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2.2 The Intersection Space in the Isolated Singularities Case

Let p̄ be a perversity. The intersection space of a stratified pseudomanifold M with
one stratum is by definition I p̄M = M. (Such a space is a manifold, but a manifold is
not necessarily a one-stratum space.) Let X be an n-dimensional compact oriented
CAT pseudomanifold with isolated singularities x1, . . . ,xw, w ≥ 1, and simply con-
nected links Li = Link(xi), where CAT is PL or DIFF or TOP. (Pseudomanifolds
whose links are all simply connected are sometimes called supernormal in the liter-
ature, see [CW91].) Thus X has two strata: the bottom pure stratum is {x1, . . . ,xw}
and the top stratum is the complement. By a DIFF pseudomanifold we mean a Whit-
ney stratified pseudomanifold. By a TOP pseudomanifold we mean a topological
stratified pseudomanifold as defined in [GM83]. In the present isolated singularities
situation, this means that the Li are closed topological manifolds and a small neigh-
borhood of xi is homeomorphic to the open cone on Li. If CAT=TOP, assume for
the moment n �= 5. We shall define the perversity p̄ intersection space I p̄X for X .

Lemma 2.8. Every link Li, i = 1, . . . ,w, can be given the structure of a CW-complex.

Proof. We begin with the case CAT=PL. Every link is then a closed PL manifold,
which can be triangulated. The triangulation defines the CW-structure. For the case
CAT=DIFF, i.e. the Whitney stratified case, we observe that links in Whitney strati-
fied sets are again canonically Whitney stratified by intersecting with the strata of X .
Since the links are contained in the top stratum, they are thus smooth manifolds. By
the triangulation theorem of J. H. C. Whitehead, the link can then be smoothly trian-
gulated. Again, the triangulation defines the desired CW-structure. Lastly, suppose
CAT=TOP. If n ≤ 1, then X has no singularities. If n = 2, the links are finite dis-
joint unions of circles. By the simple connectivity assumption, such unions must
be empty. If n = 3, then by simple connectivity every link is a 2-sphere, so again X
would be nonsingular. (Simple connectivity is of course not essential here, as circles
and surfaces are certainly CW-complexes.) If n = 4, then the links are closed topo-
logical 3-manifolds. Since they are simply connected, the links must be 3-spheres
according to the Poincaré conjecture, proved by Perelman. The space X would be
nonsingular. (Simply connectivity is once more not essential for the existence of a
CW-structure on the links because we could appeal to Moise’s theorem [Moi52],
asserting that every compact 3-manifold can be triangulated.) If n≥ 6, the links are
closed topological manifolds of dimension at least 5. In this dimension range, topo-
logical manifolds have CW-structures by [KS77, FQ90]. �	
Remark 2.9. The preceding lemma makes a statement that is more refined than
necessary for constructing the intersection space. CW-structures arising from tri-
angulations for example, while having the virtue of being regular, typically are very
large and have lots of cells that are not closely tied to the global topology of the
space. To form the intersection space, it is enough to know that every link is homo-
topy equivalent to a CW-complex. Using such an equivalence, one is free to choose
smaller CW-structures, indeed minimal cell structures consistent with the homology,
or to obtain a CW-structure when it is not known to exist on the given link per se.
This latter situation arises in the case TOP and n = 5, not covered by the lemma.
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In this case, the links Li are simply connected closed topological 4-manifolds. It is
at present not known whether such a manifold possesses a CW-structure. It is not
possible to obtain such a structure from a handlebody because a closed topological
4-manifold admits a topological handle decomposition if and only if it is smooth-
able, since the attaching maps can always the smoothed by an isotopy. For example,
Freedman’s closed simply connected 4-manifold with intersection form E8 does not
admit a handle decomposition. However, such links Li are homotopy equivalent to
a cell complex with one 0-cell, a finite number of 2-cells and one 4-cell. In the case
TOP and n = 5, after having removed small open cone neighborhoods of the singu-
larities, we glue in the mapping cylinders of these homotopy equivalences and now
have CW-complexes sitting on the “boundary.” The intersection space can then be
defined, following the recipe below, in all dimensions, even when CAT=TOP.

