
Chapter 1
Knots, Singular Embeddings, and Monodromy

Markus Banagl, Sylvain E. Cappell,
and Julius L. Shaneson

Abstract The Goresky-MacPherson L-class of a PL pseudomanifold piecewise-
linearly embedded in a PL manifold in a possibly nonlocally flat way, can be
computed in terms of the Hirzebruch-Thom L-class of the manifold and twisted
L-classes associated to the singularities of the embedding, as was shown by Cappell
and Shaneson. These formulae are refined here by analyzing the twisted classes.
We treat the case of Blanchfield local systems that extend into the singularities as
well as cases where they do not extend. In the latter situation, we consider fibered
embeddings of strata and 4-dimensional singular sets, using work of Banagl. Rho-
invariants enter the picture.

1.1 Introduction

Let Mn+2 be a closed, oriented, connected PL manifold of dimension n+2 and Xn a
closed, oriented, connected PL pseudomanifold of dimension n. Let i : X ↪→ M be a
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not necessarily locally flat PL embedding. Let L∗ = 1 +L1(p1)+L2(p1,p2)+ · · ·
be the total Hirzebruch L-polynomial,

L1(p1) = 1

3
p1, L2(p1,p2) = 1

45
(7p2 − p2

1), . . . .

Let P(M) ∈ H ∗(M;Z) be the total Pontrjagin class of M and the Euler class χ ∈
H 2(M;Z) be the Poincaré dual of i∗[X] ∈ Hn(M;Z), where [X] is the fundamental
class of X. Set

L∗(M,X) = [X] ∩ i∗L∗(P (M) ∪ (1 + χ2)−1) ∈ H∗(X;Q).

Recall that the sequence L1,L2, . . . of polynomials is the multiplicative sequence
associated to the even power series defined by x/ tanh(x). Thus

L∗(1 + χ2) = χ

tanh(χ)
= 1 + 1

3
χ2 − 1

45
χ4 ± · · ·

and by the multiplicativity of {Lj },

L∗((1 + χ2)−1) = tanh(χ)

χ
= 1 − 1

3
χ2 + 2

15
χ4 ∓ · · · .

Hence the above defining expression for L∗(M,X) may alternatively be written
as

L∗(M,X) = [X] ∩
(

tanh i∗χ
i∗χ

∪ i∗L∗(PM)

)

= [X] ∩
((

1 − 1

3
i∗χ2 + 2

15
i∗χ4 ∓ · · ·

)
∪ i∗L∗(PM)

)
.

When this formula is pushed on into M , one obtains

i∗L∗(M,X) = i∗
(

[X] ∩ i∗
(

tanhχ

χ
∪ L∗(PM)

))

= i∗[X] ∩
(

tanhχ

χ
∪ L∗(PM)

)

= ([M] ∩ χ) ∩
(

tanhχ

χ
∪ L∗(PM)

)

= [M] ∩ (tanhχ ∪ L∗(PM)).

If the embedding is nonsingular, that is, X is a locally flat submanifold, then

L∗(X) = L∗(M,X),
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where L∗(X) is the Poincaré dual of the Hirzebruch L-class of X. In particular, the
signature σ(X) = L0(X) is given by

σ(X) = L0(M,X).

If the embedding is singular, the singularities of X and the singularities of the
embedding induce a stratification of the pair (M,X). Under the assumption that
there are no strata of odd codimension, it was shown in [CS91] that the Goresky-
MacPherson L-class L∗(X) ∈ H∗(X;Q) of X, defined using middle-perversity in-
tersection homology, can be computed as

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗L∗(V ; BR

V ), (1.1)

where the sum ranges over all connected components V of pure strata of X

that have codimension at least two, iV : V ↪→ X is the inclusion of the clo-
sure V of V into X and L∗(V ; BR

V ) ∈ H∗(V ;Q) is the Goresky-MacPherson L-
class of V twisted by a local coefficient system BR

V . This local system is en-
dowed with a nonsingular symmetric or skew-symmetric form BR

V ⊗ BR

V → R

and arises as Trotter’s “scalar product” [Tro73] of a certain Blanchfield local sys-
tem BV ⊗ Bop

V → Q(t)/�, � = Q[t, t−1]. The systems are defined on V and do
not in general extend as local systems to the closure V . They do, of course, ex-
tend as intersection chain sheaves by applying Deligne’s pushforward/truncation-
formula to BR

V , and L∗(V ; BR

V ) is defined as the L-class of this self-dual sheaf
complex on V . (For an introduction to the L-class of self-dual sheaves see
[Ban07].)

In the present paper, we refine formula (1.1) by computing the twisted classes
L∗(V ; BR

V ) further. Two cases are to be distinguished: The systems BR

V either extend
as local systems from V to V or they do not. In the former situation, the results of
[BCS03] apply and yield the formula (Theorem 6)

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗(c̃h[BR

V ]K ∩ L∗(V )), (1.2)

where the modification c̃h of the Chern character is given by precomposing with the
second Adams operation, c̃h = ch◦ψ2 and [BR

V ]K denotes the K-theory signature
of BR

V , an element of KO(X) if the form on BR

V is symmetric, and of KU(X) if
it is skew-symmetric. In the situation of nonextendable systems, formulae of type
(1.2), even when the right hand side is defined, cease to hold as counterexamples
of [Ban08] show. The main results presented here, then, are concerned with un-
derstanding the twisted signatures σ(V ; BR

V ) when BR

V does not extend as a local
system into the singularities of V . Theorem 10 asserts that

σ(X) = L0(M,X)

when all embeddings V − V ↪→ V are locally flat spherical fibered knots. In par-
ticular if M = Sn+2 is a sphere, we have σ(X) = 0, since L0(S

n+2,X) = 0. The
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remaining results all assume that i : X ↪→ M has a 4-dimensional singular set such
that the V are 4-manifolds and the bottom stratum consists of locally flat 2-spheres
(see Examples 1 and 2). If the 2-spheres have zero self-intersection numbers and
BR

V is positive (εV = 1) or negative (εV = −1) definite of rank rV , then

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

εV rV σ (V ),

with V ranging over all connected components V of the pure 4-stratum (Theorem 7).
Again we obtain a corollary for the case where M is a sphere:

σ(X) +
∑

V ⊂X4−X2

εV rV σ (V ) = 0.

Similar corollaries for embeddings in spheres can be deduced for the following re-
sults as well.

More generally, if the structure group of the form on V is O(pV ,qV ), then

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

(pV − qV )σ (V ) −
∑

V ⊂X4−X2

〈2(c2
1 − 2c2)(BC

V ), [V ]〉,

where 2(c2
1 − 2c2) is an H 4(V ;Z)-valued characteristic class (Theorem 8). As a

corollary (Corollary 4) we deduce that σ(X) − L0(M,X) is divisible by 8 if every
V is a 4-sphere. When the 2-spheres have nonzero self-intersection numbers, then
rho-invariants enter. Theorem 9 for positive, say, definite forms asserts that

σ(X) = L0(M,X)

−
∑

V ⊂X4−X2

(
rV σ (V ) +

nV∑
i=1

(c-rk(BC

V |Li
) sign[S2

i ]2 − ραi
(pi, qi))

)
,

where σ(V ) denotes the (Novikov-) signature of the exterior of the 2-spheres

nV⊔
i=1

S2
i ⊂ V ,

Li = L(pi, qi), a lens space, is the boundary of a regular neighborhood of S2
i in V ,

and αi is obtained by restricting BC

V to Li . The function ρα(p,q) is given by an
explicit formula, see Sect. 1.9, p. 26, where the constancy-rank c-rk(S) of a local
system S is defined as well.

