,
that means a finite collection of injective reqular paths {py: [—1,1] = S}hen (H is
a finite set of indices) satisfying the following conditions:

1. 7w (pa(t)) = m(pn(—t)) Vt € [-1,1]

2. w(pn(0) € B is a branch point

3. m(pn(1)) = w(pn(—1)) = s; € P (for some j) is a puncture and pp(—1) < py(1)

with respect to the order on w(s;)
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Fig. 2.1: The picture in S left, in 3 right.

4. A neighborhood of the branch points looks like

Fig. 2.2: The picture in S left, in 3 right.

5. Different paths p, and py in Y can meet only at a point py(t) = pp/(t') which
18

a) a branch point (which meanst =t =0),

b) a puncture (which means t,t' € {—1,1}),

or in following case:

c)t-t' > 0. In this case we also need that the intersection is transverse and the
path py, does not intersect any line of the spectral network at the point p,(—t) and
the path pyp, does not intersect any line of the spectral network at the point pp (—t').

branch points branch points

intersection point intersection point

Fig. 2.3: The picture in ¥.
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We denote
We = p(-1,1) C 5,
Ws = |J m(pa([-1,1])) C 5.

heH

Remark 2.2. For small spectral networks the following intersection of paths is

forbidden:

branch points

intersection point

Fig. 2.4: The picture in X.

In general spectral networks this intersection is allowed. It is called a joint. In
this case every time there is a joint, one additional path must be added to the spectral

network.

Proposition 2.3. The intersection described in remark 2.2 and in definition 2.1 (5¢)

can not occur by spectral networks of rank 2.

Proof. This fact follows directly from the axiom (5¢) in definition 2.1.

m(pr(£0))=n(py (1)

Fig. 2.5: The picture in S.
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If we assume that there are two paths p, and p,, such that there exist ¢,#' € (0,1)\
{0} and
m(pn(t)) = m(pn(=1)) = 7(pw (t') = 7(pw (),

then because m: ¥ — S has exactly two sheets, there are only two possibilities:

pu(t) = pw (t') and py,(—t) = pp (=1')

or
pr(t) = pw(—t') and pp(—t) = pu(t').
pr(—t)=py (—t') Pr(D)=py (=)
Pr(O)=pw () Pr(—0)=py (&)
Ph Ph
Fig. 2.6: The picture in .
Both of them are prohibited by the axiom (5¢) in the definition of the spectral
network. ]

Remark 2.4. From the proposition 2.3 follows that all spectral networks of rank 2

are small.

2.2 Path lifting using spectral network

Let 7: ¥ — S be a k : 1 branched covering satisfying the conditions above and
let W be a small spectral network of rank k£ on ». We want to construct a map
(S, p,v) - HPA(X, V'), where p € S, v € T,S, V' is a non-zero vector field on ¥
such that D (W (q)) = v for all ¢ € 7~ '(p).

We consider a smooth path v: [0,1] — S such that [y] € 7(S,p,v). To lift this
path to X we split it in pieces v = 1 * 7o * ... x 7, such that each ~; intersects the
spectral network at most once. Here and later with * we denote the concatenation

of smooth curves.
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If ~; does not intersect the spectral network, then we lift it in the usual way and
get k lifts %,(J ), j €{l,...,k} in ¥ which also do not intersect spectral network. We
can construe regular paths %(] ) as elements of HPS (X) (as it is done in the first

chapter).
If ~; intersects the spectral network, then there are only two standard lifts 'yi(j )

and 72-(1) of 7;, which intersect a path of the spectral network. We denote this path
pr. In this case we have to add to the usual lifts a new path +/, like on fig. 2.7. We
can also construe regular paths %(j )
the first chapter).

and 7/ as elements of HPS(X) (as it is done in

y

o0
Fig. 2.7: The picture in ¥ left, in S right.

Definition 2.5. The lift v in 3 with respect to the spectral network W of the curve
v is the product of all lifts of v; in HPA(X):

k
=W +) - Z’Y +90),
=1

where v; = 0 for pieces ~; which do not intersect the spectral network.
Lemma 2.6. This path lifting rule is invariant by reqular homotopy.

Proof. To prove that we need to check the homotopic invariance of the path
lifting in the following three cases (see fig.2.8) because up to regular homotopy we

can always decompose every curve in a product of curves of these kinds.

31



D
1 (pp)
b; €B
D
(pn) (0
h!
Fig. 2.8: The picture in S.
Case 1.
"
Y2
p 7(pn)

Fig. 2.9: The picture in S.

We have to lift two curves y; and v, to > with the path lifting rule of the spectral
network. Because v, does not intersect the spectral network, its standard lifts do
not do it as well. Therefore, we have the lift of v, in HPA(X):

k

> A

i=1

For ~; we also get k standard lifts but in this case exactly two of them intersect the

spectral network [see fig. 2.10]:
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Fig. 2.10: The picture in .

Therefore, we have to add two new lifts 4/ and +”. So we have the lift in the

HPA(S):
k

Yo+
i=1

But in HPA(X) we have that v/ = —7”, because 4" and +” have the same extremes
and w(',+") = +1 (the sign depends on the orientation on the surface). Therefore,
we get the lift in HPA(X):

k
>
=1

which agree with
k

> Ay

i=1
in HPA(S) because 1" is regularly homotopic to 14” for all i € {1, ..., k} as standard

lifts of homotopic curves with the same base point.
Case 2.
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b; EB
Y2

Y1

Fig. 2.11: The picture in S.

We have to lift two curves v; and v to ¥ with the path lifting rule of the spectral
network. Because v, does not intersect the spectral network, its standard lifts do
not do it as well. Therefore, we have the lift of v, in HPA(X):

k

>

=1

For ~; we also get k standard lifts but in this case exactly two of them intersect the

spectral network [see fig. 2.12]:
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Fig. 2.12: The picture in .

Therefore, we have to add 6 new lifts. Schematically we can draw our lift as:

TN \/+Q\/+T+D+@+Q +C)=O+G

Fig. 2.13: The picture in .

So we can see that this lift agree with the lift of v,
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Fig. 2.14: The picture in X.

Case 3.

T(Pr)
Y2

Y1 T(pn')
Fig. 2.15: The picture in S.

Because of proposition 2.3 the covering ¥ has at least 3 sheets. If we lift this
picture to X, we can get three possible pictures, namely, two cases where p;, and pj
intersect each other, which distinguish by the position of the intersection point and
the branch point. In the case 3.1. the branch point is located before the intersection
point with respect to orientation of lines of spectral network. In the case 3.2. the
branch point is located after the intersection point with respect to orientation of
lines of spectral network. In the case 3.3. lines p;, and p;, do not intersect.

Case 3.1. We have exactly 3 standard lifts of 7; which intersect spectral network
in the following position:
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Fig. 2.16: The picture in X.

Therefore, we have to add 4 new lifts. Schematically we can draw our lift as:

//\ ' j =0 X%% -0
Fig. 2.17: The picture in .

So we can see that this lift agree with the lift of ~5, which consist only of standard
lifts.
Case 3.2. We have exactly 3 standard lifts of «; which intersect spectral network

in following position:
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Fig. 2.18: The picture in .

Therefore, we have to add 4 new lifts. Schematically we can draw our lift as:

v San P

Fig. 2.19: The picture in .

So we can see that this lift agree with the lift of +,, which consist only of standard
lifts.

Case 3.3. If the covering ¥ has at least 4 sheets, then it can be possible that we
have exactly 4 lifts of 7; which intersect two lines p;, and pys of spectral networks
but these lines p;, and py, do not intersect each other. This case is similar to case 1

applied twice.

38



® (%)

n }’1
0] (k)
Y2 \ ) Y2 \ U)
o h 161
) @
Y2 Pj Y2 Dy
pi P
Pn Pyn’

Fig. 2.20: The picture in .

]

Remark 2.7. For the kind of intersection, which is forbidden in remark 2.2, the

path lifting rule defined in this section is not homotopically invariant.