We shall now invoke the spatial homology truncation machine of Section 1.1.
If k = n− 1− p̄(n) ≥ 3, we can and do fix completions (Li,Yi) of Li so that ev-
ery (Li,Yi) is an object in CWk⊃∂ . If k ≤ 2, no groups Yi have to be chosen
and we simply apply the low-degree truncation of Section 1.1.5. Applying the
truncation t<k : CWk⊃∂ → HoCWk−1 as defined on page 50, we obtain a CW-
complex t<k(Li,Yi) ∈ ObHoCWk−1. The natural transformation embk : t<k → t<∞
of Theorem 1.41 gives homotopy classes of maps

fi = embk(Li,Yi) : t<k(Li,Yi)−→ Li

such that for r < k,
fi∗ : Hr(t<k(Li,Yi))∼= Hr(Li),

while Hr(t<k(Li,Yi)) = 0 for r ≥ k. Let M be the compact manifold with bound-
ary obtained by removing from X open cone neighborhoods of the singularities
x1, . . . ,xw. The boundary is the disjoint union of the links,

∂M =
w⊔

i=1

Li.

Let

L<k =
w⊔

i=1

t<k(Li,Yi)

and define a homotopy class g : L<k −→M by composing

L<k
f−→ ∂M −→M,

where f =
⊔

i fi. The intersection space will be the homotopy cofiber of g:

Definition 2.10. The perversity p̄ intersection space I p̄X of X is defined to be

I p̄X = cone(g) = M∪g cone(L<k).
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More precisely, I p̄X is a homotopy type of a space. If g1 and g2 are both
representatives of the class g, then cone(g1)� cone(g2) by the following proposition.

Proposition 2.11. If

Y � f
A

Y ′

φY �

�
� f ′

A′

φA �

�

is a homotopy commutative diagram of continuous maps such that φY and φA are
homotopy equivalences, then there is a homotopy equivalence

Y ∪ f coneA−→ Y ′ ∪ f ′ coneA′

extending φY .

This is Theorem 6.6 in [Hil65], where a proof can be found. The preceding construc-
tion of the intersection space I p̄X depends on choices of cellular subgroups Yi. If a
link Li is an object of the interleaf category ICW, then we may replace t<k(Li,Yi)
in the construction by t<kLi, where t<k : ICW→HoCW is the truncation functor of
Section 1.9. The corresponding homotopy class fi is to be replaced by the homotopy
class embk(Li) : t<kLi→ Li given by the natural transformation

embk : t<k −→ t<∞

from Section 1.9. The construction of the intersection space thus becomes techni-
cally much simpler. The following theorem establishes generalized Poincaré duality
for the rational reduced homology of intersection spaces and describes the relation
to the intersection homology of Goresky and MacPherson.

Theorem 2.12. Let X be an n-dimensional compact oriented supernormal singular
CAT pseudomanifold with only isolated singularities. Let p̄ and q̄ be complementary
perversities. Then:

(1) The pair (H̃∗(I p̄X), IH p̄
∗ (X)) is (n− 1− p̄(n))-reflective across the homology

of the links, and

(2) (H̃∗(I p̄X ;Q), IH p̄
∗ (X ;Q)) and (H̃∗(Iq̄X ;Q), IHq̄

∗ (X ;Q)) are n-dual reflective
pairs.

Remark 2.13. Note that, as stated in the hypotheses, the theorem cannot formally be
applied to a nonsingular X that is stratified with one stratum. The reason is simply
that the reduced homology of a manifold X = M does not possess Poincaré duality. If
M is connected, then H̃0(M) = 0 but H̃n(M)∼= Z generated by the fundamental class.
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We begin the proof of Theorem 2.12:

Proof. We prove statement (1) first. Put L = ∂M and let j : L ↪→M be the inclusion
of the boundary. We will study the braid of the triple

L<k
f

g

L

j

M,

Hk+2( j) Hk+1( f ) Hk(L<k)

f∗

g∗

Hk(M)
α−

α

Hk( j) Hk−1( f )Hk−2(L<k)

f∗

g∗

Hk−2(M)

Hk+1(L)

j∗

Hk+1(g) Hk(L)

j∗

Hk(g)

α+

Hk−1(L)

j∗

Hk−1(g) Hk−2(L)

j∗

Hk+1(L<k)

f∗

g∗

Hk+1(M) Hk+1( j) Hk( f ) Hk−1(L<k)

f∗

g∗

Hk−1(M) Hk−1( j) Hk−2( f )

Using the fact that f∗ is an isomorphism in degrees less than k, as well as Hr(L<k)=0
for r ≥ k, the braid becomes

Hk+2( j) Hk+1( f ) 0

f∗

g∗

Hk(M)
α−

α

Hk( j) 0 Hk−2(L<k)

f∗
∼=

g∗

Hk−2(M)

Hk+1(L)

∼=

j∗

Hk+1(g) Hk(L)

j∗

∼=

Hk(g)

α+

Hk−1(L)

j∗

Hk−1(g)
∼=

Hk−2(L)

j∗

0

f∗

g∗

Hk+1(M)

∼=

Hk+1( j) Hk( f )

