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1. Introduction

There exist naturally occurring enzymes (topoisomerases and recombinases),
which, in order to mediate the vital life processes of replication, transcription, and
recombination, manipulate cellular DNA in topologically interesting and non-trivial
ways [24, 30]. These enzyme actions include promoting the coiling up (supercoiling)
of DNA molecules, passing one strand of DNA through another via a transient
enzyme-bridged break in one of the strands (a move performed by topoisomerase),
and breaking a pair of strands and recombining them to different ends (a move
performed by recombinase). An interesting development for topology has been the
emergence of a new experimental protocol, the topological approach to enzymology
[30], which directly exploits knot theory in an effort to understand enzyme action.
In this protocol, one reacts artificial circular DNA substrate with purified enzyme in
vitro (in the laboratory); the enzyme acts on the circular DNA, causing changes in
both the euclidean geometry (supercoiling) of the molecules and in the topology
(knotting and linking) of the molecules. These enzyme-caused changes are
experimental observables, using gel electrophoresis to fractionate the reaction
products, and rec 4 enhanced electron microscopy [15] to visualize directly and to
determine unambiguously the DNA knots and links which result as products of an
enzyme reaction. This experimental technique calls for the building of knot-theoretic
models for enzyme action, in which one wishes mathematically to extract information
about enzyme mechanism from the observed changes in the DNA molecules.

This paper deals with the mathematics which arises in a topological model for
enzyme mechanism (25, 26, 27]. The mechanism of many enzymes involves local
(near the enzyme) interaction of two DNA strands. The mathematics which can be
used to model this 2-strand interaction is that of the 2-string tangle. When bound to
a circular DNA molecule, the enzyme naturally separates the DNA molecule into two
complementary tangles. Enzyme action on circular DNA can be viewed as tangle
surgery, in which the action of the enzyme is to delete one of these tangles, replacing
it by another. One regards these tangles as enzyme mechanism variables, and
experimental results pose equations relating these variables. One wishes to solve
these equations. In general, solving tangle equations is a difficult task. The job is
greatly simplified by the realization that most known DNA reaction products lie in
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a well-understood class, that of 4-plats (2-bridge knots and links) [7]. Moreover, a
great deal can be said about the factorization of 4-plats into tangle summands. The
summands of interest are rational tangles [8]. Rational tangles are formed from the
trivial tangle by twisting pairs of strands about one another, and look a great deal
like DNA electron micrographs, in which pairs of DNA strands wind about each
other. In the analysis of certain DNA experiments, one can use recent results on
Dehn Surgery on 3-manifolds [9] to prove that the solutions to the tangle equations
which arise must be rational tangles. Once the solutions are known to be rational
tangles, the analysis becomes a matter of calculating the rational solutions, in which
the rational tangle calculus is employed.

In Section 2, we describe the rational tangle calculus, and develop methods for
solving equations involving rational tangles and 4-plats. In Section 3, we discuss the
general problem of proving that solutions to certain tangle equations must be
rational tangles. Section 4 discusses site-specific recombination, and Section 5
describes the tangle model for site-specific recombination. Sections 6 and 7 use the
tangle model to analyse experimental results for the site-specific recombinant
enzymes 7Tn3 resolvase and phage A integrase.

A more complete account of applications of the rational tangle calculus to
molecular biology will appear elsewhere [27].

2. Ratwonal tangle calculus

The following discussion takes place in the smooth category. Unless otherwise
specified, all ambient 3-manifolds will come equipped with an orientation, and 1-
submanifolds will be unoriented. All homeomorphisms of ambient spaces will be
assumed to be orientation-preserving. A 2-string tangle (or just tangle) is a pair
(B,t), where B is a 3-ball and ¢ is a pair of (unoriented) arcs properly embedded in B
[8, 16]. We separate tangles into three types [16]. A tangle is rational if there exists a
homeomorphism of pairs from (B, t) to the trivial tangle (D* x 1, {x, y} x I), where D?
is the unit 2-ball in R* and {x, y} are points interior to D?. A tangle is locally knotted
if there exists a local knot in one of the strands; that is, there exists a 2-sphere in B
meeting ¢ transversely in 2 points, and such that the 3-ball it bounds in B meets ¢ in
a knotted spanning arc. A tangle is prime if it is neither rational nor locally knotted.
Since rational and prime tangles contain no local knots, we say that they are locally
unknotted. Figure 1 shows tangle diagrams of the three types.

In order to compare tangles, we need to think of them as having ‘the same’
boundary. As in [6], we define the model 2-sphere S§% in R? to be the boundary of the
unit 3-ball D?® in R?, equipped with 4 distinguished equatorial points P = {NE, SE,
SW, NWj}. We require that every tangle comes equipped with a boundary
parametrization, that is, a homeomorphism ®: (0B, d¢) > (S%,P). So a tangle is a
triple B = (B, ¢, ®). Two tangles (B,t,®) and (B',t’,®’) are isomorphic if there is a
homeomorphism H:(B,t)—>(B’,t’) such that ®=®H on 0B. If X and Y are
isomorphic tangles, we write X = Y. Let p be the projection of D? into the equatorial
plane, and choose a homeomorphism ¥: B— D3 such that ¥ extends ® and such that
the image of the arcs ¢ under p¥ is a regular projection in the interior of D?. A tangle
diagram is the image of (B,t) under p¥'. Two tangle diagrams represent isomorphic
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(a) Locally knotted (b) Prime (¢) Rational  (3,1,1,-2)=-10/7
Fig. 1. The three types of tangles.

@

(a) Addition (A + B) (b) Numerator N(A) (¢) Denominator D (A )

Fig. 2. Tangle constructions.

tangles if and only if the diagrams are related by a finite sequence of Reidemeister
moves in the interior of D?.

Given two tangles {4, B}, we define tangle addition as shown in Figure 2(a), and
denote the result as 4 +B. Note that A+ B may contain a simple closed curve, in
which case A+B is not a 2-string tangle. Addition is an associative operation:
A+ (B+C) = (4+B)+C. The numerator and denominator constructions applied to
tangle 4 are shown in Figure 2 (b, ¢), and denoted {N(4), D(4)}. If A and B are tangles,
we define N(4 + B) and D(4 + B) in an analogous manner. If 4 is a tangle, then each
of {N(4), D(A)} is either a knot or a link of 2 components. We note that the knot (link)
N(4 +B) is topologically equivalent to that obtained by glueing 4 to B along their
‘common’ boundary (after relabelling the 4 endpoints in dB). We say that a tangle
A has the parity of (0) if the string which enters at the NW position exits at the NE
position. Likewise, A has the parity of (1) if the string which enters at the NW
position exits at the SE position, and 4 has the parity of co if the string which enters
at the NW position exits at the SW position. The concept of parity was considered
in [3], where it was called string attachment class. Finally, if 4 denotes the
isomorphism class of a tangle, then (—4) denotes the isomorphism class of the mirror
image of 4, obtained by reversing every crossover in any projection of 4.

Rational tangles admit very nice classification scheme (see [8, 11]). They can be
represented by rational numbers, by vectors with integer entries, or by 2 x 2 integer
matrices of determinant + 1.

RATIONAL TANGLE CLASSIFICATION THEOREM ([8]). There exists a 1—1 cor-
respondence between isomorphism classes of rational tangles and the extended rational
numbers f/aeQ U {1/0 = co}, where aeNU {0}, feZ, and ged (o, f) = 1.

A proof of this Theorem 21 can be found in [19] or [7], p. 196. Every rational number
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f/a can be expanded by means of a generalized euclidean algorithm (see [7], p. 187)
into a continued fraction

ﬂ/“ = an+1/(an—1+(1/an—2+"'))7

which yields the integer entry vector (a,,a,,...,a,). By means of the same continued
fraction formula, every vector (a,,a,,...,a,) can be converted to an extended
rational number. From any integer-entry vector one can construct a tangle diagram
as in {[3], figure 3) or ([2], figure 5). Since the continued fraction expansion for f/« is
not unique, there are many vectors representing the same tangle isomorphism class.
For example, the vectors (0) and (0,3,0) represent the tangle classified by the
rational number zero, and the vectors (0,0) and (1, —1,5) represent the tangle
classified by the extended rational number 1/0 = co. We will describe tangles by
either listing a vector representative or the classifying extended rational number.

