A note on $S K K$ groups

Carmen Rovi

This is a brief account on the definition of the $S K K$ groups and $S K K$ invariants given in [Kre73]

$1 S K K$ groups and $S K K$-invariants

1.1 SKK groups

Definition 1.1. Let \mathcal{M}_{n} be the semigroup of diffeomorphism classes of closed oriented n-dimensional manifolds. Factoring this semigroup by the following relation

$$
\left(M_{1} \cup_{f} M_{2}\right)+\left(M_{3} \cup_{g} M_{4}\right)=\left(M_{1} \cup_{g} M_{2}\right)+\left(M_{3} \cup_{f} M_{4}\right)
$$

where $\partial M_{1}=\partial M_{2}=\partial M_{3}$ and f and g are diffeomorphisms of these boundaries, we obtain the semigroup $\mathcal{M}_{n} / \sim_{S K K}$.

The $S K K_{n}$ group is the Grothendieck group of the semigroup $\mathcal{M}_{n} / \sim_{S K K}$.
The $S K K$ groups are identified in Theorem 4.4 of Kre73 with Reinhart's vector field cobordism groups (Rei63|).

1.2 SKK invariants

Definition 1.2. An invariant λ is called $S K$-controlled ($S K K$) if

$$
\begin{equation*}
\lambda\left(M_{1} \cup_{f} M_{2}\right)-\lambda\left(M_{1} \cup_{g} M_{2}\right):=\lambda(f, g) \tag{1}
\end{equation*}
$$

depends only on the diffeomorphism $f, g: \partial M_{1} \rightarrow \partial M_{2}$ and not on the choice of M_{1} and M_{2}.

Remark 2. We note that all $S K$-invariants are also $S K K$ invariants. When the correction term $\lambda(f, g)=0$ then Equation (1) becomes,

$$
\lambda\left(M_{1} \cup_{f} M_{2}\right)=\lambda\left(M_{1} \cup_{g} M_{2}\right)
$$

which is the requirement for λ to be an $S K$ invariant.
Proposition 1.3. Euler characteristic is an SKK invariant.
Proof. This follows from the fact that the Euler characteristic is an $S K$ invariant. (See Kre73).

Remark 3. In order to describe the Euler characteristic as a bordism invariant, Reinhart introduced the concept of vector field cobordism in Rei63]. By doing this he implicitly describes the SKK groups, since two manifolds are vector field cobordant if and only if they are equivalent in $S K K_{n}$.

Proposition 1.4. The Signature is an SKK invariant.
Proof. The signature is an $S K$ invariant, and hence also an $S K K$ invariant.
Nevertheless, it is important to note that some $S K K$ invariants are not $S K$ invariants, as the following propositions show.

Proposition 1.5. Bordism is an SKK invariant.
Proof. We will prove later on (with Theorem 1.7) that there exists a surjective homomorphism from $S K K_{*}$ to Ω_{*} which sends oriented manifolds to their cobordism class. Note that two manifolds which are cobordant (i.e. are in the same cobordism class) differ in SKK by a multiple of a sphere.

Proposition 1.6. The Kervaire semi-characteristic is an SKK invariant.
Proof. First recall that the Kervaire semi-characteristic is defined as

$$
\chi_{1 / 2}\left(M^{4 k+1}\right)=\sum_{i=0}^{2 k} b_{i}(M)(\bmod 2),
$$

where $b_{i}(M)$ is the i th betti number. See Ker56.
We consider the closed oriented manifolds

$$
M_{1} \cup_{f}-M_{2} \quad \text { and } \quad M_{1} \cup_{g}-M_{2}
$$

which are obtained from each other by cutting and pasting, and f and g are diffeomorphisms of the boundary $f, g: \partial M_{1} \rightarrow \partial M_{2}$.

By definition an $S K K$ invariant depends only on these diffeomorphisms f and g. So this means that if the Kervaire semi-characteristic $\chi_{1 / 2}$ is an $S K K$ invariant, then we will be able to express the following "correction term",

$$
\chi_{1 / 2}(f, g):=\chi_{1 / 2}\left(M_{1} \cup_{f}-M_{2}\right)-\chi_{1 / 2}\left(M_{1} \cup_{g}-M_{2}\right)
$$

by an expression involving only f and g, and not M_{1} or M_{2}.
In Ker56] it is shown that for an even dimensional manifold Y with boundary,

