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Abstract
Andreev’s Theorem (1970) [3] [4] gives us a classification of polyhedra of finite volume,
with non-obtuse dihedral angles, in the 3-dimensional hyperbolic space. The main pur-
pose of this thesis is to give an introduction to such polyhedra and their combinatorics,
and to study the tools used by Andreev to state and prove his theorem.

Zusammenfassung
Andreevs Theorem (1970) [3] [4] gibt uns eine Klassifikation von Polyedern endlichen
Volumens mit nicht-stumpfen Diederwinkeln im dreidimensionalen hyperbolischen Raum.
Der Hauptzweck dieser Arbeit ist es, eine Einführung in solche Polyeder und ihre Kom-
binatorik zu geben und die von Andreev verwendeten Instrumente um seinen Satz zu
beweisen zu verstehen.
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1. Hyperbolic Polyhedra

We begin by defining convex polyhedra on the 3-dimesional hyperbolic space. For this
purpose we will use the hyperboloid model H3, which is the model that we get by taking
the positive unit time-like vectors of the Minkowski space. On the other hand, let us
remember that in the Euclidean space a convex polyhedron is the convex set that we
get by intersecting finitely many half-spaces. We will define hyperbolic polyhedra in a
similar way. Therefore, we have to see how a k-dimensional hyperbolic subspace in H3

looks and to understand the relation between them and the time-like vectors.

1.1. The Lorentzian n-space

The Lorenz n-Space E1,n is the vector space Rn+1 together with the Lorentzian prod-
uct, which is given by

〈x, y〉L = −x0y0 + x1y1 + · · ·+ xnyn. (1.1)

where x = [x0, x1, . . . , xn]T and y = [y0, y1, . . . , yn]T ∈ Rn+1. Note that for all x, y ∈ Rn+1

equation (1.1) is equivalent to
〈x, y〉L = xTJy (1.2)

where J is the (n+ 1)× (n+ 1) indefinite matrix given by

J =


−1 0 . . . 0
0
... In
0


Moreover, the Lorentzian product induces the pseudo-Riemannian metric defined by the
form −dx20 + dx21 + · · ·+ dx2n. When n = 3 we call E1,3 the Minkowski space.

Remark 1.1. We will denote the elements of the standard basis of E1,n by ei, for
i ∈ {0, ..., n}, where ei is the vector that has 1 in the i-th coordinate and zero in the
others.

Vector Subspaces

We will study the vector subspaces of the general Lorentz n-space and their relation
with the light cone. We begin by classifying the vectors in E1,n.

Definition 1.1. Take x ∈ E1,n, then

1. x is space-like if 〈x, x〉L > 0,

2. x is light-like if 〈x, x〉L = 0,

3. x is time-like if 〈x, x〉L < 0.
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1. Hyperbolic Polyhedra

4. We also say that x is positive if x0 > 0.

The light cone C is the set of light-like vectors. Moreover, C − {0} is a n-dimensional
manifold with two different connected components, one consists of the positive light-
like vectors and the other contains the negative light-like vectors. The light-cone is
the boundary of the two open sets containing the time-like and the space-like vectors,
respectively.

Figure 1.1.: C in E1,1

1. We denote by C+ the set of positive light-like vectors.

2. The interior of C is the open set in E1,n containing all the time-like vectors.

3. The exterior of C is the open set in E1,n containing all the space like vectors.

If V is a vector subspace of E1,n, then we have three possibilities for V −{0}: it intersects
the interior of C, it lies completely on the exterior of C, or it intersects C but not its
interior. This corresponds to the classification given in the following definition.

Definition 1.2. If V is a vector subspace of E1,n, it is called

• time-like if contains a time-like vector.

• space-like if all the vectors in V − {0} are space-like vectors.

• light-like otherwise.

Now, let V be a k-dimensional vectors subspace of E1,n. The restriction of the Lorentzian
product to V , denote it by 〈, 〉L

∣∣
V
, is a scalar product on V . Given a basis B =

{v1, . . . , vk} of V , the matrix representation of the scalar product 〈, 〉L
∣∣
V

with respect
to B is

G(B) =

〈v1, v1〉L . . . 〈v1, vk〉L
... . . . ...

〈vk, v1〉L . . . 〈vk, vk〉L

 (1.3)

and for all x, y ∈ V it holds that

〈x, y〉L
∣∣
V

= x̃TG(B)ỹ, (1.4)

where x̃ and ỹ are the column vectors in Rk whose entries are the coefficients of x and
y with respect to the basis B.

Equation 1.4 tells us that:
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1. Hyperbolic Polyhedra

• G(B) is positive definite if and only if V is space-like.

• G(B) is positive semi-definite if and only if V is light-like.

• G(B) is indefinite if and only if V is time-like.

This is equivalent to the following statement.

Proposition 1.1. If V is a k-dimensional vector subspace of E1,n and B = {v1, ..., vk}
is a basis of V , then

1. det G(B) > 0 if and only if V is space-like.

2. det G(B) = 0 if and only if V is light-like.

3. det G(B) < 0 if and only if V is time-like.

Remark 1.2. If V=E1,n and B = {e0, . . . , en} is the standard basis, then G(B) = J .

The Lorentzian Complement

The Lorentzian-Complement of a vector subspace V of E1,n is the set

V L = {x ∈ E1,n|〈x, y〉L = 0 for all y ∈ V }.

Since the Lorentz product is a bilinear form, it is clear that V L is also a vector subspace
of E1,n.

Example 1.1. If V = E1,n, then V L = {0}.

A vectors subspace V is space-like if and only if its Lorentzian complement is a time-
like vector subspace and in this case the whole space is the direct sum of both vector
subspaces. On the other hand, V is light-like if and only if its Lorentzian-complement
is light-like.

Lemma 1.1. If V is a vector subspace of E1,n, then

1. J(V ⊥) = J(V )⊥ = V L, where V ⊥ denotes the Euclidean orthogonal complement of
V .

2. (V L)L = V

Proof.
1. From the equation (1.2) we know that

〈x, y〉L = xTJy = yTJx for all x, y ∈ E1,n. (1.5)

and the statement follows from the definition.
2. Note that

(V L)L = J(V L)⊥ = J(J(V ⊥))⊥ = J(J(V ⊥)⊥) = J(J(V )) = V.
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1. Hyperbolic Polyhedra

Proposition 1.2. If V is a k-dimensional space-like subspace of E1,n, then

E1,n = V ⊕ V L

Proof. We want to see that dim(V L) = n+ 1− k and V ∩ V L = {0}.

1. V and J(V ) are vector subspaces of the same dimension and from Lemma 1.1 we
know that V L = J(V )⊥. Therefore,

dim(V L) = dim(J(V )⊥) = n+ 1− k.

2. Since V is space-like, it holds that 〈y, y〉L > 0 for all vectors y ∈ V . Let us assume
that V ∩ V L 6= {0}, then there is a non-zero vector x ∈ V such that 〈x, y〉L = 0
for all vectors y ∈ V , specially 〈x, x〉L = 0 and so we get a contradiction.

Proposition 1.3. If V is k-dimensional space-like subspace of E1,n, then V L is time-like.

Proof. From the last proposition we know that E1,n = V ⊕ V L. Let us take a basis
B = {v0, . . . , vn} of E1,n such that

B1 = {v0, . . . , vk−1} is a basis of V, and
B2 = {vk, . . . , vn} is a basis of V L.

Also let us assume that V L is not a time-like vector subspace.

Take the representation matrices G(B1) and G(B2) of the scalar product on the respec-
tive vector subspaces. By proposition 1.1 it holds that that

det G(B1) > 0 and det G(B2) ≥ 0. (1.6)

Additionally, since V L is the Lorentzian complement of V we have

〈vi, vj〉L = 〈vj, vi〉L = 0 for i = 0, . . . , k − 1 and j = k, . . . , n.

From the last equation we can conclude that the matrix of representation of 〈, 〉L with
respect to the basis B is

G(B) = G(B1)⊕G(B2) =

[
G(B1) 0

0 G(B2)

]
and so, by the last result and equation (1.6)

det G(B) = det G(B1)det G(B2) ≥ 0,

which contradicts the fact that the whole space is time-like.

Proposition 1.4. If V be a proper time-like subspace of E1,n, then V L is space-like.

9



1. Hyperbolic Polyhedra

Proof. Let x ∈ V be a time-like vector, then
〈x, x〉L =− x20 + x21 + · · ·+ x2n < 0

⇒ x21 + · · ·+ x2n < x20.
(1.7)

Now, let us assume that there is a vector y ∈ V L − {0} that is not space-like, then
〈y, y〉L =− y20 + y21 + · · ·+ y2n ≤ 0

⇒ y21 + · · ·+ y2n ≤ y20.
(1.8)

Note that both x0 and y0 are different from zero. Otherwise, we would have a contradic-
tion to the two last equations. In addition, since 〈λx, λx〉L = λ2〈x, x〉L, we can assume
without loss of generality that x0, y0 > 0.

Let x̂ = [x1, . . . , xn]T and ŷ = [y1, . . . , yn]T , it holds

〈x̂, ŷ〉 =x1y1 + · · ·+ xnyn

‖x̂‖2 =x21 + · · ·+ x2n

‖ŷ‖2 =y21 + · · ·+ y2n

From equations (1.7), (1.8) and the Schwartz inequality it follows that

x0y0 >‖x̂‖‖ŷ‖ ≥ 〈x̂, ŷ〉
⇒ 0 > −x0y0 + x1y1 + · · ·+ xnyn = 〈x, y〉L,

but 〈x, y〉L = 0, since y ∈ V L.

Proposition 1.5. If V a light-like vector subspace different from zero, then V L is light-
like.
Proof. Let us assume that V L is time-like, by Proposition 1.4 we know that (V L)L = V
is space-like. Analogously, if we assume that V L is space-like, then we can conclude that
V is time-like and in both cases we get a contradiction.

Corollary 1.1. Given a non-zero proper vector subspace V of E1,n. It holds that

V L is time-like ⇐⇒ V is space-like
⇐⇒ det G(B) > 0 for any basis B of V

V L is space-like ⇐⇒ V is time-like
⇐⇒ det G(B) < 0 for any basis B of V

V L is light-like ⇐⇒ V is light-like
⇐⇒ det G(B) = 0 for any basis B of V

Corollary 1.2. If V is a time-like or space-like vector subspace of E1,n, then

E1,n = V ⊕ V L

Example 1.2. Let v ∈ E1,n be a space-like vector, and 〈v〉 be the 1-dimensional vector
space generated by this vector. Since 〈v, v〉L > 0, it holds that 〈v〉 is space-like. There-
fore, 〈v〉L is time-like. In fact, 〈v〉L is the n-dimensional hyperplane with normal vector
Jv = [−v0, v1, . . . , vn].
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1. Hyperbolic Polyhedra

Lorentz Transformations

The Lorentz transformations are the linear transformations from E1,n into itself that pre-
serve the Lorentzian product. They preserve the light cone, its interior and its exterior.
Moreover, they are linear isomorphisms and the set of all a Lorentz transformations is
a Lie group.

Definition 1.3. A Lorentz transformation is a linear map φ : E1,n −→ E1,n such
that 〈φ(x), φ(y)〉L = 〈x, y〉L for all x, y ∈ E1,n.

Let φ : E1,n −→ E1,n be a Lorentz transformation:

• If Aφ is its representation matrix with respect to the standard basis, then ATφJAφ =
J .

• Since det (Aφ)2 = 1, φ is a linear isomorphism.

• φ preserves the light cone C, its interior and its exterior. However, it doesn’t
necessarily sends positive vectors into positive vectors.

As mentioned before, the set of all Lorentz transformations is a Lie group, we call it the
Lorentz Group and denote it by O(1, n).

Proposition 1.6. O(1, n) is a Lie group of dimension
(
n+1
2

)
Proof. Let e = In be the identity matrix. We want to see that dim(TeO(1, n)) =

(
n+1
2

)
.

Take A0 ∈ TeO(1, n), there is a smooth curve A(t) : (−ε, ε) → O(1, n), for some ε > 0,
such that A(0) = In and Ȧ(0) = A0.

Since A(t) ∈ O(1, n) for all t ∈ (−ε, ε),

A(t)TJA(t) = J ⇒ d

dt
AT (t)JA(t) = 0

⇒ Ȧ(t)TJA(t) + A(t)TJȦ(t) = 0.

The last equation holds for t = 0. Hence,

AT0 J + JA0 = 0 ⇒ [JA0]
T + JA0 = 0.

Let A0 = [aij]i,j=1,...,n, the last equation tells us that:

• aii = 0 for all i = 0, ..., n,

• −a0i + ai0 = 0 for all i = 1, ..., n,

• aij + aji = 0 for all i, j = 1, ..., n.

Therefore, as each A ∈ TeO(1, n) is defined by the choice of the entries aij with indices
i, j = 0, ..., n and i 6= j, dim(TeO(1, n)) = dim(O(1, n)) =

(
n+1
2

)
.
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1. Hyperbolic Polyhedra

Positive Lorentz Transformations

We are interested in Lorentz transformations that preserve C+. In other words, we are
interested in Lorentz transformations that send positive light-like vectors into positive
light-like vectors. Such a Lorentz transformation is called a positive Lorentz trans-
formation and the set of all positive Lorentz transformations is a subgroup of O(1, n),
we call it the positive Lorentz group and denote it by O+(1, n).

Remark 1.3. Here are some facts about O+(1, n)

• A positive Lorentz transformation φ sends positive time-like vectors into positive
time-like vectors.

• Let Aφ = [aij]i,j=0,...,n be the representation matrix of a positive Lorentz transfor-
mation φ. Since φ(e0) is the first column of A, it holds that a00 > 0.

• As a result of the above, O+(1, n) is an open set in O(1, n). Hence, it is a Lie
subgroup of O(1, n).

• O+(1, n) gives a transitive action on the set of k-dimensional time-like subspaces
of E1,n. In other words, for any two k-dimensional time-like vector subspaces V1
and V2 there is a φ ∈ O+(1, n) such that φ(V1) = V2.

12



1. Hyperbolic Polyhedra

1.2. The Hyperboloid Model

Recall that the hyperbolic space is up to isometry the simply connected n-dimensional
manifold with constant sectional curvature K = −1. We will build hyperbolic polyhedra
in the hyperboloid model. Therefore, we will develop some basic notions as isometries,
lines, hyperplanes etc... in this model. Note that these notions are equivalent in other
models of the hyperbolic space. Also, we say that two Riemmanian manifolds are con-
formally equivalent, if the measured angles are the same.

Let us take the Lorentzian space E1,n. The hyperboloid model is the n-dimensional
manifold given by

Hn = {x ∈ Rn+1 | 〈x, x〉L = −1 and x0 > 0}

together with the Riemannian metric induced from the form −dx20 + dx21 + · · · + dx2n.
We identify the points lying on the boundary with the positive light-like rays, i.e.,
∂Hn = C+/x ∼ λx.

Remark 1.4. Let us denote by C̊+ the positive vectors lying in the interior of the light
cone. The image of the projection

πH : Hn −→ C̊+ ∩ {x0 = 1}

p = [p0, ..., pn] 7−→ [1,
p1
p0
, ...,

pn
p0

]

corresponds to the Klein model Kn of the hyperbolic space. The points lying on the
boundary ∂Kn correspond to the points in the sphere Sn−11 = C+ ∩ {x0 = 1}.

Figure 1.2.: H2, K2 and a hyperplane.
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1. Hyperbolic Polyhedra

Isometries of Hn

The group of isometries of Hn will be denoted by Isom(Hn). It is the subgroup of
diffeomorphisms of Hn that preserve the metric induced from the Lorentzian product.
In other words, if f ∈ diff(Hn) ⇒

f ∈ Isom(Hn) ⇐⇒ ∀p ∈ Hn and v, w ∈ TpHn it holds that
gp(v, w) = gf(p)(dfpv, dfpw)

Also remember that an element of Isom(Hn) preserve lengths, distances and angles.
Moreover, it sends geodesics, i.e, hyperbolic lines, into geodesics.

There is a close relation between the group Isom(Hn) and the group of positive Lorentz
transformations. The restriction of a positive Lorentz transformation to Hn is an isom-
etry. On the other hand, any isometry can be extended in a unique way to a positive
Lorentz transformation.

To see that the restriction of an element of O+(1, n) to Hn is an isometry, we need to
take the following into account:

• The tangent space TpH
n at a point p ∈ Hn is 〈p〉L. In particular Te0Hn =

span{e1, . . . , en}.

• The Riemannian metric g evaluated at a point p is the Lorentzian product restricted
to 〈p〉L.

Proposition 1.7. Given a positive Lorentz transformation f ∈ O+(1, n), its restriction
to Hn is an element of Isom(Hn).

Proof. It is clear that φ = f |Hn is an element of diff(Hn).

Let A be the matrix representation of f with respect to the standard basis, then

f(x) = Ax and dfpv = Av, for all p ∈ E1,n and v ∈ TpE1,n.

Take an element p ∈ Hn. Since TpE1,n = 〈p〉 ⊕ 〈p〉L = 〈p〉 ⊕ TpHn (see Proposition 1.1),
it holds that

dφp = dfp
∣∣
〈p〉L

and for all v, w ∈ TpHn

gp(v, w) = 〈v, w〉L = 〈Av,Aw〉L = gφ(p)(dφpv, dφpw).

In fact, the restriction defines a group isomorphism between the positive Lorentz group
and the group of isometries of Hn (see [16, Chap 2.] or [11, Chap.3]). Furthermore,
together with Remark 1.3 and Proposition 1.6, this tells us that Isom(Hn) is a Lie
group of dimension

(
n+1
2

)
.

Some isometries that we will use are rotations, reflections through a given hyperbolic
plane and translations on H2.
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1. Hyperbolic Polyhedra

Hyperbolic Subspaces

To study the notion of hyperbolic subspaces, let us begin by studing hyperbolic lines. For
this purpose take two different points x1, x2 ∈ Hn. The vector space V = span{x1, x2}
is a 2-dimensional time-like vector subspace of E1,n. Therefore, Remark 1.3 tells us that
there is an element φ ∈ O+(1, n) such that φ(V ) = E1,1 = span{e0, e1}. Also note that

φ(V ∩Hn) = E1,1 ∩Hn (1.9)

is the hyperbolic line given by

l(t) = cosh(t)e0 + sinh(t)e1, t ∈ R. (1.10)

Hence, since φ|Hn ∈ Isom(Hn), the set V ∩ Hn is a hyperbolic line. In fact, it is the
unique hyperbolic line containing x1, x2 and it contains the hyperbolic line segment
Lx1,x2 between x1 and x2.