Given a vector (a,,4,,...,a,), the continued fraction calculation guarantees that
ged (a, B) = 1, and we normalize choices of a and g by choosing a > 0, or f=1 if
a = 0,ora = 1if # = 0. There is a canonical form convention for vector representation
of rational tangles, in which the isomorphism class of a rational tangle can be
represented by a unique standard vector (integer entries) (a,, ...,a,) where a, & 0 for
1 £ ¢ < n—1, all the non-zero a,’s have the same sign, and |e,| > 1. Depending on the
rational number f/«, the standard vector is of even or odd length, and the non-zero
entries are either all positive or all negative. Figures 3(a) and 3(b) show canonical
vectors and their diagrams; Figure 3(b) is the canonical form for the tangle in Figure
1(c). The above convention excludes the four exceptional tangles {(0), (1), (0,0)}
which are shown in Figure 3 (c). We will call the standard vector for a rational tangle
the Conway symbol for the rational tangle, and take the four vectors above as the
Conway symbols for the four exceptional tangles.

A 4-plat (2-bridge) knot or 2-component link is one which admits a projection
which consists of a braid on four strings, closed up as in Figure 4 (). In [1] it is shown
that every 4-plat admits a projection consisting of a braid on four strings in which
one string is free from crossings, as in Figures 4 (b, ¢). There are classification schemes
for 4-plats analogous to those for rational tangles. Given any integer-entry vector of
odd length {d,,...,d,,,;>, We can construct a 4-plat as shown in Figure 4. Every
4-plat has a canonical form vector representation by an integer-entry vector
{Cy, ..., Cap41) Where ¢; > 0 for all ¢. We call this vector a Conway symbol for the 4-plat.
This convention excludes the 4-plat {0}, the unlink of two unknotted components,
so we take {0) as the Conway symbol in this case. Figure 4 (b) shows a canonical form
for the 4-plat knots of Figures 4 (a, ¢). Two 4-plats represent the same knot (link)
type if and only if they admit identical Conway symbols, or their Conway symbols
become identical if one of them is reversed. Analogous to the rational tangle case, a
classifying rational number for the knot (link) equivalence class of the 4-plat can be
obtained from any vector representing the 4-plat via a continued fraction calculation :
pla=1/(c,+(1/¢c,+...)). If one performs this continued fraction calculation on a
Conway symbol for the 4-plat K (K =+ {0),{1)), one obtains 0 < § < a. Unless
otherwise specified in the following, we will always choose to compute a classifying
rational number for the 4-plat from a Conway symbol, and (following [7]) we write
the 4-plat as b(a, #). The numbers a and # have a geometric interpretation in terms
of a 2-bridge projection of a 4-plat (see [7], p. 183). With the crossover sign
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(@) Even(2,3,4,2)=67/30 (b) Odd (-3,-2,-1)=-10/7

© ©,0) D (+1)

(c) The exeptional tangles

Fig. 3. Canonical forms for rational tangles.

convention of Figure 4 (which agrees with the usual convention for representing
generators of the braid group as in [7], and is opposite to that of [8, 25]), the 2-fold
branched cyclic cover of b(a, §) is the lens space L(a, f). For example, the unknot
b(1,1) = (1> has 8% as 2-fold branched cover, and the unlink of 2 unknotted
components b(0, 1) = {0> has S* x §2 as 2-fold branched cover. 4-plats are classified
by means of their 2-fold branched cyclic covers (see [7], p. 185):

4-PraTt CrasstricatioNn TrEOREM ([21]). Two 4-plats b(a,f) and b(a',f’) are
equivalent (as unoriented knots or links) if and only if a = &’ and ' = £ (mod o).

4-plats and rational tangles are closely related via the numerator and denominator
constructions. For example, for any integer ,

D((d,,....dgp 11, 2) =Ldy, ..., dop > and N((d,, ..., dop 1, 2,0)) ={—d,, ..., —doy, >

Given a rational number f/a with 0 < f/a < 1, the denominator construction
applied to the tangle f/a yields the 4-plat b(x, #); and the numerator construction
applied to the tangle f/a = 1 yields the 4-plat b(8, —a).

Our first lemma is a calculation (in terms of classifying rational numbers) for the
4-plat which results when the numerator construction is applied to the sum of two
rational tangles. A 4-plat is the closure of a braid on 4 strings, in which only the first
3 strings form crossovers. The calculation below is based on the calculation in [7], p.
186, in which a 4-plat in 82 is written in terms of generators {7, o,} of the braid group
B,. We write S® as two 3-balls {B,,B,} connected by S*x1I, and with the braid
contained in 8% x I. Lifting this picture to the 2-fold branched cyclic cover, the 3-balls
lift to two solid tori {7}, T;}, connected by (S* x 8*) x I. The braid generators lift to
Dehn twists on S* x 8!, and in terms of oriented (meridian, longitude) generators for
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SRS

(a) b(19.8)

& X
/‘/\—/\75

() 2,2, 1,1, 1) = b(19, 8)

(e) (1,2,-2,-1,3)=b(19, 8)
Fig. 4. 4-Plats.

H,(S'x 8", Z), the Dehn twists are expressed by elementary 2 x 2 integer matrices.
Every tangle f/a admits a (perhaps non-canonical) vector representation of even
length (a,, ..., a,;). If the tangle is non-exceptional, one such vector representation can
be obtained from the Conway symbol by relaxing the requirement that |a,| > 1.
We take the following vector representations for the four exceptional tangles:
(0) = (1, —1), o0 = (0,0), (1) =(1,0), and (—1) = (—1,0). An even-length vector
representative for the tangle f/a determines a 2x2 matrix representative via
the following equation:

£ 96 99 n
v w) \0 1 /\ag, 1) \a, 1) ()

Equation (1) expresses a homeomorphism (determined by the vector represen-
tative for the tangle #/a) from the boundary of the 2-fold branched cyclic cover of
f/e to the boundary of a reference solid torus. In the above equation, the rational
number u/» = f/a classifies the tangle, but it may not necessarily be in normal form.
Note that «'/v" = a,+1/(1,_,+1/(...+ 1/a,)).

LeMMA 2-1. Given two rational tangles A, = f, /o, and A, = f,/a,, then N(4,+A4,) is
a 4-plat which is equal to b(a, f), where o = |, f, +a, B, and f is determined as follows :
(i) if a =0 then g =1;
(ii) if a =1 then f=1;
(iii) if > 1, then B is uniquely determined by the following: 0 < f <o and
f =00+, f;) (moda), where o =sign(a,fy+a,f,) and a, and f, are the
entries in the second column of any matrix representative for the tangle f,/a,.
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Proof. First we observe that conditions (i)—(iii) above imply that g isa\miquely
determined. In case (iii), substituting #; = (1+a,a;)/f, into the equation for 8, we
obtain g = (of,+a;a)/f,(mod a). Since (a,, f,) = 1, all possible values for a;\‘are of
the form ¢+ kfp,, with ¢ and k integers, and ¢ a constant. This means that there is
exactly one choice for § such that 0 < § < a. \\

Represent A, and 4, by vectors of even length: 4, = (a,,...,a,,) and A, =
(by,---,bs,). Then N(4,+4,) is a 4-plat b(a, #), for some values of  and 8. This
4-plat has a (possibly non-canonical) representation by one of the vectors
Kby ey bgygs (bop +@0p), Aoy -5 @10, OF K@y, .o, Ggp g, (A +by,),byy 4, ..., 0>, as
shown in Figure 5. Figure 5(a) shows one of the main steps in this geometric
calculation, in which the horizontal twists at the right-hand end of 4, are converted
to horizontal twists at the left-hand end of 4, in order to facilitate addition. Note
that the signs of a;, and b, may differ, and that (b, +a,,) may be zero. The 2-fold
branched cyclic cover of b(a, £) is the lens space L(a, #), which is obtained by glueing
together two solid tori {7},7,} by a homeomorphism f:07,— 07,, where f is the
product of Dehn twists given by a vector representation for the 4-plat. With respect
to the (meridian, longitude) basis (x;,A;) for H,(0T,,Z), for i = 1,2, values (not
necessarily normalized) for @ and g are determined by the following matrix
representation for f :

e O iy 1y A o

We have g’ —aa’ = 1.
Applying Equation (1) above to the chosen vector representations for #,/a, and

