Dr. Thanasis Bouganis


Research interests: (Non-commutative) Iwasawa Theory, Arithmetical Algebraic Geometry, Automorphic Forms.

I am assistant (wissenschaftlicher Assistent) of Professor Otmar Venjakob and member of the Arithmetic Geometry Group (Arithmetische Geometrie Gruppe) at the Mathematisches Institut of the University in Heidelberg.

CV in English: CV.

Publications:

The Möbius-Wall congruences for p-adic L-functions of CM elliptic curves, to appear in Math. Proc. Camb. Phil. Soc. (11 pages),

Non abelian congruences between special values of L-functions of elliptic curves; the CM case, Int. J. Number Theory, Vol 7, No. 7 (2011), pp. 1883-1934,

(with O. Venjakob), On the non-commutative Main Conjecture for elliptic curves with Complex Multiplication, Asian J. Math., vol 14 (3) (2010), pp 385-416,

Special values of L-functions and false Tate curve extensions, (with an appendix by V. Dokchitser), J. London Math. Soc., Vol. 82 (2), (2010), pp. 596-620,

(with V. Dokchitser), Algebraicity of L-values for elliptic curves in a false Tate curve tower, Math. Proc. Camb. Phil. Soc. Vol. 142 (2), (2007), pp. 193-204,

Error Correcting Codes over Algebraic Surfaces, In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science 2643, Springer 2003, pp. 169-179,

(with D. Coles), A Geometric View of Decoding Algebraic Geometric Codes, In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science 2643, Springer 2003, pp. 180-190,

(with I. Caragiannis, C. Kaklamanis), Implementation Issues and Experimental Study of a Wavelength Routing Algorithm for Irregular All-Optical Networks, Algorithm Engineering 1999, LNCS 1668, pp. 258-270.

Other publications:

Non abelian p-adic L-functions and Eisenstein series of unitary groups, in Algrebraic Number Theory, Oberwolfach Report (2011).

Submitted Work / Work in preparation:

On Special Values of Siegel Modular Forms, 33 pages submitted,

Non-abelian p-adic L-functions and Eisenstein series of unitary groups; the CM method, 81 pages, submitted,

Non-abelian p-adic L-functions and Eisenstein series of unitary groups; the constant term method, in preparation,

(with F. Nuccio), Kongruenzen zwischen abelschen p-adischen pseudo-Massen und die Schintanische Zerlegung, in preparation.

Other scientific activities

The IWASAWA 2012 conference took place in Heidelberg from July 30 to August 3, 2012.

I lectured in the Sardinian Summer School in Iwasawa Theory, August 6-12, 2012.

Teaching in previous semesters:

Spezialvorlesung(SS13): Arithmetische Theorie von Modulformen.

Hauptseminar (Thursday, 11 c.t. in HS 4), on the Local Langlands Correspondence for GL(2) (programme worked out by Jan Kohlhaase).

Exercises for the lecture p-adic analysis.

Seminar(SS12): Iwasawa Theorie,

Hauptseminar on the Main Conjecture for elliptic cusp forms (after Skinner and Urban) .

Seminar(WS11): Darstellungstheorie endlicher Gruppen,

Seminar(WS11): Siegel'sche Modulformen.

Vorlesung(SS11): Algebra II.

Spezialvorlesung(WS10): Algebraische Codierungstheorie.

Spezialvorlesung(SS10): p-adische Lie Gruppen II (algebraische Theorie).

Hauptseminar(SS10): Modular Curves and the Eisenstein Ideal.

Spezialvorlesung(WS09): p-adische Lie Gruppen.

Hauptseminar(WS09): The Eigencurve.

Spezialvorlesung(SS09): Abelsche Varietäten II (algebraische Theorie).

Seminar(SS09): Algebraische Gruppen.

Spezialvorlesung(WS08): Abelsche Varietäten (analytische Theorie).

Seminar(WS08): Der Satz von Riemann-Roch für globale Körper.

Spezialvorlesung(SS08): Elliptische Kurven mit komplexer Multiplikation.

Seminar(SS08): Algebraische K-Theorie.

Spezialvorlesung(WS07): Zyklotomische Iwasawa-Theorie.

Seminar(WS07): Rationale Punkte auf elliptischen Kurven.

Spezialvorlesung(SS07): Modulformen und L-Funktionen.

Hauptseminar(SS07): Fortführung der p-adische Hodge-Theorie.

Proseminar(SS07): Darstellungen endlicher Gruppen.

Seminar(WS06): Klassische und p-adische L-Funktionen.

Oberseminar(WS06): Einführung in die p-adische Hodge Theorie.

e-mail:bouganis(at)mathi.uni-heidelberg.de

"Die Logik ist zwar unerschütterlich, aber einem Menschen, der leben will, widersteht sie nicht", Josef K.