We can generalize the last result for higher dimensions. In other words, we will say that
a k-dimensional hyperbolic subspace of Hn is the intersection of a k+1-dimensional
time-like vector subspace V of E1,n and Hn.

Example 1.3.
• A 0-dimensional hyperbolic subspace is a point p ∈ Hn.
• A 1-dimensional hyperbolic subspace is a hyperbolic line l.

Also, if H1 = V ∩Hn is a k-dimensional hyperbolic subspace, then there is a positive
Lorentz transformation such that φ(V ) = span{e0, e1, . . . , ek} = E1,k. Therefore, since
φ(V ∩Hn) = E1,k∩Hn = Hk and φ|Hn ∈ Isom(Hn), we can conclude that H1 is isometric
to Hk.

Now, let H1 = V1 ∩Hn and H2 = V2 ∩Hn be two different hyperbolic subspaces of Hn.
Note that

H1 ∩H2 = V1 ∩ V2 ∩Hn

• V1 ∩ V2 is a time-like vector subspace if and only if it intersects the interior of the
light cone. In this case, H1 ∩H2 6= ∅ and it is a hyperbolic subspace of Hn.

• V1 ∩ V2 is light-like if and only if it intersects the light cone but not its interior.
The intersection of a non-zero light-like vector subspace with the light cone is a
1-dimensional light-like vectors subspace [11, Chap. 3]. For this reason, V1∩V2∩C
corresponds to a single point in ∂Hn and we say that H1, H2 meet at a point at
infinity.

• V1 ∩ V2 is space-like if and only if this intersection is completely in the exterior of
the light cone. In this case the intersection of the subspaces H1, H2 is empty and
they don’t meet at infinity.

Let us see that any hyperbolic subspace is the intersection of finitely many (n − 1)-
dimensional hyperbolic subspaces, and a criterion to see when we have one of the last
three cases.

15



1. Hyperbolic Polyhedra

Figure 1.3.: Secant, parallel and ultra-parallel lines in K2

Hyperplanes

A (n− 1)-dimensional hyperbolic subspace in Hn is called a hyperbolic hyperplane.
The set of hyperbolic hyperplanes is parametrized by the set of Lorentz unit vectors, or,
the de Sitter sphere. In other words, each Lorentz unit vector defines a hyperbolic
hyperplane and for each hyperbolic hyperplane, we can find a Lorentz unit vector that
defines it.

Example 1.4.
• In dimension 3 a hyperplane is a hyperbolic plane.
• In dimension 2 a hyperplane is a hyperbolic line.

The de Sitter sphere is the set of Lorentz unit vectors in E1,n, i.e., the set

Hn = { x ∈ E1,n | 〈x, x〉L = 1 }

First, remember that for all v ∈ Hn the Lorentzian complement 〈v〉L of 〈v〉 is a time-like
hyperplane (remember example 1.2). Therefore,

Pv = 〈v〉L ∩Hn (1.11)

is a hyperbolic hyperplane.

On the other hand, if V is a n-dimensional time-like vector subspace, then

1. V L is space-like.

2. E1,n = V ⊕ V L.

3. (V L)L = V

(see Corollaries 1.1, 1.2)

Therefore, we can find a space-like vector v ∈ Hn such that V = 〈v〉L and so, the
hyperbolic hyperplane V ∩Hn can be written as in the equation (1.11).

Also note that:

• If v ∈ Hn, then −v ∈ Hn. Furthermore, Pv = P−v.

• If v, w ∈ Hn are linear independent vectors. Then,

Pv = 〈v〉L ∩Hn 6= 〈w〉L ∩Hn = Pw.

Thus, v and −v are the unique Lorentz unit vectors which define the hyperplane Pv.

16



1. Hyperbolic Polyhedra

Lorentz Product and Intersections

Lemma 1.2. Let us take v1, . . . , vk ∈ E1,k. If V = Span{v1, . . . , vk}, then

V L =
k⋂
i=1

〈vi〉L.

Proof.

x ∈ V L ⇐⇒ 〈x, vi〉L = 0 for all i

⇐⇒ x ∈
k⋂
i=1

〈vi〉L

Proposition 1.8. A k-dimensional hyperbolic subspace of Hn is the intersection of
(n− k) hyperplanes.

Proof. Let H = V ∩Hn be a k-dimensional hyperbolic subspace. Since V is a (k + 1)-
dimensional time-like vector subspace, from the corollaries 1.1 and 1.2 we know that

• V L is space-like.

• E1,n = V ⊕ V L.

Therefore, dimV L = n−k and we can find n−k linear independent vectors v1, . . . , vn−k ∈
Hn such that V L = span{v1, . . . , vn−k}. By Lemma 1.2

V = (V L)L =
n−k⋂
i=1

〈vi〉L

and so

H =
n−k⋂
i=1

〈vi〉L ∩Hn =
n−k⋂
i=1

Pvi

Now, let H̄n = Hn∪∂Hn be the compactification of the hyperbolic space, and P̄v be the
closure of hyperbolic hyperplane defined by v in H̄n . If we take v, w ∈ Hn, the value of
the Lorentzian inner product between the two vectors tells us if the intersection of the
closures of the corresponding hyperplanes is empty or not.

Proposition 1.9. Take v, w ∈ Hn such that v 6= ±w, then

1. Pv ∩ Pw 6= ∅ ⇐⇒ 1− 〈v, w〉2L > 0.

2. ∅ 6= P̄v ∩ P̄w ⊂ ∂Hn ⇐⇒ 〈v, w〉2L = 1.

3. P̄v ∩ P̄w = ∅ ⇐⇒ 1− 〈v, w〉2L < 0.
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Proof. Take V = span{v, w} and note that by Lemma 1.2 it holds that

P̄v ∩ P̄w = 〈v〉L ∩ 〈w〉L ∩ H̄n

= V L ∩ H̄n

Thus, condition 1. holds if and only if V L is time-like, condition 2. holds if and only if
V L is light-like and condition 3. holds if and only if V L is space-like.

The representation matrix of the inner product on V with respect to the basis B = {v, w}
is

G(B) =

[
1 〈v, w〉L

〈w, v〉L 1

]
and det G(B) = 1− 〈v, w〉2L. Therefore, by Corollary 1.1

Condition 1. holds if and only if 1− 〈v, w〉2L > 0

Condition 2. holds if and only if 1− 〈v, w〉2L = 0

Condition 3. holds if and only if 1− 〈v, w〉2L < 0

• If the intersection of two hyperplanes Pv and Pw is not empty, then it holds that

〈v, w〉L = − cos(]vw),

where ]vw is the interior angle between the hyperplanes Pv and Pw. We call it
the dihedral angle at the intersection.

• If the hyperplanes Pv, Pw meet at a point at infinity, then the dihedral angle is
equal to zero.

• If the closures don’t intersect, then the Lorentzian inner product gives us the
hyperbolic distance between the two hyperplanes

〈v, w〉L = − cosh(dH(Pv, Pw)).

Remark 1.5. If {v1, . . . , vk}, with k < n, is a set of linearly independent vectors in
Hn we can use a similar argument to the one given in Proposition 1.9 to show that the
intersection

⋂k
i=1 P̄vi 6= ∅ if and only if∣∣∣∣∣∣

〈v1, v1〉L . . . 〈v1, vk〉L
... . . . ...

〈vk, v1〉L . . . 〈vk, vk〉L

∣∣∣∣∣∣ ≥ 0. (1.12)
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Some Computations and Results in H3

Let us see some results in the 3-dimensional hyperbolic space.

Proposition 1.10. Let Pv1 and Pv2 two hyperbolic planes in H3. If v1 6= ±v2 and
Pv1 ∩ Pv2 6= ∅, then the intersection is a hyperbolic line and 〈v1v2〉L = − cos(]v1v2).

Proof. Since Pv1 ∩ Pv2 6= ∅ and v1 6= ±v2 we know that 〈v1, v2〉L = − cos(]v1, v2). On
the other hand, by lemma 1.2

Pv1 ∩ Pv2 = 〈v1〉L ∩ 〈v2〉L ∩H3 = V L ∩H3,

where V = span{v1, v2}. It is clear that V L is time-like and dim(V ) = 2, which tells us
that dim(V L) = 2. Therefore, Pv1 ∩ Pv2 is a 1-dimensional hyperbolic subspace, i.e, a
hyperbolic line.

Note that by the Propositions 1.8 and 1.10, a hyperbolic line l in H3 is the intersection
of two hyperbolic planes, i.e, there are v1, v2 ∈ H3 such that l = Pv1 ∩ Pv2 . Moreover,
the hyperbolic line l is also a hyperbolic line of both hyperbolic planes.

Proposition 1.11. If Pv1Pv2Pv3 is a sequence of hyperbolic planes such that:

1. The vectors v1, v2 and v3 are linearly independent,

2. l1 = Pv1 ∩ Pv2 , l2 = Pv2 ∩ Pv3 and l3 = Pv3 ∩ Pv1 are hyperbolic lines.

3. The dihedral angles α1 = ]v1v2, α2 = ]v2v3, α3 = ]v3v1 are less or equal to π
2
.

Then, P̄v1 ∩ P̄v2 ∩ P̄v3 6= ∅ if and only if α1 + α2 + α3 ≥ π. Moreover, the intersection is
a single point p and

p ∈ H3 ⇐⇒ α1 + α2 + α3 > π

p ∈ ∂H3 ⇐⇒ α1 + α2 + α3 = π.

Proof. conditions 1. and 2. tells us that 〈v1, v2〉L = −cos(α1), 〈v2, v3〉L = −cos(α2) and
〈v3, v1〉L = −cos(α3). On the other hand, by remark 1.5 P̄v1 ∩ P̄v2 ∩ P̄v3 6= ∅ if and only
if the determinant of the matrix

G(B) = [〈vi, vj〉L]i,j=1,2,3 =

 1 − cos(α1) − cos(α3)
− cos(α1) 1 − cos(α2)
− cos(α3) − cos(α2) 1


is bigger or equal to zero.

We compute to get that

detG(B) = 1− cos2(α1)− cos2(α2)− cos2(α3) + 2 cos(α1) cos(α2) cos(α2)

and using the equality cos(x) = eix+e−ix

2
, the last expression is equal to

−4 cos
(α1 + α2 + α

2

)
cos
(−α1 + α2 + α3

2

)
cos
(−α2 + α1 + α3

2

)
cos
(−α3 + α1 + α2

2

)
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(see [14, page.838]).
Since 0 < α1, α2, α2 ≤ π

2
, it holds that −π < −αi+αj+αk < π and so cos

(
−αi+αj+αk

2

)
>

0. Thus,

det G(B)

 > 0 ⇐⇒ α1 + α2 + α3 > π
= 0 ⇐⇒ α1 + α2 + α3 = π
< 0 ⇐⇒ α1 + α2 + α3 < π

(1.13)

and so the first part of the proposition is done.

For the second part, note that Pv1 ∩ Pv2 ∩ Pv3 can be seen as the intersection of the
hyperbolic lines l1 = Pv1 ∩Pv2 and l2 = Pv3 ∩Pv2 on the hyperbolic plane Pv2 . Therefore,
l̄1 ∩ l̄2 = P̄v1 ∩ P̄v2 ∩ P̄v3 is either the empty set, a point on the boundary of Pv2 or a
point in Pv2 (see Figure 1.3). From the last argument, if P̄v1 ∩ P̄v2 ∩ P̄v3 6= ∅, then the
intersection corresponds to a single point p ∈ H̄3.

In our case p ∈ H3 if and only if det G(B) > 0, and, p ∈ ∂H3 if and only if det G(B) = 0.
Hence, by the equation (1.13) we are done.

Other Hyperbolic Models

In the course of the proof we will also use, the projective Klein model Kn, the Poincare
ball model Dn and the upper half-space model Hn of the hyperbolic space.

.
• A brief description of the projective Klein model and its relation with the hyperboloid
model was given at the beginning of this chapter (see Remark 1.5). Note that the set
of points of projective Klein model is the intersection of the interior of the light cone
and the Euclidean hyperplane {x ∈ E1,n|x0 = 1}, i.e, Kn = C̊+ ∩ {x0 = 1}. On the
other hand, if v ∈ Hn, the image of the hyperbolic hyperplane Pv in the projective Klein
model is the set

Ev = 〈v〉L ∩Kn.

In general, hyperbolic subspaces correspond to the intersection of time-like vector sub-
spaces and Kn. Also this model is not conformally equivalent to the open unit ball in
the Euclidean space.
• The Poincare ball model is given by the set

Dn = { x ∈ Rn | ‖x‖ < 1}

together with the metric

4
dx21 + · · ·+ dx2n

(1− ‖x‖2)2
.

The k-dimensional hyperbolic subspaces are the intersection of Dn with k-spheres and
k-planes in Rn orthogonal to ∂Dn. The projection πD : Hn → Dn given by

p(x) =
x

x0 + 1

is an isometry between both spaces. Moreover, This model is conformally equivalent to
the open unit ball in the n-dimensional Euclidean space.
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• The upper half-space model is given by the set

Hn = { x ∈ Rn | xn > 0 },

together with the metric
dx21 + · · ·+ dx2n

x2n
.

The k-dimensional hyperbolic spaces are k-spheres and k-planes that intersect ∂Hn

perpendicularly. This model is conformally equivalent to the upper half-space in the
Euclidean space.
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1.3. Convex Polyhedra

In the euclidean space and the hyperbolic space a convex set is a set D with the
property that it contains the unique line segment between any two points in D.

It is well know that any vector subspace, a ball and any euclidean half-space

h̃w = { x ∈ R1+n | 〈x,w〉 ≤ 0 }, w ∈ Rn+1

are convex sets in the euclidean space.

An important property of convex sets is that the intersection of two convex sets is again
a convex set. Note that in the Klein model a hyperbolic line segment Lxy between two
points x, y ∈ Kn coincide with the euclidean line segment between them. Moreover, since
Kn is the interior of a unit sphere, if W is a time-like vector subspace or an euclidean
half-space, then

W ∩Kn

is a convex set in both the euclidean space and the hyperbolic space.

The last remark tells us that any hyperbolic subspace is convex set. Moreover, since the
interior of them with respect to Hn is empty, we say that they are degenerate convex
sets.

As we already stated at the beginning of this chapter, a convex polyhedron is the
intersection of finitely many half-spaces. We will begin by describing half-spaces in Hn.
After that we will study convex polyhedra in Hn, specially polyhedra of finite volume,
and some of their combinatorial, topological and geometrical properties.

Half-Spaces

Take v ∈ Hn. The (hyperbolic) closed half-space defined by v is the closed set

Hv = { x ∈ Hn | 〈x, v〉L ≤ 0 }.

For a unit space-like vector v ∈ Hn we have:

1. ∂Hv = Pv.

2. Hv ∩H−v = Pv and Hv ∪H−v = Hn . Hence, Pv divides Hn in two closed regions
or two sides.

3. With respect of the Lorentzian product, v is the outward pointing vector with
respect of the Lorentz product of the half-space

hv = { x ∈ Rn+1 | 〈x, v〉L ≤ 0 }
= h̃Jv

and
Hv = hv ∩Hn.

Thus, by the equation (1.3) and the remark that follows it, Hv is a convex set in
Hn and v is the outward pointing vector of Hv.
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Although Pv = P−v, the closed half spaces Hv and H−v are different (see Figure 1.4).
This tells us that there is a bijection between the elements of Hn and the set of closed
half-spaces in Hn. In this sense we can understand Hn as the space of closed half-spaces
and give it the structure of a differentiable manifold of dimension n.

Figure 1.4.: Half-Planes in K2

Proposition 1.12. The space of half-spaces Hn is a differentiable manifold of dimension
n.

Proof. Let us take the differentiable map

f : En,1 −→ R
x 7−→ −x20 + x21 + · · ·+ x2n,

note that Hn = f−1(1) and df = [−2x0, . . . , 2xn]. The differential is equal to zero if and
only if x = 0, but zero doesn’t belong to Hn. Therefore, by the inverse function theorem
Hn is a differentiable manifold of dimension dimEn,1 − dimR = n.

Convex Polyhedra

Definition 1.4. A convex polyhedron is the intersection of finitely many half-spaces
(both in the euclidean and the hyperbolic space). We also ask that the interior of the
polyhedron is not empty.

Take a convex polyhedron

P =
N⋂
i=1

Hvi in Hn.

To have a better understanding of P consider the (n+ 1)-dimensional polyhedral cone

CP =
N⋂
i=1

hvi in E1,n.

We can assume without loss of generality that {v1, . . . , vN} is a minimal set of vectors
specifying CP. Minimality means that there is no a proper subset A ⊂ {v1, . . . , vN}
such that the intersection of the half-spaces defined by the vectors in A is equal to Cp.
Furthermore, since

P = Cp ∩Hn

{v1, . . . , vN} is the unique minimal subset of vectors in Hn specifying P.
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Proposition 1.13. If {v1, ..., vN} is the minimal set of vectors specifying a polyhedron
P in Hn. Then,

1. Any two vectors are linear independent.

2. Any three different vectors vi, vj and vk are linearly independent.

Proof.
1. It is clear since we assumed that P is non-degenerate.
2. We can assume that vi = λvk + βvj. Since {v1, . . . , vN} is the minimal set of vectors
specifying the polyhedron P, none of the half-spaces defined by this vectors contain
an intersections of the others. Take x ∈ Hvk ∩ Hvj and let us assume without loss
of generality that λ, β are both bigger than zero, it holds that 〈x, vi〉L = λ〈x, vk〉L +
β〈x, vj〉L ≤ 0. This means that x ∈ Hvi and so, Hvk ∩Hvj ⊆ Hvi , which contradicts the
minimality of the set {v1, . . . , vN}.

Faces of CP

To understand the combinatorial and topological properties of the polyhedron P, let us
begin by taking the boundary of CP with respect to E1,n

∂CP = {x ∈ CP | 〈x, vi〉L = 0 for some vi}.

A supporting hyperplane of CP is a subspace of codimension 1 that intersects CP

along ∂CP, and a face of CP is the intersection of CP with a supporting hyperplane.
We also consider that the whole polyhedron and the empty set are faces of CP.