P/, we obtain / o /
@ 7= 2G5 g

From the matrix product in (3), we have

a=oyfytayfy, B=ai0n+p B
We can now determine normalized values for a and £ as follows.
o fy+a,f, > 1, since L(e, f) = L, f+ ko) where ke Z, we set

a=af+a,p, and = (a;a,+pf,) (moda).
The conditions 0 < < a, f,fi—a,a; =1 and (a,,f,) =1 yield a unique choice

for g.
If —(a,fy+a,0,) > 1, since L{a, f) = L(—a, — f+ ka) where ke Z, we set

a=—(afyt+a,f;) and pf=—(x,a;+p,f,)(moda).
If |a, o+, 8] =1, since L(+1,£8) =8 we set a=1 and f=1. If o, f,+
a, f, = 0, then N(4,+A4,) is the unlink of two unknotted ecomponents, with 2-fold
branched cyclic cover L(0, 1) = S* x 8§2. In this case we set « =0 and g = 1. |

If A and B are tangles, and N(A+B) =K (a knot or 2-component link), then
we say that 4 and B are summands of K. If both 4 and B are rational tangles, and
N(A +B) = K, then K is a 4-plat. Suppose, however, that 4 is a rational tangle, K is
a 4-plat, and that we wish to solve the equation N(X+4) = K for the unknown
tangle X. Unfortunately, this data does not force X to be a rational tangle. For
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(a) Isotropy of the tangle (-2, -3, -1, -2) = -25/9

(b) N(13/4 + -25/9) = N((4, 3) + (-2, -3, -1, -2))

DO R
dwa N \/\?

(© 4 1,-1,-3,-2)

Fig. 5. Tangle addition.

example if 4 is any integral tangle (a horizontal row of half-twists), and K = unknot,
the equation N(X +4) = unknot has infinitely many distinct prime tangle solutions
of the form (B+(—A)), where B denotes any prime tangle with the property that
N(B+ (0)) = unknot. One such prime tangle is shown in Figure 1(b). Since B is
prime, then (B+(—A4)) is prime (see [16]), and

N({(B+(—A))+4) = NB+(0)) = unknot.

Although prime tangle solutions to these equations are in general difficult to
enumerate, all rational tangle solutions to equations of this type are given by the
following theorem :

THEOREM 2-2. Let A = /o = (a,, . .., a,,) be a rational tangle and K = {c,, ..., Copiy)
#+ 0) be a 4-plat. The rational tangle solutions to the equation N(X+A4) = K are the
Sfollowing :

X =(CpyevvsCoprrsls —Qqseevs —Qgy)y OF X = (Copyry oo sCpiyy —Qpyenn, —Ggy),

with r any integer. If K = (0), then X = (—ay, ..., —a,,) is the unique solution.
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Proof. It is easily seen (from Lemma 21, or by drawing a picture), that for
arbitrary r, each of the tangles X described above is a solution to the equation. The
negative string of a,’s cancels out the tangle A4, leaving

D(cy, .. s CoprsT) =KCqy -+ Coprr) = LCogprr---» €10 = DlCogyqr -5 €1, 7)-

We must show that the set of solutions described above is complete. The 4-plat
K = b(p,q) is represented by the rational number ¢/p, where either 0 < ¢ < p are
coprime integers, or p = 1,9 =1, or p = 0,9 = 1. Suppose that 0 < ¢ < p. Let ¢’ be
the unique integer such that 0 < ¢’ < p and ¢¢’ = 1 (mod p). Given a Conway symbol
for K (either {c,,...,Cp511) OF {Capy1s---,€1y), the integers {p,¢,¢'} (and matrix
representatives for K) are determined by one of the matrix equations below:

g P\ _(1 0\(1 ¢, 1 0\

(P q/) B (01 1) (O 1)”'(62Ic+1 1), @
g P\ _ (1 O\l cyy 1 0
(p Q) B (02k+1 1) (O 1 ) o (C1 1)' ©)

From the above matrix equations, we have g¢"—pp’ = 1. If K = {0) or {1), we use
Equation (4) to produce a matrix representative. We wish to write down a general
expression for the family of all 2 x 2 matrices which describe glueings which give rise
to a lens space orientation-preserving homeomorphic to L(p, q) = L(p,q’). The lens
space L(p,q) is the result of glueing the solid torus 7; to the solid torus 7, by the
glueing homeomorphism f: 07, — 07,. Suppose that the left-hand sides of Equations
(4), (5) represent f with respect to a (meridian, longitude) basis for {1}, 7,}. Then, all
other glueings can be viewed as perturbations on these matrices, the perturbations
coming from orientation-preserving change-of-coordinates on each of 07, and 07,
That is, if {r, s} are arbitrary integers, then from the left-hand-side of Equation (4)
we obtain a 2-parameter family of glueing matrices:

G =<y (2 T 1) €=, ©)

Similarly, using the left-hand side of (5), we obtain a 2-parameter family of glueing

matrices :
(1 r\(qd DP\(1 s _
@t =<(y ) 2o 1) =% g

Suppose now that X is a rational tangle such that N(X+4) = K. Suppose that
tangles A and X admit the following matrix representatives: .

A:(f ;:), and X:(: Zl,)

Since N(X +4) = K, a glueing map for L(p, q) is described by the matrix product (as

in Equation (3))
9/ /)( /)
(oc Bl\v )
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This means that either

B T R ST
o (DL DY e o

By multiplying out the right-hand sides of (8) and (9), we observe that the parameter
s is irrelevant in the determination of {u,v}, so without loss of generality we take
s = 0. The right-hand side of (8) (with s = 0) can be obtained from the vector

representation X = (c,,...,Cp 11,7, — @y, ..., —Qy,). The right-hand side of (9)
(with s = 0) can be obtained from the vector representation X = (cyys,...,¢;,7,
— ., —8gy).

The 4-plat K = <0) is represented by the identity 2x2 matrix. In this case,
Equations (8), (9) specify that u/v = — f/a, so that X = (—a,, ..., —a,,) is the unique
solution.

In terms of classifying rational numbers, the rational solutions for X in the above
theorem are given by the fractions

u/v = (fg—a'p+rpp)/(f'p—aq—rap)
and ufv = (Bq' —a'p+rpp)/(Fp—ag —rap).
Although Theorem 2-2 says that one equation in one unknown has infinitely many

rational solutions (K # <0)), the next result says that two equations in one unknown
have at most two rational solutions.

COROLLARY 2-3. Let A, A, be distinct rational tangles, and K, and K, be 4-plats. There
are at most two distinct rational tangle solutions to the equations (i) N( X+ A4,) = K, (ii)
NX+4,)=K,.

Proof. Let X = u/v, A, = f,/a,, A, = By/s, K, = b(a, ), and K, = b(a’, §’). Then,
by Lemma 2:1, we have
o= ua, +vp,| and o = |ua,+vp,l

In the (u, v)-plane, these equations describe two pairs of parallel straight lines. These
lines intersect in at most 4 points. Since u/v = —u/ —v, these 4 points of intersection
describe at most two distinct rational tangle solutions for the equations in the
hypothesis. |

Corollary 2-3 is sharp, as can be seen by taking 4, = 1/3, 4, =5/17, K, = b(5, 3),
and K, = b(29, 17). The two solutions for X are X = —70/239 and X = —75/254. It
may happen that two equations of the above form have no rational solutions. For
example, the pair of equations

{NX+(0) =1y, NX+(1)=<1,1,1,1,1)}

has no solutions of any kind (prime, rational, or locally knotted), as will be argued
in Section 3.

Lemma 2-4. If R is a rational tangle, then R + R is locally unknotted. Moreover, if R+ R
18 rational, then R is an integral tangle. Conversely, if R is not integral and does not have
the parity of co, then R+ R is prime.
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Proof. The tangle R+ R ends in a number (possibly zero) of horizontal half-twists.
By adding (if necessary) an extra half-twist at the right-hand end of R + R, we obtain
(R+R),, which has the property that N((R+ R),) is a 4-plat link with two unknotted
components, so B+ R is locally unknotted. If R+ R is rational, then D(R+R) is a
4-plat, hence prime (or unknotted, or the unlink of two unknotted components).
If R is not an integral tangle (a horizontal row of half-twists), then D(R+R) is
composite.

3. Detecting rationality

Suppose that 4 and B are tangles, and that N(4 + B) = K, where K is a 4-plat. If
K is either a 2-component link or the unknot, then both A and B are locally
unknotted. If K is a non-trivial knot, in general we cannot conclude that both 4 and
B are locally unknotted. Since 4-plats are prime, at most one of the two tangles can
be locally knotted, and if so, the other tangle can be either prime or rational.

