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ABSTRACT. Brasselet, the second author and Yokura introduced Hodge-theoretic Hirzebruch-
type characteristic classes IT1,∗, and conjectured that they are equal to the Goresky-MacPherson
L-classes for pure-dimensional compact complex algebraic varieties. In this paper, we show
that the framework of Gysin coherent characteristic classes of singular complex algebraic va-
rieties developed by the first and third author in previous work applies to the characteristic
classes IT1,∗. In doing so, we prove the ambient version of the above conjecture for a cer-
tain class of subvarieties in a Grassmannian, including all Schubert subvarieties. Since the
homology of Schubert subvarieties injects into the homology of the ambient Grassmannian,
this implies the conjecture for all Schubert varieties in a Grassmannian. We also study other
algebraic characteristic classes such as Chern classes and Todd classes (or their variants for
the intersection cohomology sheaves) within the framework of Gysin coherent characteristic
classes.
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1. INTRODUCTION

We show that various algebraic characteristic classes for singular spaces fit into the frame-
work of Gysin coherent characteristic classes of singular complex algebraic varieties that
was developed by the first and the third author in [10]. This framework formalizes Verdier-
Riemann-Roch type formulae with respect to Gysin restriction arising from transverse in-
tersection with smooth varieties. In particular, we show that the framework applies to the
Hodge-theoretic intersection Hirzebruch characteristic classes IT1,∗ introduced by the sec-
ond author jointly with Brasselet and Yokura in [14]. The classes IT1,∗ are conjectured in
[14, Remark 5.4] to be equal to the topological L-classes of Goresky and MacPherson for
pure-dimensional compact complex algebraic varieties. By applying the uniqueness theorem
for Gysin coherent characteristic classes of [10] to both the classes IT1,∗ and the Goresky-
MacPherson L-classes, we conclude that both classes coincide on Cohen-Macaulay subvari-
eties of Grassmannians after push-forward into the homology of the ambient Grassmannian.
Since the homology of Schubert subvarieties injects into the homology of an ambient Grass-
mannian, this implies the conjecture for all Schubert varieties in a Grassmannian.

The notion of Gysin coherent characteristic classes is recalled in Section 6. This notion
was introduced in [10] with respect to a family X of inclusions i : X →W of compact ir-
reducible subvarieties of smooth pure-dimensional projective complex algebraic varieties W
which satisfy primarily an analog of the Kleiman-Bertini transversality theorem with respect
to a suitable notion of transversality. A Gysin coherent characteristic class is a pair cℓ =
(cℓ∗,cℓ∗) consisting of a function cℓ∗ that assigns to every inclusion f : M→W of a smooth
closed subvariety M ⊂W in a smooth variety W a normalized element cℓ∗( f ) ∈ H∗(M;Q),
and a function cℓ∗ that assigns to every inclusion i : X →W of a compact possibly singu-
lar subvariety of a smooth variety an element cℓ∗(i) ∈ H∗(W ;Q) whose highest non-trivial
homogeneous component is the ambient fundamental class of X in W such that the Gysin
restriction formula

f !cℓ∗(i) = cℓ∗( f )∩ cℓ∗(M∩X ⊂M)

holds for all i contained in X. Here, f ! denotes the topological Gysin homomorphism on
singular rational homology. Furthermore, we require that cℓ∗ is multiplicative under products,
that cℓ∗ and cℓ∗ transform naturally under isomorphisms of ambient smooth varieties, and that
cℓ∗ is natural with respect to inclusions in larger ambient smooth varieties. It was shown in
[10] that the Goresky-MacPherson L-class gives rise to a Gysin coherent characteristic class.

In this paper, the focus lies on application of the Gysin coherence framework to the Hodge-
theoretic intersection Hirzebruch characteristic classes IT1,∗ introduced by the second author
jointly with Brasselet and Yokura in [14]. Section 2 provides a brief outline of the theory
of Hodge-theoretic characteristic classes on singular algebraic varieties. For an introduction
to algebraic characteristic classes of singular spaces via mixed Hodge theory in the com-
plex algebraic context, see the second author’s expository paper [52]. For an introduction to
topological characteristic classes of singular spaces, see [5].

Let L∗(ν) denote the Hirzebruch L-class of a topological vector bundle ν . The main result
of the present paper is Theorem 7.4, which can be stated as follows.

Theorem. The pair L= (L∗,L∗) defined by L∗( f ) = L∗(ν f ) for every inclusion f : M→W
of a smooth closed subvariety M ⊂W in a smooth complex algebraic variety W with normal
bundle ν f , and by L∗(i) = i∗IT1,∗(X) for every inclusion i : X →W of a compact possibly
singular subvariety X ⊂W in a smooth variety W is a Gysin coherent characteristic class
with respect to the family XCM of inclusions i : X →W such that X is Cohen-Macaulay.
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In Section 4, we discuss the main ingredient for the proof, which is a Verdier-Riemann-
Roch type formula derived by the first author in [7] for the behavior of the Hodge-theoretic
intersection Hirzebruch characteristic classes IT1∗ under algebraic Gysin restriction with re-
spect to normally nonsingular embeddings of singular spaces. In order for this formula to fit
the axioms of Gysin coherent characteristic classes, we need to apply it in a transverse setup
(see Theorem 4.15), where Tor-independence turns out to be the correct notion of transver-
sality for subvarieties of an ambient smooth variety. Since Sierra’s Kleiman-Bertini transver-
sality theorem for Tor-independence [56] is only available under additional assumptions, we
need to incorporate the Cohen-Macaulay condition into our result. For the Gysin restriction
formula to be valid in the transverse setup, we need to handle some technical issues regarding
the behavior of Whitney stratifications under blow-up of complex manifolds along transverse
submanifolds, see Section 3. Finally, to establish the topological Gysin coherence axiom for
the algebraic characteristic class IT1∗, we compare the algebraic Gysin map with the topo-
logical Gysin map in Section 5, and find that they coincide at least on algebraic cycles (see
Theorem 5.10).

Since the Goresky-MacPherson L-class is a Gysin coherent characteristic class, the unique-
ness theorem for such classes implies that both the classes IT1,∗ and the Goresky-MacPherson
L-classes coincide on irreducible Cohen-Macaulay subvarieties of Grassmannians after push-
forward into the homology of the ambient Grassmannian (see Theorem 7.6). Since Schubert
varieties in a Grassmannian are Cohen-Macaulay, and their homology injects into the homol-
ogy of the Grassmannian, we obtain Corollary 7.7, which states the following.

Corollary. The equality L∗(X) = IT1,∗(X) holds for all Schubert varieties X in a Grassman-
nian.