2.3 Non-abelianisation map

Now we are ready to construct a non-abelianisation map using spectral networks.
We consider a surface S with punctures P = {sy, ..., s,}, a k : 1 branched covering
7: % — 5. We take some element of the character variety X (7 (%), GL(1,C)) which
yields us a line bundle 7s: £ — ¥ over ¥ with a flat connection V’. We also fix a
spectral network W on X.

Further, we fix p € S\ W, v € T),S, a non-zero vector field V’ on X such that
D,(V'(q)) = v for all ¢ € 7 (p)

Using a spin structure on Y, which we can construct using the vector field V' on
., and proposition 1.8 we get a flat twisted connection on E.

We construct a representation p: (S, p) — GL(k,C). We consider:

k
V;’ = @ EPH
i=1

where {py,...px} = 7 X(p), E, = 7' (p;). We have the natural basis of V,,, namely
(e1,...,ex), where (e;) is a basis of E,,.

If we consider a regular curve y on S such that [y] € 75(S, p,v), we can lift it to
Y. with respect to the spectral network W. So we get an element x € HPA(X, V'),
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which is by definition a finite sum of some curves v, on >, r € I, [ is a finite index
set such that

7(0), (1) € 77 (p) (2.1)

£=3 .

rel

and

We consider a vector w = 1 a;e; €V, i € {1,..,k}. Because of (2.1) the twisted

connection gives us the element

Vi)=Y T, @ LE; Ey,

rel p.Gem="(p)

where T, are parallel transport operators along «, given by twisted connection on
3.
For each 7, such that ~+,(0) = p;, 1(1) = p;, 4,5 € {1,...,k} we can consider

T,.e; = tre; € Ep,. We can extend T, to a linear map on V), by the following rule:

tke-, =1
T’Yrel:{ OJ Z#Z

We define the map by 7,: V, — V, by the rule T, = }_ _,T,,. By construction
this map is linear and since the path lifting using spectral network is homotopically
invariant and the connection on X is flat, 7', depends only on the homotopy class of
v in 71 (S, p,v).

So we get a map p: 77(S,p,v) = GL(V,) which is a group homomorphism. It
means that we have a the twisted representation. After using of a spin structure on
S we get an element in the character variety X (m(S5), GL(k,C)).

So we see that an element of the character variety X (m(X), GL(1,C)), spin
structures on S and X and a spectral network W yield an element of the character
variety X (m(S), GL(k,C)).

(S, p) TR (S, p,v) T FPA(S, W) B Gk, C)

on S network on X

So we get a non-abelianisation map.

2.4 Invariant flag

In this section we show that the parallel transport operator along a peripheral curve
on S always has a natural invariant flag. This means that a spectral network over

40



S always yields a natural map X (m(X), GL(1,C)) — X%(m(S), GL(k,C)). We will
use this map later to define coordinates on the character variety X (m(S), GL(k,C)).
We fix a base point p on S and consider a regular peripheral curve v on S around

a puncture s € P with v(0) = = p [see fig. 2.21].

%ﬁ/

Fig. 2.21: The picture in S (left) and in 3 (right).

We lift this curve to ¥ with respect to the spectral network. So we get k standard
lifts v, i € {1, ..., k}, v goes around s; € P" and some additional curves 3, [ € I,
I is an index set. We assume that the order of spectral network on punctures sy, ...
agree with the natural order on {1,...,k}. That means that s; < s; if and only if
i <].

By definition of the spectral network the paths of spectral networks on > go form
a puncture with a smaller number to a puncture with a bigger number. Therefore,
the parallel transport along each f; gives us a linear map Tj, : E),, — E, with i < j.

We get the linear map 7,: V, — V}, whose matrix 77 in the basis (ey, ..., ex),

where (e;) is a basis of E,, have an lower triangular form:

g 0 0
T x (o 0
x % . G

where g; are homotopy constants of standard lifts ¥(*). That means that the flag

(ex)

(€k—1, €x)

(€1, ..., €x)
is an invariant by 7. This flag depends on the spectral network and on the base

point but not on the flat connection on ¥. In the next section we show how the
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matrix 77 changes if we change the base point p € S and so we will see how this
invariant flag changes if we change a base point.

So we have shown that the map defined in the section 2.3 is actually a map
X(m(%),GL(1,C)) — X4 (S), GL(k,C)).

2.5 Properties of a non-abelianisation map given

by spectral networks

Remark 2.8. The non-abelianisation map described in the section 2.3 is a
continuous finite-to-one map.
There is a hypothesis that for each surface S with punctures a k : 1 branched

covering 7: X — S ewists such that
dim(X (m (%), GL(1,C))) = dim(X (m(5), GL(k,C)))

If this is right, then the non-abelianisation map described in the section 2.3 has an
open image.

It is possible to show that this map 1s a finite-to-one map. One can
define symplectic structures on X(m(X),GL(1,C)) and X%m(S),GL(k,C))
and show that the map X(m(X),GL(1,C)) —  X%m(S),GL(k,C))
from the section 2.4 is a local symplectomorphism (see [6]). This
proves that this map is locally injective, and because the natural map
X4my(S),GL(k,C)) —  X(m(S),GL(k,C)) is a finite-to-one map, the
non-abelianisation map X(m(X),GL(1,C)) — X(m(S),GL(k,C)) from the
section 2.3 is a finite-to-one map.

In cases k =2 and k = 3 it can be shown using Fock-Goncharov coordinates that

this map has a dense 1mage.

2.6 Change of the base point

Let m: ¥ — S be a n : 1 branched covering, 7s;: E — ¥ be a line bundle with a flat
connection V and let W be a small spectral network of rank n € N on 3.

We fix the point p € S and the tangent vector v € T,S. This gives us the
representation of 75 (S, p, v) in GL(V,) that means we have the group homomorphism
L,: w5(S,p,v) = GL(V,) where 7§ (S, p,v) is the fundamental group with signs of S

with the base point p and tangent vector v. We denote by e the neutral element of
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this group. If two curves represent the same element of 75 (S, p,v), we will denote
this with the symbol = .

The (twisted) flat connection on S (resp. on X) gives us for each regular path -y the
parallel transport operator which we will denote T,. With respect to bases in start
and finish points the operator 7', has the matrix which we will denote 77 = ().

In this paragraph we want to find out how this representation changes if we change
the base point p € S and the corresponding tangent vector v € T,S.

We choose the other point p’ € S and the tangent vector v" € T,,S and choose
two smooth curves £: [0,1] — S and n: [0,1] — S with £(0) = n(1) = p,
§(1) =n(0) = ¢/, £(0) = (1) = v, (1) = 7(0) = v" and & 7 = e € 75(S5, p, v) [see
fig. 2.22|. Then for each element o € 7§(S,p’,v") we have o := Exa’xn € 75 (9, p,v).
Then

T, =T, Ty T.

Fig. 2.22: The picture in S.

We want to find out how the maps 7¢ and T;, look like. The goal of this paragraph

is to proof the following proposition:

Proposition 2.9. There are bases of E, and E, such that the matriz T¢ and T
of the parallel transport operator T: and T, in these bases looks like TS = (t?i),
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T = (t];) where

(the sense of all coefficients will be defined later).

Proof. To prove this, we have to lift £ and 7 to X with respect to the spectral
network. We will prove the proposition for &, the proof for n is analog.
The lift of £ is an element £ € HPA(X) which we can write

§=>8
BeE
where = is the set of curves on ¥ such that 3(0) € = (p), (1) € 7 (p),
B(0) = (Dgoym) " (v) B(1) = (Dgym) 1 (v') for all B € Z. The maps (Dgpym) ™"
and (Dgmqym)~! are well-defined because 7 is a diffeomorphism in a neighborhood
of all r € 7 Y(p) =: {p1, ..., pu} and ' € 77 1(p') =: {p},...,p,,}. We denote also
v; = (Dp, )~ (v) and v] = (D)~ (V).

Further, for each p; the set = always contains the standard lift (without respect
to spectral network) with the start point p; and end point p; which we denote &; (we
can always number the points of 77!(p’) so that this is satisfied).