Lemma 31 ([2,16]). Suppose that A and B are locally unknotted tangles, and that
N(A+B) = K, where K is a 4-plat. Then at least one of {4, B} is a rational tangle.

Proof. A tangle X is prime if and only if its 2-fold branched cyclic cover X’ is
irreducible and boundary-irreducible, and rational if and only if its 2-fold branched
cyclic cover is a solid torus (see [16]). If X is prime, then 7,(0X”) injects into 7,(X’)
under inclusion. If both 4 and B are prime tangles, then the 2-fold branched cyclic
cover of K is K'=A’UB’, identified along their common incompressible torus
boundary. This means that m,(K') 2 Z ® Z, which is never the case for the 2-fold
branched cyclic cover of a 4-plat.

It turns out that the cyclic surgery theorem [9] is very useful in proving that
certain tangles which arise in models for DNA enzyme action are rational tangles.
The strategy is to use the cyclic surgery theorem to prove that the 2-fold branched
cover M of the tangle is a Seifert fibre space (or SFS) [22], and then to use facts about
the lens space results of Dehn surgeries on M to prove that M must be a solid torus.
Let M be a compact, connected, irreducible, orientable 3-manifold with 6M a torus.
The unoriented isotopy class of a non-trivial simple closed curve in M will be called
its slope (r). For any slope r, a closed 3-manifold M(r) may be constructed by
attaching a solid torus J to M, so that a curve of slope r bounds a disk in J. Given
any two slopes {r, s}, let A(r, s} denote the minimal geometric intersection number for
embedded representatives of » and s.

Cyoric SURGERY THEOREM ([9]). If M is not a Seifert fibre space (SFS), and if
{r,s} are slopes such that m (M(r)) and m,(M(s)) are cyclic groups, then A(r,s) < 1.
Hence there are at most three slopes r such that m,(M(r)) is cyclic.

One corollary of the cyclic surgery theorem concerns the case when M is a knot
complement. In this case, there is a unique coordinate system on M, namely
(meridian, longitude) on the boundary of the tube neighbourhood of the knot. If a
slope is represented by (p,g) in this coordinate system, then the slopes on dM are
parametrized by p/qe QU {1/0}. Moreover M is a SFS if and only if M is the
complement of a torus knot.
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THEOREM ([9]). (i) If M is the complement of a non-torus knot, then 7,(M(r)) can be
non-trivial and cyclic only if r is an integer. Moreover there are at most two such integers
r, and if there are two, then they must be successive. (ii) If M is the complement of a non-
trivial knot and r & + 1, then M(r) is not simply connected. Moreover at most one of M(1)
and M(—1) is simply-connected.

These cyclic surgery results are useful to us in the situation of the hypothesis of
Lemma 3-1. One of the tangles (say B) must be rational. Let K, A’, and B’ denote
the 2-fold branched cyeclic covers of K, 4, and B, respectively. The lens space K’ is
equal to A" U B’, with B’ a solid torus. In other words, one obtains a lens space by
attaching a solid torus to 4. The cyclic surgery theory says that if 4" is not a SF'S,
then there are very few ways to do this.

LeMMA 3-2. Suppose that X is a tangle, and that there exist tangles A, for 1 <1 < 3,
with A, and A, locally unknotted, such that the following 3 equations hold:

NX+4,) =b(1,1) (the unknot);

NX+4,) =ba,p) with a > 1;

NX+A4,)=0b,F) with o > 1.

If la—a'| > 1, then the 2-fold branched cyclic cover X' is a torus knot complement.

Proof. Since N(X + A,) is the unknot, both X and 4, are locally unknotted, and one
of them must be rational. If X is rational, then X’ is a solid torus and the proof is
accomplished. Otherwise X is prime, and A, is rational for 1 < ¢ < 3. The 2-fold
branched cyclic cover X’ is the bounded complement of a strongly invertible knot in
83:see [3]. If X’ is not a SFS, then the Dehn surgeries represented by 4, and 4, must
be integral. The results of two integral Dehn surgeries along the knot which defines
X’ yields the Lens spaces L(a, #) and L(a, '), so the slopes of the surgeries are « and
a’. Since the slopes are not successive integers by hypothesis, we conclude that X’ is
a SFS, and a torus knot complement.

THEOREM 3-3. Let M be a SFS with M = S'x 8, and bounded orbit surface S.
Suppose that there exists a boundary slope r such that M(r) is a lens space. Then S is a
disk with at most two exceptional fibres.

Proof. Let k be the number of exceptional fibres of M, and 8 be the bounded orbit
surface of M. If a curve C of boundary slope r is homologous to a fibre of M, then
M(r) is a non-trivial connected sum if either £ > 1 or § is not a disk. This is a slight
generalization of proposition 2 of [14] (it includes the case of § non-orientable).
Therefore if C' is homologous to a fibre, then £ < 1 and S is a disk. Otherwise (' is not
homologous to a fibre, and the Seifert fibration extends over the solid torus J. Let
S(r) be the orbit surface of M(r). Then S(r) = S U disk. Since 7,(M(r)) is finite, this
means that S(r) is either a projective plane with at most one exceptional fibre, or a
sphere with at most 3 exceptional fibres: see [22]. Since 7, (M(r)) is non-abelian if S(r)
is a projective plane or a sphere with 3 exceptional fibres, we conclude that S(r) is a
sphere with at most 2 exceptional fibres, so § is a disk with at most two exceptional
fibres. |

The next two lemmas deal with proving that a SFS is actually a solid torus, given
information about various lens spaces obtained from it by Dehn surgery. These
results will be used in the next sections to analyse the results of some DNA
recombination experiments.
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LeEmMMA 3-4. Let M be a torus knot complement. Suppose there is a boundary slope r for
M such that M(r) is one of L(2,x), L(3, ), L(4, x) for some integer x. Then M is a solid
torus.

Proof. The results of Dehn surgery on torus knot complements are well known : see
[18]. If one performs p/q surgery along an (r,s) torus knot, then one obtains a lens
space if and only if |rsg+p| = 1. In this case, L(|p|, ¢s?) is the lens space obtained by
the Dehn surgery. Now r,s are coprime positive integers, with 0 <s <7, and a
necessary condition for the torus knot to be non-trivial is s > 2, and so rs > 6. The
condition |rsq+p| = 1 means that |p| = rslgl + 1, so [p|€{2,3,4} is impossible if the
torus knot is non-trivial. The hypothesis forces the torus knot to be trivial, and so
its complement M is a solid torus.

LEMMA 35. Let M be a SFS with M = S* x S, and with bounded orbit surface S.
If there exist boundary slopes r; for j=1,2,3 such that M(r,) = L(p,q,), M(r,) =
L(p+2,q,), and M(r,) = L(p+4, q5) for integers p,q;, then M is a solid torus.

Proof. Since at least one Dehn surgery on M produces a lens space, by Theorem 3-3
we know that S is a disk and that M has at most two exceptional fibres. If M has zero
or one exceptional fibre, then M is a solid torus. Suppose then that M has two
exceptional fibres of orders (a;,f;) with 0 < g, <a, for ¢ = 1,2, and with {a;, 8;}
coprime integers. Since no lens space admits a Seifert fibration with three exceptional
fibres, the Seifert fibration must extend over the solid torus J which is glued to M to
form the spaces M(r;),j = 1,2, 3. If we take a basis for 0M consisting of F' (a fibre in
the SFS on M) and @ (a curve on oM with intersection number + 1 with F'), then the
glueing for each of the M(r;) is such that a meridian of J is homologous to @+5b; F,
for some integers b;. In terms of the Seifert symbols (see [22]), we have M(r;) =
(0,0,01b;, (21, 1), (22, ) for j = 1,2,3. We have |H,(M(r;)| = |b;o; ay + 0, fy+ ;1.
At least two of the b; (say b" and b”) must have the property that the numbers
(Vo a,+a, By+o, py) and (b, ay+a, f,+a, B,) have the same sign (or that one of
them is zero). Let " and r” denote the boundary slopes corresponding to " and b”.
Now ||H,(M(")|—|H,M(")||=|b'—b"|a;x,€{2,4}. Since a; > 2, the only possi-
bilities (after renumbering if necessary) are a, =2, 2, =2, f, =1, and 4, = 1.
However there are no integers {z, y} such that ||4x+4|—|4y+4|| = 2.