If F is a proper non-empty face of CP, then F is a convex set lying on ∂CP. Fur-
thermore, if k is the dimension of the vector space generated by F , we say that F is a
k-dimensional face. It is clear that 〈vi〉L is a supporting hyperplane of CP. In fact,
the faces of the form

Cvi = 〈vi〉L ∩CP

are all the n-dimensional faces of CP, ∂CP =
⋃N
i=1Cvi and any lower dimensional

face is the intersection of some of these faces.

Faces of P and Volume

Now, let us consider the boundary of P with respect to Hn, note that

∂P = ∂CP ∩Hn.

A k-dimensional face of P is a non-empty intersection of a (k + 1)-dimensional face
of CP and Hn. We also consider that the empty set and the whole polyhedron are faces
of P, in this case P is the unique face of dimension n and the empty set is the unique
face of dimension -1. Since the euclidean hyperplane 〈vi〉L is time-like, it holds that

Fvi = Cvi ∩Hn

= 〈vi〉L ∩P

= Pvi ∩P

(1.14)
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is a (n− 1)-dimensional face of P. Note that these are all the (n− 1)-dimensional faces
of P. Thus, ∂P =

⋃N
i=1 Fvi and any face of lower dimension is the intersection of some

of the (n− 1)-dimensional faces.

We also say that Pvi is the supporting (hyperbolic) hyperplane of the face Fvi or
the hyperplane carrying the face. Furthermore, P lies entirely in one of the sides of Pvi ,
i.e, closed half-space Hvi .

The polyhedral cone CP intersects with the positive part of the interior of the light cone.
Hence, it makes sense to consider the n-dimensional euclidean polyhedron

P̃K = CP ∩ {x0 = 1},

note that

PK = P̃K ∩Kn

= CP ∩Kn

is the image of the hyperbolic polyhedron P in the Klein model.

Figure 1.5.: P̃K ∩K2

For n ≥ 2, P has finite volume if and only if P̃K ⊂ K̄n, in this case P̃K is a bounded
polyhedron, i.e, a n-dimensional polytope. We have two possibilities:

• P̃K has some of its vertices (0-dimensional faces) inscribed on ∂Kn = Sn−11 . We call
this vertices ideal vertices and in the case that all the vertices lie on ∂Kn we say
that P is an ideal polyhedron.
For the sake of completeness we also consider that the ideal vertices are 0-dimensional
faces of P and we distinguish between ideal vertices and finite vertices, or vertices
in Hn.

• PK = P̃K. In this case P is compact and all the vertices are finite.

Now, if P is a finite volume polyhedron in Hn, the above tells us that the closure of
∂P in H̄n is isomorphic to a cellular decomposition of Sn−1. There is also a bijection
between the set of faces of P and the set of faces of P̃K. Hence, we have the following
laws of incidence:

a. If F and G are faces of P, then F ∩G is a face of P.

b. If F is a face of P and G is a face of F , then G is a face of P.

This tells us that the inclusion ” ⊆ ” defines a partial order on the set of faces of P.
We also call it the incidence relation on the faces of P (an ideal vertex is assumed to be
included in the faces of P that contain it on their closures).
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Definition 1.5. Let FP be the set of faces of a polyhedron P. Take A,B ∈ FP.

• If A ⊆ B, then A,B are incident faces.

• If A,B are k-dimensional faces such that k > 0 and A∩B is a (k− 1)-dimensional
face, then A,B are adjacent faces.

• If A,B intersect at a vertex, we can also say that they meet at a vertex.

Now, assume that Fvi , Fvj are adjacent faces of P. Since the intersection of the faces
lies in Hn

〈vi, vj〉L = −cos(]vivj).

In this case Fij = Fvi∩Fvi is a (n−2)-dimensional face, and the dihedral angle α = ]v1v2
is the interior angle between the faces Fvi and Fvj .

Convex Hull

In the euclidean and the hyperbolic geometry, the convex hull of a set C is the smallest
convex set that contains C. We denote it by

conv(C).

It is a well known result that a polytop is the convex hull of its set of vertices. Thus, if
P is a polyhedron of finite volume in Hn and V (P) its set of vertices, then

P = conv(V (P)).

Example 1.5. A compact polyhedron in H1 is a hyperbolic line segment Lx1x2 and it
is clear that

Lx1x2 = conv({x1, x2}).
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1.4. Polyhedra of Finite Volume in H2 and H3

The goal of this section is to describe finite volume polyhedra in H2,H3 and to study
some properties of non-obtuse compact polyhedra in this spaces. We will begin by taking
a polyhedron of finite volume

P =
N⋂
i=1

Hvi (1.15)

in Hn, where n=2 or 3, and assume that {v1, . . . , vN} is the minimal set of Hn specifying
it. Note that in this case the maximal dimension that of a proper face is 2. Therefore,
as usual we call 0-dimensional faces vertices, 1-dimensional faces sides or edges and
2-dimensional faces just faces.

Remark 1.6. In this section and further chapters we might assume that P lies in other
model of the hyperbolic space, in this case we will replace the index vi by just i.

Polyhedra of Finite Volume in H2

Assume that P lies in H2, as we saw in the last section, the closure of the image of P
in the compactification of the Klein model is a convex euclidean polygon. Therefore, P
is a convex hyperbolic polygon with N -sideas and N -vertices. Also, a side of P is either
a hyperbolic line, a hyperbolic ray or a hyperbolic line segment, and the vertices of P
are the endpoints of its sides (the limit points on ∂H2, in the case that the side is a
hyperbolic line or ray).

The corresponding dihedral angles β1, . . . , βN are the interior angles at the vertices of P
(note that βi = 0 in the case that βi is the interior angle at an ideal vertex). Moreover,
by the Gauss-Bonnet Theorem (see Appendix A)

β1 + · · ·+ βN < (n− 2)π. (1.16)

Remark 1.7. In fact, given a collection β1, . . . , βN of real numbers in the interval
[0, π), we can find a convex hyperbolic N -gon with interior angles β1, . . . , βN if and only
if equation (1.16) holds.

Remark 1.8. Instead of Fvi we will denote a side of P by svi and by lvi the corresponding
supporting line. We will also denote by x1, . . . , xN the vertices of P and assume that βi
is the interior angle at xi.

Compact Polygons and Parallelograms

We will assume that svi , svi+1
, for i = 1, . . . , N − 1 and sv1 , svN are adjacent sides, i.e,

svi , svi+1
(or sv1 , svN ) intersect at a finite vertex or meet at a ideal vertex. In fact, if P

is a compact polygon, then its sides are hyperbolic line segments and we can assume
without loss of generality that

sv1 = LxNx1 and svi = Lxi−1xi for i ∈ {2, . . . , N}.

Note that

xN = svN ∩ sv1 and xi = svi ∩ svi+1
for i ∈ {1, . . . , N − 1}.

Otherwise, svi ∩ svj = ∅.
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Definition 1.6. A compact polygon P in H2 is called a parallelogram, if for any two
sides svi , svj of P such that svi ∩ svj = ∅, its corresponding supporting lines lvi , lvj don’t
intersect and don’t meet at infinity.

Proposition 1.14. If the interior angles βi at the vertices of a compact polygon P are
less or equal to π

2
, then P is a parallelogram.

Proof. Let us assume that P is not a parallelogram. Then, there are two non-adjacent
sides svi , svj of P such that its corresponding supporting lines lvi , lvj intersect or meet
at a point at infinity. Let p ∈ H̄2 be the point of intersection of l̄vi and l̄vj . Note that
the polygon P lies inside the closed region Hvi ∩Hvj . Moreover, Hvi ∩Hvj −P is a set
divided in two disjoint regions inside of Hvi ∩ Hvj . Let D be the closure of the region
containing p. We have two possibilities:(see Figure 1.6)

a. D is a hyperbolic triangle,

b. D is a non-convex hyperbolic polygon.

(a) (b)

Figure 1.6.

We may assume that i < j and that β is the interior angle of D at p.

a. If D is a triangle, the interior angles of D are β, π−βi and π−βj. Furthermore, since
βi, βj ≤ π

2
, we know that π − βi ≥ π

2
, then

β + (π − βi) + (π − βj) ≥ β + π ≥ π

which contradicts equation (1.16).
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b. Now let D be a non convex polygon. Using the Gauss-Bonnet-Theorem (see appendix
A) we get

Area(D) =(π − β) + βi +

j−1∑
k=i+1

(βk − π) + βj − 2π

≤(π − β)− π +

j−1∑
k=i+1

(βi − π)

=− β +

j−1∑
k=i+1

(βi − π)

≤0.

As a result of the above, we get a contradiction.

Polyhedra of Finite Volume in H3

Now, if P is a polyhedron of finite volume in H3, we know that the closure of the image
of P in the ompactification of the Klein model is a 3-dimensional polytope. Therefore,
each face Fvi of P is a convex hyperbolic polygon carried by the supporting plane Pvi .
Also. by the incidence laws, a non-empty intersection of two faces is a common side, or
common vertex of them.

In fact, each edge e of P is the intersection of exactly two adjacent faces. Let us assume
that

e = Fvi ∩ Fvj
= 〈vi〉L ∩ 〈vJ〉L ∩P,

note that e is a commune side of both Fvi and Fvj , and that the hyperbolic line

l = 〈vi〉L ∩ 〈vj〉L ∩H3 = Pvi ∩ Pvj

is the supporting line of e with respect of the supporting planes Pvi and Pvj . Also, the
dihedral angle α = ]v1v2 is strictly bigger than zero, otherwise e would be a point at
infinity. We say that α is the dihedral angle at e.

Finally, note that the vertices of P are the end points of its edges and

V (P) =
N⋃
i=1

V (Fvi).

Cellular Structure

To have a better understanding of the shape of the boundary of P and its combinatorial
structure, let us denote by E(P) set of edges of P and consider the graph G(P) =
(V (P), E(P)) (in this case the 1-skeleton of ∂P as a CW-complex). As we will see in
Chapter 2, G(P) is a simple, 3-connected and planar graph (see Appendix C). This tells
us that
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• For all y ∈ V (P) the number of edges incident to y is bigger or equal to 3.

• G(P) has one connected component.

• There is an embedding ψ̃ : G(P) −→ S2. (If we assume that P lies in K3 a possible
embedding is given by the radial projection.)

The graph G = ψ̃(G(P)) is a plane graph. Hence, it divides S2 in N disjoint regions
whose boundaries are sub-cycles of G, we denote by F̃1, . . . , F̃N the closure of those
regions. Using this, G defines a cellular decompositionM of the unit sphere S2, where

• G is the 1-skeleton ofM. Hence, the vertices of G are the closures of the 0-cells
and the edges of G are the closures of the 1-cells. We also say that G is the graph
ofM and use the notation G = G(M) = (V (M), E(M)).

• The closed regions F̃1, . . . , F̃N are the closures of the 2-cells of M, and we call
them the faces ofM.

The graph isomorphism
ψ̃ : G(P) −→ G

can be extended to a cellular homeomorphism

ψ : ∂P −→M

i.e, a homeomorphism that sends vertices to vertices, edges to edges and faces to faces.
Moreover, since ψ is a homeomorphism, for all A,B ∈ FP such that A ⊆ B it holds
that ψ(A) ⊆ ψ(B). Therefore, if we consider the set FM that contains the empty set,
the vertices, edges and faces ofM and the hole unit ball, and order it by the inclusion,
we can conclude that FM and FP are isomorphic partially ordered sets.

Remark 1.9. Following Andreev [3], M is a cellular decomposition of S2 with the
following properties:

M1. Every edge belongs to exactly two faces.

M2. Every face contains no fewer than three edges.

M3. A non empty intersection of two faces is either an edge or a vertex.

Remark 1.10. We can do the last construction for any simple, 3-connected, planar
graph G. Moreover, the cellular decomposition doesn’t depend on the choice of the
embedding. If M1 and M2 are two cellular decomposition of S2 that we get via two
different embeddings of G, by a theorem by Whitney on 3-connected simple planar
graphs there is a cellular homeomorphism ϕ :M1 −→M2. (see [6, Chap.4]).

Remark 1.11. Since the smallest planar simple, 3-connected, planar graph is the com-
plete graph with four vertices we can conclude that N ≥ 4. If N = 4, then P is a
tetrahedron.
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1. Hyperbolic Polyhedra

Figure 1.7.: Complete graph with 4-vertices

Congruent Polyhedra

Now, take an isometry φ ∈ Isom(H3) and let φ̃ be its unique extension in O+(1, 3).
Since φ̃ is a positive Lorentz transformation, it holds that

〈x, vi〉L = 〈φ̃(x), φ̃(vi)〉L for all x ∈ H3 and i ∈ {1, . . . , N}.

Using this equation, we can conclude that φ(Pvi) = Pφ̃(vi) , and that

φ(P) =
N⋂
i=1

Hφ̃(vi)
.

As φ is an isometry, it holds that P and φ(P) have the same volume, hence φ(P) is a
polyhedron of finite volume. Furthermore, note that {φ̃(v1), . . . , φ̃(vN)} is the minimal
set of vectors in H3 specifying φ(P) and that

φ(Fvi) = φ(Pvi ∩P)

= Pφ̃(vi) ∩ φ(P)

= Fφ̃(vi).

(1.17)

As any element A ∈ FP − {P} is the intersection of some of the faces of P, equation
(1.17) tells us that φ sends faces to faces, edges to edges and vertices to vertices. More-
over, since any isometry is a homeomorphism, we can conclude that φ

∣∣
∂P

is a cellular
homeomorphism between ∂P and ∂φ(P).

The last consideration tells us that the sets of faces FP and Fφ(P) are isomorphic as
partially ordered sets. Moreover, since φ preserves lengths, dihedral angles etc... we can
say that P and φ(P) are basically the same polyhedron but in different positions of the
space. If P lies in H2 and φ ∈ Isom(H2) we can use a similar argumentation to get an
analogous result.

Definition 1.7. Two finite volume polyhedra P1,P2 in Hn, n = 2, 3, are congruent
if there is an isometry φ ∈ Isom(Hn) such that φ(P1) = P2.

Remark 1.12. Take two unit vectors v, w ∈ H3. If Q1 and Q2 are convex polygons
lying respectively on the hyperbolic planes Pv and Pw, we can say that Q1 and Q2 are
congruent if their images under the isometries that take Pv and Pw to H2 are congruent
polygons. This is equivalent to say that there is an isometry φ ∈ Isom(H3) such that
φ(Q1) = Q2. Moreover, if this is the case it must hold that φ(Pv) = Pw
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1. Hyperbolic Polyhedra

Non-obtuse compact Polyhedra in H3

Assume that a vertex y of P is incident to exactly k edges, each edge is the intersection
of exactly two faces. Therefore, we can find k faces Fvi1 , . . . , Fvik of P such that

Fvi1 ∩ Fvik and Fvij ∩ Fvij+1
for , j ∈ {1, . . . , k},

are the edges incident to y and so, we can conclude that a vertex is the intersection of
at least 3 faces. In fact, if P is a compact polyhedron with non-obtuse dihedral angles
in H3, each vertex of P is the intersection of exactly 3 faces.

Proposition 1.15. If P is a compact polyhedron in H3 with non-obtuse dihedral angles,
then

1. Every vertex of P is the intercession of exactly three faces.

2. The interior angles of the faces of P are also less or equal to π
2

Proof. (For this proof we will assume that P lies in D3).
Assume that y ∈ V (P ) is the intersection of k faces. It is clear that none of the vertices
of P lies on ∂D3, hence by using an appropriate isometry we may assume that y lies
at the origin and that the faces containing y lie on euclidean planes perpendicular to
∂D3. Take a small sphere Sy centred at y, note that Q = P ∩ Sy is a spherical polygon
with k-sides. In addition, the interior angles at the vertices of Q are the dihedral angles
α1, . . . , αk at the edges that are incident to y.

Figure 1.8.: Q = Sy ∩ P

Rescale Q such that it lies on the sphere of radius 1.
1. We know that k ≥ 3. On the other hand, by the Gauss-Bonneth Theorem, it holds
that

(k − 2)π =
k∑
i=1

αi − Area(Q)⇒

Area(Q) =
k∑
i=1

αi − (k − 2)π

≤ k
π

2
− (k − 2)π

(1.18)

Since Area(Q) is strictly bigger than zero, from the equation (1.18) we can conclude
that kπ < 4π and so k = 3.
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1. Hyperbolic Polyhedra

2. By the last result, we know that Q is a spherical triangle, and that there are exactly
three faces F1, F2, F3 such that y = F1 ∩ F2 ∩ F3. Assume that

e1 = F1 ∩ F2, e2 = F2 ∩ F3 and e3 = F3 ∩ F1

are the edges incident to y and that αi are their dihedral angels. Moreover, if we assume
that βj is the interior angle at y on the face Fj, then βj is the length of corresponding
side of Q.

Figure 1.9.

By the law of cosines in the spherical geometry (see Appendix B) we get that

cos(β3) =
cos(α1) + cos(α2) cos(α3)

sin(α2) sin(α3)
.

Therefore, as 0 < αi ≤ π
2
, we get that cos(β3) ≥ 0. Furthermore, since we are considering

convex polyhedra, the dihedral angels are less than π, and so we can conclude that

0 < β3 ≤
π

2
.

In a equivalent way, we can see that β1 and β2 are non-obtuse angles.

Corollary 1.3. The faces of a compact hyperbolic polyhedron in H3 whose dihedral
angles are less or equal to π

2
are parallelograms.

Proof. It is a consequence of the Propositions 1.15 and 1.14.
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2. 3-dimensional Polyhedra and Andreev’s
Theorem

In his Papers [3] [4] Andreev gives us a classification of the non-obtuse polyhedra of
finite volume, different to the tetrahedron, in the 3- dimensional hyperbolic space. In
this chapter the basic combinatorial and topological tools used by Andreev to state
and prove his theorem will be explained. We will also state the theorem for compact
polyhedra and understand the strategy to prove it.

2.1. Combinatorics of Polyhedra and Andreev’s Theorem for
Compact Polyhedra

As Andreev did in his paper, we will begin by defining abstract polyhedra which are
the basic combinatorial tools to classify polyhedra. An abstract polyhedron is basically
a partially ordered set (in short poset) (m,≤) that looks like the poset of faces of a
polyhedron (polytope) in the euclidean space. Before we give a precise definition, we
must make some basic definitions about partially ordered sets.

Definition 2.1. Let (m,≤) be a poset,

• m is bounded if it has a minimal element 0̂ and a maximal element 1̂.

• A chain is a totally ordered subset of m and its length is the number of its elements
minus 1.

• If A,B ∈ m, then the interval [A,B] is the set {C ∈ m| A ≤ C ≤ B}.