The above equality was conjectured more generally for pure-dimensional compact com-
plex algebraic varieties in [14, Remark 5.4]. In joint work with Cappell, Maxim, and Shane-
son, the second author proved the conjecture in [17, Cor. 1.2] for orbit spaces X = Y/G,
with Y a projective G-manifold and G a finite group of algebraic automorphisms. They also
showed the conjecture for certain complex hypersurfaces with isolated singularities which
are assumed rational homology manifolds [16, Theorem 4.3]. The conjecture holds for sim-
plicial projective toric varieties as shown by Maxim and the second author [41, Corollary
1.2(iii)]. In [6], the first author proved that his extension of the Goresky-MacPherson L-class
to oriented pseudomanifolds that possess Lagrangian structures along strata of odd codimen-
sion, introduced in [4], transfers to the L-class of any finite covering space (see Theorem
3.14 in [6]). He deduced from this that the conjecture holds for normal connected com-
plex projective 3-folds X that have at worst canonical singularities, trivial canonical divisor,
and dimH1(X ;OX ) > 0. If ξ is an oriented PL block bundle over a closed PL Witt space
B (e.g. a pure-dimensional complex algebraic variety) with closed d-dimensional PL mani-
fold fiber and total space X , then ξ !L∗(B) = L∗(νξ )∩L∗(X) under the block bundle transfer
ξ ! : H∗(B;Q)→ H∗+d(X ;Q) associated to ξ , see [8]. Here, νξ is the oriented stable vertical
normal PL microbundle of ξ . In fact, it is shown in [9] that the KO-theoretic block bundle
transfer ξ ! : KO∗(B)⊗Z[ 1

2 ]→ KO∗+d(X)⊗Z[ 1
2 ] sends the Siegel-Sullivan orientation ∆(B)

to ∆(X). The Siegel-Goresky-MacPherson L-class can be recovered from ∆(−) by applying
the Pontrjagin character. Note that transfer does not generally commute with localization
of homotopy theoretic spectra. The aforementioned cases of the conjecture concern rational
homology manifolds. Fernández de Bobadilla and Pallarés [23] proved the conjecture for all
projective complex algebraic varieties that are rational homology manifolds. In joint work
with Saito [24], they also gave a different proof for compact instead of projective complex
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varieties, using the theory of mixed Hodge modules. On the other hand, Schubert varieties in
a Grassmannian are generally singular enough so as not to be rational homology manifolds.

Furthermore, we shall clarify how other algebraic characteristic classes such as Chern
classes (see Section 8) and Todd classes (see Section 9) (or their variants for the intersection
cohomology sheaves) fit into the framework of Gysin coherence. In Theorem 9.1, we show
that Todd classes are Gysin coherent with respect to the family XCM of inclusions X →W
such that X is Cohen-Macaulay. The proof is similar to that of our main result, but is based
on the Verdier-Riemann-Roch formula for the Todd class transformation τ∗, which was con-
jectured by Baum-Fulton-MacPherson in [11, p. 137], and proved by Verdier [58, p. 214,
Theorem 7.1]. On the other hand, Theorem 8.7 shows that Chern classes are Gysin coher-
ent, which exploits the second author’s Verdier-Riemann-Roch type theorem (see [53]) for
the behavior of the Chow homology Chern class transformation c∗ : F(X)→ A∗(X) on com-
plex algebraically constructible functions under refined Gysin maps associated to transverse
intersections in a microlocal context.

We conclude by mentioning that the normally nonsingular expansions derived in [10,
Theorem 7.1] provide a systematic method for the recursive computation of Gysin coherent
characteristic classes in ambient Grassmannians in terms of genera of explicitly constructed
characteristic subvarieties. For the classes discussed in this paper, the computational conse-
quences e.g. in the case of Schubert varieties in a Grassmannian remain open for future study.
Chern classes of Schubert varieties in Grassmannians were computed by Aluffi and Mihalcea
in [1]. Moreover, an algorithm for the computation of Chern classes for Schubert cells in
a generalized flag manifold is provided in [2]. For an extension to the equivariant setting,
as well as applications to positivity of non-equivariant Chern classes and related classes, we
refer the reader to [3].

Notation. Regarding singular cohomology, singular homology and Borel-Moore homol-
ogy, we work with rational coefficients and will write these groups as H∗(−), H∗(−), and
HBM
∗ (−).

2. HODGE-THEORETIC CHARACTERISTIC CLASSES

This section provides a brief outline of the theory of Hodge-theoretic characteristic classes
on singular algebraic varieties (compare also Section 5 in [7]). After recalling the motivic
Hodge Chern class transformation in Definition 2.1 and the twisted Todd transformation of
Baum, Fulton, MacPherson in Definition 2.7, we define the motivic Hirzebruch class trans-
formation in Definition 2.9, and finally the intersection Hirzebruch characteristic class ITy∗
in Definition 2.11. For a more detailed exposition of the topic, we refer e.g. to the expository
paper [52].

For an algebraic variety X , let Kalg
0 (X) denote the Grothendieck group of the abelian cat-

egory of coherent sheaves of OX -modules. When there is no danger of confusion with other
K-homology groups, we shall also write K0(X) = Kalg

0 (X). Let K0(X) = K0
alg(X) denote the

Grothendieck group of the exact category of algebraic vector bundles over X . The tensor
product ⊗OX induces a cap product

∩ : K0(X)⊗K0(X)−→ K0(X), [E]∩ [F] = [E⊗OX F].

Thus,

(1) −∩ [OX ] : K0(X)−→ K0(X)

sends a vector bundle [E] to its associated (locally free) sheaf of germs of local sections
[E⊗OX ]. If X is smooth, then −∩ [OX ] is an isomorphism.
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Let X be a complex algebraic variety and E an algebraic vector bundle over X . For a
nonnegative integer p, let Λp(E) denote the p-th exterior power of E. The total λ -class of E
is by definition

λy(E) = ∑
p≥0

Λ
p(E) · yp,

where y is an indeterminate functioning as a bookkeeping device. This construction induces
a homomorphism λy(−) : K0

alg(X) −→ K0
alg(X)[[y]] from the additive group of K0(X) to the

multiplicative monoid of the power series ring K0(X)[[y]]. Now let X be a smooth variety, let
T X denote its holomorphic tangent bundle and T ∗X its holomorphic cotangent bundle. Then
Λp(T ∗X) is the vector bundle of holomorphic p-forms on X . Its associated sheaf of sections
is denoted by Ω

p
X . Thus

[Λp(T ∗X)]∩ [OX ] = [Ωp
X ]

and hence

λy(T ∗X)∩ [OX ] =
dimX

∑
p=0

[Ωp
X ]y

p.

Let X be a complex algebraic variety and let MHM(X) denote the abelian category of M.
Saito’s algebraic mixed Hodge modules on X . Totaro observed in [57] that Saito’s construc-
tion of a pure Hodge structure on the intersection homology of compact varieties implicitly
contains a definition of certain characteristic homology classes for singular algebraic vari-
eties. The following definition is based on this observation and due to Brasselet, Schürmann
and Yokura, [14], see also the expository paper [52].