0

Hk−1(L<k)

f∗ ∼=

g∗

Hk−1(M) Hk−1( j) 0

Since
H∗(g) = H̃∗(cone(g)) = H̃∗(I p̄X)

and

IH p̄
r (X) =

{
Hr(M,L) = Hr( j), r > k

Hr(M), r < k,

this can be rewritten as
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IH p̄
k+2(X) Hk+1( f ) 0

f∗

g∗

Hk(M)

α−

α

Hk( j) 0 Hk−2(L<k)

f∗
∼=

g∗

IH p̄
k−2(X)

Hk+1(L)

∼=

j∗

H̃k+1(I p̄X) Hk(L)

j∗

∼=

H̃k(I p̄X)

α+

Hk−1(L)

j∗

H̃k−1(I p̄X)
∼=

Hk−2(L)

j∗

0

f∗

g∗

Hk+1(M)

∼=

IH p̄
k+1(X) Hk( f )

0

Hk−1(L<k)

f∗ ∼=

g∗

IH p̄
k−1(X) Hk−1( j) 0

(2.3)

By composing with the indicated isomorphisms and their inverses, we may replace
Hr( f ) by Hr(L) for r≥ k, Hr(L<k) by Hr(L) for r < k, Hr(M) by H̃r(I p̄X) for r > k,
and Hr( j) by H̃r(I p̄X) for r < k to obtain

IH p̄
k+2(X) Hk+1(L) 0

f∗

Hk(M)

α−

α

Hk( j) 0 Hk−2(L)

=

IH p̄
k−2(X)

Hk+1(L)

=

H̃k+1(I p̄X) Hk(L)

j∗

=

H̃k(I p̄X)

α+

Hk−1(L)

j∗

H̃k−1(I p̄X)

=

Hk−2(L)

j∗

0

f∗

H̃k+1(I p̄X)

=

IH p̄
k+1(X) Hk(L)

0

Hk−1(L)

=

IH p̄
k−1(X)H̃k−1(I p̄X) 0

Finally, IH p̄
k (X) = imα, and we arrive at

0 0

IH p̄
k (X)

α ′+

IH p̄
k+2(X) Hk+1(L) 0

f∗

Hk(M)

α ′−

α−

α

Hk( j) 0 Hk−2(L)

=

IH p̄
k−2(X)

Hk+1(L)

=

H̃k+1(I p̄X) Hk(L)

j∗

=

H̃k(I p̄X)

α+

Hk−1(L)

j∗

H̃k−1(I p̄X)

=

Hk−2(L)

j∗

0

f∗

H̃k+1(I p̄X)

=

IH p̄
k+1(X) Hk(L)

0

Hk−1(L)

=

IH p̄
k−1(X)H̃k−1(I p̄X) 0
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where α ′− is given by regarding α as a map onto its image and α ′+ is the inclusion
of imα into Hk( j). This braid contains the desired k-reflective diagram and all the
required exact sequences.

For the remainder of the proof we will work with rational coefficients. To prove
statement (2), we shall first construct duality isomorphisms

d : H̃r(I p̄X)∗
∼=−→ H̃n−r(Iq̄X).

There are three cases to consider: r > k, r = k, and r < k. For r > k, braid (2.3)
contains the isomorphisms

Hr(M)
∼=−→ H̃r(I p̄X).

For Iq̄X , the cut-off degree k′ is given by k′ = n−1− q̄(n) = n−k. Since n− r < k′,
we have isomorphisms

H̃n−r(Iq̄X)
∼=−→ Hn−r( j)

by the braid of the (n− k)-reflective pair (H̃∗(Iq̄X), IHq̄
∗ (X)) analogous to braid

(2.3). Using the Poincaré duality isomorphism Hr(M)∗ ∼= Hn−r( j), we define d to
be the unique isomorphism such that

H̃r(I p̄X)∗
∼=

d ∼=

Hr(M)∗

PD ∼=

H̃n−r(Iq̄X)
∼=

Hn−r( j)

commutes. Then

IH p̄
r (X)∗

GMD ∼=

H̃r(I p̄X)∗

d ∼=

Hr(L)∗

PD ∼=

IHq̄
n−r(X) H̃n−r(Iq̄X) Hn−r−1(L)

commutes, where GMD denotes Goresky–MacPherson duality on intersection ho-
mology. Indeed, via the universal coefficient isomorphism (which is natural), this
diagram is isomorphic to

Hr(M,∂M)

−∩[M,∂M] ∼=

Hr(M)
j∗

−∩[M,∂M] ∼=

Hr(∂M)