The same applies for n. We have the lift 7 € HPA(S) and the set H of lifts and n
standard lifts n; with 7;(0) = p,. Moreover, because of £ xn = e we have 7;(1) = p;.

oo
=1

the choice of the basis (e;) of each E,, gives us a basis of V,,. The same applies to
the point p': (€;) is the basis of E,, and (e}, ..., €;,) is the basis of V;. With respect

5

Because

to these two bases the map T is represented by the matrix 7¢ = (t?)m-:l ,,,,, n-
We denote

Zji = {6 € 2| B(0) = pi, B(1) = p}}.
Then each f € Zj;; gives us the number (one dimensional matrix) b such that

Th(e;) = be’;, and, obviously, the element tﬁi of T¢ is exactly the sum of all this
b for all B S E]z

t5; = Zb.

BEE ;5

44



Therefore, we need to compute the numbers b. For vector bundles with flat
connection is much easier to compute these numbers for closed curves. Hence, we
can complement each 8 € Zj; with the fixed smooth curve with start point p} and
end point p;.

First of all, we can go from p’ to p; along n; and then from p; we have to go to
pi. For this reason, we choose for each pare (p;, p;) the smooth curve v;;: [0,1] — X
such that v(0) = pi, 7(1) = pj,7(0) = v;, (1) = v}. We denote

P .. . P . , , P . .
T, e = vije;, Te,e; = kie;, The; = lie;.

The numbers k;,l;, v;; are given by flat connection V' on . For simplicity, we
assume that ~;; is the trivial curve then v;; =1 for alli =1, ..., n.

Fig. 2.23: The picture in X..

We consider the curve § = 3 x n; *yj;- For this curve we can compute the number

b such that T aei = Eei and then because of b = bl;v;; we have
b
b —

ljyji

Therefore,

t5, = '1” > b (2.2)

The same applies for 7:
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Remark 2.10. Because of independent choice of the bases of T,S and T,yS we can
always choose the basis (€}, ...,€l) of TyS so that k; =1 or l; = 1. For this reason,

I __ r_ -1
we can assume €; = Tge; or e; =T, "e;.
Moreover, because & xm = +e, if k; =1, then l; = £1 and

I ! -1 _
e; = Tge; and e; = T "e;.

Remark 2.11. If = contains only standard lift of & and H contains only standard
lift of n we have

£ _ n o _ € _ 4 _ 0f; ;

ty = ki, t; = li’tji =15 = 0(i # j).
This case we have if & and n do not intersect the spectral network. With remark

2.10 we can assume in this case that T¢ = 1,, = £T".

Now we can find out how the elements of the matrix 7% = (t%’) of operator
Ty : Vy — Vy look like.
We denote & € HPA(Y) the lift of o in ¥ with respect to spectral network.

Then
a=> 8

BeA
where A’ is the set of all lifts of o/. Let A;-i C A’ is the set of all lifts 8 of o such
that 3(0) = p;, B(1) = pj.

Corollary 2.12.
o kjliyij

v b
g dj; '

e,

J— _ /
where Ts, e; = djie; and d5; = 7y * 5 % i % 1

Proof. We know that
th= b
BeA,
where Tie; = be’; for € A,
If also for each pare (p, pj) the smooth curve v;;: [0,1] — ¥ is chosen such that
7'(0) = pi, 7' (1) = P, 7'(0) = v, 4'(1) = vj [see fig. 2.24] and

T

Y A
,Y;j€i—l/-»€»

/AR
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Fig. 2.24: The picture in .

then we can write 3 := 3 ;i and Tge; = l;e;- where b = bv};. Therefore,

/ 1 ~
ti = > b
Jv e A,
gt
We want to eliminate V]/@ We denote d;; = 7, * & * fy;-i *17; then dj; = I/,;jkjl/;-ili
where T, e; = dj;e;. Therefore,
, dji

kjliyij
o k’jlin‘j

Ji d..

]t
BeA!,

b.

2.7 Fock-Goncharov coordinates

In this section we introduce Fock-Goncharov coordinates, which parameterize the
space P} of pairs of convex n-gons in RP?, one inscribed into the other, and
considered up to the action of PSL(3,R) [4].

We consider the pair of convex n-gons in RP?, one inscribed into the other and
cut the inscribed polygon into triangles and mark two distinct points on every edge
of the triangulation except the edges of the polygon. Mark also one point inside
each triangle. The following theorem proved in [4] gives us the canonical bijection

between Pj and assignments of positive real numbers to the marked points.
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Theorem 2.13. There exists a canonical bijective correspondence between the space

Pi and assignments of positive real numbers to the marked points.

Definition 2.14. The assignments of numbers to the marked points from the

theorem 2.13 are called Fock-Goncharov coordinates on Py.

We show how this canonical bijection works. First, we consider the case of Pj.
We consider the pair of triangles as a collection of three lines l4, I3, lc in RP? with a
point pa, pg, pc on each of lines. On each line [; (i € {A, B,C'}) we have two points
Pij, Dir of intersection with two other lines [; and Iy ({j,k} = {4, B,C} \ {i}) [see
fig. 2.25]. Moreover, for each line [; we have two point p;, pr ({J, k} = {A, B, C}\{i})
which do not lie on this line. These two points define us the line /;;, which intersects

l; in the point p; jr. So we get 4 points of each line.

Fig. 2.25: Picture in RP2.

The coordinate X'y which we also denote by X if the triangle is fixed is defined

as a cross ratio

Xape = X = —[pi, Pijk, Pijs Dik],

where {i,7,k} = {A, B,C}. Because the cross ratio is a projective invariant, this
does not depend on the choice of i € {A, B,C} and on the choice of the affine chart.
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Further, we consider the case of P;. In this case we have to choose one of two
possible triangulation of the quadrangle. With respect to this triangulation two
coordinates Xapc and Xppc which we also denote by Y if the frangulation is fixed.
We also define the coordinate Zp- which we also denote by Z if the triangulation

is fixed as a cross ratio

Zpc = Z = [pcB,Pc,AB, Py PC,DB);

where pcp which is an intersection point of lines ¢ and lp, pc,ap which is an
intersection point of lines [ and papp and pc pp which is an intersection point of
lines I and pppgp (see fig. 2.26). Because the cross ratio is a projective invariant,

this does not depend on the choice of the affine chart.

Fig. 2.26: Picture in RP2.

In the same way the coordinate Zcp which we also denote by W is defined:

Zop =W = [pBc, PB,DC, DB, PB,AC),

where ppc which is an intersection point of lines lp and lo, pp.ac which is an
intersection point of lines {p and papc and pp pe which is an intersection point of

lines Ip and pppc.
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Finally, in general case, if we have the pair of n-gons in RP?, one inscribed into
the other, we cut the inscribed polygon into triangles. For each triangle of this
triangulation the X-coordinate is defined, for each pair of triangles with a common
side two Z-coordinates are defined. So we get the collection of Fock-Goncharov
coordinates described in the theorem 2.13.

Now we want to describe, how Fock-Goncharov coordinates change if we change
the triangulation. We consider the simplest case if change the triangulation only in
one quadrangle [see fig. 2.27|. This transformation is called flip. We can always get
the general case as a sequence of flips.

In [4] the formulas are given, which express how coordinates X', Y’ Z', W’ depend
on X, Y, Z W:

otz oy 1EW
XZ1+ W)’ YW(+Z2)
g LA WA WY WY Z

1+ Z+ZX+ZXW'’
)y Lt 2+ ZX 4+ ZXW
I+ WH+WY +WYZ
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flip

Fig. 2.27: Flip. Picture in RP?.
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2.8 Fock-Goncharov coordinates and invariant flag

We consider the surface S with punctures P = {sq,..., s, }, an ideal triangulation
T of S and an element [p, D] € X%(m,(S),G, T) like in the section 1.2, where G is
one of the following groups GL(3, K), SL(3,K), PGL(3,K), K € {R,C}. If we fix
p € S, then we can choose a representation p: 7 (S, p) — G of the class [p, D].

For the matrix p([y]), where 7 is a peripheral closed curve, an invariant flag
Fp(v) = (Vi(7), V2(7), Va(7)) is fixed, where dim(Vi(y)) =4, i € {1,2,3}.