Definition 2.1. The motivic Hodge Chern class transformation

MHCy : K0(MHM(X))→ Kalg
0 (X)⊗Z[y±1]

is defined by
MHCy[M] = ∑

i,p
(−1)i[Hi(GrF

−pDR[M])](−y)p.

Here, GrF
p DR : DbMHM(X)→ Db

coh(X), with Db
coh(X) the bounded derived category of

sheaves of OX -modules with coherent cohomology sheaves, denotes the functor of triangu-
lated categories constructed by M. Saito, see [46, §2.3], [50, §1], [47, §3.10], obtained by
taking a suitable filtered de Rham complex of the filtered holonomic D-module underlying a
mixed Hodge module. For every p∈Z, these functors induce functors between the associated
Grothendieck groups, with GrF

p DR[M]≃ 0 for a given M and almost all p.
A flat morphism f : X→Y gives rise to a flat pullback f ∗ : Coh(Y )→Coh(X) on coherent

sheaves, which is exact and hence induces a flat pullback f ∗K : Kalg
0 (Y )→ Kalg

0 (X). This
applies in particular to smooth morphisms and is then often called smooth pullback. An
arbitrary algebraic morphism f : X → Y (not necessarily flat) induces a homomorphism

f ∗ : K0(MHM(Y ))−→ K0(MHM(X))

which corresponds under the forgetful functor rat : DbMHM(−)→Db
c(−;Q) to f−1 on con-

structible complexes of sheaves. (Additional remarks on rat are to be found further below.)
We record Schürmann’s [52, Cor. 5.11, p. 459]:

Proposition 2.2. (Verdier-Riemann-Roch for smooth pullbacks.) For a smooth morphism
f : X → Y of complex algebraic varieties, the Verdier Riemann-Roch formula

λy(T ∗X/Y )∩ f ∗KMHCy[M] = MHCy( f ∗[M]) = MHCy[ f ∗M]

holds for M ∈ DbMHM(Y ), where T ∗X/Y denotes the relative cotangent bundle of f .
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Let E be a complex vector bundle and let ai denote the Chern roots of E. In [32], Hirze-
bruch introduced a cohomological characteristic class

T ∗y (E) =
rkE

∏
i=1

Qy(ai),

where y is an indeterminate, coming from the power series

Qy(a) =
a(1+ y)

1− e−a(1+y)
−ay ∈Q[y][[a]].

If R is an integral domain over Q, then a power series Q(a) ∈ R[[a]] is called normalized if it
starts with 1, i.e. Q(0) = 1. With R =Q[y], we have Qy(0) = 1, so Qy(a) is normalized. For
y = 0,

(2) T ∗0 (E) =
rkE

∏
i=1

ai

1− e−ai
= td∗(E)

is the classical Todd class of E, while for y = 1,

(3) T ∗1 (E) =
rkE

∏
i=1

ai

tanhai
= L∗(E)

is the Hirzebruch L-class of the vector bundle E. We shall also need a certain unnormalized
version of Qy(a): Let

Q̃y(a) =
a(1+ ye−a)

1− e−a ∈Q[y][[a]]

and set

T̃ ∗y (E) =
rkE

∏
i=1

Q̃y(ai).

Note that Q̃y(0) = 1+ y ̸= 1, whence Q̃y(a) is unnormalized. The relation

(1+ y)Qy(a) = Q̃y((1+ y)a)

implies:

Proposition 2.3. If E is a complex vector bundle of complex rank r, then for the degree 2i
components:

T̃ i
y (E) = (1+ y)r−iT i

y (E).

More conceptually, we have the following formula for the unnormalized class:

Proposition 2.4. For any complex vector bundle E, we have

T̃ ∗y (E) = td∗(E)∪ ch∗(λy(E∗)).

Proof. The Chern character is given by

ch∗(λy(E∗)) =
rkE

∏
i=1

(1+ ye−ai),

with ai the Chern roots of E, see [33, p. 11]. Thus

T̃ ∗y (E) = ∏
i

ai(1+ ye−ai)

1− e−ai
= ∏

i

ai

1− e−ai ∏
i
(1+ ye−ai)

= td∗(E)∪ ch∗(λy(E∗)).

□
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Let τ∗ : K0(X) −→ HBM
2∗ (X)⊗Q denote the Todd class transformation of Baum, Fulton,

MacPherson. We review, to some extent, construction and properties of this transformation.
Let

α
∗ : K0

alg(X)−→ K0
top(X)

be the forget map which takes an algebraic vector bundle to its underlying topological vector
bundle. Composing with the Chern character, one obtains a transformation

τ
∗ = ch∗ ◦α∗ : K0

alg(X)−→ H2∗(X ;Q),

see [12, p. 180]. Baum, Fulton and MacPherson construct with the use of Bott periodicity a
corresponding homological version

α∗ : Kalg
0 (X)−→ Ktop

0 (X)

for quasi-projective varieties X . Composing with the homological Chern character

ch∗ : Ktop
0 (X)−→ HBM

2∗ (X ;Q),

where HBM
∗ denotes Borel-Moore homology, they obtain a transformation

τ∗ = ch∗ ◦α∗ : Kalg
0 (X)−→ HBM

2∗ (X ;Q).

An algebraic version of this transformation is in fact available for any algebraic scheme over
a field and generalizes the Grothendieck Riemann-Roch theorem to singular varieties.

Remark 2.5. Let A∗(V ) denote Chow homology of a variety V , i.e. algebraic cycles in V
modulo rational equivalence. Then there is a transformation

τ∗ : Kalg
0 (X)−→ A∗(X)⊗Q

such that for a complex algebraic variety X , the diagram

Kalg
0 (X)

τ∗

&&
τ∗

��
A∗(X)⊗Q

cl
// HBM

2∗ (X ;Q)

commutes, where cl is the cycle map; see the first commutative diagram on p. 106 of [11,
(0.8)]. The construction of τ∗ to Chow homology is described in Fulton’s book [25, p. 349].
Thus Todd classes are algebraic cycles with rational coefficients that are well-defined up to
rational equivalence.

According to [12, Theorem, p. 180], τ∗ and τ∗ are compatible with respect to cap products,
i.e. the diagram

K0(X)⊗K0(X)
τ∗⊗τ∗ //

∩
��

H∗(X ;Q)⊗HBM
∗ (X ;Q)

∩
��

K0(X)
τ∗ // HBM

∗ (X ;Q)

commutes. Thus, if E is a vector bundle and F a coherent sheaf on X , then

(4) τ∗([E]∩ [F]) = ch∗(E)∩ τ∗[F].

For smooth X ,
τ∗[OX ] = td∗(T X)∩ [X ] = T ∗0 (T X)∩ [X ].
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So if E is a vector bundle on a smooth variety, then

(5) τ∗([E]∩ [OX ]) = (ch∗(E)∪ td∗(T X))∩ [X ].