The following example shows that Lemma 3-5 is sharp. The values a, = 5, g, = 3,
a, =3, f,=1,b,=—3, b, =1 produce a pair of lens spaces with |H,}€{29, 31}.

In the following we derive necessary algebraic conditions for two equations to have

solutions. The next lemma is a generalization of a result of Lickorish[17]. Related
results also appear in [5].

LeEMMA 3:6. Let X be any tangle, T and f/a be rational tangles, and b(p, q) be a 4-plat,
such that N X +T) = (1) and N(X+ f/a) = b(p,q).

(1) If T = oo then L(p,q) can be obtained by (f+ sx)/a surgery along a knot in S3,
where s an integer and p = + (f+ sa).

(2) If T = (0) then L(p, q) can be obtained by (a+sp)/p surgery along a knot in S®,
where s an integer and p = + (a+sp).

Proof. The 2-fold branched cyeclic cover of {1} is 83, the 2-fold branched cyeclic

cover 7" of T is a solid torus, so the 2-fold branched cyclic cover X’ of X is a knot
complement.

For the moment let us assume 7' = 00. Then the arcs NW to SW and SW to SE on
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OT lift respectively to a meridian x" and a longitude A’ on 87”. The first equation
implies X U, (o0) = 8% where g:0(c0)—>0X is a glueing map. Lifting to 2-fold
branched covers we have X’ U, T" = S®, where g': 07" > 0X’. Choose a meridian g =
g’(#’) and a longitude A on 0X’. Then A is isotopic to the curve ¢’(u’) +sg’(A’) for some
integer s. There exist (see [19]) orientation-preserving homeomorphisms ¥ and F,
where

(1) F maps the oo tangle to the f/a tangle,

(ii) :0T" - 0T sends the meridian x4’ to a curve isotopic to fu’+aX’,

(iii) the maps F|; and ¥ commute with the covering map p|,: 07" — 07T, that is,
(2la) (Fla) = ¥r(ply)-

Using the second equation N(X + #/a) = b(p, q), the 2-fold branched cover L(p, q) of
b(p,q) can be constructed as X’ U,., T". The glueing map g'yr: 87" - 0X’ maps 4’ to a
curve isotopic to (f+ sa) u+aA. Hence L(p, q) is obtained by (f+ sa)/a surgery on the
knot complement X’. The group H,(L(p, q)) = Z,, is generated by the meridian x, and
80 p =1 (f+sa).

The result for the case T = (0) is proved in the same way. The only difference is
that the map ¢ sends the meridian x4’ (the lift of the SW SE arc) to a curve isotopic
to ap’+pA".

TuEOREM 3-7. Let X be any tangle, let T and f/o be rational tangles, and let b(p,q)
be a 4-plat, where N X+T) = (1) and N(X + 8/a) = b(p, q).

If T = © then q = t+at® (mod p) for some integer ¢.

If T = (0) then q = + ft? (mod p) for some integer t.

Proof. Let us recall the following facts.

(i) L(p,q) is obtained by p/q surgery on the unknot in S? (see [20]).

(ii) Suppose that M is a 3-manifold and H,(M) = Z,. If M is obtained by p/q
surgery on a knot £ in 83, then the linking form L: H (M) x H,(M) > Q/Z is such that
L{g,g9) = q/p where g is a generator of H,(M) representing a meridian of the knot k
(see [17]). )

By (i) and (ii) there exists a generator { of H,(L(p, q)) such that L({, &) = ¢/p. By
Lemma 36 and (ii) there exists a generator £ of H,(L(p,q)) such that L(£ £) =
af/(f+sa)=+a/p if T=oc0 and L(& &) = B/(a+sf)=+p/p if T=(0). Now
H,(L(p,q)) is cyclic, so that { = t£ for some integer ¢, and q/p = £?L(£,£) in Q/Z. |

The following corollary (and proof) is due to M. Boileau ; it is of use in the analysis
of site-specific recombination in Section 6.

CoroLLARY 3-8 (Boileau). If T is either oo or (0), then there is no tangle X which
satisfies the equations (i) NX+7T) = (1) and (ii)) NX + (1)) =<1,1,1,1,1).

Proof. Since <1,1,1,1,1> = b(8,5), this follows from Theorem 3-7 on taking
a=f==1, p=8and q =5, since 5= +?(mod 8) has no solution for ¢.

4. Site-specific recombination

We will now consider the situation of site-specific recombination enzymes
operating on covalently closed circular duplex DNA. Duplex DNA consists of two
linear backbones of sugar and phosphorus. Attached to each sugar is one of the four

bases: . . )
A = Adenine, T = Thymine, C = Cytosine, G = Guanine.
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A ribbon surface is formed by hydrogen bonding between base pairs, where A binds
with T, and C binds with G. In the classical Crick—Watson model for DNA, the ribbon
is twisted in a right-handed helical fashion. If two DNA ribbons are twisted about
each other in a helical fashion (like the twisting of the DNA backbones about each
other), each full twist forms a DNA supercoil. If the axis of a DNA ribbon is planar
(relaxed DNA), the pitch of the twisted ribbon is approximately 10-5 base pairs per
full helical twist. If the axis of the DNA is non-planar, or the DNA is under stress,
or bound to a protein, the helical pitch can change. Duplex DNA can exist in closed
circular form, where the ribbon surface forms a twisted orientable band (instead of
a twisted Mobius band). In the case of circular duplex DNA, the ribbon surface forms
a mathematical framing for the normal bundle of the central axis of the molecule.
Given a circular duplex DNA molecule, one can ‘nick’ (break) one of the two DNA
backbones with an enzyme called dnase, and the nicked molecule then loses its desire
to supercoil in 3-space and ‘relaxes’. Nicking one of the backbone strands does not
change the knot type of the axis of the molecule. Relaxed unknotted circular duplex
DNA, for example, is believed to assume a configuration in which its axis is nearly
planar. After relaxation by nicking, one can then repair the nick in the DNA
backbone with another enzyme called ligase, obtaining a relaxed DNA molecule with
no breaks in either backbone. If one orients the backbone strands in a parallel
fashion, the relaxed-state linking number (Lk,) of the backbone strands of the ligated
relaxed molecule can be used as a reference for measuring the framing of the
supercoiled molecule of the same knot type, using the linking number (Lk) of the
backbone strands of the supercoiled molecule. For unknotted circular duplex DNA,
the framing (Lk,—Lk) is an observable via gel electrophoresis, because a change of
+1 in the framing is converted by the local stiffness of the ribbon (its desire to
maintain a locally constant helical pitch) into +1 supercoils (see [24, 33]). The
differential geometry of ribbons in 3-space [33] plays an important role in
understanding supercoil formation, helical twist of duplex DNA, and the mechanism
of topoisomerase enzymes which pass DNA through itself in order to reduce
molecular entanglement (see [29]).

Site-specific recombination is one of the ways nature alters the genetic code of an
organism, either by moving a block of DNA to another position on the molecule (a
move performed by transposase), or by integrating a block of alien DNA into a host
genome (a move preformed by integrase). An enzyme which mediates site-specific
recombination on DNA is called a recombinase. A recombination site for a given
recombinase is a short (10-15 base pairs) linear segment of DNA whose genetic
coding is recognized by the recombinase. Site-specific recombination can occur when
a pair of sites (on the same or on different DNA molecules) becomes juxtaposed in
the presence of the recombinase. The pair of sites is aligned (brought close together),
probably through enzyme manipulation or random thermal motion (or both), and
both sites (and perhaps some contiguous DNA) are then bound by the enzyme. This
stage of the reaction is called synapsis, and we will call the protein-DNA complex (in
the biochemical sense) formed by the part of the substrate which is bound to the
enzyme together with the enzyme itself the local synaptic complex. We will call the
entire DNA molecule(s) involved in synapsis (which includes the parts of the DNA
molecule(s) not bound to the enzyme) together with the enzyme itself the synaptic
complex. After forming the local synaptic complex, the enzyme then performs two
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Fig. 6. A single recombination event.

double-stranded breaks at the sites, and recombines the ends by exchanging them in
an enzyme-specific manner. The local synaptic complex then dissociates, and the
DNA is released by the enzyme. We call the pre-recombination unbound DNA
molecule(s) the substrate, and the post-recombination unbound DNA molecule(s) the
product. The schematics of a single recombination event on a synaptic complex are
shown in Figure 6. In these figures, double-stranded DNA is represented by a single
line, and supercoiling is omitted.