Organization Section 1.2 reviews Blanchfield forms and their relation to Seifert
manifolds. Fundamental results of Levine, Trotter, Kearton and Kervaire are re-
called. Blanchfield and Poincaré local coefficient systems are defined. In Sect. 1.3
we review the Trotter trace T : Q(t)/� → Q, which allows us to pass from Blanch-
field local systems to Poincaré local systems. An important point here is that this
passage reverses symmetry properties: if the Blanchfield form is Hermitian, then
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the real Poincaré form is skew-symmetric and if the Blanchfield form is skew-
Hermitian, then the Poincaré form is symmetric. Section 1.4 serves mainly to set
up notation concerning the complexification of real sheaf complexes, forms, etc.
Various characterizations of extendability of a local system from the top stratum
of a stratified pseudomanifold into the singular strata are discussed in Sect. 1.5.
The K-theory signature of a Poincaré local system is recalled. Section 1.6 reviews
the twisted L-class formula of [BCS03]. The Cappell-Shaneson L-class formula for
singular embeddings, [CS91], is discussed in Sect. 1.7, where details on the strati-
fication induced by a singular embedding, together with an example, are also to be
found. Embeddings are always assumed to induce only strata of even codimension
and to be of finite local type and of finite type. The final two sections contain the
results of this paper; Sect. 1.8 for local systems that extend and Sect. 1.9 for systems
that do not extend.

1.2 Blanchfield and Poincaré Local Systems

Let R be a Dedekind domain, for example R = � = Q[t, t−1], the ring of Laurent
polynomials. Let F be the quotient field of R and let A and B be finitely generated
torsion R-modules. A pairing

A ⊗R B −→ F/R

is called perfect, if the induced map

A −→ HomR(B,F/R)

is an isomorphism. Suppose R is equipped with an involution r 
→ r̄ . Then Bop will
denote the R-module obtained by composing the module structure of B with the
involution. A pairing

β : B ⊗R Bop −→ F/R

is called Hermitian if

β(a ⊗ b) = β(b ⊗ a)−,

and skew-Hermitian if

β(a ⊗ b) = −β(b ⊗ a)−.

We will be primarily concerned with the ring R = � of Laurent polynomials. For
this ring, the quotient field F is F = Q(t), the rational functions. The involution on
R is given by replacing t with t−1.

Definition 1 An (abstract) Blanchfield pairing is a perfect Hermitian or skew-
Hermitian pairing

B ⊗� Bop −→ Q(t)/�,

where B is a finitely generated torsion �-module.
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A locally flat knot S2n−1 ⊂ S2n+1 possesses two related kinds of abelian invari-
ants associated to the map of the knot group to its abelianization Z: those arising
from the infinite cyclic cover of the knot exterior and those arising from choices of
Seifert manifolds. For later reference, we recall here some well-known facts about
the relation between the Blanchfield pairing and Seifert matrices. A Seifert mani-
fold for the knot is a codimension 1 framed compact submanifold of S2n+1 whose
boundary is the knot. Every (locally flat) knot has a Seifert manifold. Let K be
the exterior of the knot. The knot is simple, if πi(K) ∼= πi(S

1) for 1 ≤ i < n. The
(2n − 1)-knot is simple if and only if it bounds an (n − 1)-connected Seifert mani-
fold, [Lev65, Theorem 2]. A choice of Seifert manifold M2n together with a choice
of basis {bi} for the torsion-free part of Hn(M) determines a Seifert matrix A by
defining the (i, j)-entry to be the linking number of a cycle representing bi with a
translate in the positive normal direction to M of a cycle representing bj . Any such
A has the property that A + (−1)nAT is unimodular. In fact, A + (−1)nAT is the
matrix of the intersection form of M . Two square integral matrices are S-equivalent
if they can be obtained from each other by a finite sequence of elementary enlarge-
ments, reductions and unimodular congruences. An elementary enlargement of A is
any matrix of the form

⎛
⎝A 0 0

α 0 0
0 1 0

⎞
⎠ or

⎛
⎝A β 0

0 0 1
0 0 0

⎞
⎠ ,

where α is a row vector and β is a column vector. A matrix is an elementary reduc-
tion of any of its elementary enlargements.

Theorem 1 (Levine [Lev70]) Seifert matrices of isotopic knots of any odd dimen-
sion are S-equivalent.

Trotter [Tro73] abstractly calls a square integral matrix A with A + AT or
A − AT unimodular a Seifert matrix. Such an A must be even dimensional. Any
Seifert matrix A determines a Z[t, t−1]-module BA presented by the matrix tA +
(−1)nAT . The determinant of the latter matrix is the Alexander polynomial of the
knot,

�(t) = det(tA + (−1)nAT ),

defined up to multiplication with a unit of Z[t, t−1]. Moreover, A determines a non-
singular (−1)n+1-Hermitian pairing

βA : BA ⊗ B
op
A −→ F/Z[t, t−1],

given by the matrix (1 − t)(tA + (−1)nAT )−1, where F is the field of fractions of
Z[t, t−1].

Theorem 2 (Trotter [Tro73]) If A1 and A2 are S-equivalent Seifert matrices, then
there is an isometry (BA1 , βA1)

∼= (BA2 , βA2).
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Thus (BA,βA) is an invariant of the knot; BA is called the knot module of the
knot. Let K∞ be the infinite cyclic cover of the exterior K of the knot. The homol-
ogy group Hn(K∞) is a Z[t, t−1]-module via the action of the Deck-transformation
group, generated by t . Assume that the knot is simple. The Blanchfield pairing

b : Hn(K∞) ⊗ Hn(K∞)op −→ F/Z[t, t−1]
is nonsingular and (−1)n+1-Hermitian.

Theorem 3 (Kearton [Kea73]) If A is any Seifert matrix of a simple knot, then there
is an isometry (BA,βA) ∼= (Hn(K∞), b).

Particularly agreeable representatives of S-equivalence classes are provided by
the following result.

Proposition 1 (Trotter [Tro73]) Any Seifert matrix is S-equivalent to a nonsingular
matrix.

If A is a nonsingular Seifert matrix, then the Q-vector space BA ⊗Z Q has di-
mension

dimQ(BA ⊗Z Q) = rkA. (1.3)

We conclude this review with a geometric realization result due to Kervaire.

Theorem 4 (Kervaire [Ker65]) Let n > 2 be an integer and A a square integral
matrix such that A+ (−1)nAT is unimodular. Then there exists a simple locally flat
(2n − 1)-knot with Seifert matrix A.

Let (Xn, ∂X) be a pseudomanifold with (possibly empty) boundary and filtration

Xn = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X0 ⊃ ∅,

where the strata are indexed by dimension, the Xi ∩∂X stratify ∂X, and the Xi −∂X

stratify X − ∂X; � = Xn−2 is the singular set. For a ring R, let RX denote the
constant sheaf with stalk R on X.

Definition 2 A Blanchfield local system on X is a locally constant sheaf B on X

together with a pairing

β : B ⊗ Bop −→ (Q(t)/�)X,

such that for every x ∈ X, the stalk Bx is a finitely generated torsion �-module and
the restriction

βx : Bx ⊗ Bop
x −→ Q(t)/�

is a Blanchfield pairing.
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Definition 3 A Poincaré local system on X is a locally constant sheaf P on X

together with a pairing

φ : P ⊗ P → RX,

such that for every x ∈ X, the stalk Px is a finite dimensional real vector space and
the restriction

φx : Px ⊗ Px → R

is perfect and either symmetric or skew-symmetric.

1.3 Passage from Blanchfield Systems to Poincaré Systems

The method of partial fraction decomposition enables us to write any rational func-
tion f ∈ Q(t) uniquely in the form

f (t) = p(t) +
k∑

i=1

Ai

ti
+ g(t),

where p ∈ Q[t], Ai ∈ Q, and

g(t) =
l∑

j=1

kj∑
i=1

pi,j (t)

qj (t)i
,

pi,j , qj ∈ Q[t], the qj are distinct, irreducible, and prime to t , degpi,j < i degqj .
Since t does not divide qj , qj (0) �= 0 and thus g(0) ∈ Q is defined. The Trotter trace
T : Q(t) → Q is the Q-linear map

T (f ) = g(0).

If f ∈ � ⊂ Q(t), then g = 0 and so T (f ) = 0. Thus T passes from Q(t) to the
quotient Q(t)/�, T : Q(t)/� → Q.

Let B be a �-module. By restricting the coefficients to the subring Q ⊂ �, we
may regard B as a Q-vector space BQ. If B is finitely generated and torsion, then
BQ is finite dimensional. Using the standard embedding Q ⊂ R, we define the real
vector space BR = BQ ⊗Q R. Let β : B ⊗� Bop → Q(t)/� be a Blanchfield pairing.
Define

βR : BR ⊗R BR −→ R

by

βR((a ⊗Q λ) ⊗R (b ⊗Q μ)) = λμTβ(a ⊗� b),

a, b ∈ B , λ,μ ∈ R. Then βR is a perfect pairing on BR. The passage from β to βR

reverses symmetry properties: if β is Hermitian, then βR is skew-symmetric and if
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β is skew-Hermitian, then βR is symmetric. We denote the signature of this pairing
by σ(βR); it is zero in the skew-symmetric case.