Because flags of representation are transversal, for two triangles ABC and DBC
we get two triangles papspce and pppppc in KP? with the common side pgpc, which

are inscribed in the 4-gon generated by lines l4, Ig, lc, Ip.

Fig. 2.28: The picture in KP?.

We can define the corresponding Fock-Goncharov coordinates X, Y, Z, W as in
the previous section, but in this case all points have coordinates in K and, therefore,
X, Y, Z W can also take values in K. Moreover, these coordinates do not depend on
the choice of representation in the class [p, D] because they are projective invariants
and, therefore, are invariant by conjugation of corresponding matrices. So we see
that an element [p, D] of the decorated character variety X4(m(S), G, T) yields us

a collection of Fock-Goncharov coordinates.

Definition 2.15. We say that for the ideal triangulation of S a collection of
Fock-Goncharov coordinates is defined if for each pair of triangles (T1,Ts) with a
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common side a tuple (X,Y,Z, W) € K* is defined so that the corresponding tuple
for (T, Ty) is (Y, X, W, Z).

We will see later that an ideal triangulation of S and a corresponding for this
triangulation collection of Fock-Goncharov coordinates define a representation of
m1(S) but only into the group PGL(3, K).

2.9 Free group representation

We consider a surface S with punctures. Let T be an ideal triangulation of S. We

number its elements by {1,...,7} C N.
T=A{T;|ie{l,..,r}}

The natural order on the set {1, ...,7} induce a total order p on triangles on 7. This
order p is an additional structure on 7.

Let C be the set of all sides of triangulation. We generate a free group F¢ by this
set. Sometimes we will identify elements of Fz with words over C'UC~!. Moreover,
for each element b € Fg there is the unique shortest word over C' U C'~! which
represents b.

We also consider a point p € S which does not lie on lines of triangulation. We
want to construct a representation y: m(S,p) — Fc.

To do this, we consider a loop ~v: [0,1] — S, v(0) = (1) = p. We say that v
changes the triangle by t = ¢, if (o) is contained on the line of triangulation and
there exist € > 0 such that for all ¢t € (¢, — ¢, 1) and for all ¢’ € (¢, 1o +¢) v(t) and
~(t') lie in different triangles.
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Fig. 2.29: The picture in S.

Without loss of generality we can always assume that v changes the triangle at
all points to such that () lies on a line of triangulation, because in [y] € 7 (S, p)
there always exist such curve.

We assume, that v changes the triangle by following values of parameter ty, ..., ¢,.
So we get a sequence of pairs of triangles (7;,, 1}, ),...,(T;,, T;,) with a common sides

o, ..., ¢ € C'. With this sequence we can associate an element

0L Cgo € Fe,

C'Y:Cr

where ¢, = 1 if 4; < 7;31 and ¢, = —1 otherwise.

It is easy to see that ¢, 4, = ¢y, for two loops 71, 72. To show that the map

x: m(S,p) — Fe
[7] = Cy

is an injective representation, we need the following proposition:

Proposition 2.16. Let p € S and [y] € (S, p).
1. The element c., depends only on the homotopy class [7].

2. If [v] # [0], then ¢, # cs.

Proof. The triangulation 7 of S induces a triangulation 7’ on the universal
covering 7m: S’ — S. We also choose a point p' € 7~ 1(p).
With the triangulation 7’ we can associate a directed graph I', whose vertices

are triangles of 7' and edges are common sides of triangles which are oriented

o4



consistent to the order on 7. That means that for each two triangles 7", 7" € T’
with a common side the corresponding edge starts in a triangle 7" if =(7") = T;,

n(T") = T; and i < j [see fig. 2.30]. Because S’ is connected, the graph I is also
connected.

S’ T

Fig. 2.30: Orientation in I'.

By uniformization theorem the universal covering of S is homeomorphic to R?
because S is not compact. Each line of triangulation on S’ divide R? in two connected
components. For the graph I' that means that, if we remove one edge, then the graph
fall in two components. That means that I' is a tree. Moreover, I" can be construed
as a subgraph of a Cayley graph I'(F, C) if we identify 1 € Fo with 77 € T such
that p’ € T'. Because Fg is free generated by C, the graph I'(F, C) is also a tree.
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Fig. 2.31: Graph I'.

Fig. 2.32: Grapth I'(F¢, C).

We have to prove that ¢, = 1 for each loop 7 on S with v(0) = v(1) = p which is
null homotopic. We have a unique lift 4/ on S” such that +/(0) = /(1) = p'. For +/
we can construct a path in I'. We start in a vertex 7" € T’ such that p’ € T and
every time if 4/ changes the triangle we goes along an edge, witch corresponds to the
side of triangulation 7”, which +/ intersects. The path finishes also in the triangle
T’ because p’ € T'. That means that the corresponding finish vertex in the Cayley
graph I'(F¢, C) is identity. Therefore, ¢, = 1. This proves (1).

To prove (2) we also use the universal covering 7: S” — S. Let v: [0,1] — S be
a loop and ¢, = 1. The corresponding to v path in I' is trivial. Therefore, the lift
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of v to S’ starts and finishes in the same triangle in S’. This means that the lift of
v is a loop in S’. Because S’ is simply connected, the lift of v is trivial and so + is

also trivial. This proves (2). O
Definition 2.17. We call the representation

x: m(S,p) — Fe¢
[7] = Cy

free group representation with respect to the order o on T .

Remark 2.18. We have shown that the fundamental group can be construed as a
subgroup of a free group. By Nielsen—Schreier theorem every subgroup of a free group
is free. So we get a well known fact that the fundamental group of a surface with

punctures is free (namely, of rank 2g +n —1).

Remark 2.19. The correspondence v — c, can be extended in a similar way for
each curve which starts in p and finishes in a point q¢ which does not lie on the line
of triangulation. This correspondence is also invariant by homotopy. If we consider
all possible curves v with this condition and generate elements ¢, € Fg, we get a
subset of Fo, we denote this subset Fo(S,p).

By construction, for all words b € Fg(S,p) all prefives of b are contained in
Fo (S, p) because we can always restrict the corresponding path vy on the appropriate
subinterval. Therefore, the corresponding to this subset subgraph of I'(Fe,C) is

connected. In particular, this is a tree because I'(F¢, C) is it.

For this semigroup we can define the following map. We consider the universal
covering 7w: S — S of S and corresponding triangulation 7’. We denote by P’ the
set of all vertices of triangulation of 7’. We choose a lift p’ € 7~1(p). This lies in a
triangle 7Tj) on S” with vertices s}, s, s5 € P’.

We consider two triangles 7] and T3 of triangulation 7" with vertices ), r5, 15 € P’
and 7}, 5,74 € P’ with a common side ¢ = rir;. We consider ¢ = w(¢’) and define
amap for {rl, i i} = (o ik £) = o fu(h) = 1 fulrh) = 7,
fo(ry) = r}. Obviously, f. = f!.

If we choose s’ € P’, then there exist a path +' in S’, which starts in p’ and finishes
in a triangle 7", witch has " as a vertex. For this m(7’) we have a corresponding path
in Cayley-Graph T'(Fg, C') with start point in 1, which corresponds to an element
inc, =cr...ci’ € Fo(S,p), where g; € {—1,1}. We define the action

v Fo(S,p) x {s],sh,s5} — P’
(¢, 57) = fen 00 for(s7)
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Remark 2.20. By construction, because f., o f., = id, this map is well defined
(does not depend on representation of ¢, by a word over C'UC™'). Because S’ is
connected, this map is surjective. This map is also injective in the second variable
iof the first variable is fixed.

Moreover, because the graph T is a tree, for every s’ € P’ there exists the shortest
path in I' form T§ to a triangle which has s’ as a vertex. For this shortest path in I’
there exist unique up to homotopy curve v on S’, which starts in p’ and finishes in
a triangle whose vertex s’ is.

