Multiplicativity of the signature of fibre bundles, $S K$ groups and $T Q F T$

School of Mathematics, University of Edinburgh

Abstract

Let $F \rightarrow E \rightarrow B$ be a fibre bundle. Here we seek the necessary conditions to obtain multiplicativity of the signature of fibre bundes, i.e. when does it hold that $\sigma(E)=\sigma(B) \sigma(F)$. We will also present the relationship with the cutting and pasting $S K$-groups and the asymmetric L-theory group.

The signature

The signature of a closed oriented n-dimensional manifold M^{n} is denoted by $\sigma(M) \in \mathbb{Z}$, and is defined to be zero if the dimension of M is not divisible by 4 . If $n=4 k$ then $\sigma(M)$ is defined to be the number of positive eigenvalues minus the number of negative eigenvalues of the non-singular symmetric intersection form $\left(H^{2 k k}(M, \mathbb{R}), \lambda\right)$, where
$\lambda: H^{2 k}(M, \mathbb{R}) \times H^{2 k}(M, \mathbb{R}) \longrightarrow \mathbb{R} ;(u, v) \mapsto\langle u \cup v,[M]\rangle$. The additivity of the signature was proved by Novikov:

$$
\sigma\left(M_{1} \cup_{h} M_{2}\right)=\sigma\left(M_{1}\right)+\sigma\left(M_{2}\right)
$$

for any orientation preserving diffeomorphism $h: \partial M_{1} \rightarrow \partial M_{2}$. Cobordism groups

Two n-dimensional manifolds M and M^{\prime} are cobordant if there exists a manifold W^{n+1} such that $\partial W=M \sqcup M^{\prime}$. Cobordism groups of manifolds are denoted by Ω_{n}.
Various algebraic L-theoretic groups can be defined in a similar way
An algebraic symmetric Poincaré complex (C, ϕ) over a ring with involution A is an A-module chain complex C with symmetric Poincaré duality ϕ The symmetric L-groups are cobordism groups of algebraic symmetric Poincaré complexes,

$(C, \phi) \in L^{n}(A)$.

The symmetric signature of a geometric Poincaré complex X $\sigma^{*}(X)$ is the cobordism class of the A-module chain complex ($\left.C, \phi\right)$ over $A=\mathbb{Z}\left[\pi_{1}(X)\right]$, with $C=C(\bar{X})$. $(\tilde{X}=$ Universal cover of $X)$ The quadratic L-groups are cobordism groups of algebraic quadratic Poincaré complexes, $(C, \psi) \in L_{n}(A)$. These are the Wall surgery obstruction groups.

- The visible L-groups $V L^{n}(B)$ of a simplicial space B are the cobordism groups of globally Poincaré n-dimensional cycles over B The following forgetful maps
$L_{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right]\right) \longrightarrow V L^{n}(B) ;(C, \psi) \longmapsto(C,(1+T) \psi)$
$V L^{n}(B) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right] ;(C, \psi) \longmapsto\left(C(\tilde{B}), \phi^{B}\right)\right.$
are isomorphisms modulo 8 torsion.
An asymmetric Poincaré complex (C, λ) is a chain complex with Poincaré duality. The asymmetric LAsy-groups are cobordism groups of asymmetric Poincaré complexes,

$C, \lambda) \in L A s y^{n}(A)$

The asymmetric signature of a geometric Poincaré complex X, $\sigma A s y^{*}(X)$ is the cobordism class of the $\mathbb{Z}\left[\pi_{1}(X)\right]$-module chain complex (C, λ).

Transfer maps in L-theory
For a fibration $F^{m} \rightarrow E \rightarrow B^{n}$ there exist transfer maps:
$p^{\prime}: L_{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right]\right) \longrightarrow L_{n+m}\left(\mathbb{Z}\left[\pi_{1}(E)\right]\right)$
$p^{\prime}: V L^{n}(B) \longrightarrow V L^{n+m}(E)$
$p^{\prime}: L A s y^{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right]\right) \longrightarrow$ AAsy $^{n+m}\left(\mathbb{Z}\left[\pi_{1}(E)\right]\right)$
The transfer maps allow us to express the total space of the fiber bundle algebraically in a convenient way in terms of the fiber and base space, since $p^{\prime}=(C(\tilde{F}), \alpha, U)^{\prime}$ with
$C(\tilde{F})$ is a $\mathbb{Z}\left[\pi_{1}(E)\right]$-module chain complex and \tilde{F} is the pullback from the universal cover \tilde{E} of E,

- $\alpha: C(\tilde{F}) \longrightarrow C(\tilde{F})^{n-*}$,
$U: \mathbb{Z}\left[\pi_{1}(B)\right] \longrightarrow H_{0}(\operatorname{Hom}(C(\tilde{F}), C(\tilde{F}))) . U$ is determined by the fiber transport and encodes the information about the action of $\pi_{1}(B)$ on the fiber F.
There is no transfer map for the symmetric L-groups, since not every element in $L^{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right]\right)$ can be realized geometrically as the symmetric signature of a Poincaré complex. For a detailed description of transfer maps in L-theory see [11].