−∩[∂M] ∼=

Hn−r(M) Hn−r(M,∂M)
∂∗

Hn−r−1(∂M).
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It commutes on the nose, not only up to sign, because

∂∗(ξ ∩ [M,∂M]) = j∗ξ ∩∂∗[M,∂M] = j∗ξ ∩ [∂M],

see [Spa66], Chapter 5, Section 6, 20, page 255. (Recall that we are using Spanier’s
sign conventions.) For r < k, we proceed by “reflecting the construction of the pre-
vious case.” That is, using the isomorphisms

H̃r(I p̄X)
∼=−→ Hr( j), Hn−r(M)

∼=−→ H̃n−r(Iq̄X), PD : Hr( j)∗ ∼= Hn−r(M),

we define d to be the unique isomorphism such that

Hr( j)∗
∼=

PD ∼=

H̃r(I p̄X)∗

d ∼=

Hn−r(M)
∼=

H̃n−r(Iq̄X)

commutes. It follows that

Hr−1(L)∗

PD ∼=

H̃r(I p̄X)∗

d ∼=

IH p̄
r (X)∗

GMD ∼=

Hn−r(L) H̃n−r(Iq̄X) IHq̄
n−r(X)

commutes as well. The remaining case r = k is perhaps the most interesting one. Let

IH
q̄
n−k(X)

γ′+

H̃n−k+1(Iq̄X) IH
q̄
n−k+1(X) Hn−k(L)

δ−
Hn−k (M)

γ

γ′−

γ−

Hn−k( j)
δ+

H̃n−k(Iq̄X)

γ+

Hn−k−1(L) IH
q̄
n−k−1(X) H̃n−k−1 (Iq̄X) . . .

be the (n− k)-reflective diagram for the pair (H̃∗(Iq̄X), IHq̄
∗ (X)). The dual of the

k-reflective diagram for (H̃∗(I p̄X), IH p̄
∗ (X)) near k is

IH p̄
k (X)∗

α ′∗−

Hk−1(L)∗
β ∗+

Hk( j)∗ α∗

α ′∗+

α∗+

Hk(M)∗
β ∗−

Hk(L)∗.

H̃k(I p̄X)∗
α∗−

(2.4)
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The following Poincaré duality isomorphisms will play a role in the construction
of d:

dM : Hk(M)∗
∼=−→ Hn−k( j),

d′M : Hk( j)∗
∼=−→Hn−k(M),

dL : Hk(L)∗
∼=−→ Hn−k−1(L).

Since the square

Hk(M)∗
β ∗−

dM ∼=

Hk(L)∗

dL ∼=

Hn−k( j)
δ+

Hn−k−1(L)

commutes, dL restricts to an isomorphism

dL : imβ ∗−
∼=−→ imδ+.

Pick any splitting
spβ : imβ ∗− −→ Hk(M)∗

for the surjection β ∗− : Hk(M)∗ � imβ ∗−. Set

sqδ = dMspβ d−1
L : imδ+ −→ Hn−k( j).

Then sqδ splits δ+ : Hn−k( j) � imδ+ because

δ+sqδ = δ+dMspβ d−1
L = dLβ ∗−spβ d−1

L = id .

Pick any splitting
spα : Hk(M)∗ −→ H̃k(I p̄X)∗

for the surjection α∗− : H̃k(I p̄X)∗ � Hk(M)∗ and any splitting

sqγ : Hn−k( j) −→ H̃n−k(Iq̄X)

for the surjection γ+ : H̃n−k(Iq̄X) � Hn−k( j). The composition

sp = spαspβ : imβ ∗− −→ H̃k(I p̄X)∗

is a splitting for β ∗−α∗− : H̃k(I p̄X)∗ � imβ ∗−. Similarly, the composition

sq = sqγ sqδ : imδ+ −→ H̃n−k(Iq̄X)

is a splitting for δ+γ+ : H̃n−k(Iq̄X) � imδ+. Next, choose a splitting

tp : IH p̄
k (X)∗ −→Hk( j)∗
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for α ′∗+ : Hk( j)∗ � IH p̄
k (X)∗. Since duals of reflective diagrams are again reflective,

diagram (2.4) has an associated T-diagram of type (2.2):

0

0 imβ ∗+ Hk( j)∗
α ′∗+

α∗+

IH p̄
k (X)∗ 0

H̃k(I p̄X)∗

β ∗−α∗−

imβ ∗−

0

Thus we obtain a decomposition

H̃k(I p̄X)∗ = α∗+(imβ ∗+)⊕α∗+tpIH p̄
k (X)∗ ⊕ sp(imβ ∗−)

and every v ∈ H̃k(I p̄X)∗ can be written uniquely as

v = α∗+(b+ + tp(h))+ sp(b−)

with b+ ∈ imβ ∗+, h ∈ IH p̄
k (X)∗ and b− ∈ imβ ∗−. Write x = b+ + tp(h). Setting

d(v) = γ−d′M(x)+ sqdL(b−)

defines a map
d : H̃k(I p̄X)∗ −→ H̃n−k(Iq̄X).

