
A note on SKK groups

Carmen Rovi

This is a brief account on the definition of the SKK groups and SKK invariants
given in [Kre73]

1 SKK groups and SKK -invariants

1.1 SKK groups

Definition 1.1. LetMn be the semigroup of diffeomorphism classes of closed oriented
n-dimensional manifolds. Factoring this semigroup by the following relation

(M1 ∪f M2) + (M3 ∪g M4) = (M1 ∪g M2) + (M3 ∪f M4)

where ∂M1 = ∂M2 = ∂M3 and f and g are diffeomorphisms of these boundaries, we
obtain the semigroup Mn/ ∼SKK.

The SKKn group is the Grothendieck group of the semigroup Mn/ ∼SKK.

The SKK groups are identified in Theorem 4.4 of [Kre73] with Reinhart’s vector
field cobordism groups ( [Rei63]).

1.2 SKK invariants

Definition 1.2. An invariant λ is called SK-controlled (SKK) if

λ(M1 ∪f M2)− λ(M1 ∪g M2) := λ(f, g) (1)

depends only on the diffeomorphism f, g : ∂M1 → ∂M2 and not on the choice of M1

and M2.

Remark 2. We note that all SK -invariants are also SKK invariants. When the
correction term λ(f, g) = 0 then Equation (1) becomes,

λ(M1 ∪f M2) = λ(M1 ∪g M2)

which is the requirement for λ to be an SK invariant.

Proposition 1.3. Euler characteristic is an SKK invariant.

Proof. This follows from the fact that the Euler characteristic is an SK invariant.
(See [Kre73]).
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Remark 3. In order to describe the Euler characteristic as a bordism invariant, Reinhart
introduced the concept of vector field cobordism in [Rei63]. By doing this he implicitly
describes the SKK groups, since two manifolds are vector field cobordant if and only
if they are equivalent in SKKn.

Proposition 1.4. The Signature is an SKK invariant.

Proof. The signature is an SK invariant, and hence also an SKK invariant.

Nevertheless, it is important to note that some SKK invariants are not SK
invariants, as the following propositions show.

Proposition 1.5. Bordism is an SKK invariant.

Proof. We will prove later on (with Theorem 1.7) that there exists a surjective homo-
morphism from SKK∗ to Ω∗ which sends oriented manifolds to their cobordism class.
Note that two manifolds which are cobordant (i.e. are in the same cobordism class)
differ in SKK by a multiple of a sphere.

Proposition 1.6. The Kervaire semi-characteristic is an SKK invariant.

Proof. First recall that the Kervaire semi-characteristic is defined as

χ1/2(M
4k+1) =

2k∑
i=0

bi(M) (mod 2),

where bi(M) is the ith betti number. See [Ker56].
We consider the closed oriented manifolds

M1 ∪f −M2 and M1 ∪g −M2,

which are obtained from each other by cutting and pasting, and f and g are diffeomor-
phisms of the boundary f, g : ∂M1 → ∂M2.

By definition an SKK invariant depends only on these diffeomorphisms f and g.
So this means that if the Kervaire semi-characteristic χ1/2 is an SKK invariant, then
we will be able to express the following ”correction term”,

χ1/2(f, g) := χ1/2(M1 ∪f −M2)− χ1/2(M1 ∪g −M2)

by an expression involving only f and g, and not M1 or M2.
In [Ker56] it is shown that for an even dimensional manifold Y with boundary,

χ1/2(∂Y ) = χ(Y )− σ(Y ) (mod2)

where χ(Y ) is the Euler characteristic and σ(Y ) is the signature of Y .
In this case we consider ∂Y to have dimension 4k + 1, so σ(Y 4k+1) = 0, and then

χ1/2(∂Y ) = χ(Y ) (mod 2)

Now we consider Y to be a bordism which is constructed as in Lemma 1.9 of [Kre73],
and has boundary,

∂Y = (M1 ∪f −M2)− (M1 ∪g −M2)− (T : ∂M1
g−1f−−−→ ∂M1)

2



so the expression χ1/2(∂Y ) = χ(Y ) (mod 2) becomes

χ1/2(M1 ∪f −M2)− χ1/2(M1 ∪g −M2)− χ1/2(T : ∂M1
g−1f−−−→ ∂M1) = χ(Y ) (mod 2)

From this we deduce that the correction term χ1/2(f, g) is defined as

χ1/2(f, g) := χ1/2(T : ∂M1
g−1f−−−→ ∂M1)− χ(Y ) (mod 2)

But we still need to write χ1/2(f, g) as an expression involving only f and g, so we
will now use the computation of χ(Y ):

χ(Y ) = χ(M1) + χ(M2)− 2χ(∂M1).