If B = Hn(K∞) is the knot module of a locally flat knot S2n−1 ⊂ S2n+1 and β

the Blanchfield pairing for this knot, then the signature of βR can be computed as

σ(βR) = σ(M2n), (1.4)

where M2n is any Seifert manifold for the knot and σ(M2n) denotes the (Novikov-)
signature of its intersection form, see [CS91]. Note also that

σ(M2n) = σ(A + (−1)nAT ), (1.5)

where A is the corresponding Seifert matrix, since A + (−1)nAT is a matrix repre-
sentation of the intersection form.

If B is a local system of �-modules on a space X, then BR = BQ ⊗Q R, where
BQ is the local system of Q-vector spaces with stalks (BQ)x = (Bx)

Q obtained from
restricting coefficients to Q. Let β : B ⊗� Bop → (Q(t)/�)X be a Blanchfield local
system on a pseudomanifold X. Then the pairings (βx)

R : (Bx)
R ⊗R (Bx)

R → R

define a Poincaré local system

βR : BR ⊗R BR −→ RX.

1.4 Passage from Poincaré Systems to Complex Hermitian
Systems

Given a real vector space V of dimension n, let VC = V ⊗R C denote its complexifi-
cation, a complex vector space of dimension n. For example, R

n
C

= C
n. Taking com-

plex conjugation as the involution to be composed with the scalar multiplication, we
get the complex vector space V

op
C

. In fact, V op
C

= V ⊗R (Cop). If B = {v1, . . . , vn} is
a basis for V , then BC = {v1 ⊗ 1, . . . , vn ⊗ 1} is a basis for VC. As regards pairings,
let us concentrate on the symmetric case, the skew-symmetric case is treated in a
similar way. To a symmetric perfect pairing φ : V ⊗ V → R, we can associate a
Hermitian perfect pairing φC : VC ⊗ V

op
C

→ C by setting

φC((v ⊗ λ) ⊗ (w ⊗ μ)) = λμφ(v,w),

v,w ∈ V , λ,μ ∈ C. The canonical example is γ : R
p+q ⊗ R

p+q → R given by

γ ((x1, . . . , xp+q) ⊗ (y1, . . . , yp+q))

= x1y1 + · · · + xpyp − xp+1yp+1 − · · · − xp+qyp+q .

For this pairing, γC : C
p+q ⊗ (Cp+q)op → C is

γC((z1, . . . , zp+q) ⊗ (u1, . . . , up+q))

= z1u1 + · · · + zpup − zp+1up+1 − · · · − zp+qup+q .
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If MatB(φ) = (φ(vi ⊗ vj )) denotes the matrix representation of φ with respect to
the basis B , then the matrix representation of φC with respect to BC is simply

MatBC
(φC) = MatB(φ),

viewed as a complex matrix. This is a Hermitian matrix because it is real and sym-
metric. In fact, we can choose B so that MatB(φ) is diagonal. Then MatBC

(φC)

is diagonal with the same entries, which shows that the signature does not change
under complexification, σ(φ) = σ(φC) ∈ Z.

The symmetric perfect pairing φ may alternatively be described by a self-duality

isomorphism d : V
∼=−→ V ∗, where V ∗ = Hom(V ,R), given by d(v) = φ(v ⊗ −).

The symmetry property is equivalent to asserting that

V
d

ev ∼=

V ∗

V ∗∗
d∗

commutes, where ev is the canonical evaluation isomorphism. Similarly, if W is a
complex vector space and ψ : W ⊗ W op → C a perfect Hermitian pairing, then ψ

can alternatively be described by a self-duality isomorphism D : W ∼=−→ W †, where
W † = Hom(W op,C), by setting D(w) = ψ(w ⊗ −). The Hermitian symmetry is
equivalent to asserting that

W
D

ev ∼=

W †

W ††
D†

commutes. In particular, we get D : VC

∼=→ V
†
C

for (W,ψ) = (VC, φC).
Let X be a path-connected space and (P , φ) a Poincaré local system on X, φ :

P ⊗ P → RX . Applying complexification stalkwise, we obtain a Hermitian local
system φC : PC ⊗ P op

C
→ CX . A monodromy-theoretic description of this passage

runs as follows: Let p and q be such that p + q = rk P and p − q = σ(φx), x ∈ X.
Let O(p,q) be the group of all matrices in GL(p + q,R) that preserve the form γ ,
that is,

O(p,q) = {A ∈ GL(p + q,R) : AT · Ip,q · A = Ip,q},
where

Ip,q =
(

1p×p 0p×q

0q×p −1q×q

)
.
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Then (P , φ) determines, and is determined by, a representation π1(X) → O(p,q).
Let U(p,q) be the group of all matrices in GL(p + q,C) that preserve the form γC,
that is,

U(p,q) = {A ∈ GL(p + q,C) : A
T · Ip,q · A = Ip,q}.

Note that O(p,q) ⊂ U(p,q) is a subgroup. The Hermitian local system (PC, φC)

determines, and is determined by, a representation π1(X) → U(p,q), and this rep-
resentation is the composition

π1(X) −→ O(p,q) ↪→ U(p,q).

Let Xn be a PL stratified pseudomanifold. The real dualizing complex D
•
X(R)

on X may be defined as the complex of sheaves of real vector spaces which has the
sheafification of the presheaf

U 
→ Cj (X,X − U ;R), U ⊂ X open,

in degree −j , where Cj denotes singular chains of dimension j . Similarly, D
•
X(C) is

the sheafification of U 
→ Cj (X,X − U ;C). Since Cj(X,X − U ;C) = Cj(X,X −
U ;R) ⊗R C and − ⊗R C commutes with direct limits, it follows that

D
•
X(C) = D

•
X(R) ⊗R CX.

Let S• ∈ Db
c (X;R) be an object of the constructible bounded derived category of

sheaf complexes of real vector spaces on X. Since we are working over fields,
L⊗ = ⊗. Define the complexification of S• by S•

C
= S• ⊗R CX ∈ Db

c (X;C). Given
A• ∈ Db

c (X;C), we may apply composition with complex conjugation in a stalk-
wise fashion to define (A•)op ∈ Db

c (X;C). We have (S•
C
)op = S• ⊗R (C

op
X ). Given

T• ∈ Db
c (X;R), there is a canonical isomorphism

S•
C

⊗C (T•
C
)op ∼= (S• ⊗R T•) ⊗R (CX ⊗C C

op
X ),

(v ⊗ λ) ⊗ (w ⊗ μ) 
→ (v ⊗ w) ⊗ (λ ⊗ μ).

Let

m : CX ⊗C C
op
X −→ CX

λ ⊗ μ 
→ λμ

be the canonical multiplication. To a pairing

φ : S• ⊗R T• −→ D
•
X(R)

into the dualizing complex, we can associate a pairing

φC : S•
C

⊗C (T•
C
)op −→ D

•
X(C)
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by taking φC to be the composition

S•
C

⊗C (T•
C
)op = (S• ⊗R T•) ⊗R (CX ⊗C C

op
X )

φ⊗m−→ D
•
X(R) ⊗R CX = D

•
X(C).

Under the canonical identifications

RHom•(S• ⊗ T•,D
•
X(R)) ∼= RHom•(S•,RHom•(T•,D

•
X(R))),

RHom•(S•
C

⊗C (T•
C
)op,D

•
X(C)) ∼= RHom•(S•

C
,RHom•((T•

C
)op,D

•
X(C))),

the above procedure associates to a morphism

d : S• −→ RHom•(T•,D
•
X(R)) = DX,R(T•)

in Db
c (X;R) with codomain the real Verdier-dual of T• a morphism

D : S•
C

−→ RHom•((T•
C
)op,D

•
X(C)) = DX,C((T•

C
)op)

in Db
c (X;C) to the complex Verdier-dual of (T•

C
)op. If d is an isomorphism, then

so is D. If d is symmetric, that is, DX,R(d) = d , then D is Hermitian, that is,
DX,C(Dop) = D. In particular, if S• is a symmetric self-dual real sheaf, then S•

C

is a Hermitian self-dual complex sheaf.
Suppose the dimension n of X is a multiple of 4 and that X is oriented, closed and

has only even codimensional strata. Let φ : P ⊗ P → RX be a symmetric Poincaré
local system on the top stratum of X. Then φ extends uniquely to a symmetric self-
duality isomorphism

d : IC•̄
m(X; P ) ∼= DX,RIC•̄

m(X; P )[n].
Similarly, the associated Hermitian local system φC : PC ⊗ (PC)op → CX extends
uniquely to a Hermitian self-duality isomorphism

δ : IC•̄
m(X; PC) ∼= DX,CIC•̄

m(X; PC)op[n].
As, for an open inclusion i, the derived pushforward R i∗ commutes with − ⊗R C,
and the truncation functor τ≤k commutes with − ⊗R C as well, we have

IC•̄
m(X; PC) = IC•̄

m(X; P )C.