For locally complete intersection morphisms f : X → Y , Gysin maps

f ∗BM : HBM
∗ (Y )−→ HBM

∗−2d(X)

have been defined by Verdier [58, §10], and Baum, Fulton and MacPherson [11, Ch. IV,
§4], where d denotes the (complex) virtual codimension of f . Thus for a regular closed
embedding g, there is a Gysin map g∗BM on Borel-Moore homology, which we shall also
write as g!

alg, and for a smooth morphism f of relative dimension r, there is a smooth pullback
f ∗BM : HBM

∗ (Y )→HBM
∗+2r(X). Baum, Fulton and MacPherson conjectured and Verdier showed:

Proposition 2.6. (Verdier-Riemann-Roch for smooth pullbacks.) For a smooth morphism
f : X → Y of complex algebraic varieties and [F] ∈ Kalg

0 (Y ),

td∗(TX/Y )∩ f ∗BMτ∗[F] = τ∗( f ∗K [F]).

Yokura [61] twisted τ∗ by a Hirzebruch-type variable y:

Definition 2.7. The twisted Todd transformation

td1+y : K0(X)⊗Z[y±1]−→ HBM
2∗ (X)⊗Q[y±1,(1+ y)−1]

is given by

td1+y[F] := ∑
k≥0

τk[F] ·
1

(1+ y)k ,

where the Baum-Fulton-MacPherson transformation τ∗ is extended linearly over Z[y±1], and
τk denotes the degree 2k-component of τ∗.

Remark 2.8. Regarding the transformation τ∗ as taking values in Chow groups A∗(−)⊗Q
(cf. Remark 2.5), the above definition yields a twisted Todd transformation

td1+y : K0(X)⊗Z[y±1]−→ A∗(X)⊗Q[y±1,(1+ y)−1],

which commutes with the Borel-Moore twisted Todd transformation under the cycle map.

The definition of the motivic Hirzebruch class transformation below is due to Brasselet,
Schürmann and Yokura [14], see also Schürmann’s expository paper [52].

Definition 2.9. The motivic Hirzebruch class transformation is

MHTy∗ := td1+y ◦MHCy : K0(MHM(X))−→ HBM
2∗ (X)⊗Q[y±1,(1+ y)−1].

For the intersection Hodge module ICH
X on a complex purely n-dimensional variety X , we

use the convention
ICH

X := j!∗(QH
U [n]),

which agrees with [52, p. 444] and [43, p. 345]. Here, U ⊂ X is smooth, of pure dimension n,
Zariski-open and dense, and j!∗ denotes the intermediate extension of mixed Hodge modules
associated to the open inclusion j : U ↪→ X . The underlying perverse sheaf is rat(ICH

X ) =
ICX , the intersection chain sheaf, where rat : MHM(X)→ Per(X) = Per(X ;Q) is the faithful
and exact functor that sends a mixed Hodge module to its underlying perverse sheaf. Here,
Per(X) denotes perverse sheaves on X which are constructible with respect to some algebraic
stratification of X . This functor extends to a functor rat : DbMHM(X)→ Db

c(X) = Db
c(X ;Q)

between bounded derived categories. For every object of Db
c(X) there exists some algebraic

stratification with respect to which the object is constructible, and these stratifications will
generally vary with the object. Recall that a functor F is conservative, if for every morphism
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φ such that F(φ) is an isomorphism, φ is already an isomorphism. Faithful functors on
balanced categories (such as abelian or triangulated categories) are conservative. According
to [48, p. 218, Remark (i)], rat : DbMHM(X)→Db

c(X) is not faithful. We recall Lemma 5.10
from [7]:

Lemma 2.10. The functor rat : DbMHM(X)→ Db
c(X) is conservative.

Using cones, this lemma also appears embedded in the proof of [17, Lemma 5.3, p.
1752], see also Exercise 11.2.1 in Maxim’s book [39]. The module ICH

X is the unique
simple object in the category MHM(X) which restricts to QU [n] over U . As U is smooth
and pure n-dimensional, QH

U [n] is pure of weight n. Since the intermediate extension j!∗
preserves weights, ICH

X is pure of weight n. There is a duality isomorphism (polarization)
DH

X ICH
X
∼= ICH

X (n). Taking rat, this isomorphism induces a self-duality isomorphism

DX ICX = DX rat ICH
X
∼= ratDH

X ICH
X
∼= rat ICH

X (n)∼= ICX ,

if an isomorphism QU (n)∼=QU is chosen.

Definition 2.11. ([14].) The intersection generalized Todd class (or intersection Hirzebruch
characteristic class) is

ITy∗(X) := MHTy∗[ICH
X [−n]] ∈ HBM

2∗ (X)⊗Q[y±1,(1+ y)−1].

Taking up expectations formulated by Cappell and Shaneson in [19], this class started to
be investigated in detail by Cappell, Maxim and Shaneson in [18].

Remark 2.12. The intersection characteristic class ITy∗(X) is represented by an algebraic
cycle by Remark 2.8.

Remark 2.13. Later on in the present paper, we will be interested in the specializations
IT1,∗(X) for y = 1, IT0,∗(X) for y = 0 and IT−1,∗(X) for y = −1 in Definition 2.11. Here,
we note that specialization y = 0 is in fact possible because we actually have ITy∗(X) ∈
HBM

2∗ (X)⊗Q[y,(1+ y)−1] by [52, p. 451, Example 5.2]. Specialization y = −1 is possible
in Definition 2.11 because we actually have ITy∗(X) ∈ HBM

2∗ (X)⊗Q[y±1] as shown in [52, p.
465, Proposition 5.21].

Remark 2.14. Let K0(var/X) denote the motivic relative Grothendieck group of complex
algebraic varieties over X . By definition, K0(var/X) is the free abelian group generated by
isomorphism classes [ f ] = [ f : Z → X ] of morphisms f to X modulo the additivity relation
(or scissor relation)

[ f ] = [ f ◦ i]+ [ f ◦ j]
for a closed inclusion i : Y → X with complement j : U = Z \Y → X . As pointed out in [52,
Remark 5.5], composition of the transformations MHCy and MHTy with the natural group
homomorphism

χHdg : K0(var/X)→ K0(MHM(X)), [ f : Z→ X ] 7→ [ f!QH
Z ],

(see [52, Corollary 4.10]) yields similar transformations

mCy := MHCy ◦χHdg, Ty∗ := MHTy ◦χHdg,

defined on K0(var/X), which are studied in [14].

The intersection Hodge modules are multiplicative under the external product

⊠ : MHM(X)×MHM(Y )→MHM(X×Y )

as follows (compare also [40, p. 471]).
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Proposition 2.15. Let X and Y be pure-dimensional complex algebraic varieties. Then there
is a natural isomorphism ICH

X×Y = ICH
X ⊠ ICH

Y in MHM(X×Y ).