When considered modulo 2, the term 2χ(∂M) disappears, so that

χ1/2(f, g) := χ1/2(T : ∂M1
g−1f−−−→ ∂M1)− [χ(M1) + χ(M2)] (mod 2)

We also have that

χ(M1 ∪M2) = χ(M1) + χ(M2)− χ(M1 ∩M2)
= χ(M1) + χ(M2)− χ(∂M1)

(M1 ∪ M2) is a closed orientable manifold so that χ(M1 ∪ M2) is even. Hence
χ(M1 ∪M2) = 0 (mod 2). That is,

χ(M1) + χ(M2) = χ(∂M1) (mod 2)

This implies that,

χ1/2(f, g) := χ1/2(T : ∂M1
g−1f−−−→ ∂M1)− χ(∂M1) (mod 2)

For simplicity we will write ∂M1 = N and we will also write the mapping torus

T : ∂M1
g−1f−−−→ ∂M1 as Ng−1f .

The mapping torus is defined as

T : ∂M1
g−1f−−−→ ∂M1 = Ng−1f = (N × I) ∪g−1f×1 (N × I)

N x IN x I

NN

g  f 

N N N X {0} 

N X {1} 

1 1 

1 -1

This gives rise the following Mayer-Vietoris sequence,

. . . −→ H∗(N × {0, 1}) −→ H∗(N × I)⊕H∗(N × I) −→ H∗(T (g−1f)) −→ . . .
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We note that
H∗(N × 0, 1) ∼= H∗(N)⊕H∗(N)

and
H∗(N × I)⊕H∗(N × I) ∼= H∗(N)⊕H∗(N)

so the following maps in the Mayer-Vietoris sequence,

H∗(N × {0, 1})

 1 1
1 g−1f


−−−−−−−−−→ H∗(N × I)⊕H∗(N × I)

correspond to

H∗(N)⊕H∗(N) // H∗(N)⊕H∗(N)

H∗(N)

(
1
1

) OO
1−g−1f // H∗(N)

(
1
1

)OO

This means that we can consider the exact sequence:

. . . −→ H∗(N)
1−g−1f−−−−→ H∗(N) −→ H∗(T (g−1f)) −→ . . .

In this sequence all dimensions except the middle dimension pair off by Poincaré duality,
so the ”correction term” χ1/2(f, g) will be given by the rank of the map in the middle
dimension,

H2k(N)
1−g−1f−−−−→ H2k(N)

That is, χ1/2(f, g) = rank(1− g−1f) (mod 2)

We have now achieved an expression for this correction term depending only on
the diffeomorphisms f and g, so we deduce that the Kervaire semi-characteristic is an
SKK invariant.

Theorem 1.7. Theorem 4.2 in the SK-book

Let I ′n ⊂ SKKn be the cyclic subgroup generated by [Sn]. Then,

I ′n =


Z n ≡ 0 (mod 2)
Z2 n ≡ 1 (mod 4)
0 n ≡ 3 (mod 4)

Furthermore there exists an split exact sequence,

0 −→ I ′n −→ SKKn −→ Ωn −→ 0

Proof. To achieve the computation of I ′n given above, we need to consider the order of
[Sn, ∗] in SKKn. So we do this for the different possible values of n. Recall that by
Lemma 4.3 in [Kre73] we have that

χ(Mn+1)[Sn] = 0 where Mn+1 is a closed manifold.
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• n ≡ 0 (mod 2), i.e, n = 2k:

The argument in this case is the same as the one given in the proof of Theorem 1.1
in [Kre73].

• n ≡ 3 (mod 4), i.e, n = 4k + 3:

Since χ(Mn+1)[Sn] = 0, then in this case we have χ(M4k+4)[S4k+3] = 0. Firstly we
can deduce from this that [S4k+3] has at most order 2, since χ(S2m) = 2, then,

χ(S2m)[S4k+3] = 0 =⇒ 2[S4k+3] = 0

so in general, if the Mn+1 has even Euler Characteristic, then [S4k+3] = 0.
If we consider Mn+1 to have odd Euler characteristic, that is χ(Mn+1) = 2a + 1

then we will have,

0 = χ(M4k+4)[S4k+3]

= (2a+ 1)[S4k+3]

= 2a[S4k+3] + [S4k+3]

= [S4k+3]

Hence we deduce that [S4k+3] = 0 and consequently I ′4k+3 = 0

• n ≡ 1 (mod 4), i.e, n = 4k + 1:

In this case, [S4k+1] also has order at most 2 in SKK, since χ(S4k+2) = χ(S2m) = 0
First we note that if M is orientable then χ(M4k+2) is even.

We will show by contradiction that [S4k+1] 6= 0 ∈ SKK4k+1. So suppose that
[S4k+1] = 0 in SKK4k+1.

By the definition of SKK, we know that there exist orientable manifolds Ni and N ′i ,
where i = 1, 2 and ∂N1 = ∂N2 and ∂N ′1 = ∂N ′2 and diffeomorphisms f, g : ∂Ni −→ ∂N ′i
such that,

(N1 ∪f −N ′1)− (N2 ∪g −N ′2) = (N2 ∪f −N ′2)− (N1 ∪g −N ′1) (4)

and if we are assuming that [S4k+1] = 0 then we can also write Equation (4) as,

S4k+1 + (N1 ∪f −N ′1)− (N2 ∪g −N ′2) = (N2 ∪f −N ′2)− (N1 ∪g −N ′1)

Following the same procedure as in Theorem 1.2 in [Kre73], we can construct two
bordisms Y1 and Y2 defined as follows: Let Y1 be the bordism with boundary ∂Y1 =
(N1 ∪f −N ′1)− (N1 ∪g −N ′1)− T (g−1f),

N1

N’1 N’1

N1

Mapping torus:  
T(g   f )-1

f g

Bordism Y1

and Y2 be the bordism with boundary ∂Y2 = (N2∪f−N ′2)−(N2∪g−N ′2)−T (g−1f),
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N2

N’2 N’2

N2

Mapping torus:  
T(g   f )-1

f g

Bordism Y2

Note that mapping torus T (g−1f) is the same mapping torus in both bordisms Y1
and Y2.