Moreover, δ = D, where D is the complexification of d as described above.
Let S• ∈ Db

c (X;R) be a symmetric self-dual sheaf on X, d : S• ∼= DX,RS•[n],
DX,Rd[n] = d . The isomorphism d induces a symmetric isomorphism on the
middle-dimensional hypercohomology groups

H−n/2(X;S•)
∼=−→ H−n/2(X;S•)∗,

i.e. a symmetric perfect pairing

ψ : H−n/2(X;S•) ⊗R H−n/2(X;S•) −→ R.
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Let σ(S•) ∈ Z denote the signature of this pairing. The complexification S•
C

is a
Hermitian self-dual sheaf. Its self-duality isomorphism D : S•

C
∼= DX,C(S•

C
)op[n]

induces a perfect Hermitian pairing

η : H−n/2(X;S•
C
) ⊗C H−n/2(X;S•

C
)op −→ C.

Let σ(S•
C
) ∈ Z denote the signature of η. With V = H−n/2(X;S•), we have

H−n/2(X;S•
C
) = VC and η = ψC, whence σ(S•

C
) = σ(ψC) = σ(ψ) = σ(S•). Given

a Poincaré local system (P , φ), the twisted signature σ(X; P ) is by definition the
signature of the self-dual sheaf (IC•̄

m(X; P ), d). We conclude that

σ(X; P ) = σ(IC•̄
m(X; P ), d)

= σ(IC•̄
m(X; P )C,D)

= σ(IC•̄
m(X; PC), δ)

= σ(X; PC),

where the last equality is a definition.

1.5 Strongly Transverse Poincaré Local Systems

Let ε ∈ {±1}, let (P , φ) be an ε-symmetric Poincaré local system of stalk dimension
m on the space Xn and let �1(X) denote the fundamental groupoid of X. By Vectm

denote the category whose objects are pairs (V ,ψ), with V an m-dimensional real
vector space and ψ : V ×V → R a perfect ε-symmetric bilinear pairing, and whose
morphisms are isometries of the pairings. The system (P , φ) induces a covariant
functor

μ(P ) : �1(X) −→ Vectm

as follows: For x ∈ X, let

μ(P )(x) = (Px,φx)

and for a path class [ω] ∈ π1(X,x1, x2) = Hom�1(X)(x2, x1), ω : I → X, ω(0) =
x1, ω(1) = x2, define the linear operator

μ(P )[ω] : μ(P )(x2) −→ μ(P )(x1)

to be the composition

μ(P )(x2) = Pω(1)
∼= (ω∗P )1

�←
restr

�(I,ω∗P )
�→

restr
(ω∗P )0 ∼= Pω(0) = μ(P )(x1).

If we choose a base-point x ∈ X, then restricting μ(P ) to the fundamental group
π1(X,x) = Hom�1(X)(x, x) gives an assignment of a linear automorphism on the
stalk Px ,

μ(P )x(g) : Px −→ Px,
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preserving the pairing φx : Px × Px → R, to each g ∈ π1(X,x). Thus one obtains
the monodromy representation

μ(P )x : π1(X,x) −→ O(p,q)

when ε = 1 (p + q = m is the rank of P , p − q the signature of φx ), and

μ(P )x : π1(X,x) −→ Sp(2r;R)

when ε = −1 (m = 2r is the rank of P ). Conversely, a given functor μ : �1(X) →
Vectm determines a Poincaré local system: Let X0 be a path component of X, and
x0 ∈ X0. Then π(X0, x0) acts on μ(x0) = (V ,φ) by the restriction μx0 and we have
the associated local system

P |X0 = X̃0 ×π1(X0,x0) V

over X0 with an induced pairing φ, where X̃0 denotes the universal cover of X0.

Definition 4 Let X be a stratified pseudomanifold with singular set � and let X
denote the set of components of open strata of X of codimension at least 2. Each
Z ∈ X has a link Lk(Z). Call a Poincaré local system P on X − � strongly trans-
verse to � if the composite functor

�1(Lk(Z) − �)
incl∗−→ �1(X − �)

μ(P )−→ Vectm

is isomorphic to the trivial functor for all Z ∈ X .

On normal spaces, strong transversality of local systems characterizes those sys-
tems that extend as local systems over the whole space:

Proposition 2 Let Xn be normal. A Poincaré local system P on X − � is strongly
transverse to � if and only if it extends as a Poincaré local system over all of X.
Such an extension is unique.

The normality assumption is not necessary for the “if”-direction. The assumption
cannot be omitted in the “only if”-direction and in the uniqueness statement.

Corollary 1 Let Xn be normal. A Poincaré local system P on X − � is strongly
transverse to � if and only if its monodromy functor μ(P ) : �1(X − �) → Vectm

factors (up to isomorphism of functors) through �1(X):

�1(X − �)
incl∗

μ(P )

�1(X)

Vectm
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Let Xn be normal. A Poincaré local system (P , φ) on Xn − � strongly transverse
to � has a K-theory signature

[P ]K ∈
{

KO(X), if ε = 1

KU(X), if ε = −1,

as we shall now explain. By Proposition 2, (P , φ) has a unique extension to a
Poincaré local system (P̄ , φ̄) on X. We now proceed as in [Mey72]. Let P c de-
note the flat vector bundle associated to the locally constant sheaf P̄ , that is

P c|X0 = X̃0 ×π R
m

over a path component X0 of X, where R
m is given the usual topology, π = π1(X0),

and π acts on R
m by means of the monodromy μ(P̄) of P̄ . A suitable choice of

Euclidean metric on P c induces (using φ̄) a vector bundle automorphism

A : P c −→ P c

such that A2 = 1 (if φ̄ is symmetric, i.e. ε = 1) or A2 = −1 (if φ̄ is skew-symmetric,
i.e. ε = −1). Thus in the case ε = 1, P c decomposes as a direct sum of vector
bundles

P c = P+ ⊕ P−
corresponding to the ±1-eigenspaces of A. Put

[P ]K = [P+] − [P−] ∈ KO(X).

In the case ε = −1, A defines a complex structure on P c and we obtain the complex
vector bundle PC and its conjugate bundle P ∗

C
; we put

[P ]K = [P ∗
C
] − [PC] ∈ KU(X).

Similar remarks apply to perfect complex Hermitian local coefficient systems S .
They are determined over connected components X0 ⊂ X by monodromy repre-
sentations μ(S) : π1(X0) → U(p,q) and their K-theory signature is defined as
[S]K = [S+] − [S−] ∈ KU(X), where S c = S+ ⊕ S− is a nonflat splitting such
that the Hermitian form is positive definite on S+ and negative definite on S−,
corresponding to a reduction of the structure group from U(p,q) to the maximal
compact subgroup U(p) × U(q), see [Lus71].

1.6 Computing Twisted L-Classes for Strongly Transverse
Coefficients

Let X be a closed Witt space with singular set �, and (P , φ) a Poincaré local system
on X − � such that a self-dual extension (IC•̄

m(X; P ), φ̄) exists. The twisted L-
classes

Lk(X; P ) ∈ Hk(X;Q)
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of X with coefficients in P are the L-classes of the self-dual sheaf S• = IC•̄
m(X; P ).