We claim that d is an isomorphism: By construction, the square

Hk( j)∗
α∗+

d′M ∼=

H̃k(I p̄X)∗

d

Hn−k(M)
γ−

H̃n−k(Iq̄X)

commutes. The square

H̃k(I p̄X)∗
β ∗−α∗−

d

imβ ∗−
dL∼=

H̃n−k(Iq̄X)
δ+γ+

imδ+
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commutes also, since

dLβ ∗−α∗−(v) = dLβ ∗−α∗(x)+ dLβ ∗−α∗−sp(b−)
= dL(b−)
= δ+γ+γ−d′M(x)+ δ+γ+sqdL(b−)
= δ+γ+d(v).

Hence we have a morphism of short exact sequences

0 Hk( j)∗
α∗+

d′M∼=

H̃k(I p̄X)∗
β ∗−α∗−

d

imβ ∗−
dL∼=

0

0 Hn−k(M)
γ−

H̃n−k(Iq̄X)
δ+γ+

imδ+ 0

By the five-lemma, d is an isomorphism. It remains to be shown that the square

H̃k(I p̄X)∗
α∗−

d ∼=

Hk(M)∗

dM∼=

H̃n−k(Iq̄X)
γ+

Hn−k( j)

commutes. This is established by the calculation

γ+d(v) = γd′M(x)+ γ+sqdL(b−)
= dMα∗(x)+ γ+sqγ sqδ dL(b−)
= dMα∗−(α∗+(x))+ sqδ dL(b−)
= dMα∗−(α∗+(x))+ dMspβ d−1

L ◦ dL(b−)
= dMα∗−(α∗+(x))+ dMspβ (b−)
= dMα∗−(α∗+(x))+ dM(α∗−spα)spβ (b−)
= dMα∗−(α∗+(x))+ dMα∗−sp(b−)
= dMα∗−(v).

In summary, we have constructed the duality isomorphism

IH
p̄
k (X)∗

∼=
α′∗−

H̃k−1 (I p̄X)∗

∼=

IH p̄
k−1(X)∗

∼=

Hk−1(L)∗
β∗+

∼=

Hk( j)∗

α′∗+

α∗+

∼=d′M

IH
q̄
n−k(X)

γ′+
Hk(M)∗

∼=dM

β∗−

H̃n−k+1(Iq̄X) IH
q̄
n−k+1(X) Hn−k(L)

δ−
Hn−k (M)

γ′−

γ−

H̃k(I p̄X)∗
α∗−

∼=d

Hn−k( j)
δ+

H̃n−k(Iq̄X)

γ+
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Hk(L)∗

∼=dL

IH
p̄
k+1(X)∗

∼=

H̃k+1 (I p̄X)∗

∼=

. . .

Hn−k−1(L) IH
q̄
n−k−1(X) H̃n−k−1(Iq̄X) . . .

between the dual of the k-reflective diagram of the pair (H̃∗(I p̄X), IH p̄
∗ (X)) and the

(n− k)-reflective diagram of the pair (H̃∗(Iq̄X), IHq̄
∗ (X)). �	

Corollary 2.14. If n = dimX is even, then the difference between the Euler charac-
teristics of H̃∗(I p̄X) and IH p̄

∗ (X) is given by

χ(H̃∗(I p̄X))− χ(IH p̄
∗ (X)) =−2χ<n−1− p̄(n)(L),

where L is the disjoint union of the links of all the isolated singularities of X.
If n = dimX is odd, then

χ(H̃∗(In̄X))− χ(IHn̄
∗ (X)) = (−1)

n−1
2 b(n−1)/2(L),

where b(n−1)/2(L) is the middle dimensional Betti number of L and n̄ is the upper
middle perversity. Regardless of the parity of n, the identity

rkH̃k(I p̄X)+ rkIH p̄
k (X) = rkHk(M)+ rkHk(M,L) (2.5)

always holds in degree k = n−1− p̄(n), where M is the exterior of the singular set
of X.

Proof. By Theorem 2.12, the pair (H∗,H ′∗) = (H̃∗(I p̄X), IH p̄
∗ (X)) is (n−1− p̄(n))-

reflective across the homology of L. Therefore, Proposition 2.5 applies and we
obtain

χ(H̃∗(I p̄X))− χ(IH p̄
∗ (X)) = χ(L)−2χ<n−1− p̄(n)(L).