This means that the disjoint union of Y1 and Y2 has boundary,

∂(Y1 t Y2) =[(N1 ∪f −N ′1)− (N1 ∪g −N ′1)− T (g−1f)] + [(N2 ∪f −N ′2)− (N2 ∪g −N ′2)− T (g−1f)]

= [(N1 ∪f −N ′1)− (N2 ∪g −N ′2)− T (g−1f)] + [(N2 ∪f −N ′2)− (N1 ∪g −N ′1)− T (g−1f)]

Using the relation established in (4), we can rewrite this as follows

∂(Y1 t Y2) =[(N1 ∪f −N ′1)− (N2 ∪g −N ′2)− T (f−1g)]

− [S4k+1 + (N1 ∪f −N1)− (N2 ∪g −N2)− T (f−1g)]

If we now paste pairwise the boundaries in this expression, then we obtain a man-
ifold with one boundary component, S4k+1. So if we glue an 4k + 2-dimensional disc
along this boundary, then the manifold Y1 ∪ Y2 ∪D4k+2 is a closed 4k + 2-dimensional
manifold M4k+2

We now compute Euler characteristic χ(M4k+2).

χ(M4k+2) = χ(Y1 ∪ Y2 ∪D4k+2) = χ(Y1 ∪ Y2) + 1

So we need to compute,

χ(Y1 ∪(N1∪f−N ′1)−(N2∪g−N ′2)−T (f−1g) Y2)

This is given by

χ(Y1 ∪ Y2) = χ(Y1) + χ(Y2)− [χ(N1 ∪f −N ′1) + χ(N2 ∪g −N ′2) + χ(T (f−1g))] (5)

By the computation of χ(Yi) given before, we know that

χ(Yi) = χ(Ni) + χ(N ′i)− 2χ(∂Ni)

so substituting appropriately in Equation (??) we obtain

χ(Y1 ∪ Y2) =[χ(N1) + χ(N ′1)− 2χ(∂N1)] + [χ(N2) + χ(N ′2)− 2χ(∂N2)]−
− χ(N1 ∪ −N ′1)− χ(N2 ∪ −N ′2)− χT (g−1f)]

=[χ(N1) + χ(N ′1)− 2χ(∂N1)] + [χ(N2) + χ(N ′2)− 2χ(∂N2)]−
− [χ(N1) + χ(N ′1)− χ(∂N1)]− [χ(N2) + χ(N ′2)− χ(∂N2)]− 0

so rearranging we obtain,

χ(Y1 ∪ Y2) = −χ(∂N1)− χ(∂N2) = −2χ(∂N1) (6)
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Hence,

χ(M4k+2) = χ(Y1 ∪ Y2 ∪D4k+2) = χ(Y1 ∪ Y2) + 1 = 1− 2χ(∂N1)

But 1−2χ(∂N1) is always odd, and this is a contradiction since a 4k+2-dimensional
closed manifold always has even Euler characteristic. Hence we deduce that the as-
sumption that [S4k+1] = 0 ∈ SKK4k+1 is false. Hence [S4k+1] 6= 0 and [S4k+1] has
order 2 in SKK4k+1 so from this we deduce that I ′4k+1 = Z2.

Finally we note that the exact sequence

0 −→ I ′n −→ SKKn −→ Ωn −→ 0

splits:

• For n = 2k we have that the Euler characteristic gives a map

SKK2k −→ Z = I ′2k

• For n = 4k + 3, the sequence splits trivially because I ′4k+3 = 0

• For n = 4k + 1, the Kervaire semi-characteristic provides a retraction map,

SKKn −→ Z2 = I ′4k+1

which provides an inverse of I ′n −→ SKKn

Thus for any possible value of n there exists a retraction map, so the sequence
splits.

1.3 Relating concepts

Here we present a diagram relating the exact sequences from the theorems 1.1 and 1.2
in [Kre73], and 1.7 mentioned in this account.

Through this diagram of exact sequences, it becomes clear that the difference in
the groups In from Theorem 1.1 in [Kre73] and I ′n from 1.7 is given by the Kervaire
semi-characteristic. Similarly for Fn which is introduced in Theorem 1.2 in [Kre73] and
F ′n which does not figure in this book.

Also with this diagram we establish the relation between SKKn and SKn which
is defined as a surjective homomorphism. This is homomorphism is not discussed
in [Kre73].

I n

F n

Fn

SKKn

SKn

SKn

In2

Ωn

0 0

0

0

0 0

0

0

0

0 00
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