Proof. Let Z be a pure n-dimensional complex algebraic variety. The perverse sheaf ICZ(Q)
is a simple object in the category of perverse sheaves (see [13, p. 112, Théorème 4.3.1] or
[39, p. 142, Corollary 8.4.13]). Since the functor rat : MHM(Z)→ Per(Z) is faithful, the
module ICH

Z is the unique simple object in the category MHM(Z) which restricts to QH
U [n]

over a dense open smooth subset U of Z (see [43, p. 345, Section 14.1.4]).
Let a and b denote the dimensions of X and Y , respectively. We shall show that ICH

X ⊠ ICH
Y

is simple in MHM(X ×Y ) and restricts to QH
U×V [a+ b], where U ⊂ X and V ⊂ Y are dense

open smooth subsets. As for the former claim, let i : A ↪→ ICH
X ⊠ ICH

Y be a subobject. As
rat is exact, its application to i yields a subobject rat(i) : rat(A) ↪→ rat(ICH

X ⊠ ICH
Y ). As rat

preserves external products (see [49, Eq. (1.5.2)]), there is a natural isomorphism

rat(ICH
X ⊠ ICH

Y ) = rat(ICH
X )⊠ rat(ICH

Y ) = ICX ⊠ ICY .

In the category of perverse sheaves, we have ICX ⊠ ICY = ICX×Y , as a standard verification
of the intersection sheaf axioms shows (see [29, p. 121, Section 6.3]). Therefore, we obtain a
subobject rat(i) : rat(A) ↪→ ICX×Y in Per(X ×Y ). Since ICX×Y is a simple object in Per(X ×
Y ), we obtain either that rat(A) = 0 or that rat(i) is an isomorphism. Faithful functors on
balanced categories (such as abelian or triangulated categories) are conservative. Thus, if
rat(i) is an isomorphism, then i is an isomorphism as well. On the other hand, let us suppose
that rat(A) = 0. Application of the additive functor rat to the unique morphism t : A→ 0
yields rat(t) : rat(A)→ rat(0) = 0, which is an isomorphism since rat(A) = 0. Using again
that rat is conservative, we conclude that A = 0. This shows that ICH

X ⊠ ICH
Y is simple in

MHM(X×Y ). Next, let us show that there is a natural isomorphism

(6) (iU × iV )∗(ICH
X ⊠ ICH

Y ) =QH
U×V [a+b] ∈MHM(U×V ),

where iU : U ↪→ X and iV : V ↪→ Y are inclusions of dense open smooth subsets. We will
first establish the isomorphism in DbMHM(U×V ), and then show that it gives rise to one in
MHM(U×V ). For M ∈ DbMHM(X) and N ∈ DbMHM(Y ), there is a natural isomorphism

(iU × iV )∗(M⊠N) = i∗U M⊠ i∗V N ∈ DbMHM(U×V )

by [49, Eq. (3.1.9), p. 13]. Substituting M = ICH
X and N = ICH

Y , we obtain a natural isomor-
phism

(iU × iV )∗(ICH
X ⊠ ICH

Y ) = i∗U ICH
X ⊠ i∗V ICH

Y ∈ DbMHM(U×V ).

Furthermore, it follows from i∗U ICH
X =QH

U [a] and i∗V ICH
Y =QH

V [b] that

i∗U ICH
X ⊠ i∗V ICH

Y =QH
U [a]⊠QH

V [b] = (QH
U ⊠QH

V )[a+b] ∈ DbMHM(U×V ).

For the projection p : U×V →V to the second factor, there are natural isomorphisms

QH
U ⊠QH

V = p∗QH
V =QH

U×V ∈ DbMHM(U×V )

by [49, Eq. (3.6.3), p. 15] and [49, Eq. (3.9.1), p. 16], respectively. By composition, we
arrive at a natural isomorphism

(7) (iU × iV )∗(ICH
X ⊠ ICH

Y ) =QH
U×V [a+b] ∈ DbMHM(U×V ).

Since MHM(−) is stable under external product and pullback by open embeddings, it follows
from ICH

X ∈ MHM(X) and ICH
Y ∈ MHM(Y ) that (iU × iV )∗(ICH

X ⊠ ICH
Y ) ∈ MHM(U ×V ).

Moreover, we have QH
U×V [a+b] ∈MHM(X×Y ) because U×V is smooth. Finally, applica-

tion of the functor H0 : DbMHM(U×V )→MHM(U×V ) to the isomorphism (7) yields the
desired isomorphism (6). □
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Corollary 2.16. The intersection generalized Todd class of the product X ×Y of complex
algebraic pure-dimensional varieties X ,Y satisfies

ITy∗(X×Y ) = ITy∗(X)× ITy∗(Y ) ∈ HBM
2∗ (X×Y )⊗Q[y±1,(1+ y)−1].

Proof. By [52, Corollary 5.10, p. 458], the motivic Chern class transformation

MHCy : K0(MHM(X))→ Kalg
0 (X)⊗Z[y±1]

(see Definition 2.1) commutes with the external product, that is,

MHCy([M]⊠ [N]) = MHCy([M])⊠MHCy([N])

for M ∈DbMHM(X) and N ∈DbMHM(Y ). Furthermore, according to [52, p. 462], the Todd
class transformation

τ∗ : Kalg
0 (X)−→ HBM

2∗ (X)⊗Q

of Baum, Fulton, MacPherson is compatible with the external product in the sense that

τ∗([F]⊠ [G]) = τ∗([F])× τ∗([G])

for [F] ∈ K0(X) and [G] ∈ K0(Y ) (see also [25, Example 18.3.1, p. 360, and Example 19.1.9,
p. 377], as well as [27, Property (i), p. 122]). (The cross product on Borel-Moore homol-
ogy agrees with the cross product on ordinary singular homology under the isomorphism
HBM
∗ (X) ∼= H∗(X ,X −X), where X is a compactification of X such that (X ,X −X) is a CW

pair, see [21, p. 99, 2.6.19].) The latter implies for the twisted Todd transformation

td1+y : Kalg
0 (X)⊗Z[y±1]−→ HBM

2∗ (X)⊗Q[y±1,(1+ y)−1]

of Definition 2.7 that

td1+y([F])× td1+y([G]) =

[
∑
k≥0

τk([F])
1

(1+ y)k

]
×

[
∑
l≥0

τl([G])
1

(1+ y)l

]

= ∑
k,l≥0

τk([F])× τl([G])
1

(1+ y)k+l

= ∑
m≥0

[
∑

k+l=m
τk([F])× τl([G])

]
1

(1+ y)m

= ∑
m≥0

τm([F]⊠ [G])
1

(1+ y)m

= td1+y([F]⊠ [G])

for [F] ∈ K0(X)⊗Z[y±1] and [G] ∈ K0(Y )⊗Z[y±1]. By composition, we see that the motivic
Hirzebruch class transformation

MHTy∗ := td1+y ◦MHCy : K0(MHM(X))−→ HBM
2∗ (X)⊗Q[y±1,(1+ y)−1]