This path corresponds to a path in the subgraph of the Cayley-Graph I'(Fe,C)
which generates by Fo (S, p) witch starts in 1. We consider the corresponding for this
path shortest word b € Fe(S,p). It is uniquely defined and s € (b, {s}, s}, s5}). So
we can define the inverse map ' P' — Fo(S,p) x {s}, s5, s5}, which gives us the
unique shortest word b € Fo(S,p) and the unique vertez s,, i € {1,2,3} such that
bibysl) = ¢

We will use this map further when we construct a representation of m (S, p) using

Fock-Goncharov coordinates.

o8



3 Examples of small spectral networks

3.1 Spectral network of rank 2

In this example we consider a spectral network of rank 2 over the surface S. We
want to find the eigenvectors of parallel transport operators along peripheral curves
on S.

We consider the surface S, a 2:1 branched covering 7: ¥ — S and the line bundle
my: B — ¥ over X with a flat connection. We assume that the spectral network W
over S is given, which induces a twisted representation 75 (S, p,v) — GL(2,C) for
p €S, v e€T,S as in the chapter 2.3.

For each branch point b on S we have exactly three punctures, which are connected
with b by lines of the spectral network. In this way the spectral network W yields an
ideal triangulation of S with the property that each triangle on S contains exactly
one branch point like on the fig. 3.1. In 3 we have to glue along red sides.
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b
c
A D
c' c’
0;
B B
AJ‘ DJ‘

Fig. 3.1: Spectral network of rank 2. Picture in S above, picture in ¥ below.

We choose two triangles with vertices A, B,C and D, B,C in S. In each triangle
we have one branch point O; and O,. The lifted to & points we denote O; = W_l(él),

0, = 7 40y), {A, A} = 77 YA), {B,B} = 7 Y(B), {C,C'} = 77O,
{D,D’} = 77Y(D). We assume the following order on the spectral network:
A<A,B<B.,C<C,D<D.

Further, we choose points p,p’ € S\ B such that p lies in the triangle O.BC,
veT,S, v eTl,S Wealso choose curves £, n in S such that £(0) = n(1) = p,

(1) =n(0) =p/, £(0) = n(1) = v, £(1) = 7(0) =" and £ xn = —e.
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In X we consider {p1,p2} = 7 *(p), v; = D,7m '(v), i € {1,2} and choose
curves 71z and 791 such that v12(0) = v21(1) = p1, 121(0) = 12(1) = po,
712(0) = %1(1) = U1, 712(1) = 721(0) = vy and 2 * Y21 = —e.

Now we calculate the matrix 7 for two special chosen curves &.

Case 1: p and p/ lie in the triangle ABC [see fig. 3.2].

Because the curves & and 7 intersect the spectral network only once, we have
& xn = —e. By lifting of £ to ¥ we get three curves: two standard lifts & and &

and one curve J which starts in py and finishes in p}. Therefore,

pe_ (kb
0 ks

where Tjs(e2) = be’.

¢

Fig. 3.2: Spectral network of rank 2. Picture in S left, picture in ¥ right.

Because [ x 1 * y120 = —e, we have with (2.2):

1
b = — = —k1V21.
livig
With remark 2.10 we can assume ki = ko = —I; = —Iy = 1, therefore,

TE — (lf)l —12221/21> k=1 = <(1) —71/21> . (3.1)
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Case 2: p and p/ lie in the different adjacent triangles [see fig. 3.3].

A
[ B' ;
c Y21 Y21
) N2
0;
Ul \ t IIII
| .\\ ,' J
B }(1 3 C |I I| pi I-'lﬂl
3! M1 ]
A B!

Fig. 3.3: Spectral network of rank 2. Picture in S above, picture in ¥ below.

Because of £ xn = —e, by lifting of £ to X we get three curves: two standard lifts

&1 and & and one curve § which starts in p; and finishes in pf,. Therefore,
b ks
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A D'

Fig. 3.4: Spectral network of rank 2. Picture in X. The curve 9.

Because (3 % 1y % 721 = —0 [see fig. 3.3 and fig. 3.4], we have with (2.2):
d

lovay

b= —

= —dk’gl/lg.

where Tse; = de;. With remark 2.10 we can assume ky = ky = —l} = —ly = 1,

k 1
T = L ki =1] = ") (3.2)
—deV]_Q kQ _dV12 1

Now we are ready to calculate the eigenvectors of peripheral curves on S. We

therefore,

consider now four peripheral curves aa, ag, ac, ap [see fig. 3.5|.
The parallel transport operator each of these curves always has one eigenvector
which is independent on the spectral network and depends only on the surface .

Curve ag. For this curve the eigenvector is easy to see. In the basis (eq, ey) it is
VB — €1

and the matrix of parallel transport operator along a g in this basis has a form
/
Tos _ box
0 */’
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Fig. 3.5: The picture in S.

where 0 is the representation of oy g in C*.
Curve a¢. For this curve the eigenvector is also easy to see. In the basis (e, es)
it is

Vo = €2

e — (* 1
-7 5).

where ¢ is the representation of ay ¢ in C*.
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Fig. 3.6: The picture in .

Curve a4. To determine the eigenvector for a4 we apply the case 1. We change

the base point and consider the curve /3 [see fig. 3.7].

¢

Fig. 3.7: The picture in S (left) and in 3 (right).
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The eigenvector of Tj is €. Because ay = —& * 5 1 we have
T, = T¢ ' TTe.
Using (3.1) we get the eigenvector of T, , is
V4 = Tgle’2 = 161 + €.

Curve ap. To determine the eigenvector for ap we apply the case 2 and choose

the other point p’ like in case 2, choose the curve §' [see fig. 3.8]. For 7,75, we

) : 3 — !
assume T%(j e; = v;;¢;. The eigenvector of Ty is vg = €].

Fig. 3.8: The picture in S (above) and in ¥ (below).
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We use (3.2), then the eigenvector of Ty, is

vp = Tgle'1 = e1 + dvpses.

3.2 Spectral networks of rank 2 and cross ratios.

As we have seen in the previous paragraph, the ideal triangulation of the surface
with punctures yields the collection of eigenvectors in C? of the parallel transport
along peripheral curves. Namely, for each pair of triangles with a common side we
have four eigenvectors.

The projectivisation yields for each eigenvector a point in CP!. So we get four
point in CP'. We can consider the cross ratio of these points.

We choose the affine chart with respect to the basis (ej,e; + e3). Then the

eigenvectors vg, vo, v4, vp correspond to complex numbers xg, T¢, Ta, Tp:

1
U;

Ty = ———s.
v} 4 v?

V91 1
T, . xz = 5
1+ V91 b dV12 +1

where d is the holonomy along the curve . We consider the cross ratio

rp=1 26=0, 14 =

< 1 1> Va1
dvis + 1 L4+wvy  dupave

1 V21 1 —1
dV12 +1 1+ V921

The constant d depends only on the flat connection V' on ¥ and does not depend

=d

[Q3A7$D>xByxC] =

on the spectral network.

We can see that an ideal triangulation of S and a flat connection on ¥ define
the collection of cross ratios on S. Conversely, if an ideal triangulation on S and
the collection of numbers (cross ratios) for each pair of triangles with common
side on S with respect to this triangulation are given, we get the numbers d
for each pair of triangles with common side. We can construct a representation
p: m(S,p) = PGL(2,C), p € S, pdo not lie on lines of triangulation in the following

way.
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[2p]

By

Py

Pz

Fig. 3.9: The picture in S.

First, we fix a ideal triangulation 7 of S and some total order p on triangles of this
triangulation. Further, we choose the pair of triangles with vertices py, p2, ps, p3 € S
and the common side ¢ = pop3. For this pair of triangles the number d is defined.
We associate p; (for i = 1,2,3,4) with points x; = [0: 1], 2o = [1 : 1], 23 = [1 : 0],
ry = [d : 1] in CP!. So we have a unique Mébius transformation ¢, which
T1, X9, T3 sends to x4, r3, ro. This transformation corresponds to an unique element
M € PGL(2,C). We also fix the number ¢, which is equal to 1 if the triangle p;paps

is smaller then psp3ps with respect to o, and is equal to —1 otherwise.