• If A ∈ m, the length of a maximal chain in the interval [0̂, A] is the rank of A.

• m is graded if it is bounded, and every maximal chain has the same rank.

• m is connected, if given any two elements A,B ∈ m, there is a sequence of elements
H1, . . . , Hk ∈ m such that A = H1, B = Hk and either Hi ≤ Hi+1 or Hi+1 ≤ Hi.
Also, m is strongly connected if it is connected and every interval is connected.

Definition 2.2. An abstract polyhedron is a poset (m,≤) whose elements will be
called faces such that

1. m is a graded poset.

2. m is strongly connected.

3. Each interval of rank 2 is isomorphic the the poset of faces of an edge.

The partial order ≤ can be understand as the incidence relation and instead of (m,≤),
we will denote an abstract polyhedron by m.
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2. 3-dimensional Polyhedra and Andreev’s Theorem

A realization of an abstract polyhedron m is a geometrical or topological representation
of the abstract polyhedron. For example

• A polyhedron P whose poset of faces FP is isomorphic to m.

• A CW-complexM such that the poset FM that we obtain by ordering their their
closed cells by the inclusion (we also include the empty set) is isomorphic to m.

We are interested in abstract polyhedra that are realizable as polyhedra of finite volume
in the 3-dimensional hyperbolic space. As we saw in the last chapter, if we consider the
closure of a polyhedron of finite volume in K3, this is a 3-dimensional polytope. Hence, if
an abstract polyhedron m is realizable as a 3-dimensional hyperbolic polyhedron, then it
is a graded poset of rank 4. We can denote by V (m) the set of faces of rank 1 (vertices),
E(m) the set of faces of rank 2 (edges) and by F (m) the set of faces of rank 3 (faces).
Moreover, from now on by an abstract polyhedron, we will mean an abstract polyhedron
that is realizable as a 3-dimensional polytope.

Figure 2.1.: Hasse diagram of m

Two polytopes are combinatorial equivalent if their face posets are isomorphic as
partially ordered sets (in general we will say that two realizations of the same abstract
polyhedron are combinatorial equivalent) and the equivalent classes of 3-dimensional
polytopes under this equivalence relation are called combinatorial types. Note that up
to isomorphism there is a unique abstract polyhedron m representing each combinatorial
type. Furthermore, the abstract polyhedra are classified by the Steinitz theorem and
the theorem of Whitney that we mentioned in Remark 1.10.

Definition 2.3. The graph of a polytope is the graph whose set of vertices is the set of
vertices of the polytope and whose set of edges is the set of edges of the polytope.

Theorem 2.1 (Steinitz Theorem). The graph of a 3-dimensional polytope is a simple,
3-connected, planar graph. On the other hand, any simple, 3-connected, planar graph is
isomorphic to the graph of a 3-dimensional polytop.

By the Steinitz Theorem, if m is an abstract polyhedron, then the graph

G(m) = (V (m), E(m)) (2.1)

is a simple, 3-connected planar graph. Therefore, by Remark 1.10 we can find a cellular
decomposition M of S2 that realizes m (we just forget about the interior of the unit
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2. 3-dimensional Polyhedra and Andreev’s Theorem

ball), alsoM is unique up to cellular homeomorphism. In less sophisticated words, to
find an abstract polyhedron it is enough to draw a plane graph on R2 (or S2) following
the properties (axioms) given in Remark 1.9. Moreover, two different drawings of the
same polyhedron are combinatorial equivalent .

Compact Polyhedra in H3 and Abstract Polyhedra

Now, let us assume that an abstract polyhedron m is realizable as a compact polyhedron
P in H3 with non-obtuse dihedral angles, and choose a cellular decompositionM of S2

realizing m. The isomorphism of posets

ψ̂ : m −→ FP

can be translated into a cellular homeomorphism

ψ :M−→ ∂P

In fact, we can understandM as a schematic drawing of P. Moreover, by proposition
1.15, it holds that m and M are trivalent, i.e, each vertex of m (or M) is incident to
exactly three edges.

Definition 2.4. The dual m∗ of m is the poset with the same elements of m but with
the reversed order.

It is well known that m∗ is also an abstract polyhedron. In fact, if we consider the
cellular decomposition M∗ of S2, that we get by taking the dual of the plane graph
G(M), thenM∗ is a realization of m∗. It holds that,

• A face F̃i ofM corresponds to dual vertex v∗i .

• The edge e = F̃i ∩ F̃j corresponds to the dual edge e∗ = (v∗i v
∗
j ).

• A vertex vi corresponds to the dual face F̃ ∗i .

Proposition 2.1. M∗ is a triangulation of S2.

Proof. Let us take y ∈ V (M) and let e1, e2, e3 be the edges of M incident to y. The
vertex y is the intersection of exactly three faces F̃1, F̃2, F̃3 such that e1 = F̃1 ∩ F̃2,
e2 = F̃2 ∩ F̃3 and e3 = F̃1 ∩ F̃3. Therefore, the edges e1, e2, e3 correspond to the dual
edges e∗1 = (v∗1v

∗
2), e∗2 = (v∗2v

∗
3) and e∗3 = (v∗1v

∗
3). Note that γ = e∗1e

∗
2e
∗
3 is a cycle inM∗

that surrounds the vertex v, and that no other vertices or edges ofM∗ lie in the interior
region defined by the cycle γ. Therefore, F ∗v = int(γ) ∪ γ is a face ofM∗ and it is the
dual face corresponding to v.
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2. 3-dimensional Polyhedra and Andreev’s Theorem

Figure 2.2.:M∗

We will use useM andM∗ to learn more about the about the combinatorial properties
of P.

Definition 2.5. Let F̃i1 , ..., F̃ik be a sequence of faces ofM (or P) such that F̃il , F̃il+1

for l ∈ {1, . . . , k − 1}, and F̃1, F̃k are adjacent faces, and none of them is adjacent to
other faces in the sequence. If no three faces meet at a vertex, then we say that the
sequence of faces F̃i1 , ..., F̃ik is a k-angled prismatic element.

Definition 2.6. If γ = e∗i1 . . . e
∗
ik
is a cycle inM∗ such that no two edges in {ei1 , . . . , eik}

share a commune vertex, then γ is a k-prismatic cycle.

The last two definitions are equivalent. If F̃i1 , ..., F̃ik is a k-angled prismatic element and

eik = F̃i1 ∩ F̃ik and eij = F̃ij ∩ F̃ij+1
,

then γ = e∗i1 . . . e
∗
iK

is k-prismatic cycle. On the other hand, if γ = e∗i1 . . . e
∗
iK

is
a k-prismatic cycle, then the sequence of faces whose intersections are the edges in
{ei1 , . . . eik} is a k-angled prismatic element.

Figure 2.3.: 5-angled prismatic element

In general a n-cycle γ = e∗i1e
∗
i2
. . . e∗in inM∗ can be translated into a sequence of adjacent

faces inM (or P). However, not every n-cycle is prismatic.

Proposition 2.2. If γ = e∗i1e
∗
i2
e∗i3 is a cycle that is not prismatic, then the edges ei1 , ei2

and ei3 meet at a vertex.

Proof. If the cycle γ = e∗i1e
∗
i2
e∗i3 is not prismatic, at least two of the corresponding edges

in M meet at a vertex y. Assume that ei1 and ei2 meet at the vertex y. Since M is
trivalent, there is a third edge e of M that is incident to y. If e 6= ei3 , then e∗e∗i3 is a
cycle inM∗, which contradicts the fact that the dual graph is simple. (see Figure 2.4)

Now, note that in the case thatM has a 3-angled prismatic element, a 4-cycle inM∗

may looks as in the following figure.
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2. 3-dimensional Polyhedra and Andreev’s Theorem

Figure 2.4.

Proposition 2.3. If M (or P) doesn’t have a 3-angled prismatic element, then each
4-cycle that is not prismatic surrounds exactly one edge.

Proof. If γ = e∗i1e
∗
i2
e∗i3e

∗
i4

is a 4-cycle that is not prismatic, then at least two of the
corresponding edges in M meet at a vertex. Assume that ei1 , ei2 meet at a vertex y,
sinceM is trivalent, there is a third edge e ofM incident to y. Note that γ1 = e∗e∗i3e

∗
i4

is a 3-cycle. Furthermore, sinceM doesn’t have 3-angled prismatic elements, γ1 is not
a prismatic 3-cycle and so, by Proposition 2.2 the edges e, ei3 and ee4 meet at a vertex.
Therefore, γ surrounds the edge e and no other one. (see Figure 2.5)

Figure 2.5.
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2. 3-dimensional Polyhedra and Andreev’s Theorem

We are ready to state the Andreev’s Theorem for compact polyhedra.

Theorem 2.2 (Andreev’s Theorem). Let m be a trivalent abstract polyhedron with
more than 4 faces, fix a cellular decomposition M of S2 that realizes m and consider a
weight function

α : E(M) −→ (0,
π

2

]
.

Up to isometry, there is a unique 3-dimensional compact hyperbolic polyhedron that
realizes m, and whose dihedral angles are the corresponding weights on the edges of M
if and only if

[a1] For all e ∈ E(M), then α(e) ∈ (0, π
2
].

[a2] If the edges ei1 , ei2 and ei3 meet at a vertex, then

α(ei1) + α(ei2) + α(ei3) > π

[a3] If γ = e∗i1e
∗
i2
e∗i3 is a prismatic 3-cycle, then

α(ei1) + α(ei2) + α(ei3) < π

[a4] If γ = e∗i1e
∗
i2
e∗i3e

∗
i4
is a prismatic 4-cycle, then

α(ei1) + α(ei2) + α(ei3) + α(ei4) < 2π

[a5] If F̃ is a quadrilateral face with boundary ∂F̃ = e1e2e3e4 and eij is the third
edge meeting the adjacent edges ei and ej, then

α(e1) + α(e3) + α(e12) + α(e23) + α(e34) + α(e14) < 3π

α(e2) + α(e4) + α(e12) + α(e23) + α(e34) + α(e14) < 3π
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2. 3-dimensional Polyhedra and Andreev’s Theorem

2.2. The Space of Marked Polyhedra

To prove Theorem 2.2 we will consider the set of compact polyhedra with non-obtuse
dihedral angles in H3, realizing m and with a enumeration of its faces induced by m,
modulo isometries. We will give a topology to this set by seen it as a subset of a manifold
of dimension 3N − 6, where N is the number of faces of m.

To define the manifold, first let us consider a compact polyhedron P in H3 realizing m
and take a pair (P, [ψ]∼) where [ψ]∼ is an equivalence class of cellular homeomorphims

ψ :M−→ ∂P

under the equivalence relation ψ1 ∼ ψ2 if and only if there is a cellular isotopy between
them. The equivalence class [ψ]∼ is called a marking and it holds that ψ1 and ψ2 are
cellular isotopic if and only if ψ1(A) = ψ2(A) for all A ∈ FM. Therefore, by choosing a
fix enumeration {F̃1, . . . , F̃N} of the faces ofM, it induces an enumeration, or marking,
of the faces of P given by

ψ(F̃i) = Fvψ(i),

where vψ(i) is a unit vector specifying P. The N -tuple [vψ(1), . . . , vψ(N)] ∈ HN
3 contains

the whole information about the marking [ψ]∼ and it gives us a coordinate for the pair
(P, [ψ]∼).

Now, let us take the set of marked polyhedra

Om =
{

(P, [ψ]∼)| P is a compact polyhedron in H3 realizing m and [ψ]∼ is a marking
}

and consider the injective map

C : Om −→ HN
3

(P, [ψ]∼) 7→ [vψ(1), . . . , vψ(N)].

Proposition 2.4. C (Om) is an open set in HN
3 .

Proof. Let V̂ = [Vψ(1), . . . , Vψ(N)] be the coordinate of a pair (P, [ψ]∼) inOm. Since P is
a compact polyhedron, by moving the unit vectors Vψ(i) a little bit we get a polyhedron
that is combinatorially equivalent to P and we don’t change the enumeration of the
faces.

Figure 2.6.

Therefore, we can find an open neighbourhood UV̂ of V̂ in C (Om).
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2. 3-dimensional Polyhedra and Andreev’s Theorem

From the Proposition 1.12 we can deduce that HN
3 is a manifold of dimension 3N .

Therefore, by giving Om the topology induced by C , the last proposition tells us that
Om is a manifold of dimension 3N .

Now, consider the subset O1
m of Om containing the marked polyhedra (P, [ψ]∼) where P

is a polyhedron whose faces are parallelograms.

Proposition 2.5. O1
m is an open subset of Om.

Proof. Let us take a face F̃i of M, two edges ei1 , ei2 on the boundary of F̃i such that
ei1 ∩ ei2 = ∅, and a marked polyhedron [(P, [ψ]∼)] ∈ O1

m. Assume without loss of
generality that

ψ(F̃j) = Fvj
ψ(ei1) = Pv1 ∩ Pvj ∩P = si1
ψ(ei2) = Pv2 ∩ Pvj ∩P = si2 .

Since ψ is a cellular homeomorphism, it holds that si1 ∩ si2 = ∅. Moreover, as Fvj is a
parallelogram the supporting lines

li1 = 〈v1〉L ∩ 〈vj〉L ∩H3

and
li2 = 〈v2〉L ∩ 〈vj〉L ∩H3

don’t intersect and don’t meet at infinity. On the other hand, by Remark 1.5 and
Proposition 1.13

l̄i1 ∩ l̄i2 = 〈v1〉L ∩ 〈v2〉L ∩ 〈vj〉L ∩ H̄3 = ∅

if and only if ∣∣∣∣∣∣
1 〈v1, v2〉L 〈v1, vj〉L

〈v1, v2〉L 1 〈v2, vj〉L
〈v1, vj〉L 〈v2, vj〉L 1

∣∣∣∣∣∣ < 0. (2.2)

The last paragraph tells us that a marked polyhedron (P, [ψ]∼) ∈ Om is an element of
O1

m if and only if a set of open conditions as the one given in equation (2.2) are satisfied.
Hence, O1

m is an open set in Om.

The last proposition tells us that O1
m is also a manifold of dimension 3N . On the other

hand, an isometry φ ∈ Isom(H3) preserves distances and angles. Therefore, if the faces
of P are parallelograms, then the faces pf φ(P) are parallelograms as well. Moreover,
as we saw in section 1.4 φ

∣∣
∂P

is a cellular homeomorphism from ∂P to ∂φ(P). Thus,
φ
∣∣
∂P
◦ ψ is a cellular homeomorphism fromM to ∂P and we can consider the marking

[φ
∣∣
∂P
◦ ψ]∼. Using this we can define an action of Isom(H3) on O1

m by

φ(P, [ψ]∼) = (φ(P), [φ
∣∣
∂P
◦ ψ]∼) where φ ∈ Isom(H3).

Let us consider the set of orbits or equivalent classes of O1
m under this action

P1
m = O1

m/Isom(H3)
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2. 3-dimensional Polyhedra and Andreev’s Theorem

Proposition 2.6. P1
m is a manifold of dimension 3N − 6.

Proof. Take φ ∈ Isom(H3) and assume that

φ(P, [ψ]∼) = (φ(P), [φ
∣∣
∂P
◦ ψ]∼)

= (P, [ψ]∼).

Since φ|∂P ◦ψ and ψ are cellular isotopic, it holds that φ(ψ(A)) = ψ(A) for all A ∈ FP.
Therefore, φ fixes the vertices, edges and faces of P and so, if we consider the unique
extension φ̃ ∈ O+(1, 3) of φ, we can conclude that φ̃ is a linear isomorphism that fixes
more that 4 linear independent vectors of E1,3. Hence, we get that φ̃ = idE1,3 and so
φ = idH3 , which tells us that the action of Isom(H3) on O1

m is free. On the other hand, if
[vψ(1), . . . , vψ(N)] is the coordinate of (P, [ψ]∼) in C (O1

m), then its image (φ(P), [φ
∣∣
∂P
◦

ψ]∼) has coordinate [φ̃(vψ(1)), . . . , φ̃(vψ(N))]. Thus, as φ̃ is a linear isomorphism, it
defines a homeomorphism from C (O1

m) into itself and we can conclude that the action
of Isom(H3) on O1

m is smooth. Finally, let E be the number of edges of m, fix a
enumeration e1, . . . , eE of the edges ofM and consider the continuous map

α̃ : O1
m −→ RE

(P, [ψ]∼) 7→ [α(ψ(e1)), . . . , α(ψ(eN))]T

where α(ψ(ei)) is the dihedral angle of P at the edge ψ(ei). Note that the continuity of
α̃ comes from the way that we defined the topology of Om and the continuity of 〈, 〉L.
Also, it is clear that

α̃(φM) = α̃(M)

for all φ ∈ Isom(H3) and M ∈ O1
m. Moreover, in Section 3.2 we will see that α̃(M1) =

α̃(M2) if and only if there is an isometry φ ∈ Isom(H3) such that φM1 = M2. Therefore,
if M1 and M2 don’t lie on the same orbit under the action of Isom(H3), it holds that
α̃(M1) = aM1 and α̃(M2) = aM2 are different vectors in RE. Let ε > 0 be the distance
between aM1 and aM2 , and take the open balls Bε/2(aM1),Bε/2(aM2) of radius ε

2
around

them. Since the open balls are disjoint open sets, it holds that

UM1 = α̃−1(Bε/2(aM1)) and UM2 = α̃−1(Bε/2(aM2))

are disjoint neighbourhoods in O1
m of M1, and M2 respectively. Moreover, both sets are

invariant under the action of Isom(H3), i.e,

φM ∈ UMi
for all M ∈ UMi

, i = 1, 2, and φ ∈ Isom(H3).

The above tells us that we can define a smooth manifold structure on P1
m in such a way

that the canonical projection
π : O1

m −→ P1
m

is a smooth submersion. Using this smooth structure it holds that

dim(P1
m) = dim(O1

m)− dim(Isom(H3)).

By proposition 1.6 we know that Isom(H3) is a Lie-group of dimension 6 and so,
dim(P1

m) = 3N − 6.