References
[1] http://www.maths.ed.ac.uk/~s1142600/Docum/SKK_TVFT_Edinburgh_ Kreck.pdf
[2] Ativah, M. The signature of fibre-bundles. Global Analysis (Papers in Honor of K. Kodaira) Univ. Tokyo Press, Tokyo, 73-84, 1969.
[3] Banagl, M. Positive Topological Quantum Field Theories. arXiv:1303.4276 [math.QA], 18 March, 2013.
[4] Chern S. S., Hirrebruch, F. and Serre, J-P. On the index of a fibered manifold. Proc. Amer. Math. Soc., Vol. 8, 587-596, 1957.
[5] Hambleton, I. Korreniewski, A., Ranicki, A. The signature of a fibre bundle is Hambleton, I. Korzeniewski, A.t. Ranicki, A. The signatur of a fibre b.
multiplicative mod 4. Geometry \& Topology, Vol. 11, 251-314, 2007 .
[6] Hambleton, I., Milgram, R.J. Poincaré transversality for double covers. Can. J. Math. Vol. 30, 1319-1330, 1978
[7] Jänich, K. Charakterisierung der Signatur von Mannigfattigkeiten durch eine Additivititateigenschaft. IIvent. Math, Vol 6, 35-40, 1968.
[8] Karras, Kreck, Neumann, Ossa. Cutting and Pasting of Manifolds; $S K$-Groups. Publish or Perish, 1973.
[9] Kodaira, K. A certain type of irregular algebraic surfaces. J. Analyse Math. Vol 19, 207-215. 1967.
[10] Korzeniewski, A. PhD Thesis: On the signature of fibre bundles and absolute Whitehead torsion. University of Edinburgh, 2005.
[11] Lück, W., Ranicki, A. Surgery transfer. Springer Lecture Notes, 167-246, 1988. [12] Meyer, W. Die Signatur von Flächenbündeln. Math. Ann., Vol. 201, 239-264, 1973.
[13] Neumann, W.D. Manifold cutting and pasting groups. Topology, Vol. 14 237-244, 1975.
[14] Ranicki, A. High-dimensional knot theory. Springer Mathematical Monograph, Springer-Verlag, 1998.

The non-multiplicativity of the signature

For an untwisted product of spaces X and Y the signature is multiplicative: $\sigma(X \times Y)=\sigma(X) \sigma(Y)$. In a fiber bundle $F \rightarrow E \rightarrow B, \pi_{1}(B)$ acts on $H^{*}(F)$ by fibre transport. Thus the signature of the total space may not be the product of the signatures of the base space and the fibre, so that in general $\sigma(E) \neq \sigma(B) \sigma(F)$. The following questions arise in this context:

- Under what conditions does a fibre bundle have multiplicative signature? (Chern, Hirzebruch, Serre (1957) [4])
- Can we find examples of non-multiplicative fibre bundles? (Atiyah (1969) [2], Kodaira (1969) [9])
- On what does the value of $\sigma(E)$ depend? (Meyer (1973) [12])

How can we express the difference $\sigma(E)-\sigma(B) \sigma(F)$?
Sufficient conditions for multiplicativity
Chern, Hirzebruch and Serre (1957)
Theorem (See [4]) Let $F \rightarrow E \rightarrow B$ be a fiber bundle then if the fundamental group $\pi_{1}(B)$ acts trivially on $H^{*}(F, \mathbb{Q})$ then

$$
\sigma(E)=\sigma(B) \sigma(F) .
$$

Examples: Atiyah (1969) and Kodaira (1967)
Atiyah [2] and Kodaira [9] constructed non-multiplicative examples with $\pi_{1}(B)$ acting non-trivially on $H^{*}(F, \mathbb{Q})$: With B and F compact oriented surfaces of genus 129 and 6 respectively, $\sigma(E)=2^{8} \neq \sigma(B) \sigma(F)$.

Multiplicativity $\bmod 4$

Hambleton, Korzeniewski, Ranicki (2007)

Theorem (See [5]) Let $F \rightarrow E \rightarrow B$ be a fibre bundle of closed, connected, compatibly oriented manifolds. Then $\sigma(E) \equiv \sigma(B) \sigma(F) \quad(\bmod 4)$

Multiplicativity $\bmod 8$

A. Korzeniewski (geometric theorem, 2005)	A. Korzeniewski (algebraic theorem, 2005)
Theorem ([10]) Let $F^{4 m} \longrightarrow E^{4 n+4 m} \longrightarrow B^{4 n}$ be a Poincaré fibration such that the action of $\pi_{1}(B)$ on $\left(H_{2 m}(F ; \mathbb{Z}) /\right.$ torsion $) \otimes \mathbb{Z}_{2}$ is trivial then $\sigma(E) \equiv \sigma(F) \sigma(B) \quad(\bmod 8)$	Theorem ([10]) Let $\left(C(\tilde{B}), \phi^{B}\right)$ be a $4 n$ dimensional visible symmetric complex over $\mathbb{Z}\left[\pi_{1}(B)\right]$ and let (A, α, U) be a $\mathbb{Z}_{2^{-}}$ trivial $(\mathbb{Z}, 2 m)$-symmetric representation. Then $\sigma((A, \alpha, U) \bar{\otimes}(C, \phi)) \equiv \sigma(C, \phi) \sigma(A, \alpha) \quad(\bmod 8)$