(see Definition 2.9) satisfies

MHTy∗([M]⊠ [N]) = MHTy([M])×MHTy([N])

for M ∈ DbMHM(X) and N ∈ DbMHM(Y ). Finally, by taking M = ICH
X [−a] and M =

ICH
Y [−b], where a and b denote the dimensions of X and Y , respectively, we can compute
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the intersection generalized Todd class (see Definition 2.11) of the product X×Y to be

ITy∗(X×Y ) = MHTy∗[ICH
X×Y [−(a+b)]]

= MHTy∗[ICH
X [−a]⊠ ICH

Y [−b]]

= MHTy∗([ICH
X [−a]]⊠ [ICH

Y [−b]])

= MHTy∗[ICH
X [−a]]×MHTy∗[ICH

Y [−b]]

= ITy∗(X)× ITy∗(Y ),

where we exploited that ICH
X×Y = ICH

X ⊠ ICH
Y ∈MHM(X×Y ) by Proposition 2.15. □

Proposition 2.17. Let Φ : X
∼=−→ Y be an isomorphism of pure-dimensional complex alge-

braic varieties. Then, Φ∗ITy∗(X) = ITy∗(Y ) in HBM
2∗ (Y )⊗Q[y±1,(1+ y)−1].

Proof. This follows from Φ∗ICH
X = ICH

Y , and by naturality of MHTy∗. □

3. BLOW-UP AND TRANSVERSALITY FOR COMPLEX MANIFOLDS

This section studies stratifications and transversality of the strict transform of Whitney
stratified sets under blow-ups along smooth centers. Throughout, let M be a complex sub-
manifold of a complex manifold W .

Lemma 3.1. Let S⊂W be a complex submanifold that is transverse to M ⊂W (in the sense
of C∞ manifolds). Then, the intersection S∩M is a complex submanifold of W. Moreover, the
canonical map NS∩MS→ (NMW )|S∩M of complex normal bundles is an isomorphism.

Proof. The proof of the first claim is similar to the real smooth version, but is based on the
complex counterpart of the C∞ implicit function theorem (see e.g. Grifiths-Harris [31, p.
19]). The proof of the second claim uses the definition of the complex normal bundle NMW
as the quotient of the restricted complex tangent bundle TW |M by the subbundle T M (see e.g.
Griffiths-Harris [31, p. 71]). □

In the following, let π : W ′ = BlM W →W denote the blow-up of W along M. Thus, W ′ is
a complex manifold, π is a holomorphic map that is an isomorphism away from M, π| : W ′ \
π−1(M)

∼=−→W \M, and the restriction π| : E → M of π to the exceptional divisor E :=
π−1(M) ⊂W ′ is isomorphic over M to the projectivization P(NMW )→ M of the complex
normal bundle NMW →M of M in W .

The blow-up of W along M can be characterized uniquely up to isomorphism as follows.
Given a complex manifold W ′0 and a holomorphic map π0 : W ′0→W that is an isomorphism
away from M, and such that the fibers of π0 over points of M are isomorphic to complex
projective (k− 1)-space P(Ck), where k denotes the codimension of M in W , there is an
isomorphism Φ : W ′0

∼=−→W ′ such that π0 = π ◦Φ. Consequently, we have the following

Proposition 3.2. For every open subset U ⊂W, the restriction π| : π−1(U)→U is the blow-
up of U along the complex submanifold M∩U ⊂U.

The inverse image π−1(Z) of a subset Z ⊂W is called the total transform of Z under π .
For any subset Z ⊂W , the strict transform Z̃ of Z under π is the intersection of the total
transform π−1(Z) with the closure of the inverse image π−1(Z \M) in W ′. In particular, for
a closed subset Z ⊂W , we note that Z̃ is just the closure of the inverse image π−1(Z \M) in
W ′. In view of Proposition 3.2, it makes sense to study the behavior of the strict transform
under restriction to open subsets.
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Lemma 3.3. For any subset Z ⊂W, the strict transform of the intersection Z∩U under the
blow-up π| : π−1(U)→U of an open subset U ⊂W along M∩U is given by Z̃∩π−1(U).

Proof. The strict transform of the intersection Z∩U under the blow-up π| : π−1(U)→U of
an open subset U ⊂W along M ∩U is by definition the intersection of the total transform
π−1(Z ∩U) = π−1(Z)∩π−1(U) with the closure of the inverse image π−1((Z ∩U) \ (M ∩
U)) = π−1(Z \M)∩π−1(U) in π−1(U). Since π−1(U) ⊂W ′ is an open subset, the closure
of π−1(Z \M)∩ π−1(U) in π−1(U) equals the intersection of π−1(U) with the closure of
π−1(Z \M) in W ′. All in all, we obtain the intersection of π−1(Z)∩π−1(U) with the closure
of π−1(Z \M) in W ′, which is just Z̃∩π−1(U). □

Proposition 3.4. If S ⊂W is a complex submanifold that is transverse to M ⊂W, then the
strict transform and the total transform of S under π coincide, S̃ = π−1(S).

Proof. Without loss of generality, we may assume that S is a closed subset of W . (In
fact, S is a closed subset of an open tubular neighborhood U ⊂W of S, and the restriction
π| : π−1(U)→U is the blow-up of U along the complex submanifold M∩U ⊂U by Propo-
sition 3.2. Hence, the strict transform of S∩U = S under π| : π−1(U)→U coincides with the
total transform π−1(S). On the other hand, this strict transform is given by S̃∩π−1(U) = S̃
according to Lemma 3.3.) Then, according to Griffiths-Harris [31, property 5, pp. 604-605],
the intersection S̃∩E corresponds under the isomorphism Ψ : E ∼= P(NMW ) of bundles over
M to the image in NMW of the complex tangent spaces TxS to the points x ∈ S∩M. This
image is (NMW )|S∩M because the right-hand vertical arrow in the commutative diagram

T S|S∩M
quot //

incl
��

NS∩MS

∼=
��

TW |S∩M quot
// (NMW )|S∩M

is surjective by Lemma 3.1. Consequently,

S̃∩E = Ψ
−1P((NMW )|S∩M) = π

−1(S∩M).

All in all, we obtain

S̃ = (S̃∩E)∪ (S̃∩π
−1(S\M)) = π

−1(S∩M)∪π
−1(S\M) = π

−1(S).

□

From now on, we assume familiarity with the notion of Whitney stratifications; for details,
see e.g. [30, Section 1.2, p. 37].

Corollary 3.5. If X ⊂W is a Whitney stratified subspace whose strata are complex subman-
ifolds of W that are transverse to M ⊂W, then the strict transform and the total transform of
X coincide, X̃ = π−1(X).

Proof. Since every stratum S of X satisfies π−1(S) = S̃ by Proposition 3.4, and S̃ ⊂ X̃ holds
by definition of the strict transform, we have

π
−1(X) =

⋃
S

π
−1(S) =

⋃
S

S̃⊂ X̃ .