Finally, take the subset O0
m of Om of pairs containing compact polyhedra whose dihedral

angles are non-obtuse, by Corollary 1.3 we know thatO0
m ⊆ O1

m. Moreover, it is clear that
O0

m is invariant under the action of Isom(H3). The set that we are going to consider for
the proof of Theorem 2.2 is P0

m the subset of P1
m containing equivalent classes of marked

compact polyhedra whit non-obtuse dihedral angles or O0
m/Isom(H3).
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2.3. The Proof of Andreev’s Theorem

As we mentioned in the last section, the set P0
m plays a central role in the proof of

Theorem 2.2. To see how this works, let E be the number of edges of m, take the fix
enumeration e1, . . . , eE the edges M that we used in the proof of Proposition 2.6 and
consider the map

α : P1
m −→ RE

[(P, [ψ]∼)] 7→ [α(ψ(e1)), . . . , α(ψ(eE))]T

where α(ψ(ei)) is the dihedral angle of P at the edge ψ(e1). As we discussed in the
proof of Proposition 2.6, α is a well defined continuous map.

Now, note that an equivalent class of marked polyhedra [(P, [ψ]∼)] ∈ P1
m contains the

following information,

• A compact polyhedron P realizing m, up to isometry.

• A marking on the faces of P induced by m.

• A weight function, or weights on the edges ofM given by the vector

[α(ψ(e1)), . . . , α(ψ(eE))]T

.

Example 2.1. Consider an abstract polyhedron m corresponding to a cube, and the
plane graphM realizing m given in Figure 2.7 with the given enumeration of its faces
and edges.

Figure 2.7.:M

Also, assume that the polyhedron P from Figure 2.8 is a compact polyhedron in K3 and
that Area(Fv6) > Area(Fv1).
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2. 3-dimensional Polyhedra and Andreev’s Theorem

Figure 2.8.: P

The dihedral angles of P are

α1 = ]v1v2 α5 = ]v2v3 α9 = ]v6v2
α2 = ]v1v3 α6 = ]v3v4 α10 = ]v6v3
α3 = ]v1v4 α7 = ]v4v5 α11 = ]v6v4
α4 = ]v1v5 α8 = ]v5v2 α12 = ]v6v5

.

We consider the marked polyhedra M1 = (P, [ψ1]∼) with coordinate [v1, v2, v3, v4, v5, v6]
and M2 = (P, [ψ2]∼) with coordinate [v6, v2, v3, v4, v1], i.e,

ψ1(F̃i) = ψ2(F̃i) = Fvi for i = 2, 3, 4, 5,

ψ1(F̃1) = ψ2(F̃6) = Fv1

ψ1(F̃6) = ψ2(F̃1) = Fv6 .

Since, Area(Fv6) > Area(Fv1), there is not an isometry φ ∈ Isom(H3) such that ψ2 =
φ
∣∣
∂P
◦ ψ1 and so [M1] 6= [M2]. However, M1 gives us the weight function from Figure

2.9a and M2 gives us the weight function from Figure 2.9b, which by our initial assump-
tion and the discussion that we will held in Section 3.2 are different.

(a) (b)

Figure 2.9.
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We want to find the image of P0
m under α. Let us denote by Am the convex set defined

by the inequalities in Theorem 2.2, i.e, the set of vectors [α1, . . . , αE]T ∈ RE such that

[a1 ] 0 < αi ≤ π
2
for all i.

[a2 ] αi + αj + αk > π whenever the edges ei, ej and ek meet at a vertex.

[a3 ] αi + αj + αk < π whenever γ = e∗i e
∗
je
∗
k is a prismatic 3-cycle.

[a4 ] αi + αj + αk + αl < 2π whenever γ = e∗i e
∗
je
∗
ke
∗
l is a prismatic 4-cycle.

[a5 ] αi1+αi3+αi1i2+αi2i3+αi3i4+αi4i5 < 3π and αi2+αi4+αi1i2+αi2i3+αi3i4+αi4i5 < 3π
whenever ei1ei2ei3ei4 is the boundary of a quadrilateral face and each edge eikij is
the third edge that meets the adjacent edges eik , eij .

Our goal is to show that α(P0
m) = Am. We will give a proof for simple abstract

polyhedra or trivalent abstract polyhedra with more than 4 faces and without prismatic
3-cycles. For this proof, we need the following statements,

[i. ] E = dim(P1
m).

[ii. ] α : P1
m → RE is injective.

[iii. ] α(P0
m) ⊆ Am.

[iv. ] α : P0
m → Am is proper.

[v. ] If m is simple, then α(P0
m) 6= ∅.

Statement [i.] is a straight forward argument that we will prove in the next lemma. In
chapter 3, we will give a proof for [ii.],[iii.] and [iv.] following the ideas in [14] and [3].
The proof of statement [v.] is slightly complicated. However, in section 3.4 we will give
an explanation of the basic tools to prove it.

Lemma 2.1. E = dim(P1
m)

Proof. Let V be the number in vertices in m. Since m is realizable as a cellular decom-
position of S2, it holds that χ(S2) = V −E +N = 2. We also know that the number of
edges incident to each vertex of m is equal to 3, hence 2E = 3V . Combining these two
facts together, we get that

2 =
2

3
E − E +N and so E = 3N − 6.

Hence, by Proposition 2.6 we get that E = dim(P1
m).
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2. 3-dimensional Polyhedra and Andreev’s Theorem

Proposition 2.7. If m is simple, then α(P0
m) = Am

Proof. (Proof of Andreev’s Theorem for simple polyhedra)
Statements [i.] and [ii.] tell us that α : P1

m −→ RE is an injective continuous map
between two manifolds of the same dimension. Therefore, by the invariance of domain
principle (see [9]), it is a local homeomorphism and so, for each vector â ∈ α(P0

m) there is
an open set Vâ ⊆ P1

m and an open neighbourhood Ũâ ⊆ RE of â such that α : Vâ −→ Ũâ

is a homeomorphism. By statement [iii.], â ∈ Am. Moreover, if there is a vector ã ∈ Am

such that α−1(ã) 6= ∅, the condition [a1] tells us that ã ∈ α(P0
m). Hence, Uâ = Ũâ ∩Am

is an open neighbourhood of â in Am that is completely contain in α(P0
m) and so, α(P0

m)
is an open set in Am.

On the other hand, statement [iii.] also tells us that α : P0
m −→ Am is a well defined

continuous map. Furthermore, since we are using the subspace topology on Am, it is
hausdorff and locally compact. Therefore, statement [iv.] tells us that α : P0

m −→ Am is
a closed map, and we can conclude that α(P0

m) is a closed set in Am.

From the last paragraphs, we know that α(P0
m) is both a open and closed set in Am. In

addition, since Am is a convex set in RE, it is a connected topological space. Thus, in
the case that Am 6= ∅, we must have that α(P0

m) = ∅ or α(P0
m) = Am. By the statements

[iii.] and [iv.], we know that Am 6= ∅. Moreover, since α(P0
m) 6= ∅ it is clear that

α(P0
m) = Am

For a complete proof, we need the more general statement

vi. If Am 6= ∅, then α(P0
m) 6= ∅.

A proof of this can be found in [14] or [13].
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2.4. Andreev’s Polytope and Abstract Polyhedra

The convex set that satisfies the set of linear inequalities in the Andreev’s Theorem for
compact polyhedra is called the Andreev’s Polytope. In this section, we will see an
explicit example of a combinatorial type (the triangular prism), its abstract polyhedron
and how to compute its Andreev’s Polytope. We will show that condition [a5] is a
necessary condition only for this combinatorial type and we will introduce the prism
with N -faces and the split-prim, which are the basic combinatorial types used for the
proof of Andreev’s Theorem.

The Triangular Prism

The triangular prism is the combinatorial type corresponding to the polytope that we
get by taking the product of a triangle ∆ ⊂ R2 and the interval I = [−1, 1] ⊂ R1.

Figure 2.10.: prism(∆) = ∆× I

Note that prism(∆) has 6 vertices, 9 edges and 5 faces. We denote by p5 the face lattice
(abstract polyhedron) corresponding to this combinatorial type. Now, by enumerating
the vertices of prism(∆) as in figure 2.10 we get that (by ijk we mean the set {i j k})

V (p5) = {1, 2, 3, 4, 5, 6}

E(p5) = {12, 23, 13, 45, 56, 46, 14, 36, 25}

F (p5) = {123, 456, 1346, 2356, 1245}

and so p5 is the set ∅∪V (p5)∪E(p5)∪F (p5)∪{123456} ordered by the inclusion ” ⊆ ”.

Let
e1 = 12 e4 = 45 e7 = 14
e2 = 13 e5 = 46 e8 = 36
e3 = 23 e6 = 56 e9 = 25

and set α(ei) = αi.
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2. 3-dimensional Polyhedra and Andreev’s Theorem

(a) Cellular Realization of p5

{1 3 4 6}

{1 3} {1 4} {3 6} {4 6}

{1} {3} {4} {6}

∅
(b) Hasse diagram of the face 1346

Figure 2.11.

The Andreev’s Polytope Ap5 is the set of vectors [α1, . . . , α9]
T ∈ R9 that satisfy the

following linear inequalities,

[a1 ] 0 < αi ≤ π
2
.

[a2 ]

α1 + α2 + α7 > π (for 1)

α1 + α3 + α9 > π (for 2)

α2 + α3 + α8 > π (for 3)

α7 + α4 + α5 > π (for 4)

α9 + α4 + α6 > π (for 5)

α8 + α6 + α5 > π (for 6)

[a3 ] It has one prismatic 3-circuit, the one given by e∗7e∗9e∗8. Hence,

α7 + α8 + α9 < π.

[a4 ] p5 has no prismatic 4-circuits.

[a5 ] The quadrilateral faces are 1254, 2536 and 1436 and we have

For the face 1254 we have the inequalities

α2 + α5 + α6 + α3 + α7 + α9 < 3π.

α2 + α5 + α6 + α3 + α1 + α4 < 3π.

For the face 2356 we have the inequalities

α1 + α4 + α5 + α6 + α9 + α8 < 3π.

α1 + α4 + α5 + α6 + α3 + α6 < 3π.

And finally, for the face 1346 we have the inequalities

α1 + α4 + α6 + α3 + α7 + α8 < 3π.

α2 + α4 + α6 + α3 + α5 + α2 < 3π.
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2. 3-dimensional Polyhedra and Andreev’s Theorem

Proposition 2.8. Ap5 6= ∅

Proof. 1. First note that the inequalities for the quadrilateral faces in [a5] hold if
αi <

π
2
for all i.

2. If α7 = α8 = α9 = π
5
, then the inequality in [a3] is satisfied.

3. For i = 1, . . . , 6 take a value for αi such that

2π

5
< αi <

π

2
.

Using this values and the one that we choose in the second item, the inequalities
in [a2] are satisfied. Additionally, by the first item we are done.

The triangular prism condition and simple abstract polyhedra

Proposition 2.9. If m 6∼= p5 is a trivalent abstract polyhedron, then condition [a5] is a
consequence of the conditions [a3] and [a4].

Proof. Let M be a realization of m as a cell complex, F̃ a quadrilateral face of M,
e1e2e3e4 the boundary of F̃ and eij the edge adjacent to the edges ei and ej.

Take a map α : E(M) −→ (0, π
2
] such that conditions [a1] − [a4] hold. We will see

that [a4] ⇒ [a5], [a3] ⇒ [a5], and, if [a4] or [a3] are empty conditions for the edges
surrounding F̃ , then m is isomorphic to p5.

First, note that condition [a5] holds for F if and only if there is an i such that α(ei) <
π
2

or a pair ij such that α(eij) <
π
2
.

Case 1. If γ = e∗12e
∗
23e
∗
34e
∗
14 is a prismatic 4-cycle, then

α(e12) + α(e23) + α(e34) + α(e14) < 2π.

Therefore, α(eij) <
π
2
for all ij an so it’s clear that [a5] follows from [a4].

Case 2. Assume that e12, e14 meet at a vertex v. Since m is trivalent, there is an edge
e ∈ E(M) such that e12, e14, e are the edges incident to the vertex v.
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If e∗e∗23e∗34 is a prismatic 3-circuit, then

α(e) + α(e12) + α(e14) < π.

Therefore, α(e12), α(e14) <
π
2
and so it’s clear that condition [a5] follows from condition

[a3].

Case 3. Finally, if [a4] and [a3] are empty conditions, we can argue that M looks like
one of the following cellular complexes,

(a) (b)

In the case (a), G(M) − {v1, v2} is a disconnected graph, which contradicts the fact
that G(M) is 3-connected. In the case (b)M is combinatorial equivalent to the cellular
complex of Figure 2.11a. Therefore, m is isomorphic to p5.

The last proposition tells us that condition [a5] is only necessary for the triangular
prism. We can use this result to see that the Andreev’s Polytope of a simple abstract
polyhedron is not empty.

Corollary 2.1. If m is a simple abstract polyhedron, then Am 6= ∅.

Proof. We want to see that there is a [α1, . . . , αE]T ∈ RE that satisfies the set of in-
equalities given in Andreev’s Theorem. Since [a5] is not a necessary condition, we only
have to check conditions [a1]− [a4]. Take

αi =
2π

5
for all i,

it’s easy to see that conditions [a1], [a2] and [a4] are satisfied. Also, since m has not
prismatic 3-circuits, condition [a3] is empty and we are done.
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2. 3-dimensional Polyhedra and Andreev’s Theorem

The prism with N-faces and The Split Prism

The prism with N-faces is the combinatorial type corresponding to the polytope that
we get by taking the product of a (N − 2)-gon QN−2 ⊂ R2 and the interval I = [−1, 1].
It has N -faces, 3(N − 2) edges and 2(N − 2) vertices.

(a) Prism with 6 faces (b) Prism with 9 faces (c) Prism with 17 faces

The split prism with N-faces is the combinatorial type that we get by dividing in
two a quadrilateral face of the prism with (N − 1)-faces.

(a) Split prism with 7 faces (b) Split prism with 8 faces

Note that in both cases the Andreev’s Polytope is not empty.
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3. Andreev’s Theorem

In this chapter we will see that the map α : P1
m −→ RE satisfies the necessary conditions

to prove Theorem 2.2.

3.1. α(P0
m) ⊂ Am

We wan to see that α(P0
Cm

) ⊆ Am.

Proof. Take and equivalence class [(P, [φ]∼)] ∈ P0
m. We want to see that the conditions

[a1], [a2], [a3], [a4] and [a5] from Theorem 2.2 hold for the dihedral angels at the edges
of P.
[a1 ] By our assumption, if we take an edge ẽ ∈ E(P), its corresponding dihedral angle
α(ẽ) is less or equal to π

2
. Also, it is clear that α(ẽ) > 0.

[a2 ] Let us assume that the edges ẽ1, ẽ2 and ẽ3 ∈ E(P) meet at a vertex v ∈ V (P), also
let us assume that Fv1 , Fv2 and Fv3 are the faces of P such that

ẽ1 = Fv1 ∩ Fv2 , ẽ2 = Fv2 ∩ Fv3 and ẽ3 = Fv3 ∩ Fv1 .
By proposition 1.11 we can conclude that Fv1 ∩ Fv2 ∩ Fv3 = Pv1 ∩ Pv2 ∩ Pv3 = {v} and
that

α(ẽ1) + α(ẽ2) + α(ẽ3) > π.

[a3 ] Now, let us assume that the faces Fv1Fv2Fv3 of P form a 3-angled prismatic element
and that

ẽ1 = Fv1 ∩ Fv2 , ẽ2 = Fv2 ∩ Fv3 and ẽ3 = Fv3 ∩ Fv1 .
Since the sequence of faces is a 3-angled prismatic element, it holds that

ei ∩ ej = ∅ for i 6= j. (3.1)

On the other hand, let li be the corresponding supporting line of the edge ẽi, i.e,

l1 =< v1 >
L ∩ < v2 >

L ∩H3, l2 =< v2 >
L ∩ < v3 >

L ∩H3

and l3 =< v3 >
L ∩ < v1 >

L ∩H3.

The faces of P are parallelograms. Therefore, from condition (3.1) we can deduce that

l̄i ∩ l̄j = ∅ for i 6= j

and so
l̄1 ∩ l̄2 ∩ l̄3 = P̄v1 ∩ P̄v2 ∩ P̄v3 = ∅.

The last result and proposition 1.11 tell us that

α(e1) + α(e2) + α(e3) < π.
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[a4 ] Let us assume that the sequence of faces Fv1Fv2Fv3Fv4 is a 4-angled prismatic element
and that

ẽ1 = Fv1 ∩ Fv2 , ẽ2 = Fv2 ∩ Fv3
ẽ3 = Fv3 ∩ Fv4 and ẽ4 = Fv4 ∩ Fv1 .

Note that α(ẽ1)+α(ẽ2)+α(ẽ3)+α(ẽ4) = 2π if and only if α(ẽi) = π
2
for all i. Otherwise,

the condition holds and we are done. Assume that α(ẽi) = π
2
for i = 1, 2, 3 and 4, and,

note that

〈v1, v2〉L = − cos(α(ẽ1)) = 0, 〈v2, v3〉L = − cos(α(ẽ2)) = 0

〈v3, v4〉L = − cos(α(ẽ3)) = 0 and 〈v4, v1〉L = − cos(α(ẽ4)) = 0.

also take the matrix

G =
[
〈vi, vj〉L

]
i,j=1,2,3,4

=


1 0 〈v1, v3〉L 0
0 1 0 〈v2, v4〉L

〈v1, v3〉L 0 1 0
0 〈v2, v4〉L 0 1

 .
We have the two following cases:

Case a. If v1, v2, v3 and v4 are linear independent vectors, then the G is the representation
matrix of the Lorentzian inner product on E1,3 with respect to the basis B =
{v1, v2, v3, v4}. Therefore, in this case we have

det (G) < 0.

Case b. If {v1, v2, v3, v4} is not a set of linear independent vectors, at least one of the
columns of G can be written as a linear combination of the other three columns.
Therefore, in this case we have

det (G) = 0.

From the last two cases we get that det (G) ≤ 0. Moreover, if we compute we get that

det(G) = (1− 〈v1, v3〉2L)(1− 〈v2, v4〉2L).

The last computation tells us that either 1− 〈v1, v3〉2L ≥ 0 or 1− 〈v2, v4〉2L ≥ 0. We can
assume without loss of generality that

1− 〈v1, v3〉2L ≥ 0

by Proposition 1.9
P̄v1 ∩ P̄v3 6= ∅,

this tells us that 〈v1, v3〉L = − cos(α), where α is the dihedral angle at P̄v1 ∩ P̄v3 .