$$
\chi_{1 / 2}(\partial Y)=\chi(Y)-\sigma(Y) \quad(\bmod 2)
$$

where $\chi(Y)$ is the Euler characteristic and $\sigma(Y)$ is the signature of Y.
In this case we consider ∂Y to have dimension $4 k+1$, so $\sigma\left(Y^{4 k+1}\right)=0$, and then

$$
\chi_{1 / 2}(\partial Y)=\chi(Y) \quad(\bmod 2)
$$

Now we consider Y to be a bordism which is constructed as in Lemma 1.9 of Kre73], and has boundary,

$$
\partial Y=\left(M_{1} \cup_{f}-M_{2}\right)-\left(M_{1} \cup_{g}-M_{2}\right)-\left(T: \partial M_{1} \xrightarrow{g^{-1} f} \partial M_{1}\right)
$$

so the expression $\chi_{1 / 2}(\partial Y)=\chi(Y)(\bmod 2)$ becomes

$$
\chi_{1 / 2}\left(M_{1} \cup_{f}-M_{2}\right)-\chi_{1 / 2}\left(M_{1} \cup_{g}-M_{2}\right)-\chi_{1 / 2}\left(T: \partial M_{1} \xrightarrow{g^{-1} f} \partial M_{1}\right)=\chi(Y) \quad(\bmod 2)
$$

From this we deduce that the correction term $\chi_{1 / 2}(f, g)$ is defined as

$$
\chi_{1 / 2}(f, g):=\chi_{1 / 2}\left(T: \partial M_{1} \xrightarrow{g^{-1} f} \partial M_{1}\right)-\chi(Y) \quad(\bmod 2)
$$

But we still need to write $\chi_{1 / 2}(f, g)$ as an expression involving only f and g, so we will now use the computation of $\chi(Y)$:

$$
\chi(Y)=\chi\left(M_{1}\right)+\chi\left(M_{2}\right)-2 \chi\left(\partial M_{1}\right) .
$$

When considered modulo 2, the term $2 \chi(\partial M)$ disappears, so that

$$
\chi_{1 / 2}(f, g):=\chi_{1 / 2}\left(T: \partial M_{1} \xrightarrow{g^{-1} f} \partial M_{1}\right)-\left[\chi\left(M_{1}\right)+\chi\left(M_{2}\right)\right](\bmod 2)
$$

We also have that

$$
\begin{aligned}
\chi\left(M_{1} \cup M_{2}\right) & =\chi\left(M_{1}\right)+\chi\left(M_{2}\right)-\chi\left(M_{1} \cap M_{2}\right) \\
& =\chi\left(M_{1}\right)+\chi\left(M_{2}\right)-\chi\left(\partial M_{1}\right)
\end{aligned}
$$

$\left(M_{1} \cup M_{2}\right)$ is a closed orientable manifold so that $\chi\left(M_{1} \cup M_{2}\right)$ is even. Hence $\chi\left(M_{1} \cup M_{2}\right)=0(\bmod 2)$. That is,

$$
\chi\left(M_{1}\right)+\chi\left(M_{2}\right)=\chi\left(\partial M_{1}\right) \quad(\bmod 2)
$$

This implies that,

$$
\chi_{1 / 2}(f, g):=\chi_{1 / 2}\left(T: \partial M_{1} \xrightarrow{g^{-1} f} \partial M_{1}\right)-\chi\left(\partial M_{1}\right) \quad(\bmod 2)
$$

For simplicity we will write $\partial M_{1}=N$ and we will also write the mapping torus $T: \partial M_{1} \xrightarrow{g^{-1} f} \partial M_{1}$ as $N_{g^{-1} f}$.

The mapping torus is defined as

$$
T: \partial M_{1} \xrightarrow{g^{-1} f} \partial M_{1}=N_{g^{-1} f}=(N \times I) \cup_{g^{-1} f \times 1}(N \times I)
$$

This gives rise the following Mayer-Vietoris sequence,

$$
\ldots \longrightarrow H_{*}(N \times\{0,1\}) \longrightarrow H_{*}(N \times I) \oplus H_{*}(N \times I) \longrightarrow H_{*}\left(T\left(g^{-1} f\right)\right) \longrightarrow \ldots
$$