If n is even, then L is an odd-dimensional closed oriented manifold and thus
χ(L) = 0 by Poincaré duality. If n is odd, then the cut-off value k for the upper mid-
dle perversity is k = n−1− n̄(n) = (n−1)/2, the middle dimension of L. We have

χ(L) = χ<k(L)+ (−1)kbk(L)+ χ>k(L) = 2χ<k(L)+ (−1)kbk(L),

by Poincaré duality for L. Finally, as A−= Hk(M) and A+ = Hk(M,L), identity (2.5)
follows from the equation

rkHk + rkH ′k = rkA−+ rkA+

of Proposition 2.5. �	
If a link of some singularity is not simply connected, so that the general construc-

tion of the intersection space as described above does not strictly apply, then one can
in practice still often construct the intersection space provided one can find an ad
hoc spatial homology truncation for this specific link. One then uses this truncation
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in place of the t<kLi applied above; the rest of the construction remains the same.
The simple connectivity assumption was adopted because our truncation machine
required it (which in turn is due to the employment of the Hurewicz theorem).
Inspection of the above proof on the other hand reveals that simple connectivity
is nowhere necessary, only the existence of a spatial homology truncation of the
link in the required dimension, dictated by the dimension of the pseudomanifold
and the perversity. The following example illustrates this.

Example 2.15. Let us study Poincaré’s own example of a three-dimensional space
whose ordinary homology does not possess the duality that bears his name: X3 =
ΣT 2, the unreduced suspension of the 2-torus. This pseudomanifold has two singu-
larities x1,x2, whose links are L1 = L2 = T 2, not simply connected. There are only
two possible perversity functions to consider: p̄(3) = 0 and q̄(3) = 1. These two
functions are complementary to each other.

Let us build the intersection space I p̄X first. The cut-off value k is k = n− 1−
p̄(n) = 2. We have spatial homology truncations

t<2(L1) = t<2(L2) = S1∨S1,

the 1-skeleton of T 2. The p̄-intersection space is I p̄X = cone(g), where g is the
composition

L<2 = (S1∨S1)×{0,1} f

g

L = T 2×{0,1}
j

M = T 2× I.

We shall proceed to work out its reduced homology. The braid utilized in the proof
of Theorem 2.12 looks like this:

0 H2(L<2) = 0

0

H2(M)∼= Z

α−

α=0

H2( j)∼= Z
2

0

H1( f ) = 0

0

0

H0(L<2)∼= Z
2

∼=

H0(M)∼= Z

0

0

H0( j) = 0

H3(g) = 0 H2(L)∼= Z
2

∼=

H2(g)∼= Z
3

α+

H1(L)∼= Z
4 H1(g)∼= Z

∼=

H0(L)∼= Z
2

0

H0(g) = 0

0 H3( j)∼= Z H2( f )∼= Z
2

0

H1(L<2)∼= Z
4

∼=

H1(M)∼= Z
2

0

0

H1( j)∼= Z

0

H0( f ) = 0 0

Therefore, the reduced homology of I p̄X ,

H̃∗(I p̄X) = H∗(g) = H∗(T 2× I,(S1∨S1)×{0,1}),



124 2 Intersection Spaces

is
H̃0(I p̄X) = 0,

H̃1(I p̄X) = Z〈pt×I〉,
H̃2(I p̄X) = Z〈T 2×{ 1

2}〉⊕Z〈S1×pt×I〉⊕Z〈pt×S1× I〉,
H̃3(I p̄X) = 0.

Let us now build the intersection space Iq̄X . The cut-off value k is k = n−1− q̄(n) =
1. The spatial homology truncations are

t<1(L1) = t<1(L2) = pt,

the 0-skeleton of T 2. The q̄-intersection space is Iq̄X = cone(g), where g is the
composition

L<1 = pt×{0,1} f

g

L = T 2×{0,1}
j

M = T 2× I.

Thus Iq̄X is obtained from a cylinder on the 2-torus by picking two points on it, one
on each of the two boundary components, and then joining the two points by an arc
outside of the cylinder. Its reduced homology

H̃∗(Iq̄X) = H∗(g) = H∗(T 2× I,pt×{0,1}),

can be determined from the long exact sequence of the pair and is given by

H̃0(Iq̄X) = 0,

H̃1(Iq̄X) = Z〈pt×I〉⊕Z〈S1×pt×{ 1
2}〉⊕Z〈pt×S1×{ 1

2}〉,
H̃2(Iq̄X) = Z〈T 2×{ 1

2}〉,
H̃3(Iq̄X) = 0.