Now, take the matrix A = [〈vi, vj〉L]i,j=1,2,3, since 〈v1, v2〉L = 〈v2, v3〉L = 0, it holds that
det(A) = 1 − cos2(α). The last expression is always bigger or equal to zero, hence by
remark 1.5 we get that

P̄v1 ∩ P̄v2 ∩ P̄v3 6= ∅.
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On the other hand, since Fv1Fv2Fv3Fv4 is a four angled prismatic element, we know that
ẽ1 ∩ ẽ2 = ∅. Also, ẽ1 and ẽ2 are both edges of the face Fv2 , which as a parallelogram.
Hence, if l1 and l2 are the corresponding supporting lines of the edges ẽ1 and ẽ2, we get
that

l̄1 ∩ l̄2 = P̄v1 ∩ P̄v2 ∩ P̄v3 = ∅,

which leads to a contradiction .

[a5 ] Assume that the face Fvi is a quadrilateral, whose boundary is ∂Fvi = ẽ1ẽ2ẽ3ẽ4 and
let ẽij be the edge adjacent to the edges ẽi and ẽj.

Since P has non-obtuse dihedral angels, the condition [a5] is violated if we get equality
in one of the linear equations defining this condition. Assume that

α(ẽ1) + α(ẽ3) + α(ẽ12) + α(ẽ23) + α(ẽ34) + α(ẽ14) = 3π.

Then,
α(ẽ1) = α(ẽ3) = α(ẽij) =

π

2
.

By the law of cosines in the spherical geometry (see equation B.2), if βi is an interior
angel of Fvi , we get that

cos(βi) =
cos(π

2
) + cos(α) cos(π

2
)

sin(α) sin(π
2
)

= 0

and so βi = π
2
.

Therefore, by the Gauss-Bonnet-theorem (see example A.1) we get that

2π =
4π

2
+ Area(Fvi) ⇒ Area(Fvi) = 0

and so we get a contradiction.
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3.2. α : P1
m → RE is injective.

To see that α : P1
m −→ RE is injective we will show that two marked polyhedra in Om

whose correspondent dihedral angles coincide have congruent faces. It is well know that
two n-gons are congruent if and only if their interior angles and their lengths coincide,
similarly we will show that two marked polyhedra in O1

m whose faces are congruent and
whose corresponding dihedral angles coincide are in the same orbit under the action of
Isom(H3). In addition, to be able to prove our main statement, we will state and prove
an important lemma about parallelograms in H2, and state a lemma about simple plane
graphs.

Proposition 3.1. Let us take (P1, [ψ1]∼), (P2, [ψ2]∼) ∈ O1
m. If the faces are congruent

and the corresponding dihedral angles coincide, then there is a φ ∈ Isom(H3) such that
φ(P1, [ψ1]∼) = (P2, [ψ2]∼).

Proof. Assume that (P1, [ψ1]∼) has coordinate [v1, . . . , vN ] ∈ HN
3 and that (P2, [ψ2]∼)

has coordinate [w1, . . . , wN ] ∈ HN
3 . By our assumption Fvi and Fwi are congruent

polygons for i = 1, ..., N . Since FvN and FwN are congruent polygons, we can find an
isometry φ ∈ Isom(H3) such that φ(FvN ) = FwN , also note that φ(PvN ) = PwN . Let us
assume that a1, . . . , ak are the sides of FvN , and that ā1, . . . , āk are the corresponding
sides of FwN . Moreover, we can assume that Fvi is the face adjacent to FvN at ai, and
respectively Fwi is the face adjacent to FwN at āi. If it is necessary we can compose φ
with the reflection through the hyperbolic plane Pwi and (or) a rotation that preserves
FwN to get that φ(P1) and P2 lie in the half-space HwN , and that φ(ai) = āi. Since φ is
an isometry and the dihedral angles coincide, the dihedral angles of φ(P1) and P2 at āi
are the same and we can conclude that φ(Pvi) = Pwi for i = 1, . . . , k. This tells us that
φ(Fvi) and Fwi are congruent polygons lying on the hyperbolic plane Pwi . Moreover,
since they share the commune edge āi, the supporting line li = 〈wi〉L ∩ 〈wN〉L ∩ H3,
the supporting line l̃i = 〈wi〉L ∩ 〈wi+1〉L ∩ H3 (〈wk〉L ∩ 〈w1〉L ∩ H3 for i = k) and lie
on the same side of the supporting line li with respect of the supporting plane Pwi , we
can conclude that φ(Fvi) = Fwi . In a recursive way, we can use a similar argument to
see that φ(Fvi) = Fwi for all i, which implies that V (φ(P1)) = V (P2). Therefore, we
can conclude that φ(P1) = conv(V (φ(P1))) = conv(V (P2)) = P2. Finally, note that
φ ◦ ψ1(F̃i) = φ(Fvi) = Fwi for all i, and so ψ2 = φ|∂P1 ◦ ψ1.

Lemma 3.1 (Andreev’s Auxiliary lemma on parallelograms).
Let

Q1 =
m⋂
i=1

Hvi and Q2 =
m⋂
i=1

Hwi

be polygons in H2, not necessary of finite volume such that

xi = svi ∩ svi+1
for i = 1, . . . ,m− 1,

x′i = swi ∩ swi+1
for i = 1, . . . ,m− 1,

are finite vertices. We are also going to ask that the condition for parallelograms holds
for both polygons, i.e, if svi ∩ svj = ∅ (or swi ∩ swj = ∅), then l̄vi ∩ l̄vj = ∅ (resp.
l̄wi ∩ l̄wj = ∅). Assume that

]vivi+1 = ]wiwi+1 for all i = 1, . . . ,m− 1
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and
|svi | ≤ |swi | for i = 2, . . . ,m− 1

where at least one of the inequalities is strict, then it holds that

〈w1, wm〉L < 〈v1, vm〉L
Proof. We will first assume that just one inequality is strict, let us say that |svk | < |swk |.
We can overlap both polyhedra in such a way that v1 = w1 and vk = wk (see Figure
3.1) and use a parallel translation πk(t) along the hyperbolic line lvk to go from Q1 to
Q2, i.e, we apply πk(t) on the appropriate half-spaces to get the polyhedron

Q(t) =
k−1⋂
i=1

Hvi ∩
m⋂
i=k

πk(t)Hvi

where Q(0) = Q1 and Q(tf ) = Q2 for some tf > 0, our goal is to see that 〈v1, vm(t)〉L
is a decreasing function, for that purpose we will show that d

dt
〈v1, vm(t)〉L < 0 for all

t ≥ 0.

Figure 3.1.

Using an appropriate isometry we can assume that vk = [0, 0,−1]T and that the middle
point of svk is O = [1, 0, 0]T . Note that lvk = {x2 = 0} ∩H2. Moreover, we can also
assume that the sides of Q(t) are enumerated in counter-clockwise direction with respect
to lvk .

Figure 3.2.: k=3

The respective parallel translation is given by

π̃k(t) =

cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 1

 .
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If we assume that v1 = [v01, v11, v21]
T and that vm = [v0m, v1m, v2m]T , then we have that

vm(t) = [cosh(t)v0m + sinh(t)v1m, sinh(t)v0m + cosh(t)v1m, v2m]T and so,

d

dt
〈v1, vm(t)〉L = sinh(t)(v11v1m − v01v0m)− cosh(t)(v1mv01 − v11v0m). (3.2)

We want to see that the expression in the Equation 3.2 is < 0 for t ≥ 0. Since O is the
middle point of svk , it holds that O ∈ Q1 and so,

〈[1, 0, 0]T , [v01, v11, v21]
T 〉L = −v01 < 0,

〈[1, 0, 0]T , [v0m, v1m, v2m]T 〉L = −v0m < 0.

Therefore, v1 and vm are positive space-like vectors. Moreover, by the way that we chose
the enumeration of the sides of Q1 we can see that v1, vk = [0, 0,−1]T , vm in that order
form a positive oriented basis of E1,2.

Figure 3.3.

Thus, it holds that ∣∣∣∣∣∣
v01 0 v0m
v11 0 v1m
v21 −1 v2m

∣∣∣∣∣∣ = [v01v1m − v0mv11] > 0.

This tells us that d
dt

∣∣
t=0
〈v1, vm(t)〉L < 0, and that for t > 0 equation (3.2) is less than

zero if and only if
v11v1m − v01v0m
v01v1m − v0mv11

<
cosh(t)

sinh(t)
. (3.3)

Since cosh(t)
sinh(t)

> 1 for t > 0, to see that last equation holds, it is enough to show that

v11v1m − v01v0m
v01v1m − v0mv11

< 1. (3.4)
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We know that the parallelogram condition holds for Q1, this means that l̄v1 intersects
l̄vk if and only if s1 and sk are adjacent sides. Since we chose a counter-clockwise
enumeration, s1 and sk are adjacent if and only if k = 2. Moreover, if the intersection
is non-empty, it happens to the left of O. Let us consider Q1 in K2 as in Figure 3.4, the
hole line segment that goes from O = [1, 0, 0]T to [1, 1, 0]T lies on l̄k = {x2 = 0} ∩ K2

and is completely situated to the right of O. Therefore, by our last discussion it never
intersect the hyperplane 〈v1〉L and we can conclude that [1, 1, 0]T ∈ hvi but not in 〈v1〉L.
Thus,

〈[1, 1, 0]T , v1〉L = −v01 + v11 < 0. (3.5)

Using the same argument, we see that l̄vm and l̄vk intersect if and only if k = m − 1,
and if the intersection is not empty, then it happens to the right of O. Therefore,
[1,−1, 0]T ∈ hvm but not in 〈vm〉L. Thus,

〈[1,−1, 0]T , v1〉L = −v0m − v1m < 0. (3.6)

From the equations (3.5) and (3.6), it holds that (−v01 + v11)(−v0m − v1m) > 0, this
implies that v01v1m − v11v0m − v11v1m + v01v0m > 0 and so we get equation (3.4).

Figure 3.4.

When we apply the translation πk(t) to get the polyhedron Q(t), the last discussion tells
us that the cosine of the dihedral angle, or the distance, between the hyperbolic lines lv1
and lvm(t) get bigger as t increases. On the other hand, since πk(t) is an isometry, the
lengths of the sides different from sk and the dihedral angles different from ]v1vm are
preserved. Also note that the parallelogram condition is preserved. Therefore, if there is
more than one side where the inequality on the lengths is strict, we can do sequentially
the last construction on each of those sides. As we always get an increase in the cosine
of the dihedral angle, or the distance, between the first and the last supporting line, we
get our desired result.

Lemma 3.2 (Cauchy). Let G be a simple plane graph with more than two vertices. If
the edges of G are two coloured, then there is a vertex G with at most two color changes
in the cyclic order of the edges around the vertex.

(for a proof see [1])

Proposition 3.2. The map α : P1
m −→ Am is injective.

Proof. Assume that (P1, [ψ1]∼) and (P2, [ψ2]∼) are two marked polyhedra in O1
m whose

dihedral angles coincide. We want to see that there is a φ ∈ Isom(H3) such that
φ(P1, [ψ1]∼) = (P2, [ψ2]∼). To do this we will show that P1 and P2 have congruent
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faces. Therefore, we have to see that the interior angles of the faces and the lengths
of the edges of both polyhedra are the same. First, remember that using the spherical
law of cosines, as we did in Proposition 1.15, we can compute the interior angles of the
faces of P1 and P2 from the dihedral angles of the polyhedra. Therefore, as the dihedral
angles of P1 and P2 are the same, we can conclude that the interior angles of the faces
P1 and P2 coincide. To see that the length of the corresponding edges are the same,
assume that this is not the case and consider the following marking (colouring) on the
edges of the dual decompositionM∗, take a dual edge e∗ inM∗,

• If |ψ1(e)| < |ψ2(e)|, then we will mark e∗ with −.

• If |ψ1(e)| = |ψ2(e)|, then we will mark e∗ with 0.

• If |ψ1(e)| > |ψ2(e)|, then we will mark e∗ with +.

Figure 3.5.: Marking onM∗

Consider the graph Ĝ that we get from deleting (eliminating) the edges marked with
zero from the dual graph and note that it is a simple plane graph whose edges are
marked with + and −, or two coloured. Therefore, by Lemma 3.2 there is a dual edge
v∗ such that when following the cyclic order of the edges in Ĝ that are incident to v∗,
there are at most two sign changes. Since the number of sign changes is even, this tells
us that there are either zero or two sign changes.

The dual vertex v∗ corresponds to a face F̃ of M with boundary ∂F̃ = e1 . . . en and
from the last consideration we can conclude that there is a m ≤ n such that

• The dual edges e∗1, . . . , e∗m are marked with + or 0, and

• The dual edges e∗m+1, . . . , e
∗
n are marked with − or 0.

By our initial assumption, we can assume that there is at least one dual edge e∗i marked
with + or −, and if all the edges that are not marked with 0 have the same sing, by
interchanging the roles of P1 and P2, we can assume without lost of generality that
those edges are all marked with +, which is the case when m = n.
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(a) 2 color changes in the cyclic order (b) 4 color changes in the cyclic order

Figure 3.6.

(a) m=n (b) m<n

Figure 3.7.

Now, let Q1 and Q2 be the faces of P1 and P2 such that ψ1(F̃ ) = Q1 and ψ2(F̃ ) = Q2.
We can assume that H2 is the supporting plane of both faces and that

Q1 =
n⋂
i=1

Hwi and Q2 =
n⋂
i=1

Hvi

where {w1, . . . , wn}, {v1, . . . , vn} are the minimal set of vectors in H2 specifying this
faces or convex n-gons. Also assume that ψ1(ei) = swi and that ψ2(ei) = svi for all i.
We have the following possibilities,
Case 1 If m = n, then Q1 and Q2 satisfy the conditions from the Lemma 3.1 and it holds
that

〈w1, wn〉L < 〈v1, vm〉L
which contradicts the fact that all the interior angles are the same.
Case 2 If m < n, we can consider the two pair of polyhedra

[a ]

Q̃1 =
m⋂
i=1

Hwi and Q̃2 =
m⋂
i=1

Hvi , and

[b ]

Q̂1 =
n⋂

i=m

Hwi ∩Hw1 and Q̂2 =
n⋂

i=m

Hvi ∩Hv1 .
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Both pair of polyhedra satisfy the conditions from Lemma 3.1, from the first pair we
get that

〈w1, wm〉L < 〈v1, vm〉L
and from the second pair of polyhedra we get that

〈v1, vm〉L < 〈w1, wm〉L

and we get a contradiction.

The last discussion tells us that that the lengths of the edges of P1 and P2 are equal,
and so we can conclude that the corresponding faces of both polyhedra are congru-
ent. In addition, since the dihedral angles of (P1, [ψ1]∼) and (P2, [ψ1]∼) coincide, from
Proposition 3.1 we can conclude that there is an isometry φ ∈ Isom(H3) such that
φ(P1, [ψ1]∼) = (P2, [ψ2]∼).
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3.3. α : P0
m → Am is proper

To begin, let us consider a sequence of compact polyhedra {Pj}j∈N realizing m in H3

such that

Pj =
N⋂
i=1

Hvji

and that each polyhedron has a marking [ψj]∼ where ψj(F̃i) = Fvji
= F j

i . In the same
way that the hyperbolic half-spaces are parametrized by the unit vectors in the de Sitter-
Sphere, the euclidean half-spaces are parametrized by the vectors in the unit sphere S3

which is a compact set. Therefore, if we have an infinite sequence of closed half-spaces
in the euclidean space, it has an infinite convergent subsequence. This tell us that each
sequence of closed half-spaces {hvji }j∈N has a convergent subsequence whose limit is a
closed half-space hj of E1,3. Now, transfer the polyhedra Pj to the Poincaré ball model
D3 and consider the set their sets vertices

V (Pj) = {xj1, . . . , x
j
V },

where each xjl corresponds to a vertex x̃l ofM. Since D̄3 is a compact set in R3, each
sequence of vertices {xjl }j∈N has a convergent subsequence with limit point x̂l ∈ D̄3.
The finite volume polyhedron, or degenerate polyhedron (i.e, a finite intersection
of closed half-spaces with empty interior, in this case a finite or infinite point, a line
segment, a hyperbolic ray, a hyperbolic line or a convex polygon) given by

PD3 = conv({x̂1, . . . x̂V }).

corresponds to the limit polyhedron P in H3 of a convergent subsequence of the compact
polyhedra Pj, we will maintain the indices and say that

P = lim
j→∞

Pj.

Note that in this case each sequence of half-space hvji converges to an euclidean half-space
whose boundary is a time-like plane, i.e, there is a unit vector v̂i ∈ H3 such that

hv̂i = lim
j→∞

hvji
,

and so
lim
j→∞

[vj1, . . . , v
j
N ] = [v̂1, . . . , v̂N ] ∈ HN

3 . (3.7)

The last equation and the continuity of the Lorentzian-inner product tell us that

lim
j→∞
〈vjk, v

j
l 〉L = 〈v̂k, v̂l〉L for all k, l.

Hence, if eij is the edge of Pj corresponding to the edge ei inM, it holds that α(eij) is
a convergent sequence. Also, if P is a polyhedron of finite volume realizing m, then

lim
j→∞

α(eji ) = αi

is the dihedral angle at the corresponding edge and the limit N -tuple from equation
(3.7) defines a marking on P.
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Lemma 3.3. Let P̃ be a compact polyhedron with non-obtuse dihedral angles in H3 and
let F be one of its faces. If the interior angle at a vertex of F is equal to π

2
, then the

dihedral angle at the edge incident to the vertex and opposite to the face, and at least
one of the dihedral angles at the edges of F entering the vertex are equal to π

2
.

Proof. Assume that ẽ1 is the edge opposite to the face and that ẽ1, ẽ2 are the edges
entering the vertex.

Figure 3.8.

By the spherical law of cosines it holds that

0 =
cos(α(ẽ1)) + cos(α(ẽ2)) cos(α(ẽ3))

sin(α(ẽ2)) sin(α(ẽ3))
.

Since we are considering non-obtuse dihedral angles, it holds that cos(α(ẽi)) ≥ 0 for all i.
Therefore, the last equation tells us that cos(α(ẽ1)) = 0 and that at least one cos(α(ẽ2))
or cos(α(ẽ3)) is equal to zero. Hence, again as we consider non-obtuse dihedral angles,
α(ẽ1) = π

2
, and at least one α(ẽ2) or α(ẽ3) is equal to π

2
.

Proposition 3.3. Take a sequence of equivalent classes {[(Pj, [ψj]∼)]}j∈N ⊆ P0
m. As-

sume that {Pj}j∈N is a convergent sequence, and that the sequence given by the vectors
α([(Pj, [ψj]∼)]) = aj converges to a vector a ∈ Ām with conditions [a1], [a3]−[a4]. Then,
the limit polyhedron P is a polyhedron of finite volume realizing m.