In [BCS03], we show:

Theorem 5 Let Xn be a closed oriented Whitney stratified normal Witt space with
singular set �, and let (P , φ) be a Poincaré local system on X − �, strongly trans-
verse to �. Then

L∗(X; P ) = c̃h[P ]K ∩ L∗(X). (1.6)

Recall the

Definition 5 Xn is supernormal, if for any components Z,Z′ of open strata with
dimZ′ > dimZ ≤ n − 2, the link Lk(Z) ∩ Z′ is simply connected.

Theorem 5 implies

Corollary 2 If Xn is supernormal, then for any Poincaré local system (P , φ) on
X − �

L∗(X; P ) = c̃h[P ]K ∩ L∗(X).

To obtain the conclusion of the corollary, less than supernormality is actually
needed. Indeed it is sufficient to require that X be normal and that the image of
π1(Lk(Z) − �) in π1(X − �) vanishes for all Z ∈ X .

In [Ban06], the first author has extended formula (1.6) to spaces that are not Witt,
but still support self-dual perverse sheaves, given by Lagrangian structures, so that
the L-class is still defined.

1.7 The Cappell-Shaneson L-Class Formula for Singular
Embeddings

Let Xn be an oriented connected PL pseudomanifold of real dimension n, piecewise
linearly embedded in an oriented, connected PL manifold Mm of dimension m =
n + 2. Since (M,X) is a PL pair, there exists a filtration

M = Mm ⊃ Mm−1 = X ⊃ Mm−2 = X ⊃ Mm−3 = X ⊃ Mm−4

⊃ Mm−5 ⊃ · · · ⊃ M0 ⊃ M−1 = ∅,

such that for each y ∈ Mi − Mi−1 there exists a distinguished neighborhood U of y

in M , a compact Hausdorff pair (G,F ), a filtration

G = Gm−i−1 ⊃ · · · ⊃ G0 ⊃ G−1 = ∅,

and a PL homeomorphism

φ : Di × c(G,F ) −→ (U,U ∩ X)
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that maps Di × c(Gj−1,Gj−1 ∩ F) onto (Mi+j ,Mi+j ∩ X), where cY denotes
the cone on a space Y . The link pair (G,F ) depends up to PL homeomorphism
only on the connected component V of Mi − Mi−1 that contains y. Since M is
a manifold, G = Sm−i−1 = Sn−i+1 is a sphere. As in [CS91], we will henceforth
assume that embeddings are of finite local type and of finite type. (This guarantees
finite dimensionality of intersection sheaf stalks and global intersection homology
groups. Algebraic knots, for example, are always of finite type.) An induced PL
stratification of X is given by

X = Xn ⊃ Xn−1 = Mm−3 = X ⊃ Xn−2 = Mm−4

⊃ Xn−3 = Mm−5 ⊃ · · · ⊃ X0 = M0 ⊃ X−1 = ∅.

The link in X of a component V of a stratum Xi − Xi−1 = Mi − Mi−1 at a point
y ∈ V is the above F . Let X be the collection of connected components of pure
strata Xi − Xi−1, i ≤ n − 2. It is worthwhile to discuss the case of X a manifold.
Since the embedding of X in M may not be locally flat, the pair (M,X) will in gen-
eral still receive a nontrivial stratification, but the links of components in X will be
spheres F = Sn−i−1. The link pairs in (M,X) will thus be knots (Sn−i+1, Sn−i−1).
The closed strata Xi ⊂ X induced by the embedding X ⊂ M may or may not be
submanifolds of X and the embeddings Xi ⊂ X may or may not be locally flat.

Example 1 Let S(Y ) denote the unreduced suspension of a space Y . We shall dis-
cuss the stratification of Xn = S2 × S(S1 × Sn−4) induced by a certain nonlocally
flat embedding Xn ⊂ S2 × Sn = Mn+2, where n ≥ 6. We start out with a nontrivial
locally flat PL knot κ : Sn−5 ↪→ Sn−3 and suspend it to obtain an embedding Sκ :
Sn−4 = S(Sn−5) ↪→ S(Sn−3) = Sn−2. Denote the two suspension points in Sn−4 by
p+ and p−. Think of Sn−2 as the one-point compactification Sn−2 = R

n−2 ∪ {∞}
of R

n−2, with ∞ not in the image of Sκ . Then by restricting Sκ , we obtain an em-
bedding σ : Sn−4 ↪→ R

n−2, which is not flat at p+ and p− because the link pair at
p± is the knot κ . On the complement Sn−4 − {p±}, σ is locally flat. Crossing with
a circle S1, we get an embedding idS1 ×σ : S1 × Sn−4 ↪→ S1 × R

n−2 with link pair
κ for the singular stratum S1 × {p±} ⊂ S1 × Sn−4 where idS1 ×σ is not locally flat.
Embed S1 in the plane R

2 as the unit circle and R
2 in R

n−1 in the standard way,
(x, y) 
→ (x, y,0,0, . . . ,0). Then the normal bundle of S1 ↪→ R

n−1 is S1 × R
n−2

and defines an open embedding S1 × R
n−2 ↪→ R

n−1 ↪→ Sn−1. The composition
of idS1 ×σ with this open embedding gives an embedding f : S1 × Sn−4 ↪→ Sn−1.
Since the open embedding does not change the link types, f still has singular stra-
tum S1 × {p±}. Let q+ and q− be the two suspension points of S(S1 × Sn−4).
Suspending f , we obtain an embedding Sf : S(S1 × Sn−4) ↪→ S(Sn−1) = Sn.
The points q± are singularities of the pseudomanifold S(S1 × Sn−4) and thus
must appear as a stratum of the pair (Sn, S(S1 × Sn−4)). The stratification of
(Sn, S(S1 × Sn−4)) is given by

Sn ⊃ S(S1 × Sn−4) ⊃ S(S1 × {p±}) ⊃ {q±}.
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Finally, idS2 ×Sf : S2 × S(S1 × Sn−4) ↪→ S2 × Sn defines an embedding Xn ⊂
Mn+2. The pair (M,X) is stratified by

M = S2 × Sn ⊃ X = S2 × S(S1 × Sn−4)

⊃ X4 = S2 × S(S1 × {p±}) ⊃ X2 = S2 × {q±}.
The collection X is given by

X = {S2 × ◦
I × S1 × {p+}, S2 × ◦

I × S1 × {p−}, S2 × {q+}, S2 × {q−}},

where
◦
I = (0,1) denotes the open unit interval. The closure V of the pure compo-

nent V = S2 × ◦
I × S1 × {p+} in X is

V = S2 × S(S1 × {p+}),
PL homeomorphic to the 4-manifold S2 × S2, and the singular set V − V of V is
V −V = S2 ×{q±}, the disjoint union of two 2-spheres. The embedding V −V ⊂ V

is locally flat and has trivial normal bundle. The link pair of V is the knot κ that we
started with.

We return to the general case of an oriented pseudomanifold X ⊂ M . Assume
that all strata in X have even codimension in X. Let V ∈ X be a component of codi-
mension 2c = m − i ≥ 4 in M and let x ∈ V be a point with link pair (Gx,Fx) =
(S2c−1

x ,Fx). The fundamental class [Fx] maps trivially to H2c−3(S
2c−1
x ) = 0. Thus

Fx ⊂ S2c−1
x has a Seifert-pseudomanifold that can be used to define a linking num-

ber. For α ∈ π1(S
2c−1
x − Fx), let lk(Fx,α) ∈ Z denote the linking number. The as-

signment α 
→ t lk(Fx,α) determines a local system Lx with stalks � on S2c−1
x − Fx .

The complex of sheaves IC•̄
m(S2c−1

x ; Lx) is defined by the Deligne extension pro-
cess for the lower middle perversity m̄ applied to Lx . The pairing

Lx ⊗ Lop
x −→ �,

f (t) ⊗ g(t) 
→ f (t)g(t−1)

is perfect and Hermitian. Assuming that Fx ⊂ S2c−1
x is of finite local type, this

pairing extends to a Verdier-superduality isomorphism

IC•̄
l
(S2c−1

x ; Lx)
op ∼= D(IC•̄

m(S2c−1
x ; Lx))[2c − 1],

where l̄ is the logarithmic perversity of [CS91], that is, l̄(s) = [(s + 1)/2] so that
m̄(s) + l̄(s) = s − 1 (m̄ and l̄ are “superdual”). If Fx ⊂ S2c−1

x is in addition of finite
type, then this isomorphism induces upon taking hypercohomology an isomorphism

IH l̄
i (S

2c−1
x ; Lx)

op ∼= Ext(IHm̄
2c−i−2(S

2c−1
x ; Lx),�)

= Hom(IHm̄
2c−i−2(S

2c−1
x ; Lx),Q(t)/�).