The process of recombination clearly involves some interesting topological changes
in the substrate. In order to trap these topological changes, one chooses to perform
experiments on circular DNA substrate. One must perform an experiment on a large
number of circular molecules in order to obtain an observable amount of product.
Using cloning techniques, one can synthesize circular duplex DNA molecules which
contain two copies of a recombination site. The linear base pair sequence induces a
local orientation on each of the recombination sites. The orientation of each of the
recombination sites induces an orientation on the ambient circular DNA molecule.
If these induced orientations agree, this site configuration is called direct repeats, and
if the induced orientations disagree, this site configuration is called inverted repeats.
If the substrate is a single DNA circle with direct repeats, the recombination product
is a pair of DNA circles, and can form a DNA link (or catenane) (Figure 7). If the
substrate is a pair of DNA circles with one site each, the product is a single DNA
circle (Figure 7 read in reverse), and can form a DNA knot. If the substrate is a single
DNA circle with inverted repeats, the product is a single DNA circle, and can form
a DNA knot (Figure 8).

The experimental strategy is to observe the enzyme-caused changes in the
euclidean geometry (supercoiling) and topology (knotting and linking) of the DNA,
and to deduce enzyme mechanism from these changes. This has been called the
topological approach to enzymology [30]. The geometry and topology of the circular
substrate are experimental control variables. The geometry and topology of the
recombination reaction products are observables. It is a new observation technique
(rec A enhanced electron microscopy) [15] which makes possible the detailed knot-
theoretic analysis of reaction products. Rec 4 is an K. coli protein which binds to
DNA. Naked duplex DNA is approximately 20 angstroms in diameter, and rec A
coated DNA is approximately 100 angstroms in diameter. The process of rec 4
coating fattens, stiffens and stretches (untwists) the DNA. The enlarged diameter of
rec A coated DNA means that crossovers in electron micrographs of rec A coated
DNA circles can (usually) be unambiguously resolved. In vitro (in the laboratory)
experiments usually proceed as follows. Circular substrate is prepared, with all of the
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substrate molecules representing the same knot type (usually the unknot). The
amount of supercoiling of the substrate molecules (the supercoiling density) is also a
control variable. The substrate molecules are reacted with a high concentration of
purified enzyme, and the reaction products are fractionated by gel electrophoresis.
DNA molecules are naturally negatively charged, with the amount of negative
charge proportional to the molecular weight. A gel is a protein medium through
which the DNA molecules can be forced under the influence of an electric field. A
DNA sample is placed at the top of a gel column, and similar molecules migrate in
the electric field with similar velocities, forming discrete DNA bands in the gel when
the electric field is turned off. Normally, gel electrophoresis discriminates among
DNA molecules on the basis of molecular weight; given that all molecules are the
same molecular weight (as is the case in these experiments), electrophoresis
discriminates on the basis of subtle differences in the geometry (supercoiling) and
topology (knot and link type) of the DNA molecules. For example, in unknotted
DNA, gel electrophoresis discriminates on the basis of number of supercoils
(framing), and can detect a difference of one in the number of supercoils. In gel
electrophoresis of knotted and linked DNA, one must nick the reaction products
prior to electrophoresis in order to relax the molecular knots and links, because
supercoiling confounds the gel behaviour. For nicked DNA knots and links, under
the proper conditions gel velocity is (surprisingly) determined by the crossover
number of the knot or link; knots and links of the same crossover number migrate
with the same gel velocities {see [10]). After running the gel, the gel bands are
excised, and the DNA molecules are removed from the gel, and coated with rec A
protein. The DNA molecules are then shadowed with platinum for viewing under the
electron microscope. Electron micrographs of the reaction products (see Figures 9,
10) are made, and frequency distributions of knot types of the products are prepared.

5. The tangle model

In site-specific recombination on circular substrate, two kinds of geometric
manipulation of the DNA occur. The first is a global move, in which the sites are
juxtaposed, either through enzyme action or random collision (or some combination
of these or other processes), and the enzyme binds to the DNA, forming the synaptic
complex. In electron micrographs of synaptic complexes in various experiments, the
enzyme can be seen as a small black mass attached to a large DNA circle. After
synapsis is achieved, the next move is local, and entirely due to enzyme action.
Within the region controlled (bound) by the enzyme, the enzyme breaks the
molecular circle(s) at each site, and recombines the ends by exchanging them. We will
model this local move, and focus on the pre-recombination and post-recombination
structure of the local synaptic complex. We model the enzyme itself (or, if necessary,
its sphere of influence) as an enzyme ball (B%). The local synaptic complex consisting
of the pair (enzyme, bound DNA) forms a 2-string tangle in the enzyme ball. We
make the usual biological assumption that the enzyme mechanism is constant,
independent of the variable euclidean geometry (supercoiling) and topology (knotting
and linking) of the substrate population. That is, given any two pre-recombination
copies of the local synaptic complex pair (enzyme, bound DNA), one can by rotation
and translation superimpose one pair on the other. We likewise assume that all of the
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Fig. 7. Hypothetical recombination link synthesis.

copies of the post-recombination local synaptic complex are congruent. The enzyme
ball does not come equipped with a preferred boundary parametrization; in order
to do calculations, we must coordinatize the local synaptic complex by choosing one.
We assume that this choice of boundary parametrization is enzyme-specific, in the
sense that one makes the ‘same’ choice over a population of local synaptic complexes
which may form during an experiment. At synapsis, we assume that the
recombination action takes place entirely within the interior of the enzyme ball, and
that the substrate configuration outside the ball remains fixed while the strands are
being broken and recombined inside the enzyme ball.

For symmetry of mathematical exposition, we take the point of view that the
reaction is taking place in the 3-sphere 8. A single synaptic complex will involve one
copy of the enzyme, and one or two substrate DNA circles. The boundary of the
recombination ball (the enzyme S?) divides the pair (8%, DNA circle(s)) into two
complementary tangles, glued together along their common boundary. In Figures 7,
8, the dotted circle represents an equatorial circle on the enzyme S* The enzyme S*
divides the substrate into two complementary tangles, the outside tangle O, and the
site tangle 7'. The tangle 7' is the pre-recombination local synaptic complex. The local
effect of recombination is to perform tangle surgery, that is, to delete the site tangle
T from the synaptic complex. and replace it with the recombinant tangle R. The
tangle R is the post-recombination local synaptic complex. As in Figure 8, the knot
types of the substrate and the product yield equations in the recombination variables
0, T and R. Specifically, a single recombination event products two equations in
three unknowns:

Substrate equation: N(O+T) = substrate;
Product equation: N(O+ R) = product.

Tangle model strategy. The purpose of the tangle model [25, 26, 27] is to compute
the structure of the pre-recombination and post-recombination synaptic complex,
given information about the substrate and product. Ideally, we will treat each of O,
T, R as recombination variables, and solve the above equations posed by experiment
for these unknowns. Since a single recombinant event yields only two equations
involving three unknowns, the best we can hope for, given only this information, is
to solve for any two in terms of a third. The analysis is greatly simplified at this point
by making the following biologically reasonable assumption:

Biological assumption. The enzyme mechanism (the change from 7' to R) is an
enzyme-specific constant, independent of the geometry and topology of the substrate.
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Fig. 8. The substrate and product equations.

In some experiments, the substrate may be a population of unknotted circular
molecules, but these molecules come equipped with different amounts of supercoiling.
Single recombination events can trap some of this euclidean geometry of unknots (as
in Figures 7 and 8), producing a distribution of product knot (link) types from a
single substrate knot type. This is what happens in the phage A experiment, described
in Section 7. In the phage A experiment, then, the outside tangle O can vary over a
number of configurations, but the tangles 7" and R appear in a number of pairs of
equations, one for each product type.