Proof. As in the last paragraph we transfer the problem to the Poincaré ball model D3.
Since each Pj is a compact polyhedron realizing m, it is enough to see that all the limit
vertices x̂1, . . . , x̂V are different.
[Case 1. ] If x̂m is an ideal vertex for some m ∈ {1, . . . , V }, then {xjm}j∈N is the only
sequence of vertices that converges to x̂m

We can choose a face ofM and use an isometry (see [14]) to situate the polyhedra Pi

in such a way that three vertices xja, x
j
b and x

j
c of the corresponding face lie respectively

on the positive part of the x-axis, y-axis and z-axis of R3. This tells us that the limit
vertices x̂a, x̂b and x̂c are all different.
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Figure 3.9.

Now, let us assume that there is more than one sequence of vertices that converges to x̂m
and let {xj1}j∈N, . . . , {x

j
k}j∈N be the sequences of vertices that converge to this vertex.

Also, let us assume that xim = xic, i.e, x̂m is the north pole, and note that by the way we
situated the polyhedra, there are at least two sequences of vertices that don’t converge
to x̂m. For a large enough l ∈ N we can find a hyperbolic plane Q, that is perpendicular
to the z-axis and such that for all j ≥ l, all the vertices xj1, . . . , x

j
k lie in the interior of

the half-space defined by Q looking to the north pole, and the other vertices lie in the
interior of the other side of Q.

Figure 3.10.

For all j ≥ l, we will take the hyperplane Rj that is perpendicular to the z-axis and
intersects the vertex from the set {xj1, . . . , x

j
k} nearest to the origin. Moreover, we will

also take the hyperplane Si that is perpendicular to the z-axis and lies halfway with
respect to the z-axis between Ri and Q. Let us denote by N the half-space of Ri

looking to the north pole and by S the half-space defined by Q looking to the south
pole, it is clear that {xj1, . . . , x

j
k} ⊆ N and {xjk+1, . . . , x

j
V } ⊆ S. Also, note that each

half-space contains at least two vertices.

Figure 3.11.

Consider the convex polygon Tj = Sj ∩Pj, its interior angles are the dihedral angles at
the edges ej1, . . . , ejn connecting the vertices in the half-space N with the vertices in the
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half-space S. We normalize the polyhedra Pj by moving the half-space under Sj in such
a way that Sj goes to the hyperbolic plane H = {z = 0} ∩ D3 and the whole half-space
goes to the half space defined by H looking to the south pole.

Figure 3.12.

By doing this, we obtain polyhedra P̃j, not necessary convex, realizing m (,i.e, ∂P̃j is
cellular isomorphic to M). Note that after the normalization, the combinatorics and
the geometry of the vertices and edges in N , and S are preserved. Let us maintain
the names ej1, . . . , ejn for the edges connecting both half-spaces, as j → ∞, the edges
ej1, . . . , e

j
n tend to straight lines. Therefore, H ∩ P̃j is almost an euclidean polyhedron,

it also bounds the hyperbolic polygon Tj and its interior angles are slightly bigger than
the interior angles of Tj, i.e, the dihedral angles α(ej1), . . . , α(ejn).

Figure 3.13.

Taking the above into consideration, the Gauss Bonnet theorem tells us that

π(n− 2) ≈
∑
i=n

α(eji ). (3.8)

Thus, since α(eij) ≤ π
2
, it holds that π(n − 2) = nπ

2
+ ε for a small ε > 0, and we

can conclude that n ≤ 4. It is clear that n ≥ 3 and so there are either 3 or 4 edges
connecting S and N .

First let us assume that n = 3 and that ej1, e
j
2, e

j
3 are the edges connectingN and S. Note

that the corresponding dual edges in M∗ form a 3-cycle. Moreover, it is a prismatic
3-cycle, otherwise Proposition 2.2 tells us that ej1, e

j
2, e

j
3 meet at a vertex lying in N

(or S), this implies that the other vertices of P̃j lying in N are disconnected from the
vertices in S, a contradiction the fact that G(P̃j) ∼= G(Pj) is a connected graph. Since
condition [a3] holds for a = [α1, . . . , αE]T , the above tells us that

α1 + α2 + α3 < π.

However, by equation (3.8), we can conclude that

lim
j→∞

α(ej1) + α(ej2) + α(ej3) = α1 + α2 + α3 = π
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and we get a contradiction. Now, let us assume that n = 4 and that ej1, e
j
2, e

j
3, e

j
4 are the

edges connecting N and S. The corresponding dual edges form a 4-cycle. Furthermore,
if the 4-cycle is prismatic, analogue to the last case, we get that

α1 + α2 + α3 + α4 = 2π

which contradicts condition [a4]. On the other hand, if the 4-circuit is not prismatic, at
least two edges from {ej1, e

j
2, e

j
3, e

j
4} must meet at a vertex, and by equation (3.8),

lim
j→∞

α(ej1) = lim
j→∞

α(ej2) = lim
j→∞

α(ej3) = lim
j→∞

α(ej4) =
π

2
.

Assume that ej1 and ej2 meet at the vertex xj, that ejl is the third edge incident to xj

and that F j is the face of P̃j containing ej1, e
j
2 and xj on its boundary.

Figure 3.14.

Let βj be the interior angle of F j at xj, by the spherical laws of cosines it holds that

lim
j→∞

cos(βj) = lim
j→∞

cos(α(ejl )) + cos(α(ej1)) cos(α(ej2))

sin(α(ej1)) sin(α(ej2))

= lim
j→∞

cos(α(ejl )).

Therefore, as we are considering non-obtuse dihedral angles and all the vertices in N
converge to the north pole, if xj lies in N , we must have that

lim
j→∞

βj = lim
j→∞

α(ejl ) = αl = 0

which contradicts condition [a1]. Analogue, if xj lies in S, remember that the distance
between H = Sj and Q with respect to the z-axis is half the distance between Q and
Rj before the normalization, call it dj. Since dj

2
→ ∞ as j → ∞, all the vertices in S

converge to the south pole and we get a contradiction as the above.
Case 2. If x̂m is a finite point for some m ∈ {1, . . . , V }, then {xj}j∈N is the only sequence
of faces that converges to x̂m.

First we will see that the faces of the polyhedra Pj don’t degenerate, i.e, their limits
are not polyhedra of less dimension.

Assume that a sequence of faces F j
h degenerates, we already know that there is exactly
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one sequence of vertices converging to each ideal vertex. Therefore, F j
h degenerates to

a finite point, a line segment or a hyperbolic ray and we can conclude that

lim
j→∞

Area(F j
h) = 0.

If βj1, . . . , βjn are the interior angles of F j
h , then the last equation and the Gauss-Bonnet

theorem tell us that

π(n− 2) = lim
j→∞

n∑
i=1

βji (3.9)

Since the interior angles βji are also less or equal to π
2
, we can deduce from equation

(3.9) that π(n− 2) ≤ nπ
2
and so n = 3 or n = 4. Therefore, F j

h is either a triangle or a
quadrilateral.

Assume that F j
h is a triangle and let ej1, e

j
2 and e

j
3 be the edges leaving the vertices of F j

h .
If the corresponding dual edges don’t form a prismatic 3-cycle, by Proposition 2.2 they
meet at a vertex outside F̃h, and we get that N = 4, which contradicts our assumption
that the number of faces of m is strictly bigger than 4.

Figure 3.15.

Now, if F j
h degenerates to a finite point, it holds that

lim
j→∞

α(ej1) + α(ej2) + α(ej3) = α1 + α2 + α3 > π

which contradicts condition [a3]. On the other hand, if F j
h degenerates to a line segment

or a ray, two of its interior angles tend to π
2
, and using Lemma 3.3 we can conclude that

two of the dihedral angles of the edges leaving F j converge to π
2
. Thus, we get that

α1 + α2 + α3 ≥ π

which is again a contradiction to condition [a3].

Now assume that F j
h is a quadrilateral, by the equation (3.9)

lim
j→∞

βj1 + βj2 + βj3 + βj4 = 2π.

Therefore, since the interior angles of F j
h are non-obtuse, we can conclude that the

interior angles converge to π
2
. Let ej1, e

j
2, e

j
3, e

j
4 be the edges leaving the vertices of F j

h , by
Lemma 3.3 and our last discussion, their dihedral angles converge to π

2
and the dihedral

angles of at least two opposite edges on the boundary of F j
h , let us say ejk1 , e

j
k2
, also

converge to π
2
.
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Figure 3.16.

We finally get that
α1 + α2 + α3 + α4 + αk1 + αk2 = 3π

which contradicts condition [a5].

Now, as no face of Pj degenerates, we can conclude that Pj don’t degenerate as well.
Therefore, we can find at least 3 sequences of vertices {xja}j∈N, {x

j
b}j∈N and {xjc}j∈N

whose limit is not x̂m. Assume that xj1, . . . , x
j
k are the vertices of that converge to x̂m

and use an isometry to situate the polyhedra in such a way that x̂m lies at the origin,
we want to see that k = 1. For a large enough l ∈ N, we can find a small sphere S
centred at the origin, such that for all j > l, it separates the vertices yi1, . . . , yik from the
vertices yja, y

j
b and yjc , analogously as we did in Proposition 1.15 we can see that there

are exactly three edges ej1, e
j
2, e

j
3 going out of S. If k > 1, then the corresponding dual

edges form a prismatic 3-cycle. However, since yj1, . . . , y
j
k tend to the finite vertex ŷm, it

holds that
α1 + α2 + α3 > π

which is a contradiction to condition [a3]. Thus, we can conclude that k = 1 and we are
done.

Proposition 3.4. The map α : P0
m −→ Am is proper.

Proof. Let K ⊆ Am be a compact set, we want to see that α−1(K) is compact in
P0
m. Take a infinite sequence of equivalence classes of marked polyhedra {[Ml]}l∈N in
α(K)−1. Since K is compact, the sequence of vectors given by α([Ml]) = al has a
infinite convergent subsequence with limit point a ∈ K ⊆ Am. Take the subsequence
of marked polyhedra {[(Pj, [ψj]∼)]}j∈N whose corresponding dihedral angles are given
by the vectors in the subsequence. It is clear that the conditions [a1],[a3]-[a5] hold for
a. Therefore, by the initial discussion and Proposition 3.3, the sequence of compact
polyhedra {Pj}j∈N, has infinite convergent subsequence whose limit is a polyhedron of
finite volume P in H3 that realizes m, with a marking [ψ̂]∼ as in equation 3.7, and whose
corresponding dihedral angles are given by the entries of the vector a. Moreover, since
condition [a2] holds for a, we can conclude that all the vertices of P are finite. Hence,
P is a non-obtuse compact polyhedron realizing m and α([(P, [ψ̂]∼)]) = a, this tells us
that [(P, [ψ̂]∼)] ∈ α−1(K) and we can conclude that α−1(K) is compact.
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3.4. If m is simple, then α(P0
m) 6= ∅

In this section an explanation of some of the tools that Andreev used in his paper [3] [14]
to prove that Therorem 2.2 holds for simple abstract polyhedra will be given. Remember
that by a simple abstract polyhedron we mean a trivalent abstract polyhedron that is
different from the tetrahedron and doesn’t have prismatic 3-cycles. The main idea of
this proof is to give an explicit proof for a base case, in this case the split-prism, and
then show that we can obtain any simple abstract polyhedron, that is not a prism, via a
sequence of operations called Whitehead moves. We will show that Andreev’s Theoream
for compact polyhedra holds for the prism and the split prism, and then, show that the
Whithead moves preserve realizability.

Proposition 3.5. Let us take N ≥ 3. The prism with N + 2 faces is realizable as a
compact non-obtuse hyperbolyc polyhedron.

Proof. We will build the polyhedron in the Poincare ball model D3. First, let us take a
collection of N real numbers β1, ..., βN in the interval (0, π

2
], by Remark 1.7 there is an

hyperbolic N -gon Q in D2 such that its interior angels are β1, ..., βN , also note that Q
has no ideal vertices.

Let us see D2 as the equatorial plane of D3 and take the supporting lines l1, ..., lN of the
sides of Q. By proposition 1.10 and the remark that follows it, we can find a hyperbolic
plane Pi in D3 such that

li = Pi ∩ D2.

Each plane Pi defines two half-spaces, let us take the half-spaces H1, ..., HN such that
Q lies in the interior of the 3-dimensional polyhedron

P̂ =
N⋂
i=1

Hi and ∂Hi = Pi.

Note that each face of P̂ contains exactly one side of Q, and that the hyperbolic plane
Pi is the supporting plane of the face containing the side si. Moreover, the dihedral
angels of P̂ are β1, ..., βN .

Now take two hyperbolic planes PN+1 and PN+2 such that:

1. Both planes are perpendicular to the z-axis.

2. PN+1 lies over the equatorial plane and is very close to it

3. PN+2 lies under the equatorial plane an is very close to it.

The intersection of PN+k, k = 1, 2, with the other planes has an interior angel smaller
than π

2
. Hence, by taking the appropriate half-spaces HN+1 and HN+2 the hyperbolic

polyhedron

P =
N+2⋂
i=1

Hi
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3. Andreev’s Theorem

is a compact hyperbolic polyhedron, whose dihedral angels are non-obtuse and whose
combinatorial type is the prism with N + 2 faces.

The last result tells us that the Andreev’s theorem for compact polyhedra holds for the
combinatorial type corresponding to the prim with N + 2 faces.

Corollary 3.1. Let pN+2 be an abstract polyhedron corresponding to the prism with
N + 2 faces. Then, the Theorem 2.2 holds with m = pN+2

Proof. By the last proposition α(P0
pN+2

) 6= ∅. Since we already proved that the map
α is well define, injective and proper, Proposition 2.7 tells us that ApN+2

= α(P0
pN+2

)

(the same proof for the triangular prism), which tells us that Theorem 2.2 holds with
m = pN+2.

Corollary 3.2. Let us take N ≥ 5. The split-prism with N + 2 faces is realizable as a
compact non-obtuse hyperbolic polyhedron.

Proof. First, let us take N = 5, note that the prism with 7 faces and the split-prism
with 7 faces are combinatorial equivalent.

Figure 3.17.: Cellular isomorphism between d7 and p7

Now, for N > 6 by Corollary 3.1, there is a compact hyperbolic polyhedron P whose
combinatorial type is the prism with (N − 1) + 2 faces and whose dihedral angels are
given as in the Figure 3.18.

Figure 3.18.: α = π
2 .

Without loss of generality, we can assume that P lies in D3 and that F1 is the face of P
which corresponds to the exterior face of the cell complex of Figure 3.18.

Now, if P1 is the supporting plane of the face F1 and φ1 ∈ Isom(H3) is the reflection
through P1, then φ1(P) is compact hyperbolic polyhedron congruent to P. Moreover,
F1 is a common face of both polyhedra. Gluing P and φ1(P) together by the face F1,
we obtain a new compact polyhedron P̃. Note that:(see Figure 3.19)
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3. Andreev’s Theorem

1. After gluing, the dihedral angle of an edge of F1 is added to the dihedral angle
of its mirror image. Therefore, the edges on F1 with dihedral angle equal to π

2

disappear, and the remaining edge becomes an edge of P̃ with dihedral angle π
2
.

2. If e is an edge with dihedral angel α, it either glues together with its mirror image
into a new edge of P̃, or both the edge and its mirror image become edges of P̃.
In both cases the dihedral angle remains the same.

3. The other edges in P and φ1(P) become edges of P̃, and their dihedral angles don’t
change.

Figure 3.19.: Cell complex corresponding to the polyhedron P̃

Note that P̃ is a compact hyperbolic polyhedron whose combinatorial type corresponds
to the split-prism with N + 2 faces and whose dihedral angels are less or equal to π

2
.

In a similar way as we proved Corollary 3.1, the last result tells us that the Andreev’s
theorem for compact hyperbolic polyhedra holds for the split-prism with N + 2 faces,
where N ≥ 5. Now, let us define the Whitehead movements and see why they preserve
the property of being realizable as a compact polyhedron with non-obtuse dihedral
angles.

Definition 3.1. Let D be a triangulation of S2 and let us take two triangles ∆(ADC)
and ∆(ABC) in D. A Whitehead move W(ABCD) sends the triangulation D to a
new triangulation D′ by deleting the edge e = AC and adding the edge e′ = DB, i.e, we
switch the triangles ∆(ADC) and ∆(ABC) by the triangles ∆(BAD) and ∆(BCD).

Figure 3.20.: Whitehead Move

Now assume that m is a trivalent abstract polyhedron, and assume that M is a real-
ization of m as a cellular decomposition of S2. As we saw in the last chapter, M∗ is
a triangulation of S2, hence by applying a Whitehead move to M∗ we obtain a new
trivalent cellular decompositionM′ of S2 whose dual decomposition is the triangulation
that we get under the Whitehead move.
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3. Andreev’s Theorem

In terms of a the cellular decompositionM a Withehead move W(ABCD) can be see
as follows (see Figure 3.21):

1. The vertices A,B,C and D ofM∗ corresponds to faces FA, FB, FC and FD ofM,
and, the dual edge e∗ = AC corresponds to an edge e in M. Moreover, it holds
that

FA ∩ FC = e and FB ∩ FD = ∅.

2. Deleting the edge e∗ = AC ofM∗ corresponds to contracting the edge e to a vertex
v′ and so, we get a new cellular complex M̃ where

FA ∩ FB ∩ FC ∩ FD = {v̂}

3. Adding the edge e′∗ = DB can be seen as stretching out the vertex v′ so that it
becomes the edge e′ of the complexM′. Also note that inM′ we have that

FB ∩ FD = e′ and FA ∩ FC = ∅.

Therefore, we can say that the Whitehead move is defined by the edge e and write W(e)
instead of W(ABCD). Moreover, note that the face lattice m′ ofM′ is also a trivalent
abstract polyhedron.

Figure 3.21.: Whitehead Move on the Complex

Proposition 3.6. Let m be an simple abstract polyhedron that is realizable as a non-
obtuse compact hyperbolic polyhedron, and let m′ be the abstract polyhedron that we
obtain from m via a Whitehead move. Then, m′ is realizable as a non-obtuse compact
hyperbolic polyhedron.

Proof. (Sketch of the proof) Let us assume theM is a cellular realization of m, and
let us assume e0 is the edge ofM in which we apply the Whitehead move. Also, let us
assume that e1, e2, e3 and e4 are the edges adjacent to e0 and take the values

α(e0) =ε for some ε ∈ (0,
π

2
]

α(e1) =α(e2) = α(e3) = α(e4) =
π

2

α(e) =
2π

5
for a different edge e of M.