Conversely, we have X̃ ⊂ π−1(X) by definition of the strict transform. □

We proceed to the main result of this section.
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Theorem 3.6. Let X ⊂W be a Whitney stratified subspace whose strata are complex sub-
manifolds of W that are transverse to M ⊂W. Then, the strict transform X̃ ⊂W ′ admits a
Whitney stratification whose strata are transverse to the exceptional divisor E ⊂W ′ of π .

In view of Proposition 3.4 and Corollary 3.5, Theorem 3.6 follows from the following

Theorem 3.7. Let X ⊂W be a Whitney stratified subspace whose strata are transverse to
M⊂W. Then, the total transforms π−1(S) of the strata S of X form a Whitney stratification of
the total transform π−1(X)⊂W ′. Furthermore, every stratum of the total transform π−1(X)
is transverse to E = π−1(M)⊂W ′.

Proof. The claims are local in the sense that it suffices to find an open cover of W such that
for every subset U ⊂W of this cover, the inverse images π−1(S∩U) of the strata S∩U of
X ∩U form a Whitney stratification of the inverse image π−1(X ∩U) ⊂ π−1(U), and every
π−1(S∩U) is transverse to π−1(M∩U)⊂ π−1(U). Since π : W ′→W is locally isomorphic
to the blow-up of an n-dimensional open disc along a coordinate plane (see property 3 in [31,
p. 604]), we may therefore assume without loss of generality that π is globally of this form.
Explicitly, the blow-up π : W ′ →W of an n-dimensional open disc W ⊂ Cn with complex
coordinates z = (z1, . . . ,zn) along the coordinate plane M = W ∩ {zi = 0; i = 1, . . . ,k} of
codimension k is given by restricting the projection W ×P(Ck)→W to the first factor to

W ′ = {(z,w = [w1 : · · · : wk]) ∈W ×P(Ck); ziw j = z jwi for all 1≤ i, j ≤ k},

and we have E = π−1(M) = M×P(Ck). In this situation, we have the following

Lemma 3.8. If S⊂W is a smooth submanifold that is transverse to M ⊂W, then S×P(Ck)
is transverse to E = M×P(Ck)⊂W ×P(Ck) and to W ′ ⊂W ×P(Ck).

Proof. Since S is transverse to M ⊂W , it follows that S×P(Ck) is transverse to E = M×
P(Ck) ⊂W ×P(Ck), which proves the first claim. To show the second claim, it remains to
prove transversality of S and W ′ at points in (S×P(Ck))∩ (W ′ \E). For this purpose, fix a
point

x = (y,z) ∈ (S×P(Ck))∩ (W ′ \E) (⊂ (S\M)×P(Ck)),

and let (p,q) ∈ Tx(W ×P(Ck)) = Ty(W \M)×TzP(Ck) be an arbitrary tangent vector. Since
the differential

dxπ : Tx(W ′ \E)→ Ty(W \M)

is surjective, the vector p ∈ Ty(W \M) is the image under dxπ of a vector in Tx(W ′ \E) of
the form (p,q′) ∈ Tx(W ′ \E) ⊂ Ty(W \M)×TzP(Ck). Writing (p,q) = (p,q′)+ (0,q− q′)
with (p,q′) ∈ Tx(W ′ \E) and (0,q−q′) ∈ Tx(S×P(Ck)) = TyS×TzP(Ck), we conclude that
S×P(Ck) and W ′ are transverse at x, which proves the second claim. □

Using Lemma 3.8, we can now complete the proof of Theorem 3.7. For this purpose, let
X ⊂W be a Whitney stratified subspace whose strata S are transverse to M ⊂W . We have
to show that the total transforms π−1(S) form a Whitney stratification of the total transform
π−1(X) ⊂W ′, and that every stratum π−1(S) of the total transform π−1(X) is transverse to
E ⊂W ′. Since π−1(Z) = W ′ ∩ (Z×P(Ck)) for all subsets Z ⊂W , we obtain the claims by
applying Lemma 3.9 below to the smooth submanifolds E ⊂W ′ of the smooth manifold W ×
P(Ck), and to the Whitney stratified subset X×P(Ck)⊂W ×P(Ck), whose strata S×P(Ck)
are all transverse to E ⊂W ×P(Ck) and to W ′ ⊂W ×P(Ck) by Lemma 3.8.

Lemma 3.9. Let N ⊂M be smooth submanifolds of a smooth manifold W. Let X ⊂W be a
Whitney stratified subset whose strata S are transverse to N ⊂W and to M ⊂W. Then, the
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intersection Y := M∩X ⊂M is a Whitney stratified subset whose strata M∩S are transverse
to N ⊂M.

Proof. By the theory of Whitney stratifications (see e.g. Lemma 2.2.2 in [20]), it is well-
known that the intersection Y := M∩X ⊂M is a Whitney stratified subset with strata S∩M,
where S runs through the strata of X . It remains to show that the strata of Y are transverse to
N ⊂M. For this purpose, we fix x ∈N∩Y , and have to show that TxM ⊂ TxN+TxS′, where S′

denotes the stratum of Y = M∩X that contains x. Now, N ⋔P X and x ∈ N∩Y ⊂ N∩X imply
that TxP ⊂ TxN + TxS, where S denotes the stratum of X that contains x. Therefore, using
M ⊂ P, we obtain TxM ⊂ TxN+TxS. Thus, given µ ∈ TxM, we find ν ∈ TxN and ξ ∈ TxS such
that µ = ν +ξ . Using TxN ⊂ TxM, we conclude that

ξ = µ−ν ∈ TxM∩TxS = Tx(M∩S) = TxS′.

All in all, we have µ = ν +ξ ∈ TxN+TxS′. As µ ∈ TxM was arbitrary, the claim follows. □

This completes the proof of Theorem 3.7. □

Remark 3.10. Our proof of Theorem 3.7 is inspired by an argument of Cheniot [20, pp. 145-
146]. There, one has M = A of codimension k = 2, and thus P(Ck) = P1(C), where φ :=
π : Z :=W ′→W denotes the blow-up. However, all we really need is that M is transverse to
the Whitney stratification of X in W .

4. ALGEBRAIC GYSIN RESTRICTION OF IT1,∗ IN A TRANSVERSE SETUP

In Section 4.1, we review from [7] a topological notion of normally nonsingular embed-
ding that respects a stratification of the ambient space. Then, Section 4.2 discusses along the
lines of [7] the first author’s Verdier-Riemann-Roch type formula for the algebraic Gysin re-
striction of the Hodge-theoretic characteristic classes IT1,∗ with respect to suitably normally
nonsingular closed algebraic regular embeddings. Finally, in Section 4.3, we derive our alge-
braic Gysin restriction formula for IT1,∗ in a transverse setup (see Theorem 4.15) by invoking
Theorem 3.6.

4.1. Topological Normally Nonsingular Embeddings.

Definition 4.1 (see Definition 3.1 in [7]). A topological stratification of a topological space
X is a filtration

X = Xn ⊇ Xn−1 ⊇ ·· · ⊇ X1 ⊇ X0 ⊇ X−1 =∅
by closed subsets Xi such that the difference sets Xi−Xi−1 are topological manifolds of pure
dimension i, unless empty. The connected components Xα of these difference sets are called
the strata. We will often write stratifications as X= {Xα}.