In the T'»3 resolvase experiment which is described in Section 6, multiple rounds
of recombination occur, and some of the variables appear often enough to allow
solution of the equations. We wish to model multiple rounds of recombination. There
are two ways in which multiple recombination can happen. One way is called
distributive recombination, in which the enzyme binds to the DNA, performs one or
more recombination moves, releases the DNA, and then another copy of the enzyme
attaches to the unbound DNA, performs recombination, etc. In distributive
recombination, multiple rounds of recombination occur at multiple binding
encounters between DNA and enzyme. A mathematically simpler and biologically
significant situation is processive recombination, in which multiple rounds of
recombination occur at a single binding encounter between DNA and enzyme, after
which the DNA is released and undergoes no more recombination. In this situation,
the synaptic complex stays intact through multiple recombination events. In order
to model processive recombination, we make the following biologically reasonable
assumption:

Mathematical assumption. Processive recombination acts by tangle addition; for
each additional round of processive recombination, we add a copy of the recombinant
tangle B.
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Equivalently, for processive recombination, the transformation from processive
recombinant round one to processive recombinant round two is to replace the tangle
R by the tangle (B +R), etc. This assumption of tangle addition allows us to solve the
tangle equations, obtaining answers which agree with observations.

In the analysis of the phage A and T'n3 resolvase experiments, we make use of
recent results in Dehn surgery on 3-manifolds [9] to prove that many of the solutions
to the tangle equations are rational tangles. If one makes the reasonable biological
assumption that the enzyme itself forms a 3-ball, and that the two DNA strands are
bound to the surface of the enzyme (both before and after recombination), then the
pre- and post-recombination local synaptic complexes (the tangles 7' and R) will be
rational tangles. We do not make this biological assumption in the analysis below,
since the simplicity of the recombination products forces rationality of many of the
tangle solutions.

Another mathematical treatment of site-specific recombination occurs in [34], in
which the Jones polynomial is used. In [34] (in terms of the tangle notation of this
paper) it is assumed that the site tangle 7' = {0), and that the recombinant tangle
R = (£1). Knowledge of the topology of the substrate and product(s) is then used
to compute the Jones polynomials of other products. This contrasts with our
method, in which we solve tangle equations to obtain information about 7', R and O.

6. Tn3 resolvase

Tn3 resolvase is a site-specific recombinase which reacts with certain circular
duplex DNA substrate with directly repeated recombination sites [31, 32]. One
begins with supersoiled unknotted DNA substrate, and treats it with resolvase. Most
of the time, resolvase mediates one round of recombination, and releases the linked
product. The principal product [31] of this reaction is known to be the Hopf link of
Figure 7, the 4-plat (2). Moreover, when endowed with orientation inherited from
the parent unknotted substrate, this recombination product has linking number —1:
see [31]. Resolvase is known to act dispersively in this situation: to bind to the
circular DNA, to mediate a single recombination event, and then to release the linked
product. It is also known that resolvase and free (unbound) DNA links do not react,
presumably because the enzyme cannot manage the juxtaposition of the sites when
each site is on a separate molecule. However, in one in 20 encounters, resolvase acts
processively : additional recombinant strand exchanges at a single binding encounter
are promoted prior to the release of the product, with yield decreasing exponentially
with increasing number of recombination rounds. Minor products are the figure 8
DNA knot (the 4-plat (2,1, 1)), believed to be the result of two rounds of processive
recombination ; the DNA Whitehead link (the 4-plat (1,1, 1,1, 1)), believed to be the
result of three rounds of processive recombination ; and the 6-crossing DNA knot 6,
(the 4-plat {1,1,1,2,15), believed to be the result of four rounds of processive
recombination. The discovery of the DNA knot {1,1,1,2, 1) substantiated a model
for Tn3 resolvase mechanism: see [32]. Figure 9 shows the DNA knot (1,1,1,2,1>
(from [32]).

We now prove that the experimental results of the first two rounds of processive
Tn3 recombination yield tangle equations with four solutions for the tangles O and
R. The third round of iterated recombination can then be used to discard three of
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Fig. 9. The DNA knot ¢1,1,1,2,1) (from [32)).

these solutions, leaving us with the one believed to be biologically correct. This
theorem can be viewed as a mathematical proof of resolvase synaptic complex
structure: the model proposed in [32] is the only explanation for the first three
observed products of 73 recombination, assuming that processive recombination
acts by adding on copies of the recombinant tangle R. The first round of T3
recombination is that shown in Figure 7.

TrEOREM 6.1. Suppose that tangles O. T and R satisfy the following equations:
(i) N(O+T) = {1); (ii) NO+R) = {(2); (iii) N(O+R+R) =<{2,1,1). Then {O,R} is
one of {(—3.,0), (1)}, {(3,0), (— 1)}, {(—2, —3, —1), (1)} or {(2,3.1), (—1)}.

Proof. The first step in the proof is to argue that R must be a rational tangle. Now
R, O and (O+ R) are locally unknotted, because N(O+ R) is the 4-plat (2). Likewise,
T is locally unknotted, because N(O+T) is the unknot. Moreover, if B is a prime
tangle of parity (0) or (1), and 4 is any locally unknotted tangle, then (4 +B) is
likewise a prime tangle (see [16]). Now if R has the parity of co, then N(O+ R+ R)
must be a link of either 2 or 3 components. Since N(O+ R+ R) is a knot, then R has
the parity of (0) or (1). Hence, if R is a prime tangle, then so is (O+R). But
N((O+R)+R) is the 4-plat (2, 1, 1), so R cannot be a prime tangle (Lemma 3-1). This
means that R is a rational tangle.

The next step is to show that O is a rational tangle. Suppose that O is a prime
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tangle. Then 7' must be a rational tangle, because N(O+ T') is the unknot. The 2-fold
branched cyclic cover O’ is a knot complement. Now R is a rational tangle, so by
Lemma 24, R+ R is locally unknotted. Since N(O+ (R+R)) = (2,1, 1), we conclude
that (R +R) is a rational tangle. Taking the 2-fold branched cyclic covers, we have
that N(O+R)" = L(2,1), and N(O+R+R) = L(5,3). Since both R and R+ R are
rational tangles, this means that Dehn surgery on the knot complement O” produces
L(2,1) and L(5, 3). Application of Lemmas 3-2 and 3-4 shows that O’ must be a solid
torus, a contradiction to the assumption that O was a prime tangle. We conclude that
O is a rational tangle.

We will now use the equations (ii) and (iii) to compute simultaneously the rational
tangles O and R. Since both (2) and (2, 1, 1) are achiral 4-plats (equal to their mirror
images), given any solution {0, R} for these two equations, then { — 0, — R} is likewise
a solution. If both O and R are non-integral, then N(O+R+R) is a non-trivial
Montesinos knot (see [7], p. 196), and cannot be a 4-plat. Since N(O+R+R) =
(2,1,1) is a 4-plat, we conclude that exactly one of {O, R} must be an integral
tangle, and that O # o« # R.

Suppose that R is the integral tangle (r), so (R+R) = (2r). If r = 0, then

(2) = N0 +(0)) = NO+(0)+(0)) = <2,1, 1),

a contradiction. If R = r and O = u/v is a solution for equations (ii) and (iii), then by
Lemma 2-1 the integers u, v and r satisfy the following two equalities:

lu+rv| =2, |u+2r|=5.
These equations have the following solutions:

From the first solution set, u = —1 and rv = 3, so as possible values for solutions we
have

{(w/v,n)} ={(—1/3, D} {(1/3, = D} {(=1.3)}, {(1, =3)}.

The last two are not solutions to (iii), and are discarded. Working through all the
values for {(u, rv)} and discarding extraneous solutions, we find that we are left with
the solutions stated in the theorem. This means that {(—3,0), (1)}, {(3,0),(—1)},
{(=2, =3, —1),(1)} and {(2, 3, 1), (— 1)} form a complete set of solutions for {0, R} in
equations (ii) and (iii), if R is integral.

Suppose now that O = (s) and R = u/v (where » > 1) form a set of solutions to
{(ii), (ii1)}. By Lemma 2-1 we have |u+sv| = 2. Since O is integral, then

N(O+R)+R) =NR+(R+0)) =<2,1,1).
The tangle (R+0) is classified by the rational number (s+u/v), so application of
Lemma 2-1 gives
|2uv + sv¥| = v|2u+ sv| = 5,
so v = 5. Simultaneous solution of the equations {Ju+5s| = 2,|2u+5s| = 1} yield

solutions

(u,8)€{(—1,3/5), (1, =3/5),(—=3,1),(3, = 1)}.