Xgq

X1 X3

X2

Fig. 3.10: The picture in PC!. Action of ¢.
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We consider a group homomorphism x: Fo — PGL(2,C), which is defined on
generators of F in a following way x(c) := M¢ for all sides ¢ of triangulation 7.

Further, we consider the universal covering 7: S’ — S of S and corresponding
triangulation 7'. We denote by P’ the set of all vertices of triangulation of 7’. We
want to construct a function f: P’ — CP!. First, we choose a lift p’ € 7=%(p). This
lies in a triangle Ty on S” with vertices s}, s5, s5. We define f for these three points
in the following way: f(s}) := [0 : 1], f(sh) = [1 : 1], f(s}) := [1 : 0]. We use
the map 9 from the section 2.9 and assume that the order p agree with the order p
in the section 2.9. If we choose s’ € P’, then by remark 2.20 there exist a unique
shortest word b € F(S,p) and unique i € {1,2,3} such that (b, s;) = s’. Because
b and i are unique, we define f(s') := k(b)(f(s:)).

Now we are ready to construct a representation p: m(S,p) — PGL(2,C). We
take an element g € m1(S,p). We can consider this element as a deck transformation
of §', which also acts on P" and g(s;) = r; € P', i € {1,2,3}. There exist a
unique element p(g) € PSL(2,C) such that p(f(s;)) = f(r;). By this rule the map
p: m(S,p) = PGL(2,C) is well defined, and it is easy to see that this is a group

homomorphism, so we get a representation.

Remark 3.1. Because the order o on T and choice of sign of € are consistent, the
constructed representation p: w1 (S,p) — PGL(2,C) does not depend on this order.
Moreover, this representation depends only on a triangulation T and on cross ratios,

which are given with respect to this triangulation.

3.3 Spectral network of rank 2 over the sphere

with three punctures

The simplest interesting case of example 3.1 is a spectral network of rank 2 over the
sphere with three punctures. In this case the spectral network on S consist only of
two triangles with vertices in punctures A, B, C, so we need to identify the point A
with the point D, the edge AB with the edge DB and the edge AC with the edge
DC (see figures of example 3.1).

Thus we consider S = S 2\{[1, B,C }. On S we can consider the ideal triangulation
with vertices in A, B, C'. We get two triangles. In each triangle we have one branch
point Oy and Oy. We denote the points lifted to X by O; = 771(0y), Oy = 7 1(O,),
{A, A} =77 Y(A), {B,B'} = 7 YB), {C,C"} = 7 1(C). We assume the following
order on the spectral network A < A’ B < B',C < (',
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We chose a base point p with a base vector in the triangle 0,BC. We want
to describe the parallel transport operators for curves ap, ac, aq4, a4 around the
point B, C' and A. For A we consider two different curves (see figure 3.11).

b

Fig. 3.11: The picture in S.

In ¥ we choose the basis (e;) in p; and (eg) in py and curves 15 and 79;. In our
case Y1 * Y21 = —e € w(S, p1,v1). Therefore, v1a19; = —1. The value of one of these
constants can be freely chosen. For each point A, A’, B, B’,C, C" the flat connection
V' on ¥ defines constants a,a’,b,b’, ¢, which characterize the parallel transport
along the corresponding peripheral curve around each of these points in the positive
sense.

Curve ap. We denote 7% = (t;;) (only for this case). The lift of the curve
ap gives us 4 curves. We have one curve a;p around B’ with start and end in py,
therefore,

ty = V.

We have one curve asp around B with start and end in ps, therefore,

tog = —b.
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And finally, we have two curves (3, 82 with start in py and finish in p;. To compute
the corresponding numbers for this curves we have to complete these curves with

Y12. So we have
b +dbbec

V19

tio =

We do not have curves from p; to ps, therefore,

t21 - O
A A
| \ N ,
C Via .(. C
“ | g1 0,
B,2
N Py
"
C

Fig. 3.12: The picture in X.

b —a’bb'c
T = Y iz
0 —b

Curve a¢. Similarly to the curve apg:

Toc _ —c 0
c'—ab’cc’ /
coabee ¢

Vo1

Curve ag4. To find out how the parallel transport operator for the curve a; A

So we have the matrix:

looks like, we use the case 1 and we choose the new base point p’ in the triangle

O1CA’, and two curves £ and 1 which connect p and p’. Further, we consider the
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curve (3 (like figure 3.7 of example 3.1). Then a14 = =&+ f*n and £ xn = —e.
Then T, = —Tgl and
T,

1A

= T, ' TsTe.

To compute the matrix 77 of the parallel transport operator T in basis (€], €})
we choose the curves 7}y, 74, such that 7}, %75, = —e and then the computing of T”

is similar to cases 1 and 2. So we write:

5 —a 0
17 = a—ala/bc’ —ad
Y21

A A | N / /o
where To; ) = vj;e}, i, j € {1,2} and vj,rp, = —1.

We also need to compute T¢. We use (3.1) from example 3.1.

76 — I —vy
0 1

We also need to express v;; in terms of v;;, k;. To do this we note that

51*’}/12*7]2*72156.

Therefore,
1= k1V12l2V21 == —k11/12k2_11/21 == k’ll/iQkQ_lVl_Ql,
k
V12 k_21/12 = [k‘l = 1] = V12
1
and also
/ kl
Vo kj_VQI [kz = 1] = 91
2

Now we can compute 7“14:

P
a—aa’bc —a—da 4 aa'bc
V21

= ez (L )

Curve ayy. Here we use the case 2 of example 3.1 (see figure 3.8). The calculation

is very similar to the curve a4, therefore, we write the answer:

—1
1 0 _ 1 a'—ad’bd 1 0
T4 — (Tf)*lTﬁTf — a dvi2 —
—dV12 1 0 —a —dV12 1

IR
—a—da +adbc adaabc
— V12 )
—dvia(a’ — ad'b/c) —ad'bc
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In this case we have d = ab'd, therefore,

—a—d "y aa’be—a(a)?bbc?
To2a a—a +adbc "
—v1a(aad't'd — a*a' (b')%ed) —aa'tlc

We can summarize the results of this section in the following proposition.

Proposition 3.2. The representation of the fundamental group of the sphere with
three punctures to GL(2,C) given by a spectral network of rank 2 up to conjugation

is generated by following matrices:

—y b'—a’'bb'c
TeB — vi2 ,
0 —b
Toc _ —c 0
c'—ab'cc /]
gzavee ¢
V21

To1a _ (—aa’bc’ —vo(a — aa’bc’))

P
a—aa’bc —a—a 4 aa'bc
V21

—a—ad "y aa’be—a(a)?bb/c?
To2a _ a—a +adbc s
Y
—v1a(aad't'd — a*a' (b')%ed) —aa'tlc

where ap, ac, a1, Qaa are peripheral curves [see fig. 8.11]; a, b, ¢, ', V',
are complex constants, which satisfy the condition aa’bb'cd = 1 and are given by

the spectral network; via, Vo1 are complex constants, which satisfy the condition

Va1 = —1, and the value of one of these constants can be freely chosen.

3.4 Small spectral network of rank 3.

In this example we consider a special case of a spectral network of rank 3 over the
surface S.

We consider the surface S, a 3 : 1 branched covering 7: > — S and a line bundle
7y E — Y over ¥ with a flat connection. We consider an ideal triangulation of S
and assume that there is a spectral network W on S with the following properties:
for each triangle of the triangulation there are exactly three branch points, which
are contained in this triangle and the pictures of this triangle in S and its lift in X
look like on the fig. 3.13, 3.14, 3.15.
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C

Fig. 3.13: The picture in S.

The spectral network W induces a twisted representation 73 (.S, p,v) — GL(3,C)
for p e S, v € T),S as in the chapter 2.3.

We chose a triangle ABC in S. This triangle has three branch point 01,04, O5
[see fig. 3.13].

We denote the points lifted to ¥ by O; = 7 Y0;) for i = 1,23,
{A, A A"}y = 7Y (A), {B,B,B"} = 7 Y(B), {C,C",C"} = 7 1(C). We assume the
following order on the spectral network: A < A’ < A", B< B' <B",C<(C < (.
We also choose point p € S\ B, v € T,S. 7 (p) = {p1,p2, p3}. We denote by e;
the basis of E,, .