One of the key tools in the proof given in [10] is firstly to give an analogous algebraic version of the theorem in terms of visible Poincaré complexes (stated above) and then use a theorem of Morita which states that the signature modulo 8 is the Arf-Brown invariant of the \mathbb{Z}_{4}-valued Pontryagin square. It is also possible to use the transfer map in asymmetric L-theory in this context (as in Ranicki [14], Chapter 30), which allows to gain a new insight of the problem by giving an asymmetric version of the theorem.

Cutting and pasting: $S K$-groups

Cut and paste operations on a manifold M are realized as follows: Cut a closed n-dimensional smooth manifold M along a codimension 1 manifold F which has trivial normal bundle. After performing this cut we obtain a manifold with two boundary components, each of them a copy of F. Pasting back these boundary components by a diffeomorphism $h: F \rightarrow F$, results in a new manifold $M(F, h)$.
The set of equivalence classes of oriented manifolds in a space X modulo the relation created by cutting and pasting gives rise to the definition of SK-groups (See [8]).

> Let $A=M_{1} \cup_{h} M_{2}$ and $B=M_{1} \cup_{g} M_{2}$ be two closed η-dimensional manifolds, and $h, g: \partial M_{1} \rightarrow \partial M_{2}$ be orientation preserving diffeomorphisms. By the Novikov additivity of the signature: $\sigma(A)=\sigma\left(M_{1} \cup_{h} M_{2}\right)=\sigma\left(M_{1}\right)+\sigma\left(M_{2}\right)=\sigma\left(M_{1} \cup_{g} M_{2}\right)=\sigma(B)$. (See [7])

$S K(X) \cong \operatorname{im}\left(\sigma A s y: \Omega_{n}(X) \longrightarrow L A s y^{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)\right.$ Ranicki (1998)

Let $F_{n}(X) \subseteq \Omega_{n}(X)$ be the subgroup of the bordism classes of closed n-dimensional manifolds which fibre
 $\sigma(E) \neq \sigma(F) \sigma(B)$, then $[B, f: B \rightarrow B G]$ generates a free $S K_{*}(B G)$-module.

The asymmetric signature of a mapping torus is zero: $\sigma A s y(T(h))=0 \in L A s y^{*}\left(\mathbb{Z}\left[\pi_{1}(T(h)]\right)\right.$ See [14, Remark 30.30]. Hence,
$S K(X) \cong \operatorname{Im}\left(\sigma A s y: \Omega_{n}(X) \longrightarrow L A s y^{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)\right.$ (See [14, Proposition 30.6])
Neumann's theorem can be proved algebraically by using the transfer map in asymmetric L-theory:
$L A s y^{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right]\right) \xrightarrow{p^{\prime}} L A s y^{4 k}\left(\mathbb{Z}\left[\pi_{1}(E)\right]\right) \longrightarrow L A s y^{4 k}(\mathbb{Z}) \longrightarrow L^{4 k}(\mathbb{Z})=\mathbb{Z}$
$\sigma A s y(B) \longmapsto \sigma A s y(E) \longmapsto \sigma(E)$.
Note that if $\sigma(E) \neq 0$ then $\sigma A s y(B)$ has infinite order in $L A s y^{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right]\right)$. Then $0 \neq \sigma A s y(B) \in \operatorname{lm}\left(\sigma A s y: \Omega_{n}(B) \longrightarrow L A s y^{n}\left(\mathbb{Z}\left[\pi_{1}(B)\right]\right)\right.$.
Relating ideas

From the topological point of view, a field theory gives a way to compute an invariant by cutting a manifold into simple pieces and make the function effectively computable. The next question to ask is: Which invariants of closed manifolds are partition functions of the field theory? No complete answer is known to this question. Nevertheless Kreck has proved that $S K$-invariants are partition functions of the field theory. (Work in progress. See [1])

Very recently Markus Banagl has described in [3] how the non-multiplicativity of the signature of fibre bundles gives rise to certain TQFTs.
Neumann [13, theorem 3.1] (stated above) and Ranicki [14] (algebraic interpretation)

What next?

The difference $\sigma(E)-\sigma(F) \sigma(B)$ is related to the Browder-Livesay invariant for double covers, which has been previously studied by Hambleton and Milgram [6]. At the moment I am identifying why the assumption of the trivial \mathbb{Z}_{2} action of $\pi_{1}(B)$ is necessary and how to formulate a general result on the multiplicativity of the signature if this assumption is eliminated.