We note that

$$
H_{*}(N \times 0,1) \cong H_{*}(N) \oplus H_{*}(N)
$$

and

$$
H_{*}(N \times I) \oplus H_{*}(N \times I) \cong H_{*}(N) \oplus H_{*}(N)
$$

so the following maps in the Mayer-Vietoris sequence,

$$
H_{*}(N \times\{0,1\}) \xrightarrow{\left(\begin{array}{cc}
1 & 1 \\
1 & g^{-1} f
\end{array}\right)} H_{*}(N \times I) \oplus H_{*}(N \times I)
$$

correspond to

$$
\begin{gathered}
H_{*}(N) \oplus H_{*}(N) \longrightarrow H_{*}(N) \underset{*}{\binom{1}{1} \uparrow} \begin{array}{|c}
\uparrow\binom{1}{1} \\
H_{*}(N) \xrightarrow[*]{ }(N) \\
1^{1-g^{-1} f}
\end{array} H_{*}(N)
\end{gathered}
$$

This means that we can consider the exact sequence:

$$
\ldots \longrightarrow H_{*}(N) \xrightarrow{1-g^{-1} f} H_{*}(N) \longrightarrow H_{*}\left(T\left(g^{-1} f\right)\right) \longrightarrow \ldots
$$

In this sequence all dimensions except the middle dimension pair off by Poincaré duality, so the "correction term" $\chi_{1 / 2}(f, g)$ will be given by the rank of the map in the middle dimension,

$$
H_{2 k}(N) \xrightarrow{1-g^{-1} f} H_{2 k}(N)
$$

That is, $\chi_{1 / 2}(f, g)=\operatorname{rank}\left(1-g^{-1} f\right)(\bmod 2)$
We have now achieved an expression for this correction term depending only on the diffeomorphisms f and g, so we deduce that the Kervaire semi-characteristic is an SKK invariant.

Theorem 1.7. Theorem 4.2 in the SK-book
Let $I_{n}^{\prime} \subset S K K_{n}$ be the cyclic subgroup generated by $\left[S^{n}\right]$. Then,

$$
I_{n}^{\prime}= \begin{cases}\mathbb{Z} & n \equiv 0(\bmod 2) \\ \mathbb{Z}_{2} & n \equiv 1(\bmod 4) \\ 0 & n \equiv 3(\bmod 4)\end{cases}
$$

Furthermore there exists an split exact sequence,

$$
0 \longrightarrow I_{n}^{\prime} \longrightarrow S K K_{n} \longrightarrow \Omega_{n} \longrightarrow 0
$$

Proof. To achieve the computation of I_{n}^{\prime} given above, we need to consider the order of [$\left.S^{n}, *\right]$ in $S K K_{n}$. So we do this for the different possible values of n. Recall that by Lemma 4.3 in (Kre73] we have that

$$
\chi\left(M^{n+1}\right)\left[S^{n}\right]=0 \text { where } M^{n+1} \text { is a closed manifold. }
$$

- $n \equiv 0(\bmod 2)$, i.e, $n=2 k$:

The argument in this case is the same as the one given in the proof of Theorem 1.1 in (Kre73].

- $n \equiv 3(\bmod 4)$, i.e, $n=4 k+3$:

Since $\chi\left(M^{n+1}\right)\left[S^{n}\right]=0$, then in this case we have $\chi\left(M^{4 k+4}\right)\left[S^{4 k+3}\right]=0$. Firstly we can deduce from this that $\left[S^{4 k+3}\right]$ has at most order 2 , since $\chi\left(S^{2 m}\right)=2$, then,

$$
\chi\left(S^{2 m}\right)\left[S^{4 k+3}\right]=0 \quad \Longrightarrow \quad 2\left[S^{4 k+3}\right]=0
$$

so in general, if the M^{n+1} has even Euler Characteristic, then $\left[S^{4 k+3}\right]=0$.
If we consider M^{n+1} to have odd Euler characteristic, that is $\chi\left(M^{n+1}\right)=2 a+1$ then we will have,

$$
\begin{aligned}
0 & =\chi\left(M^{4 k+4}\right)\left[S^{4 k+3}\right] \\
& =(2 a+1)\left[S^{4 k+3}\right] \\
& =2 a\left[S^{4 k+3}\right]+\left[S^{4 k+3}\right] \\
& =\left[S^{4 k+3}\right]
\end{aligned}
$$

Hence we deduce that $\left[S^{4 k+3}\right]=0$ and consequently $I_{4 k+3}^{\prime}=0$

- $n \equiv 1(\bmod 4)$, i.e, $n=4 k+1$:

In this case, $\left[S^{4 k+1}\right]$ also has order at most 2 in $S K K$, since $\chi\left(S^{4 k+2}\right)=\chi\left(S^{2 m}\right)=0$ First we note that if M is orientable then $\chi\left(M^{4 k+2}\right)$ is even.

We will show by contradiction that $\left[S^{4 k+1}\right] \neq 0 \in S K K_{4 k+1}$. So suppose that $\left[S^{4 k+1}\right]=0$ in $S K K_{4 k+1}$.