We can draw the covering ¥ in two ways. On the fig. 3.14 three sheets of the

covering are drawn which we glue along the dotted lines of the same color.
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Fig. 3.14: The picture in X.

We can also draw the flat picture of the covering ¥ which we can use further [see
fig. 3.15].
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CH

P2
B A
( ”1\
25
A B’
AJ.’ '9.'.r
C

Fig. 3.15: The picture in X.

As in the case of a spectral network of rank 2 we want to study the parallel
transport along peripheral curves a4, o, o around the points A, B, C' namely for
each parallel transport operator we want to find the invariant flag. To do this we

lift these curves in Y.
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Fig. 3.16: The picture in S.

Curve ap. Because of B < B’ < B” vector e is the eigenvector of T,,, and the

space (es, e1) is invariant 2-space of T,,. So we have the invariant flag

(€3)
FB = <63,€1>
Vo

Curve a¢. Because of C' < C" < C" vector ey is the eigenvector of T,,, and the

space (eg, e1) is invariant 2-space of T,,. So we have the invariant flag

(e2)
FC = <€2,61>
Vo

Curve ay. To find the invariant flag of T, ,, we choose the other base point p/,
tangent vector v’ (like on the fig. 3.17). «#~'(p') = {p}, Py, ps}. The basis of E, we
denote €; (i = 1,2,3). We chose also two curves &, which connect p and p’. The

corresponding standard lifts are &1, &, &3, 11, M2, 13-
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Fig. 3.17: The picture in S (up), in X (down).
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First of all, we consider the curve /4. The invariant flag of the operator T, is
casy to find. The eigenvector is e}, the invariant 2-space is (e}, €}).

Because ay = =& * oy xn we have T, , =T,/ T, T¢. Moreover, because § xn = —e
we have T, T = —id. Therefore, to find the invariant flag of 7}, we need to calculate
the matrix T¢ of the operator T in bases (ey, 2, €3) and (€], €}, e4). To do this we
chose 6 curves v;; (i,7 = 1,2,3,i¢ # j) which connect p; and p; [see fig. 3.18] so
that v31 * v12 = 732 and 721 * 713 = —723 and denote T, e; = v;e;. Because of

Vij * Vi = —e we have v;;v;;, = —1. Because of 731 * 712 = 732 we have v31v19 = vas.

Fig. 3.18: The picture in X..

There is only one (standard) lift & of £ with the base point po, therefore, t§2 = ko,
t§2 = tgz = 0.

There are two lifts & (standard lift) and £, [see fig. 3.19] of £ with the base point
po. Because & ends in p;, we have th = ko. Because 1 ends in py and Sx*xnyxvy0 =€
we apply (2.2):
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Fig. 3.19: The picture in X.
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There are 4 lifts of £ with start in ps: standard lift &3, two lifts 55, 83 which ends
in p; and one lift B; which ends in p, [see fig. 3.19]. Because [ * ny * 13 = ' and
Ps * my * 13 = e we have with (2.2):

Because (34 * 12 * 723 = e we have with (2.2):

1
tsy =
% lavo3
Therefore,
k 0 14d~!
: 11 l1q13
=\ * o
0 0 ks
With remark 2.10 we assume k; = —[; = 1 and apply v;; = —Vj_il and v31Vj9 = U3g.

Moreover, we can choose v3; = v19 = /39 = 1. Therefore,

1 0 (1+d M 1 0 1+d!
T¢= vy 1 V32 =111 1 : (3.3)
0 0 1 00 1
Then
1 0 —d'—-1
T "' =|-11 da! (3.4)
0 0 1

Therefore, the invariant flag of Ty, , is

Fai=To" | (eheh)

<—(d71 + 1)V31€1 + Vggdileg + 63>
= <—(d_1 -+ 1)1/3161 + 1/32d_1€2 + €3,€1 — V1262> =
Vo

(—(d '+ 1)e; +d ey + e3)
= | (=(d '+ 1)e; +d ey +e3,e1 — €2)
Vo
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So for each triangle of the triangulation of S we get exactly one non-trivial curve
in X. We have seen by studying of the spectral network of rank 2 that one triangle
does not give us non-trivial curves in Y, but if we consider two triangles with the
common side together, we get a non-trivial curve in 2.

Now we consider the same situation but for the spectral network of rank 3. On
fig. 3.20 we can see the picture in S and on fig. 3.21 we can see the corresponding

picture in X, we glue sides of the same color.

s

=

[

Fig. 3.20: The picture in S.
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Fig. 3.21: The picture in X.

On fig. 3.22 we can see four independent in curves: 6, ', (g and (. Each of these
curves gives us the number which defines the parallel transport along the curve. We

denote these numbers d, d’, zp and z¢.
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Fig. 3.22: The picture in 2.

We can also draw three-dimensional pictures of ¥ (without lines of spectral
network):
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°
A

Fig. 3.23: The picture in X.

We can make a different picture of the same surface:

Fig. 3.24: The picture in .
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For the points A, B and C' we have also found the invariant flags Fu, Fp, Fe.
Now we want to find the invariant flag corresponding to the point D.

To do this, we choose the base point p like on the fig. 3.25, choose a peripheral
curve ap and calculate the invariant flag of the parallel transport along the curve

ap in the basis (e, ea, e3) of E,.

Fig. 3.25: The picture in S.

First of all, we change the base point. We choose the point p in the triangle DBC
and curves & and 7 which connect p and p’ and {xn = e [see fig. 3.26] We also choose
the curve o/ such that ap = & x oy x 7.

Because of symmetry we can calculate the invariant flag of o/, in basis (€], €, )

at the point p using the invariant flag of a4

(—(d + 1)hes + vhyd'eh + )
Fp = | (=(d'+ Dy ey + vhyd'es + €5, €] — v1€h)
v,
Because ¢ and 7 do not intersect spectral network, we can identify using

remark 2.11 the basis (e, ez, e3) at the point p with the basis (€], €}, e5) at the
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Fig. 3.26: The picture in S.

point p’ by parallel transport along &, so we only have to calculate v;;. To do this,

we have to consider the corresponding curves ;; such that T, e; = v;;e’.
ij
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Fig. 3.27: The picture in X.

On the fig. 3.27 one can see that 4, * 1y * 13 * & = (¢, therefore,
/ zc
V13
Analogously, 71y * 12 % Y91 * & = (p and
! ZB
V21
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And also v}, = V415 = zpzc. So we get:

<(d/ + 1)2061 + ZBZCd/BQ + €3>
Fp = | ((d 4+ 1)zce1 + zpzed'es + e3,e1 + zpes)
Vi

3.5 Small spectral networks of rank 3 and

Fock-Goncharov coordinates.

As we have seen in the previous paragraph, the ideal triangulation of the surface
with punctures yields the collection of invariant flags in C3 of the parallel transport
along curves which go around punctures. Namely, for each triangle we have three
punctures and so we get three invariant flags and for each pair of triangles with
common side we have four invariant flags.

The projectivisation yields for each invariant flag a line and a point on this line
in CP2. So for two triangles ABC and DBC of the triangulation of S with the
common side BC' we have four lines la, lg, lc and lp and four points py € Iy,
ps € g, pc € lc, pp € Ip in CP? (see fig. 3.28), which gives us four Fock-Goncharov
coordinates X, Y, Z and W [4], which we have discussed in the section 2.7.

Ip

ls

/

Fig. 3.28: The picture in CP%.

First of all, we calculate the homogeneous coordinates of the points p; € CP?,
i€ {A, B,C,D}:
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pa=[—dt—=1:d7":1],
pp=1[0:0:1],
pc=1[0:1:0],
pp = [(d +1)z¢ : zpzed : 1],
Further, we determine the lines [; C CP?, i € {A, B,C, D}.

la={(~-d ' —1:d':1],[1:=1:0)),
Ig={(0:0:1],[1:0:0]),
lc=(0:1:0],[1:0:0]),
Ip={[(d+1)zc : zpzcd : 1],[1: z5 : 0]).