1 Knots, Singular Embeddings, and Monodromy 19

With (BV )x = Image(IHm̄
c−1(S

2c−1
x ; Lx) → IH l̄

c−1(S
2c−1
x ; Lx)), we thus get for i =

c − 1 a Blanchfield pairing

(BV )x ⊗ (BV )
op
x −→ Q(t)/�.

Remark 1 When Fx = S2c−3 and Fx ⊂ S2c−1
x is locally flat, this is the classical

Blanchfield pairing. If F ⊂ S2c−1 is any locally flat submanifold, then according to
[CS91, p. 339],

IHp̄
i (S2c−1; L) =

{
Hi(K; L), p̄(2) = 0,

Hi(K, ∂K; L), p̄(2) = 1,

where K is the exterior of F . In this situation, then, the above map IHm̄
c−1(S

2c−1; L)

→ IH l̄
c−1(S

2c−1; L) becomes the map

Hc−1(K; L) −→ Hc−1(K, ∂K; L)

induced by inclusion. For F = S2c−3, c ≥ 3, we have ∂K = S2c−3 ×S1 and the map
is an isomorphism.

Letting x vary over V , we obtain a Blanchfield local system

BV ⊗ Bop
V −→ Q(t)/�

over V . Again by the Deligne extension process, the associated Poincaré local sys-
tem

BR

V ⊗ BR

V −→ R

extends to a self-duality isomorphism

IC•̄
m(V ; BR

V ) ∼= DIC•̄
m(V ; BR

V )[m − 2c].
This self-dual sheaf has L-classes

Lj (V ; BR

V ) ∈ Hj(V ;Q),

assuming now that X is compact. Let iV : V ↪→ X be the inclusion. The Cappell-
Shaneson L-class formula [CS91] for singular embeddings asserts that

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗L∗(V ; BR

V ). (1.7)

When M = Sn+2, n > 0, is a sphere, we have i∗[X] = 0 ∈ Hn(S
n+2) so that χ = 0

and L∗(P (M)) = 1. Therefore,

L∗(Sn+2,X) = [X] ∩ i∗L∗(P (M) ∪ (1 + χ2)−1) = [X] ∩ 1 = [X],
and in particular in degree 0,

L0(S
n+2,X) = 0. (1.8)
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1.8 Embeddings and Strongly Transverse Coefficients

A synthesis of the characteristic class formula of Theorem 5 and the Cappell-
Shaneson formula (1.7) yields the following result.

Theorem 6 Let i : Xn ↪→ Mn+2 be a PL embedding of an oriented compact pseu-
domanifold in an oriented compact manifold such that the pair (M,X) is stratifiable
without odd-codimensional strata. Assume that all Poincaré local systems BR

V are
strongly transverse to the singular set V − V , V ∈ X . Then

L∗(X) = L∗(M,X) −
∑
V ∈X

iV ∗(c̃h[BR

V ]K ∩ L∗(V )). (1.9)

Formula (1.9) holds automatically if X happens to be a manifold and the singular
set of the embedded X has codimension at least 3. For in that case, the links in X

are spheres of dimension 2 or higher which are simply connected. Thus we find
ourselves in the supernormal situation of Corollary 2.

1.9 Nontransverse Coefficient Systems

We shall first consider singular embeddings Xn ⊂ Mn+2 which have at most
4-dimensional singularities whose pure components have definite real Blanchfield
form. The 4-stratum may contain a 2-stratum which is a disjoint union of 2-spheres,
embedded in the 4-stratum in a locally flat way and with zero self-intersection num-
ber. The following is an example of such a situation.

Example 2 Let A be a square integral matrix such that A + AT is unimodular. Ac-
cording to the realization theorem of Kervaire (Theorem 4), there exists a simple
locally flat 7-knot κ : S7 ↪→ S9 with Seifert matrix A. Applying the construction of
Example 1, we obtain an embedding

i : X12 = S2 × S(S1 × S8) ⊂ S2 × S12 = M14.

The induced stratification has the form

M ⊃ X ⊃ X4 = S2 × S(S1 × {p±}) ⊃ X2 = S2 × {q±},

where X4 −X2 has 2 connected components V± = S2 × ◦
I ×S1 ×{p±} with closures

V ± = S2 × S2, a 4-manifold, and V + − V+ = S2 × {q±} = V − − V−. The embed-
dings S2 × {q±} ⊂ V ± = S2 × S2 are locally flat and have zero self-intersection
number. The link pair of both V− and V+ is the 7-knot κ . Taking for instance the
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nonsingular matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have A + AT = E8, which is unimodular with σ(E8) = 8. By Kervaire’s the-
orem, there exists a simple locally flat knot κ : S7 ⊂ S9 with Seifert matrix A. By
formulae (1.4) and (1.5), the signature of the skew-Hermitian Blanchfield pairing β

of κ is

σ(βR) = σ(A + AT ) = 8.

Since A is nonsingular, formula (1.3) shows that the knot Z[t, t−1]-module BA de-
termined algebraically by A as described in Sect. 1.2 has rational dimension

dimQ(BA ⊗Z Q) = rkA = 8.

By Kearton’s theorem (Theorem 3), BA
∼= H4(K∞), where K∞ is the infinite cyclic

cover of the exterior K of κ . Thus H4(K∞;Q) has dimension 8 over Q. We con-
clude that the symmetric real Blanchfield form of κ is positive definite.

Theorem 7 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M which induces a
stratification of the form

X = Xn ⊃ X4 ⊃ X2 ⊃ X−1 = ∅,

such that

(i) for every connected component V of X4 − X2, the closure V is a 4-manifold,
(ii) the link pair of every such V is a (necessarily nontrivial but locally flat) spher-

ical knot (Sn−3, Sn−5) with definite real Blanchfield form of rank rV ,
(iii) X2 is a disjoint union of 2-spheres, and
(iv) for every such S2 and 4-dimensional V with S2 ⊂ V , the latter embedding is

locally flat with zero self-intersection number.

Then

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

εV rV σ (V ),

where the sum ranges over all connected components V of X4 − X2 and εV = 1
if the real Blanchfield form on V is positive definite and εV = −1 if it is negative
definite.
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Proof Write n = 4k. Let V be a connected component of X4 − X2 and βV : BV ⊗
Bop

V → Q(t)/� the associated Blanchfield local system with stalk

(BV )x = IHm̄
2k−2(S

4k−3
x ; Lx) = H2k−2(Kx; Lx) ∼= H2k−2(Kx, ∂Kx; Lx)

by Remark 1. At x ∈ V , (βV )x is the classical Blanchfield pairing of the locally flat
link pair (S4k−3

x , S4k−5
x ). This pairing is skew-Hermitian. Its Poincaré local system

βR

V : BR

V ⊗ BR

V → R is obtained using the Trotter trace as described in Sect. 1.3. This
system is symmetric and by assumption definite of rank rV . In principle, we shall
use Theorem 4.1 of [Ban08] to compute the twisted signature σ(V ; BR

V ). That theo-
rem was proven in a slightly different context, namely for complex Hermitian local
systems and for smooth embeddings. The first issue is easily resolved by passing
to the complexification BC of BR

V as described in Sect. 1.4. As we have seen, the
signature does not change under complexification,

σ(V ; BR

V ) = σ(V ; BC).

The second issue presents no problem either, since the proof of Theorem 4.1
[Ban08] essentially carries over to the PL category, with one minor addition con-
cerning smoothability. Let us recall the argument. The stratum X2 is comprised of
pairwise disjoint two-spheres. Those two-spheres that lie in V are embedded there
in a locally flat manner, whence they have a normal (block) bundle. That bundle is
trivial by the assumption on the self-intersection number. We can thus do surgery
on these two-spheres in V and obtain a closed PL manifold M4. The surgery re-
places each two-sphere by a circle, and M minus these circles is homeomorphic
to V . Thus the local system BC on V is naturally defined on M minus the circles.
The key observation is that the circles have high enough codimension (namely 3) in
M in order for BC to extend (uniquely) onto all of M . (The link of a circle in M is a
2-sphere, which is simply connected. Thus BC is constant on the links of the circle
and extends (uniquely) to the cone on the link.) Let us call this unique extension BC.
In fact it is not hard to see that BC and BC extend further as local systems over the
trace W of the surgery, so that W together with this extension is a bordism between
(V ; BC) and (M; BC). By bordism invariance of the twisted signature,

σ(V ; BC) = σ(M; BC).