By the definition of $S K K$, we know that there exist orientable manifolds N_{i} and N_{i}^{\prime}, where $i=1,2$ and $\partial N_{1}=\partial N_{2}$ and $\partial N_{1}^{\prime}=\partial N_{2}^{\prime}$ and diffeomorphisms $f, g: \partial N_{i} \longrightarrow \partial N_{i}^{\prime}$ such that,

$$
\begin{equation*}
\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)-\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)=\left(N_{2} \cup_{f}-N_{2}^{\prime}\right)-\left(N_{1} \cup_{g}-N_{1}^{\prime}\right) \tag{4}
\end{equation*}
$$

and if we are assuming that $\left[S^{4 k+1}\right]=0$ then we can also write Equation (4) as,

$$
S^{4 k+1}+\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)-\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)=\left(N_{2} \cup_{f}-N_{2}^{\prime}\right)-\left(N_{1} \cup_{g}-N_{1}^{\prime}\right)
$$

Following the same procedure as in Theorem 1.2 in Kre73], we can construct two bordisms Y_{1} and Y_{2} defined as follows: Let Y_{1} be the bordism with boundary $\partial Y_{1}=$ $\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)-\left(N_{1} \cup_{g}-N_{1}^{\prime}\right)-T\left(g^{-1} f\right)$,

and Y_{2} be the bordism with boundary $\partial Y_{2}=\left(N_{2} \cup_{f}-N_{2}^{\prime}\right)-\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)-T\left(g^{-1} f\right)$,

Note that mapping torus $T\left(g^{-1} f\right)$ is the same mapping torus in both bordisms Y_{1} and Y_{2}.

This means that the disjoint union of Y_{1} and Y_{2} has boundary,

$$
\begin{aligned}
\partial\left(Y_{1} \sqcup Y_{2}\right)= & {\left[\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)-\left(N_{1} \cup_{g}-N_{1}^{\prime}\right)-T\left(g^{-1} f\right)\right]+\left[\left(N_{2} \cup_{f}-N_{2}^{\prime}\right)-\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)-T\left(g^{-1} f\right)\right] } \\
& =\left[\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)-\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)-T\left(g^{-1} f\right)\right]+\left[\left(N_{2} \cup_{f}-N_{2}^{\prime}\right)-\left(N_{1} \cup_{g}-N_{1}^{\prime}\right)-T\left(g^{-1} f\right)\right]
\end{aligned}
$$

Using the relation established in (4), we can rewrite this as follows

$$
\begin{aligned}
\partial\left(Y_{1} \sqcup Y_{2}\right)= & {\left[\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)-\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)-T\left(f^{-1} g\right)\right] } \\
& -\left[S^{4 k+1}+\left(N_{1} \cup_{f}-N_{1}\right)-\left(N_{2} \cup_{g}-N_{2}\right)-T\left(f^{-1} g\right)\right]
\end{aligned}
$$

If we now paste pairwise the boundaries in this expression, then we obtain a manifold with one boundary component, $S^{4 k+1}$. So if we glue an $4 k+2$-dimensional disc along this boundary, then the manifold $Y_{1} \cup Y_{2} \cup D^{4 k+2}$ is a closed $4 k+2$-dimensional manifold $M^{4 k+2}$

We now compute Euler characteristic $\chi\left(M^{4 k+2}\right)$.

$$
\chi\left(M^{4 k+2}\right)=\chi\left(Y_{1} \cup Y_{2} \cup D^{4 k+2}\right)=\chi\left(Y_{1} \cup Y_{2}\right)+1
$$

So we need to compute,

$$
\chi\left(Y_{1} \cup_{\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)-\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)-T\left(f^{-1} g\right)} Y_{2}\right)
$$

This is given by

$$
\begin{equation*}
\chi\left(Y_{1} \cup Y_{2}\right)=\chi\left(Y_{1}\right)+\chi\left(Y_{2}\right)-\left[\chi\left(N_{1} \cup_{f}-N_{1}^{\prime}\right)+\chi\left(N_{2} \cup_{g}-N_{2}^{\prime}\right)+\chi\left(T\left(f^{-1} g\right)\right)\right] \tag{5}
\end{equation*}
$$