If we fix three lines corresponding to one of the triangles ABC or DBC, then on
each line [; (i € {A, B, C}) we have two points p;;, p;, of intersection with two other
lines [; and I}, ({j,k} = {4, B,C}\ {i}) [see fig. 2.25]. Moreover, for each line [; we
have two point p;, pr ({j,k} = {A, B,C}\ {i}) which do not lie on this line. These

two points define us the line [, which intersects /; in the point p; jr. So we get 4

points of each line.

Fig. 3.29: The picture in CP%.
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The coordinate X is defined as the cross ratio of 4 points p;, pij, Dik, Dijk
({i,4,k} = {A, B,C}). Because the cross ratio is a projective invariant, this does not
depend on the choice of i € {A, B, C'} and the choice of the affine chart. We calculate
this number for i« = C in the affine chart with respect to the basis (ea, €3, €1 +e2+e€3).

We get pc = (1,0) and the line [g is defined by equation (0, 1)¢, ¢ € R and line I
is defined by equation (1,0)¢, t € R. Therefore, pcp = (0,0). With respect to this
chart [, is the infinite line, which intersects [o in infinite point poa. The line 45
is defined by the equation (0,1) + ¢(d"',1), t € R which intersects l¢ in the point
po.ap = (—d™1,0). So we get the cross ration

0—1

X = —[pc,pc,ap;pcaspes] = T0rdl d. (3.5)

Because of symmetry we can get the coordinate Y as the cross ratio for the points

PB, PB.cD, PBD and ppe from the equation (3.5):

Y = _[pB>pB,CD7pBD7pBC] =d.

The coordinate Z is defined as a cross ratio of the points pe, pcp which is an
intersection point of lines I and lp, pcap which is an intersection point of lines
lc and papg and pepp which is an intersection point of lines I and pppp (see
fig. 3.30).

To calculate Z, we use the other affine chart with respect to the basis (e, €3, €3).
In this chart pp is the infinite point, (5 is the infinite line, pc = (0,0), l¢ is defined
by equation (1,0)t, t € R, pa = (=d — 1,d), pp = (zpzcd’)(zc(d + 1),1).

In the chosen affine chart we have pop is a infinite point,

Pc,AB = (_d_ 170)7

(d+1 0
bc,pB = pd .

So we can calculate Z:

1+d
Z = [pcB,pc,as,pc,pe,ppl =1+ m-
Analogously we get the coordinate W
1+d

[pBC7pB,D07pBapB,AC] + (1 —|—d/)dZC

We can see that an ideal triangulation of S and a flat connection on ¥ define the

collection of Fock-Goncharov coordinates on S. Conversely, if an ideal triangulation
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Fig. 3.30: The picture in CP2.

T on S and a collection of Fock-Goncharov coordinates with respect to this
triangulation are given, we get the numbers d, d’, zp, zc for each pair of triangles
with common side. We can construct a representation p: m (S,p) — PGL(3,C),

p € S, p do not lie on lines of triangulation in the following way.
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Fig. 3.31: The picture in S.

First, we fix some total order p on triangles of this triangulation and choose a pair
of triangles with vertices A, B, D, C € S and the common side ¢ = BC'. For this pair
of triangles the numbers d, d’, zg, z¢ are defined by Fock-Goncharov coordinates. We
assume that by projectivization invariant flags F; for ¢ € {fl, B,C, f)} go to points
of CP?%:

pa=[-dt—1:d7":1],

PB = [0 :0: 1],
pc=1[0:1:0],
pp = [(d + 1)z¢ : zpzed : 1],

and lines:

la=(-d ' —1:d7":1],[1:=1:0)),
Ip=([0:0:1],[1:0:0]),
le=([0:1:0[[1:0:0]),
Ip = ([(d +1)z¢c : zpzed : 1],[1: 25 : 0]).

We have a unique projective transformation ¢, witch sends p4 to pp, 4 to [p and
fix other two points and lines. This transformation corresponds to a unique element
M € PGL(3,C). In this way we get a bijective correspondence between the set
of all pairs of triangles on S with a common side and PGL(3,C). We also fix the
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number &, which is equal to 1 if the triangle ABC' is smaller then DBC, and is equal
to —1 otherwise.

We consider a group homomorphism x: Fo — PGL(3,C), which is defined on
generators of Fi in a following way x(c) := M¢ for all sides ¢ of triangulation T .

Further, we consider the universal covering 7: S’ — S of S and corresponding
triangulation 7’. We denote by P’ the set of all vertices of triangulation of 7'. We
want to construct two function f; and fs, such that f; sends each element s’ € P’
to a line fo(s’) in CP? and f; sends s’ to a point fi(s') € fas').

First, we choose a lift p’ € 771(p). This lies in a triangle Ty on S’ with vertices

s}, s, s5. We define f; and fy for this three points in a following way:
fi(sy)=1[1:0:1], fa(sy):=1[0:1:1], fa(sy):=[1:1:0],
f2<8/1> = <[1 0 1]7 [0 :0: 1]>7
f2<8/2> = <[0 1 1]7 [O 0 1]>7
fa(sy) :==([1:1:0],[1:0:0]).
We use the map ¥ from the section 2.9 and assume that the order p agree with the
order o in the section 2.9. If we choose s’ € P’ then by remark 2.20 there exist a
unique shortest word b € F(S,p) and unique i € {1,2,3} such that ¢(b,s;) = ¢'.
Because b and i are unique, we define f;(s") := s(b)(f;(s:)), j € {1,2}.

Now we are ready to construct a representation p: m(S,p) — PGL(3,C). We
take an element g € m1(S,p). We can consider this element as a deck transformation
of S, which also acts on P" and g(s}) =1, € P', i € {1,2,3}. There exist a unique
element p(g) € PGL(3,C) such that p(f;(s;)) = f;(r}) foralli € {1,2,3}, j € {1,2}.
By this rule the map p: m(S,p) — PGL(3,C) is well defined, and it is easy to see

that this is a group homomorphism, so we get a representation.

Remark 3.3. Because the order o on T and choice of sign of € are consistent,
the constructed representation p: m(S,p) — PGL(3,C) does not depend on this
order. Moreover, this representation depends only on a triangulation T and on

Fock-Goncharov coordinates, which are given with respect to this triangulation.

3.6 Other coordinates associated with spectral

networks of rank 3

How we have seen, if we fix two triangles ABC and DBC with a common side, then

four Fock-Goncharov coordinates are defined by homotopy constants d, d', zg, zc.
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Two coordinates X and Y agree with constants d and d’. Two other coordinates Z
and W depend on d, d’ and zp resp. zc. Now we are going to give an interpretation
of zg and z¢ which is similar to Fock-Goncharov coordinates. Instead of two points
pc,ap and pe, pp we consider two points pca and pep which are points of intersection

lc and l4 resp. Ip (see fig. 3.32). The new U-coordinate we define as

U = —[pc,pcs; pca, pep)

Analogously, we define V-coordinate:

V= —[PB, PBC,PBD, pBA]

Fig. 3.32: Picture in CP?2.

Now we calculate these coordinates for our pair of quadrangle given by spectral
network. In the chart with respect to the basis (ej, €3, €2) the point pca = (—1,0),
pep is infinite point, po = (0,0), pcp = (25',0). Therefore,

Analogously, we get
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We can see that these new coordinates determine Fock-Goncharov coordinates
and vice versa, but in our case these coordinates are more natural because they
correspond to homotopy classes of curves on .

We also want to see, how this new coordinates change if we change the
triangulation. Like in the case of Fock-Goncharov coordinates we consider only
the case of a flip [see fig. 3.33].

A simple affine geometric calculation gives us transformation formulas of

coordinates:
,_a+o)vo o, 1+ VU
’Y:—’
14+ V)Y 1+ U)X
,  Y4+V(A+Y+U) , X+ UA+X+V)
(X HUA+X V)Y Y+ VA+Y HU))X

Remark 3.4. These changes of coordinates are positive. This means that the minus
sign does not appear in transformation formulas, as in the original Fock-Goncharov
coordinates.
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Fig. 3.33: Flip. Picture in CP?.
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