At this point, the proof of Theorem 4.1 [Ban08] is able to invoke W. Meyer’s twisted
signature formula [Mey72] because in that context the manifold M is smooth. Our
present M however is piecewise linear. The Hirsch-Mazur obstructions to smoothing
M lie in Hi(M;πi−1(PL/O)). They all vanish because PL/O is 6-connected and
M is 4-dimensional. Thus M is smoothable and we may indeed call on Meyer’s
formula

σ(M; BC) = 〈c̃h[BC]K ∪ L∗(M), [M]〉,
where L∗(M) = L∗(P (M)). Since βR

V , and thus also the complexification of βR

V , is
definite of rank rV , the K-theory signature [BC]K of BC is given by

[BC]K = εV [BC] ∈ KU0(M),
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where we regard BC as a flat complex vector bundle of rank rV . The positive di-
mensional rational Chern classes of BC vanish by flatness, so that c̃h[BC]K = εV rV .
Therefore,

σ(V ; BR

V ) = σ(M; BC)

= εV rV 〈L∗(M), [M]〉
= εV rV σ (M)

= εV rV σ (V ),

using the Hirzebruch signature theorem and bordism invariance.
Let S be a connected component of X2 and βS : BS ⊗ Bop

S → Q(t)/� the asso-
ciated Blanchfield local system with stalk

(BS)x = Image(IHm̄
2k−1(S

4k−1
x ; Lx) −→ IH l̄

2k−1(S
4k−1
x ; Lx))

at x ∈ V . The link pair at x has the form (S4k−1
x ,Fx) with Fx a PL pseudomanifold

of dimension 4k − 3. The pairing βS is Hermitian as 2k − 1 is odd. By assumption,
S is a 2-sphere, in particular simply connected. This implies that BS is constant
(untwisted) on S. Thus the corresponding Poincaré local system BR

S is constant
and βR

S : BR

S ⊗ BR

S → R is skew-symmetric. It follows that the signature of any
stalk (BR

S )x is zero, σ((BR

S )x) = 0. Since BR

S is constant on S, the twisted signature
factors as

σ(S; BR

S ) = σ((BR

S )x) · σ(S) = 0.

Assembling the above information using the Cappell-Shaneson L-class formula
(1.7) for singular embeddings, we obtain

σ(X) = L0(X)

= L0(M,X) −
∑

V ⊂X4−X2

σ(V ; BR

V ) −
∑

S⊂X2

σ(S; BR

S )

= L0(M,X) −
∑

V ⊂X4−X2

εV rV σ (V ).
�

Corollary 3 Let i : Xn ↪→ Sn+2, n ≡ 0(4), n > 0, be a PL embedding of a compact
oriented PL pseudomanifold X in a sphere satisfying the hypotheses of Theorem 7.
Then

σ(X) +
∑

V ⊂X4−X2

εV rV σ (V ) = 0.

Proof Observe that L0(S
n+2,X) = 0 according to (1.8). �

Although not always explicitly stated, similar corollaries for embeddings in
spheres can be deduced in the contexts of the subsequent results as well.



24 M. Banagl et al.

For a space Y , let Shlch(Y ) denote the collection of isomorphism classes of lo-
cally constant perfect complex Hermitian sheaves of finite rank on Y . The following
theorem extends Theorem 7 to the case of an indefinite structure group U(p,q). Its
conclusion reduces to the conclusion of Theorem 7 when p = 0 or q = 0. We do
maintain the zero self-intersection assumption for now.

Theorem 8 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M which induces a
stratification of the form

X = Xn ⊃ X4 ⊃ X2 ⊃ X−1 = ∅,

such that

(i) for every connected component V of X4 − X2, the closure V is a 4-manifold,
(ii) the complexified Blanchfield system BC

V of the link pair of every such V has
structure group U(pV ,qV ),

(iii) X2 is a disjoint union of 2-spheres, and
(iv) for every such S2 and 4-dimensional V with S2 ⊂ V , the latter embedding is

locally flat with zero self-intersection number.

Then there exists an integral characteristic class

2(c2
1 − 2c2) : Shlch(V ) −→ H 4(V ;Z)

such that

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

(pV − qV )σ (V ) −
∑

V ⊂X4−X2

〈2(c2
1 − 2c2)(BC

V ), [V ]〉,

where the two sums range over all connected components V of X4 − X2.

Proof Let V be a connected component of X4 − X2 with associated real Blanch-
field system BR

V . The pairing BR

V ⊗ BR

V → R is symmetric. Thus the complexified
form BC

V ⊗ (BC

V )op → CV is Hermitian with structure group U(pV ,qV ). In order
to compute the twisted signature σ(V ; BR

V ), we modify the proof of Theorem 4.3
[Ban08] so that it applies to PL spaces. As in the proof of the previous Theorem 7,
we can do surgery on X2 ∩ V to obtain a PL manifold M4 with a perfect Hermitian
local system BC defined everywhere on M such that

σ(V ; BR

V ) = σ(M; BC)

via the trace of the surgery. The manifold M is smoothable because it is 4-
dimensional, and therefore

σ(M; BC) = 〈c̃h[BC]K ∪ L∗(M), [M]〉

=
〈
((pV − qV ) + 2c1[BC]K + 2(c2

1 − 2c2)[BC]K)
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∪
(

1 + 1

3
p1(M)

)
, [M]

〉

= (pV − qV )σ (M) + 2〈(c2
1 − 2c2)[BC]K, [M]〉.

There is a unique isomorphism

φ : H 4(M)
∼=−→ H 4(V )

such that

H 4
c (M − ⊔

(D3 × S1))

∼=

H 4
c (V )

∼=

H 4(M)

∼=
φ

H 4(V )

commutes, where H ∗
c (−) denotes cohomology with compact supports and the ver-

tical maps are given by extension by zero. We set

2(c2
1 − 2c2)(BC

V ) = φ(2(c2
1 − 2c2)[BC]K) ∈ H 4(V ;Z).

Let γ be a 4-dimensional PL cochain on M representing the cohomology class
2(c2

1 − 2c2)[BC]K . Since extension by zero is here an isomorphism in dimension 4,
we may assume that γ has compact support in M − ⊔

(D3 × S1). As

M −
⊔

(D3 × S1) ∼= V,

γ is a cochain on V with compact support and thus, by extension by zero, a cochain
on V . This cochain represents 2(c2

1 − 2c2)(BC

V ) and

2〈(c2
1 − 2c2)[BC]K, [M]〉 = 〈(2(c2

1 − 2c2)(BC

V ), [V ]〉.
Since σ(M) = σ(V ) by bordism invariance, we have

σ(V , BR

V ) = (pV − qV )σ (V ) + 〈(2(c2
1 − 2c2)(BC

V ), [V ]〉.
As in the proof of Theorem 7, σ(S; BR

S ) = 0 for every connected component S

of X2. The result follows from substituting the above information into the Cappell-
Shaneson L-class formula

σ(X) = L0(M,X) −
∑

V ⊂X4−X2

σ(V ; BR

V ) −
∑

S⊂X2

σ(S; BR

S ).

�

Theorem 8 together with Corollary 4.4 [Ban08] and Proposition 4.5 [Ban08]
imply:
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Corollary 4 Let (Mn+2,Xn) be stratified as in Theorem 8 and assume that V is a
4-sphere for every connected component V of X4 − X2. Then

σ(X) − L0(M,X)

is divisible by 8. If for every V , V − V is connected and X2 ∩ V ↪→ V is the Artin
spin of a classical knot, then

σ(X) = L0(M,X).

When a lower stratum has nonzero self-intersection inside a higher one, rho-
invariants enter into signature formulae, as the next theorem illustrates. Let (p, q)

be coprime integers such that 0 ≤ q < p and write Z/p = {1, ξ, ξ2, . . . , ξp−1}, ξ a
primitive p-th root of unity. For a representation α : Z/p → U(k), let χα : Z/p → C

denote the character of α. Set

ρα(p,q) = 1

p

p−1∑
j=1

(k − χα(ξj )) cot
jπ

p
cot jπq

p
.