The table below contrasts the intersection space homology with the intersection
homology of X , listing the generators in each dimension.

r IH p̄
r (X) IHq̄

r (X) H̃r(I p̄X) H̃r(Iq̄X)
0 pt pt 0 0
1 S1×pt 0 pt×I pt×I

pt×S1 S1×pt
pt×S1

2 0 Σ(S1×pt) T 2×{ 1
2} T 2×{ 1

2}
Σ(pt×S1) S1×pt×I

pt×S1× I
3 Σ(S1×S1) Σ(S1×S1) 0 0



2.2 The Intersection Space in the Isolated Singularities Case 125

The relative 2-cycle S1× pt×I in the p̄-intersection space homology corresponds
to the suspension Σ(S1× pt) in the q̄-intersection homology, similarly pt×S1× I
corresponds to Σ(pt×S1). In dimension 1, we have an analogous correspondence
between the cycles S1×pt, pt×S1. The fundamental class Σ(S1×S1) is present in in-
tersection homology but is not seen in the homology of the intersection spaces. This
is a general phenomenon and explains why the duality holds for the reduced, not
the absolute, homology. Except for this phenomenon, the homology of the intersec-
tion spaces sees more cycles than the intersection homology. The 2-cycle T 2×{ 1

2},
geometrically present in X , is recorded by both the homology of I p̄X and Iq̄X , but
remains invisible to intersection homology, though an echo of it is the 3-cycle ΣT 2

in intersection homology. By the duality theorem, the 2-cycle T 2×{ 1
2} must have

a dual partner. Indeed, the intersection space homology automatically finds the ge-
ometrically dual partner as well: It is the suspension of a point, the relative cycle
pt×I. The relative p̄-cycle S1× pt×I is dual to the q̄-cycle pt×S1 and the relative
p̄-cycle pt×S1× I is dual to the q̄-cycle S1× pt. In the table, one can also observe
the reflective nature of the relationship between intersection homology and the ho-
mology of the intersection spaces. The example shows that in degrees other than
k = n−1− p̄(n), the homology of I p̄X need not contain a copy of intersection ho-
mology. (We shall return to this point in Section 3.7.) In degree k it always does, as
the proof of the theorem shows.

Let us also illustrate Corollary 2.14, relating the Euler characteristics of H̃∗(I p̄X)
and IH p̄

∗ (X), in the context of this example. In general, see also Proposition 2.5,

χ(H̃∗(I p̄X))− χ(IH p̄
∗ (X)) = χ(L)−2χ<n−1− p̄(n)(L).

We have χ(L) = χ(T 2×{0,1}) = 0 and, since k = 2 for perversity p̄, χ<2(L) =
2−4 =−2, whence

χ(H̃∗(I p̄X))− χ(IH p̄
∗ (X)) = 4.

Indeed, χ(H̃∗(I p̄X)) = 0− 1 + 3− 0 = 2 and χ(IH p̄
∗ (X)) = 1− 2 + 0− 1 = −2.

Furthermore, since a− = rkH2(T 2× I) = 1 and a+ = rkH2(T 2× I,∂ ) = 2, we have
according to equation (2.5),

rk H̃2(I p̄X)+ rkIH p̄
2 (X) = rkH2(T 2× I)+ rkH2(T 2× I,∂ ) = 1 + 2 = 3,

in concurrence with the ranks listed in the table. Since q̄ = n̄ and the dimension
n = 3 is odd, we have for Iq̄X :

χ(H̃∗(Iq̄X))− χ(IHq̄
∗ (X)) =− rkH1(T 2×{0,1}) =−4,

consistent with χ(H̃∗(Iq̄X)) = 0−3+1−0=−2 and χ(IHq̄
∗ (X)) = 1−0+2−1=

2. Formula (2.5) states that

rkH̃1(Iq̄X)+ rkIHq̄
1 (X) = rkH1(T 2× I)+ rkH1(T 2× I,∂ ) = 2 + 1 = 3,

again in agreement with the ranks listed in the table.
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Example 2.16. (The intersection space construction applied to a manifold point.)
The intersection space construction may in principle also be applied to a nonsingu-
lar, two-strata pseudomanifold. What happens when the construction is applied to
a manifold point x? One must remove a small open neighborhood of x and gets a
compact oriented manifold M with boundary ∂M = Sn−1. The open neighborhood
of x is an open n-ball, that is, the open cone on the link Sn−1. For a perversity p̄, the
cut-off degree k = n−1− p̄(n) is at most equal to n−1. Thus the spatial homology
truncation is t<kSn−1 = pt. The fundamental class of the sphere is lost, no matter
which p̄ one takes. Thus I p̄N is M together with a whisker attached to the 0-cell of
the boundary sphere of M. This space is homotopy equivalent to M and to N−{x}.
The reduced homology of M satisfies Poincaré duality since H̃n(M) is dual to H̃0(M)
and Hr(M)→ Hr(M,∂M) = Hr(M,Sn−1) is an isomorphism for 0 < r < n.