The first two solutions are discarded because s is not an integer ; the last two solutions
are discarded because they do not yield solutions to equation (iii).
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In order to determine which of the four solutions produced in the above theorem
is the biologically correct one, we need more experimental evidence : in particular, we
need a chiral (not equivalent to its mirror image) recombination product. Without a
chiral product, there will always be an even number of solutions. Fortunately, such
evidence is available. In the case of site-specific recombination with direct repeats,
the result of three processive rounds of 7%3 recombination is the Whitehead link,
which is chiral (as an unoriented link). This chiral product determines the biologically
correct solution for {O, R}, and predicts the result of four or more rounds of iterated
recombination at a single binding encounter. The predicted fourth round of
processive Tn3 recombination (the DNA knot (1,1, 1,2, 1)) has been observed [32].

COROLLARY 6-2. Suppose that tangles O, T and R satisfy the following equations:
(i) NO+T)=<1); (ii) NO+R)=<(2); (iii)) NO+R+R)=<2,1,1>; (iv)
NO+R+R+R)=<1,1,1,1,1>. Then {O,R]={(—3,0),(1)}, and NO+R+R+
R+R)=<1,1,1,2,1>.

Proof. From Theorem 6-1, we know that {O,R} = {(—3,0),(1)}, {(3,0),(—1)},
{(—2, -3, —1),(1)}and {(2, 3, 1), (— 1)} form a complete set of solutions to (i)—(iii). Of
this group, it is easily verified that {(—3,0), (1)} is the only solution to (iv). |

There is another observed chiral product of processive Tn3 recombination. For
site-specific recombination on a circular substrate with direct repeats, the orientation
of the circular substrate induces an orientation on the DNA link which is the result
of one round of recombination. The observed linking number of the DNA Hopf link
produced by one round of Tn3 recombination is equal to —1 (see [31]). How can this
information be used ? In Corollary 6-2, for example, if one adds to the hypothesis the
assumption that the parity of 7"is (0), and the linking number of N(O+R) is —1, then
the knowledge that the second round of processive recombination is the DNA figure
8 knot is enough to determine the biologically correct form of {O, R}, and to predict
the third and all further rounds of processive recombination. On the other hand,
knowledge of the correct structure of {0, R} and the linking number of the first round
of recombination can be used to gain information about the site tangle 7'

CorOLLARY 6:3. Suppose that the tangle T satisfies the following equations:
(i) N(—3,0)+T) =<1> and (ii) N((—3,0)+ (1)) = (2> (with linking number —1).
Then T has the parity of (0). If T is rational, then T = (2x, 3,0) for some integer x.

Proof. We attempt to solve the equation N((—3,0)+7") = (1) for the unknown 7.
The tangle 7' cannot have the parity of (1), because then N(O+7) would be a 2-
component link. In the equation N(O+T) = {1}, if the unknot is oriented, then the
tangle O inherits an orientation. This induced orientation for O depends on the parity
of T. The orientation for O in turn induces an orientation for the Hopf link in the
second equation, and a linking number is then defined. If 7' has the parity of (0),
this linking number is —1. If 7" has the parity of oo, this linking number is +1.
Therefore 7' has the parity of (0). If 7' is a rational tangle, then (by Theorem 2-2)
T = (22,3,0) for some integer x. Note that 7' = (0) if x = 0.

The rational tangle calculus can be used to obtain lower bounds on the minimum
number of recombinant events separating DNA configurations. For example, in
[28, 31], it is asked if it is possible to convert the unknot to the Whitehead link
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{1,1,1,1,1) in a single recombinant event. If one assumes that 7 is either (0) or oo,
and R is (+1), then Corollary 3-8 answers this question in the negative.

7. Phage A integrase

Bacteriophage lambda is a virus which attacks bacteria, inserting its own genetic
material into that of the host. The genetic insertion mechanism is site-specific
recombination by the enzyme Int. One prepares unknotted duplex circular substrate
with two copies of the recombination site for the Int reaction. The first experiment
we discuss [23] was performed with inverted repeats of the recombination sites, the
second with direct repeats of the recombination sites. The enzyme Int does not
perform iterated recombination, because the site sequences are severely disrupted by
one round of recombination. One round of In{ recombination on supercoiled
unknotted substrate produces a remarkable family of reaction products. Specifically,
for inverted repeats, the family of 4-plat DNA knots {{—(2k+1)> |0 < k < 11} was
observed. For direct repeats, the family of 4-plat DNA links {{(—(2k)>|0 < k < 11}
was observed. The reason that a family of reaction products arises from a single knot
type (the unknot) as the substrate is because the unknots come equipped with
various degrees of supercoiling, and some of this supercoiling is trapped by the
recombination reaction, as in Figure 8. The fact that more than one product was
observed in each case means that the outside tangle O varies from substrate molecule
to substrate molecule, depending on the degree of supercoiling. Figure 10 (from [23])
shows an electron micrograph of the Int knot {—13).

Our first theorem deals with inverted repeats, and argues that the site and
recombinant tangles, and one of the outside tangles for Inf must be rational.

THEOREM 7-1. Suppose that there exist tangles O, (k = 0,1,2), T and R, which satisfy
the equations (i) N(O,+T) = (1) and (ii) N(O,+R) = {(—(2k+1)). Then T, R and O,
are rational tangles.

Proof. Since N(O,+T) = (1), both O, and T are locally unknotted (for all ); and
N(Oy+R) = {—1) = (1) means that R is locally unknotted. If 7 is a prime tangle,
then O, is rational for all k. The 2-fold branched cyclic cover 7" is a knot complement
which admits 2 Dehn surgeries (for £ = 0, 1) which produce 83. These Dehn surgeries
must have distinct slopes because of the second set of equations. The knot
complements theorem [13] assert, that this is impossible unless the Dehn surgery is
performed on the unknot, and hence the tangle 7 is rational. This result also follows
from the fact that strongly invertible knots have property P: see [5]. A similar
analysis of both equations for the case k£ = 0 shows that O, is rational. Moreover, if
R is a prime tangle, then O, is rational (for k = 0, 1, 2), and the 2-fold branched cyclic
cover R’ admits Dehn surgeries which produce 83, L(3, 2) and L(5, 4). Application of
Lemmas 3-2 and 3-4 proves that R is a rational tangle.

Our next theorem is the analogue of Theorem 7-1, for the case of Int direct repeats.

THEOREM 7-2. Suppose that there exist tangles O, (k=0,1,2,3), T and R, which
satisfy the equations (i) N(O+T) = (1) and (ii) N(O,+R) = {(—(2k))>. Then T, R and
0, are rational tangles.

Proof. As above, T, R and O, are locally unknotted (for all k). The argument that
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Fig. 10. The DNA knot {—13) (from [23]).

T is a rational tangle is identical to that contained in Theorem 7-1. If R is a prime
tangle, then there are 4 Dehn surgeries in the 2-fold branched cyclic cover R” which
produce L(0,1)=S8"xS8* L(2.1), L(4,3), and L(6.5). Application of the cyclic
surgery theorem yields that R is a SFS. Application of Lemma 3-5 yields that R’ is
a solid torus, and so R is a rational tangle.

Since R is rational, the 2-fold cover Oy is a knot complement which admits a non-
trivial Dehn surgery which produces S* x S*. By Property R for strongly invertible
knots [4, 12], this means that Oy is a solid torus, and 0, is a rational tangle.

We would like to obtain some results on the structure of the tangles O, 7' and R.
Indeed, one of the main conclusions of [23] was that the observed reaction products
lead to the conclusion that the substrate supercoiling is plectonemic, or, in terms of
tangles, that the substrate tangle is a row of vertical half-twists (0, = (n,, 0) for some
integer n,). Without some assumptions about {7', 0., R}, we cannot solve equations
like those in the above theorems. One assumption generally made by biologists is
that 7'= (0) or (0,0) and R = (£1) or (0,0) (see for example [23]). Even these
assumptions are not a great help, because one observes that the prime tangle B of
Figure 1 (b) has the property that N(B+ (0)) = unknot, and N(B+(—1)) = {(—5). So,
assuming simplicity of 7'and R for these equations does not in general rule out prime
tangle solutions for O,. If one additionally assumes that O, is a rational tangle for all
k, then indeed the equations can be solved, and for the answers biologically expected.
Full discussion of these matters, as well as analysis of other enzyme experiments is

to be found in [27]. Moreover a calculus for framed oriented rational tangles exists,
17 PSP 108
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which utilizes the observed change in framing (when both substrate and a product
are unknotted) to give more information on how the ribbons themselves are
manipulated by the enzymes.
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