The constancy rank, c-rk(S), of a local system S on a connected space with cyclic
fundamental group is defined to be the rank of the 1-eigenspace of the monodromy
matrix of S .

Theorem 9 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M which induces a
stratification of the form

X = Xn ⊃ X4 ⊃ X2 ⊃ X−1 = ∅,

such that

(i) for every connected component V of X4 − X2, the closure V is a 4-manifold,
(ii) the link pair of every such V is a (necessarily nontrivial but locally flat) spher-

ical knot (Sn−3, Sn−5) with positive, say, definite complex Blanchfield form BC

V

of rank rV ,
(iii) X2 is a disjoint union of 2-spheres, and
(iv) for every such S2 and 4-dimensional V with S2 ⊂ V , the latter embedding is

locally flat with nonzero self-intersection number.

Then

σ(X) = L0(M,X)

−
∑

V ⊂X4−X2

(
rV σ (V ) +

nV∑
i=1

(c-rk(BC

V |Li
) sign[S2

i ]2 − ραi
(pi, qi))

)
,

where the sum ranges over all connected components V of X4 − X2, σ(V ) denotes
the (Novikov-) signature of the exterior of the link V ∩ X2 = ⊔nV

i=1 S2
i ⊂ V , Li =
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L(pi, qi), a lens space, is the boundary of a regular neighborhood of S2
i in V , and

αi is obtained by restricting BC

V to Li .

Proof Let V be a connected component of X4 − X2. The locally flat PL-2-link

V ∩ X2 =
⊔

S2
i ↪→ V

is isotopic to a smooth 2-link
⊔

S2
i

C∞
↪→ M4,

where M is a smooth 4-manifold homeomorphic to V . The isotopy ensures that BC

V

defines a complex Blanchfield local system on the complement of the smooth 2-link
and

σ(V ; BC

V ) = σ(M; BC

V ).

The latter signature can be computed using Theorem 4.8 of [Ban08]. Let us recall the
method. Let (E4, ∂E) be the exterior of the smooth 2-link. Its boundary ∂E = ⊔

Li

is a disjoint union of lens spaces Li = L(pi, qi) with finite fundamental group Z/pi
,

pi ≥ 1, since S2
i has nonzero self-intersection number by (iv). Let (N4

i , ∂Ni = Li)

be the total space of the disc bundle of S2
i ⊂ M so that

∂E =
⊔

∂Ni, M = E ∪∂E

⋃
Ni.

By Novikov additivity,

σ(M; BC

V ) = σ(E; BC

V ) +
nV∑
i=1

σ(Ni; BC

V ).

Let us first discuss the terms σ(Ni; BC

V ), where BC

V is only given on the complement
of the zero-section. This complement deformation retracts onto ∂Ni = Li , whence
BC

V is determined by a unitary representation αi : π1(Li) = Z/pi
→ U(rV ), given

by a monodromy matrix A ∈ U(rV ). Diagonalizing A, we obtain a decomposition
BC

V |Li
∼= B(1) ⊕ B′, where B(1) is a constant sheaf of rank c-rk(BC

V |Li
), correspond-

ing to the eigenvalue 1 (if it is present) of A, and the monodromy matrix of B′
does not have 1 among its eigenvalues. Since σ(Ni) = sign[S2

i ]2, where S2
i is the

zero-section of Ni , we have

σ(Ni; B(1)) = c-rk(BC

V |Li
) · sign[S2

i ]2.

Since 1 is not an eigenvalue of B′, the intersection chain sheaf IC•̄
m(

◦
Ni; B′) is zero

over S2
i ⊂ ◦

Ni and thus for the middle hypercohomology,

H−2
c (

◦
Ni; IC•̄

m(B′)) ∼= H 2
c (

◦
Ni − S2

i ; B′).
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From a transfer-map argument involving the universal cover S3 → L(pi, qi), one

infers H 2
c (

◦
Ni − S2

i ; B′) = 0. In particular σ(Ni; B′) = 0, and therefore

σ(Ni; BC

V ) = σ(Ni; B(1)).

By [APS75], the difference between the untwisted and the twisted signature of E is
a differential invariant of ∂E, the rho-invariant

ρ(∂E; BC

V ) = rV σ (E) − σ(E; BC

V ).

Thus

σ(E; BC

V ) = rV σ (E) − ρ

(⊔
i

Li;
⊔
i

BC

V |Li

)

= rV σ (V ) −
∑

i

ρ(Li; BC

V |Li
)

= rV σ (V ) −
∑

i

ραi
(pi, qi).

�

We shall now turn our attention to fibered embeddings of strata; the dimension
of the singular set is arbitrary.

Theorem 10 Let i : Xn ↪→ Mn+2, n ≡ 0(4), be a PL embedding of a compact ori-
ented PL pseudomanifold X in a closed oriented PL manifold M with stratification

X = Xn ⊃ Xn−2 ⊃ Xn−4 ⊃ · · · ⊃ X−1 = ∅.

If V − V ↪→ V is a locally flat spherical fibered knot for all V ∈ X , then

σ(X) = L0(M,X).

Proof This follows from the proof of Theorem 4.7 in [Ban08], by using block bun-
dles instead of fiber bundles. Let us recall the argument briefly. Let V be a com-
ponent in X . By assumption, the embedding V − V ↪→ V is a locally flat spheri-
cal fibered knot Sk ↪→ Sk+2. The complement of this knot carries the complexified
Blanchfield form BC

V ⊗(BC

V )op → CV . By assumption, the exterior E PL-fibers over
a circle with Seifert manifold fiber F , i.e. E is a block bundle over S1: the circle
is triangulated by a finite simplicial complex K , for every simplex � ∈ K , there is
a block � × F , and E is obtained from the disjoint union of all these blocks by
gluing �0 × F to �1 × F for every 1-simplex �1 ∈ K and 0-simplex �0 ∈ K

such that �0 is a face of �1. The gluing is effected by a PL-homeomorphism
f (�1,�0) : F → F , which is the identity on ∂F = Sk . Set F ′ = F ∪∂F Dk+1. Since
every f (�1,�0) is the identity on ∂F , we can extend it to a PL-homeomorphism
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f ′(�1,�0) : F ′ → F ′ by taking f ′ to be the identity on Dk+1. Using the system
{f ′(�1,�0)} to glue the blocks � × F ′, � ∈ K , we obtain the total space Mk+2 of
an F ′-block bundle over S1. This manifold M is the result of surgery on the knot. Let
P be the total space of the cone-block bundle associated to the blocking of M . That
is, if PL-homeomorphisms cf ′(�1,�0) : cF ′ → cF ′ on the cone cF ′ of F ′ are de-
fined by coning f ′(�1,�0), then P is obtained by using the system {cf ′(�1,�0)}
to glue the blocks � × cF ′, � ∈ K . Let BC

M be the unique extension of BC

V to M .
Then, as in the proof of Theorem 7, σ(V ; BC

V ) = σ(M; BC

M). The space P is a
stratified pseudomanifold-with-boundary, with stratification Pk+3 = P ⊃ P1 = S1,
∂P = M . The singular stratum contains the cone-points of the cF ′. On the inte-
rior M × (0,1) of the top stratum, BC

M defines a perfect ±1-Hermitian local system,
which can be extended into the singular stratum P1 by the middle-perversity Deligne
step. The result is an intersection chain sheaf IC•̄

m(P − ∂P ; BC

M) which is self-dual,
as P1 has even codimension k + 2 in P . Thus

(P ; IC•̄
m(P − ∂P ; BC

M))

is a null-cobordism for (M; BC

M) and σ(M; BC

M) = 0. Thus the contributions of all
V in the Cappell-Shaneson L-class formula (1.7) vanish. �

Corollary 5 Let i : Xn ↪→ Sn+2, n ≡ 0(4), n > 0, be a PL embedding of a compact
oriented PL pseudomanifold X in a sphere with stratification

X = Xn ⊃ Xn−2 ⊃ Xn−4 ⊃ · · · ⊃ X−1 = ∅.

If V − V ↪→ V is a locally flat spherical fibered knot for all V ∈ X , then

σ(X) = 0.

Proof We have L0(S
n+2,X) = 0 by (1.8). �
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