Remark 2.17. There are two ways to truncate a chain complex C∗ algebraically.
The “good” truncation τ<kC∗ truncates the homology cleanly and corresponds to
the spatial homology truncation as introduced in Chapter 1. The so-called “stupid”
truncation σ<kC∗, defined by (σ<kC∗)i = Ci for i < k and (σ<kC∗)i = 0 for i ≥ k,
does not truncate the homology cleanly. On spaces, the stupid truncation σ<kL of a
CW-complex L would be σ<kL = Lk−1, the (k−1)-skeleton of L, and is thus much
easier to define and to handle than the good spatial truncation. In light of these
advantages, one may wonder whether in the construction of the intersection space,
one could replace the good spatial truncation t<k(L,Y ) of the link L by the above
stupid truncation σ<kL and still get a space that possesses generalized Poincaré
duality. The following example will show that this is in fact not possible. Let Xn be
the 4-sphere, thought of as a stratified space

X = S4 = D4∪S3 D4 = M4∪L3 cone(L3),

where M4 = D4 and L3 = S3 is the link of the cone point, thought of as the bottom
stratum. Suppose L is equipped with the CW-structure

L = e0
1∪ e0

2∪ e1
1∪ e1

2∪ e2
1∪ e2

2∪ e3
1∪ e3

2,

so that the equatorial spheres S0 ⊂ S1 ⊂ S2 ⊂ L are all subcomplexes. Is cone(g),
where g is the composition

σ<kL = Lk−1 f

g

L = ∂M

j

M,

a viable candidate for an intersection space of X? Since H̃∗(M) = H̃∗(D4) = 0, the
exact sequence of the pair (M,Lk−1) shows

H̃∗(cone(g))∼= H̃∗−1(Lk−1).
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For the middle perversity, one would take k = n/2 = 2. Thus σ<2L = L1 = S1 and
the middle homology of cone(g),

H̃2(cone(g))∼= H̃1(S1),

has rank one. If cone(g) had Poincaré duality, then the signature of the nonde-
generate, symmetric intersection form on H̃2(cone(g)) would have to be nonzero.
(Zero signature would imply even rank.) But the signature of X = S4 is zero.
Thus H̃∗(cone(g)) is a meaningless theory, unrelated to the geometry of X . It
is therefore necessary to choose a subgroup Y ⊂ C2(L) = Ze2

1 ⊕ Ze2
2 such that

(L,Y ) ∈ ObCW2⊃∂ and apply the good spatial truncation t<2(L,Y ), not the stupid
truncation σ<2L. (Using σ<1L or σ<3L does not yield self-dual homology groups
either.) Any such Y arises as the image of a splitting s : im∂2 → C2(L) for ∂2 :
C2(L) � im∂2 = ker∂1 = Z〈e1

1− e1
2〉. So we could for instance take Y = Ze2

1 or
Y = Ze2

2 because ∂2(e2
1) = e1

1− e1
2 = ∂2(e2

2).

2.3 Independence of Choices of the Intersection
Space Homology

The construction of the intersection spaces I p̄X involves choices of subgroups Yi ⊂
Ck(Li), where the Li are the links of the singularities, such that (Li,Yi) is an object
in CWk⊃∂ with k = n−1− p̄(n), n = dimX . Moreover, the chain complexes C∗(Li)
depend on the CW-structures on the links and these structures are another element of
choice. In this section we collect some results on the independence of these choices
of the intersection space homology H̃∗(I p̄X).

Theorem 2.18. Let Xn be a compact oriented pseudomanifold with isolated sin-
gularities and fixed, simply connected links Li that can be equipped with CW-
structures. Then
(1) H̃∗(I p̄X ;Q) is independent of the choices involved in the construction of the in-
tersection space I p̄X,
(2) H̃r(I p̄X ;Z) is independent of choices for r �= n−1− p̄(n), and
(3) H̃k(I p̄X ;Z), k = n−1− p̄(n), is independent of choices if either

Ext(im(Hk(M,L)→ Hk−1(L)),Hk(M)) = 0,

or
Ext(Hk(M,L), im(Hk(L)→Hk(M))) = 0.

Proof. We shall first look at the integral homology groups. For r > k, the proof of
Theorem 2.12 exhibits isomorphisms

Hr(M)
∼=−→ H̃r(I p̄X).
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