(3.10)

Since m is realizable as compact hyperbolic polyhedron, Andreev’s theorems holds, and
since m is simple, by Proposition 2.3 there is a compact hyperbolic polyhedron Pε whose
dihedral angels are the ones given in the equation (3.10).
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3. Andreev’s Theorem

We can take a sequence {εi}i∈N ⊆ (0, π
2
] such that

lim
n→∞

εi = 0.

Since D̄3 is a compact topological space, we can assume without loss of generality that
there is a polyhedron P̃ such that

lim
i→∞

Pεi = P̃

We wan to see that P̃ is a hyperbolyc polyhedron of finite volume with one ideal vertex
and the other vertices lying inside of the hyperbolic space. Note that this corresponds
to the situation of contracting the edge e to a vertex v′ inM.

To see the later us assume that {xi1, ..., xiV } = V (Pεi) is the set of vertices of Pεi , ei0 the
edge corresponding to e0 in Pεi and F i

AF
i
BF

i
CF

i
D the faces of Pεi such that

F i
A ∩ F i

C = ei0 and F i
D ∩ F i

B = ∅.

Also, assume that xi1 and xi2 are the vertices adjacent to ei0.

1) Let P i
A be the supporting plane of the face F i

A, and P i
C be the supporting plane of

the face F i
C . The dihedral angle α(ei0) = εi corresponds to the dihedral angle of the

intersection P i
A ∩ P i

C . Since
lim
i→∞

α(ei0) = 0,

it follows that the sequence P i
A∩P i

C converges to a single point ŷ lying on the boundary
of the hyperbolic space. Therefore,

lim
i→∞

xi1 = lim
i→∞

xi2 = lim
i→∞

ei0 = ŷ.

2) Let x̂1, ..., x̂V be the limit points of the sequences xi1, ..., xiV . We already know that
x̂1 = x̂2 = ŷ. As in the last section, we can use a normalization to separate the vertices
that converge to ŷ from the others that converge to other vertices in two sets, one near
to the north pole of D3 and the other on one near to the south pole. We use the last
procedure to see that there are exactly four edges separating those two sets and that
those edges do not form a prismatic four circuit. Moreover, this prismatic circuit sepa-
rates exactly two vertices,in this case xi1 and xi2 ,from the others, hence xi1 and xi2 are
the only vertices that converge to ŷ.

3) If F i is a face of Pεi , using the law of cosines in the spherical geometry and the Gauss
Bonnet theorem, we can show that {Area(F i)}i∈N is a constant sequence, hence no se-
quence of faces converges to a vertex or an edge. On the other hand, if ei ∈ E(Pεi)−{ei0},
the sequence {α(ei)}i∈N is also a constant sequence, either α(ei) = π

2
or α(ei) = 2π

5
.

Therefore, since no face degenerates to an edge or a vertex, we can conclude that {ei}i∈N
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3. Andreev’s Theorem

doesn’t converge to a vertex.

The last result also tells us that for j > 2 the sum of the dihedral angels of the edges
incident to x̂j is strictly bigger that π. Consequently, by Proposition 1.11 we can con-
clude that x̂j is not an ideal vertex.

Now, let us assume that P̃ lies on upper-half space model H3, and that PAPBPCPD are
the hyperbolic planes such that

P̄A ∩ P̄B ∩ P̄C ∩ P̄D = {ŷ}.

Also, let us assume that the hyperbolic planes PAPBPCPD are half-spheres perpendicular
to ∂H3 = C.

We can modify the hyperbolic planes by a translating the boundaries of them on ∂H3

(See figure 3.22). Now, by a slight modification of the hyperbolic planes PAPBPCPD,
we can find a polyhedron P′ such that

FB ∩ FD = e′ and FA ∩ FC = ∅

and that inherits the rest of the face structure from P̃. Note that P′ is a compact
hyperbolic polyhedron. Moreover, this modification corresponds to stretching out the
vertex v′ of M̃ to obtain the cell complex M′. Hence, P′ is a realization of m′ as a
compact hyperbolic polyhedron.

Figure 3.22.: Modification of the hyperbolic planes

Finally, since we obtained P′ by a small modification of the hyperbolic planes PAPBPCPD,
and by the way that we chose the dihedral angels in the original hyperbolic polyhedra,
we can argue that the dihedral angels of P′ are less or equal to π

2
.
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3. Andreev’s Theorem

Example 3.1. Some polyhedra that can be obtained via Whitehead moves.

The algorithm proposed by Andreev in [3] shows that any trivalent simple abstract
polyhedron (i.e its cellular representation) different from the prism, can be reduced to
a split-prism via a sequence of Whitehead moves. Hence, from Proposition 3.6 we can
deduce that the Andreev’s theorem for compact hyperbolic polyhedra holds for this class
of abstract polyhedra.

75



4. Polyhedra of Finite Volume

Let P be a non-obtuse polyhedron in H3 of finite volume and let {v1, . . . , vN} be the min-
imal set of vectors in H3 defining P. Assume that a vertex ŷ ∈ V (P) is the intersection
of exactly three faces without lost of generality

ŷ = Fv1 ∩ Fv2 ∩ Fv3
and that ẽ1 = Fv1 ∩ Fv2 , ẽ2 = Fv2 ∩ Fv3 and ẽ3 = Fv3 ∩ Fv1 . By Proposition 1.11, ŷ is an
ideal vertex if and only if

α(ẽ1) + α(ẽ2) + α(ẽ3) = π. (4.1)
On the other hand, remember that to prove proposition 3.6 we used a convergent se-
quence of non-obtuse compact polyhedra {Pεi}i∈N in D3, where {εi}i∈N is a sequence of
positive numbers that converges to zero, εi is the dihedral angle at an edge ei0 of Pεi and
π
2
is the value of the dihedral angles of the edges incident to ei0. The sequence {Pεi}i∈N

converges to a non-obtuse polyhedron P̃ of finite volume and the sequence {ei0}i∈N con-
verges to an ideal vertex ŷ of P̃ . Furthermore, if we assume that ẽ1, ẽ2, ẽ3, ẽ4 are the
edges of P̃ that meet at the ideal vertex ŷ, it holds that α(ẽi) = π

2
for all i ∈ {1, 2, 3, 4}

and we get that
α(ẽ1) + α(ẽ2) + α(ẽ3) + α(ẽ4) = 2π. (4.2)

In fact, if a non-obtuse polyhedron P of finite volume in H3 has an ideal vertex, we have
one of the last two possibilities, i.e, if ŷ ∈ V (P) is an ideal vertex, then the number of
edges incident to ŷ is either 3 or 4, and respectively either equation (4.1) or equation
(4.2) holds for the dihedral angles at those edges.

The above tells us that a necessary condition, for a abstract polyhedronm to be realizable
as a non-obtuse polyhedron of finite volume in H3, is that the number of edges incident
to a vertex of m is 3 or 4. Moreover, if we assume that m has more than 4 faces, we can
extend Theorem 2.2 to tells us if there is a polyhedron P of finite volume in H3, that
realizes m and whose corresponding dihedral angles are the given values α(ei) ∈ (0, π

2
]

for ei ∈ E(m) (or E(M)) by adding the equation (4.1) to the condition [a2] and the
following extra conditions to the theorem (see [4]),

[a6 ] If the edges ei, ej, ek, el meet at a vertex, then

α(ei) + α(ej) + α(ek) + α(el) = 2π.

[a7 ] If we have three faces F̃i, F̃j, F̃k such that, F̃i and F̃j are adjacent, F̃j and F̃k are
adjacent, F̃i and F̃k are not adjacent but meet at a vertex, and not all the faces
meet at a vertex. Then, if eij = F̃i ∩ F̃j and ejk = F̃j ∩ F̃k, it holds that

α(eij) + α(ejk) < π
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4. Polyhedra of Finite Volume

Figure 4.1.

Some Applications of Andreev’s Theorem

• A 3-dimensional polytope is inscribed in the unit sphere S2 if all its vertices lie on
S2. Note that an ideal polyhedron in the Klein model is a 3-dimensional polytope
inscribed in S2

1. Therefore, Andreev’s Theorem provides tools to find 3-dimensional
polytopes inscribed in S2.

• The circle packing theorem, which we will discuss in the next chapter.
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5. The Circle Packing Theorem

The first version of the circle packing theorem was given by Koebe in 1936 and later
rediscovered by Thurston in his notes [15]. This theorem relates finite collections of
adjacent circles on the plane, which we call a circle packings, with simple connected
planar graphs. In the proof given by Thurston, the circle mapping theorem is a di-
rect consequence of the Andreev’s Theorem for finite volume hyperbolic polyhedra. To
prove this theorem, we will first find a cellular decomposition of S2 that is combinatorial
equivalent to an ideal polyhedron P, and then we build a circle packing by taking some
of the circles that we get when we intersect the boundary of the hyperbolic space with
the closure of the supporting planes carrying the faces of P.

Definition 5.1. A circle packing C = {C1, ..., Cn} is a collection of circles with disjoint
interior on a surface D.

Figure 5.1.: A circle packing

Definition 5.2. The nerve G(C) of the packing C is the graph whose vertices are the
circles in the packing and whose edges correspond to tangent circles in the packing.

Note that the nerve G(C) is a simple graph. It is clear that G(C) has no loops, since
no circle is tangent to itself, and there is only one possible edge between two circles.
Moreover, if C is a circle packing on the plane, by sending a circle Ci to its center in R2

and the edge e = (CiCj) to the line segment connecting the centres of both circles, we
get an embedding of G(C) in R2.

Figure 5.2.: Circle packing with its nerve

78



5. The Circle Packing Theorem

The last paragraph tells us that the nerve of a circle packing on the plane is a simple
planar graph. Also, note that if the circle packing is connected, then the nerve is also
a connected graph. On the other hand, The circle packing theorem tells us that any
simple planar connected graph is the nerve of a connected circle packing on the plane.

Theorem 5.1. (The Koebe-Andreev-Thurston Circle Packing Theorem) Every
simple connected planar graph G is isomorphic to the nerve of a connected circle packing
on the plane.

Proof. Let G be the image of an embedding of G on R2. Extend G to a triangulation
T by adding an extra vertex to the interior of each face of G that is not a triangle and
connecting this vertex to its neighbour vertices.

Figure 5.3.: T

We will surround the vertices of T by a collection of simple closed curves {γv}v∈V (T )

such that:

1. The vertex v lies on the interior of γv. Also, γv goes through the middle point of
each edge incident to v.

2.
γu ∩ γv 6= ∅ ⇐⇒ (uv) ∈ E(T ). (5.1)

Moreover, in this case the intersection is the middle point muv of the edge (uv).

3. The interiors of the curves don’t intersect.

In this way we define a plane graph G̃ whose vertices are the middle points of the edges of
T and whose edges are the segments of the curves between two middle points, containing
no other middle points in their relative interiors.

Figure 5.4.: G̃
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Note that:

• Since T is connected, G̃ is connected.

• Each γv is simple, hence G̃ is simple.

• Each γv defines exactly two edges incident to the middle point muv of the edge
(uv) ∈ E(T ). Additionally, since there are exactly two curves passing through
muv, the number of edges incident to muv is 4.

Therefore, G̃ is a 3-connected simple plane graph.

Let C̃ be the cellular decomposition of S2 defined by G̃ and for all e ∈ E(C̃) take the
value α(e) = π

2
. Using this information, Andreev’s Theorem tells us that there is an

ideal polyhedron P that is combinatorially equivalent to C̃.

Assume that P lies in the Poincare ball model D3. In this model the intersection of the
closure of a hyperbolic plane and ∂D3 = S2 ∼= Ĉ is a circle. Furthermore, as we already
know the intersection of the closures of two hyperbolic planes P1P2 is either a point at
infinity or the closure of a hyperbolic line. In the first case, the circles

C1 = P̄1 ∩ ∂D3 and C2 = P̄2 ∩ ∂D3

are tangent circles. In fact, C1, C2 are tangent circles if and only if P1, P2 meet at a
point at infinity.

Since P is an ideal polyhedron, two faces F1F2 of P meet at vertex, if and only if, the
supporting planes of these faces meet at a point at infinity (we may refer to figure 3.22).
Therefore, the faces meet at a vertex, if and only if, the corresponding circles on ∂D3

are tangent circles.

Now, each curve γv is the boundary of a face F̃v of C̃ (see Figure 5.5). Let Fv be the
corresponding face in P and Cv be the circle that we get by intersecting the supporting
plane of Fv and ∂D3. By equation 5.1, the faces F̃vF̃w intersect at a vertex if and only if
(uv) ∈ E(T ). Therefore, (uv) ∈ E(T ) if and only if FvFw meet at a vertex, which as we
saw in the last paragraph is equivalent to say that Cv and Cw are tangent circles. Also
note these faces are not adjacent.

Figure 5.5.: C̃

The latter tells us that T is the nerve of the circle packing C = {Cv}v∈V (T ) on ∂D3 = Ĉ.
Moreover, since G is a sub-graph of T , the collection of circles {Cv}v∈V (G) is a circle
packing whose nerve is G. We move the circle packing to the plane via the stereographic
projection, which sends circles to circles, and so we are done.
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5. The Circle Packing Theorem

In his proof Thurston also used the ideal polyhedron P to show that the circle packing
of a graph G is unique up to Möbius transformation.
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A. The Gauss Boneth Theorem

Let us take a unit-speed (piecewise) smooth simple closed curve γ(t) : [0, s] → S on a
surface S of constant sectional curvature K. Moreover, let us assume that the orienta-
tion of γ is positive and that s = l(γ) is its length. The Gauss Bonnet Theorem tells
us that (see Presley [10, Chap. 5]):

l(γ)∫
0

kgds =

l(γ)∫
0

θ̇ds−
∫
int(l(γ))

KdAS, (A.1)

where kg is the geodesical curvature.
If γ is a smooth curve the last equation tells us that

l(γ)∫
0

kgds = 2π −
∫
int(l(γ))

KdAS

Otherwise, let γ(t0), . . . , γ(tn) be the point where the curve is not smooth, i.e, its ver-
tices, and take the tangent vectors given by

γ̇−(ti) = lim
t−→ti

γ(t)− γ(ti)

t− ti
,

γ̇+(ti) = lim
t+→ti

γ(t)− γ(ti)

t− ti
.

Let θ−i , θ
+
j be the angles between the vectors γ̇−(ti), γ̇

+(ti) and the x-coordinate of the
tangent space. If δi = θ+i − θ−i , equation A.1 becomes

l(γ)∫
0

kgds = 2π −
n∑
i=1

δi −
∫
int(l(γ))

KdAS. (A.2)

Example A.1.

1. Let Q be a n-sided polygon whose sides are geodesic segments. If β1, . . . , βn are
the interior angels at the vertices of Q, then δi = π−βi and so, from equation A.2
it holds that

(n− 2)π =
n∑
i=1

βi −KArea(Q). (A.3)
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2. Let Q be a 4-sided non-convex polygon as the one from figure A.1. Moreover,
let us assume that the sides of Q are geodesic segments. The angle at the fourth
vertex is β4 = π + δ4. Thus, equation A.2 tells us that

KArea(Q) = 2π − (β4 − π) +
3∑
i=1

(π − βi). (A.4)

Figure A.1.: Non-convex polygon.
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B. The Law of cosins in the spehrical
geometry

We are going to consider spherical triangle ∆ on S2, here we consider the 2-dimensional
sphere of radius 1 in R3, defined by a set of linear independent unit vector {v1, v2, v3} ⊂
S2 as follows:

• v1, v2 and v3 are the vertices of ∆.

• B1 is the side between v2 and v3, B2 is the side between v1 and v3 , and B3 is the
side between v1 and v2. Also, they are are the spherical arcs between the respective
vertices such that

|Bi| = d(vj, vk) < π.

• βi is the interior angle at the vertex vi.

Figure B.1.: Non-convex polygon.

The Low of Cosines in the spherical geometry tells us that (see [16, chap.2]) the relation
between the lengths of the sides and the angles of ∆ is given by

cos(βi) =
cos(|Bi|)− cos(|Bj|) cos(|Bk|)

sin(|Bj|) sin(|Bk|)
. (B.1)

The dual law tells us that

cos(|Bi|) =
cos(βi) + cos(βj) cos(βk)

sin(βj) sin(βk)
(B.2)
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C. Some Basics on Graph Theory and
CW-Complexes

Some definitions from graph theory

Let G = (V,E) be an undirected graph.

Definition 1. A path in G is a sequence of edges, that connects a sequence of vertices
such that all the vertices (except possible the first and the last one) are different. If the
first and the last vertices are the same, a path is called cycle or a circuit.

Definition 2. The graph G is connected if for each pair of vertices in G there is a
path connecting them.

Definition 3. The graph G is simple if there is no more than one edge between each
pair of vertices and there are no edges that start and end at the same edge. If G is a
simple graph and e is the edge connecting the vertices v and w, then we can use the
notation e = (vw).

Definition 4. If G is connected, has at least d + 1 vertices, and after removing d − 1
or fewer vertices from G we still have a connected graph, then G is d-connected.

Definition 5. The graph G is planar if it can be embedded in the plane (or S2), i.e, it
can be drawn in the plane in such a way that its edges intersect only at its end points.
A graph drawn in the plane (or S2) in such a way that its edges intersect only at its end
points is called a plane graph.

If G is a planar graph, then there is an embedding or an injective map

ψ : G −→ R2 (C.1)

such that ψ(G) is a plane graph and ψ : G −→ ψ(G) is a graph isomorphism.

We can also assume that the embedding goes from G to S2 and then consider the
stereographic projection.

CW-complex

Definition 1. A d-cell is a topological space that is homeomorphic to the d-dimensional
open ball Bd in Rd.

Definition 2. A topological spaceM is called a cell complex, if there is a collection of
disjoint cells

M• = {σi|i ∈ I}
such that

M =
⋃
i∈I

σi

and the following properties are satisfied,
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1. M is Hausdorff.

2. For each d-cell σ ∈M•, there is a continuous map

fσ : B̄d →M

from the corresponding closed ball B̄d such that f 0
σ = fσ|Bd is a homeomorphism

f 0
σ : Bd →M

and such that fσ(Sd−1) intersects only finitely many cell non-trivially, all which
have dimension at most d− 1.

3. A subset A ⊆M is closed if and only if A ∩ σ̄ is closed in σ̄ for all σ ∈M•.

(see [7])
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