By the computation of $\chi\left(Y_{i}\right)$ given before, we know that

$$
\chi\left(Y_{i}\right)=\chi\left(N_{i}\right)+\chi\left(N_{i}^{\prime}\right)-2 \chi\left(\partial N_{i}\right)
$$

so substituting appropriately in Equation (??) we obtain

$$
\begin{aligned}
\chi\left(Y_{1} \cup Y_{2}\right)= & {\left[\chi\left(N_{1}\right)+\chi\left(N_{1}^{\prime}\right)-2 \chi\left(\partial N_{1}\right)\right]+\left[\chi\left(N_{2}\right)+\chi\left(N_{2}^{\prime}\right)-2 \chi\left(\partial N_{2}\right)\right]-} \\
& \left.-\chi\left(N_{1} \cup-N_{1}^{\prime}\right)-\chi\left(N_{2} \cup-N_{2}^{\prime}\right)-\chi T\left(g^{-1} f\right)\right] \\
= & {\left[\chi\left(N_{1}\right)+\chi\left(N_{1}^{\prime}\right)-2 \chi\left(\partial N_{1}\right)\right]+\left[\chi\left(N_{2}\right)+\chi\left(N_{2}^{\prime}\right)-2 \chi\left(\partial N_{2}\right)\right]-} \\
& -\left[\chi\left(N_{1}\right)+\chi\left(N_{1}^{\prime}\right)-\chi\left(\partial N_{1}\right)\right]-\left[\chi\left(N_{2}\right)+\chi\left(N_{2}^{\prime}\right)-\chi\left(\partial N_{2}\right)\right]-0
\end{aligned}
$$

so rearranging we obtain,

$$
\begin{equation*}
\chi\left(Y_{1} \cup Y_{2}\right)=-\chi\left(\partial N_{1}\right)-\chi\left(\partial N_{2}\right)=-2 \chi\left(\partial N_{1}\right) \tag{6}
\end{equation*}
$$

Hence,

$$
\chi\left(M^{4 k+2}\right)=\chi\left(Y_{1} \cup Y_{2} \cup D^{4 k+2}\right)=\chi\left(Y_{1} \cup Y_{2}\right)+1=1-2 \chi\left(\partial N_{1}\right)
$$

But $1-2 \chi\left(\partial N_{1}\right)$ is always odd, and this is a contradiction since a $4 k+2$-dimensional closed manifold always has even Euler characteristic. Hence we deduce that the assumption that $\left[S^{4 k+1}\right]=0 \in S K K_{4 k+1}$ is false. Hence $\left[S^{4 k+1}\right] \neq 0$ and $\left[S^{4 k+1}\right]$ has order 2 in $S K K_{4 k+1}$ so from this we deduce that $I_{4 k+1}^{\prime}=\mathbb{Z}_{2}$.

Finally we note that the exact sequence

$$
0 \longrightarrow I_{n}^{\prime} \longrightarrow S K K_{n} \longrightarrow \Omega_{n} \longrightarrow 0
$$

splits:

- For $n=2 k$ we have that the Euler characteristic gives a map

$$
S K K_{2 k} \longrightarrow \mathbb{Z}=I_{2 k}^{\prime}
$$

- For $n=4 k+3$, the sequence splits trivially because $I_{4 k+3}^{\prime}=0$
- For $n=4 k+1$, the Kervaire semi-characteristic provides a retraction map,

$$
S K K_{n} \longrightarrow \mathbb{Z}_{2}=I_{4 k+1}^{\prime}
$$

which provides an inverse of $I_{n}^{\prime} \longrightarrow S K K_{n}$
Thus for any possible value of n there exists a retraction map, so the sequence splits.

1.3 Relating concepts

Here we present a diagram relating the exact sequences from the theorems 1.1 and 1.2 in (Kre73), and 1.7 mentioned in this account.

Through this diagram of exact sequences, it becomes clear that the difference in the groups I_{n} from Theorem 1.1 in Kre73 and I_{n}^{\prime} from 1.7 is given by the Kervaire semi-characteristic. Similarly for F_{n} which is introduced in Theorem 1.2 in Kre73] and F_{n}^{\prime} which does not figure in this book.

Also with this diagram we establish the relation between $S K K_{n}$ and $S K_{n}$ which is defined as a surjective homomorphism. This is homomorphism is not discussed in Kre73.

References

[Ker56] M. Kervaire. Courbure intégrale génŕalisée et homotopie. Mathematische Annalen, 131:219-252, 1956.
[Kre73] M. Kreck, U. Karras, W. Neumann, E. Ossa. Cutting and Pasting of Manifolds; SK-Groups. Publish or Perish, 1973.
[Rei63] B. L. Reinhart. Cobordism and the euler number. Topology, 2:173-‘78, 1963.