The following definition of locally cone-like topological stratifications, which are also
known as cs-stratifications, is due to Siebenmann [54]; see also [51, Def. 4.2.1, p. 232].

Definition 4.2 (see Definition 3.2 in [7]). A topological stratification {Xi} of X is called
locally cone-like if for all x ∈ Xi−Xi−1 there is an open neighborhood U of x in X , a compact
topological space L with filtration

L = Ln−i−1 ⊇ Ln−i−2 ⊇ ·· · ⊇ L0 ⊇ L−1 =∅,

and a filtration preserving homeomorphism U ∼= Ri× cone◦(L), where cone◦(L) denotes the
open cone on L.

We shall employ the following notion of normally nonsingular embedding of topological
spaces that respects an ambient locally cone-like topological stratification.
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Definition 4.3 (see Definition 3.3 in [7]). Let X be a topological space with locally cone-
like topological stratification X = {Xα} and let Y be any topological space. An embedding
g : Y ↪→ X is called normally nonsingular (with respect to X), if

(1) Y := {Yα := Xα ∩Y} is a locally cone-like topological stratification of Y ,
(2) there exists a topological vector bundle π : E→ Y and
(3) there exists a (topological) embedding j : E→ X such that

(a) j(E) is open in X ,
(b) j|Y = g, and
(c) the homeomorphism j : E

∼=−→ j(E) is stratum preserving, where the open set
j(E) is endowed with the stratification {Xα ∩ j(E)} and E is endowed with the
stratification E= {π−1Yα}.

Note that the above stratification E of the total space E is automatically topologically
locally cone-like. For example, transverse intersections give rise to normally nonsingular
inclusions as follows (compare the beginning of the proof of Proposition 6.3 in [7]).

Theorem 4.4. (See Theorem 1.11 in [30, p. 47].) Let X ⊂W be a Whitney stratified subset of
a smooth manifold W. Suppose that M ⊂W is a smooth submanifold of codimension r that is
transverse to every stratum of X, and that Y = M∩X is compact. Then, the inclusion g : Y ↪→
X is normally nonsingular of codimension r with respect to the normal bundle ν = νM⊂W |Y
given by restriction of the normal bundle νM⊂W of M in W.

Proof. In [45], Pati points out that one may wish to add precision to the argument given in
[30, p. 48], as Thom’s First Isotopy Lemma is applied there to a composition Ψ−1(X) ⊂
Eε × (−δ ,1+δ )→ (−δ ,1+δ ) which is not necessarily proper. To address this, we impose
the assumption that Y = M ∩X be compact, and apply Thom’s First Isotopy Lemma to the
proper composition Ψ−1(X)∩Dε/2 ⊂ Eε × (−δ ,1+ δ )→ (−δ ,1+ δ ), where Dε/2 ⊂ Eε

denotes the closed disk bundle of radius ε/2. To assure that the intersection Ψ−1(X)∩Dε/2
is Whitney stratified, we choose ε > 0 small enough to achieve, using Whitney’s condition
B, that Ψ|∂Dε/2

is transverse to X ⊂W . □

4.2. Algebraic Gysin Restriction of IT1,∗ for Upwardly Normally Nonsingular Embed-
dings. We review the Verdier-Riemann-Roch type formula for the algebraic Gysin restriction
of IT1,∗ obtained in [7].

Definition 4.5 (see p. 1279 in [7]). An algebraic stratification of a complex algebraic variety
X is a locally cone-like topological stratification {X2i} of X such that the closed subspaces
X2i are algebraic subsets of X .

Example 4.6. Let Z be a closed subvariety of a smooth complex algebraic variety W . A
Whitney stratification of Z ⊂W is called complex algebraic if all its open strata are smooth
complex algebraic subvarieties of W . It is well-known that complex algebraic Whitney strat-
ifications always exist (see e.g. [30, Theorem, p. 43]). Furthermore, complex algebraic
Whitney stratifications are algebraic stratifications in the sense of Definition 4.5. (Here, we
point out that the closures of the open strata are the same in the Zariski and the complex
topology; see e.g. [42, Corollary 1, p. 60].)

Definition 4.7 (see Definition 3.4 in [7]). If X and Y are complex algebraic varieties and
g : Y ↪→ X a closed algebraic embedding whose underlying topological embedding gtop in the
complex topology is normally nonsingular, then we will call g and gtop compatibly stratifiable
if there exists an algebraic stratification X of X such that gtop is normally nonsingular with
respect to X and the induced stratification Y is an algebraic stratification of Y .
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The algebraic normal bundle of a regular algebraic embedding does not necessarily reflect
the normal topology near the subvariety. In particular, the underlying topological embedding
needs not be normally nonsingular. This observation motivates the following

Definition 4.8 (see Definition 6.1 in [7]). A closed regular algebraic embedding Y ↪→ X
of complex algebraic varieties is called tight, if its underlying topological embedding (in
the complex topology) is normally nonsingular and compatibly stratifiable, with topological
normal bundle π : E → Y as in Definition 4.3, and E → Y is isomorphic (as a topological
vector bundle) to the underlying topological vector bundle of the algebraic normal bundle
NY X of Y in X .

For example, closed embeddings of smooth complex varieties are tight, see Example 6.2
in [7].

Next, we recall the notion of upward normal nonsingularity for tight embeddings. For a
closed regular embedding V ↪→U of complex varieties, let π : BlV U →U denote the blow-
up of U along V . The exceptional divisor E = π−1(V ) ⊂ BlV U is the projectivization P(N)
of the algebraic normal bundle N of V in U .

Definition 4.9 (see Definition 6.5 in [7]). A tight embedding Y ↪→ X is called upwardly
normally nonsingular if the inclusion E ⊂BlY×0(X×C) of the exceptional divisor E is topo-
logically normally nonsingular.

According to Verdier [58], a regular closed algebraic embedding g : Y ↪→ X has an associ-
ated algebraic Gysin homomorphism on Borel-Moore homology

g!
alg : HBM

∗ (X ;Q)−→ HBM
∗−2c(Y ;Q),

where c is the complex codimension of Y in X .
The following result is the first author’s Verdier-Riemann-Roch type formula for the alge-

braic Gysin restriction of the Hodge-theoretic characteristic classes IT1,∗ (see Definition 2.11)
with respect to upwardly normally nonsingular embeddings.

Theorem 4.10 (see Theorem 6.30 in [7]). Let X ,Y be pure-dimensional compact complex
algebraic varieties and let g : Y ↪→ X be an upwardly normally nonsingular embedding. Let
N = NY X be the algebraic normal bundle of g and let ν denote the topological normal bundle
of the topologically normally nonsingular inclusion underlying g. Then

g!
algIT1,∗(X) = L∗(N)∩ IT1,∗(Y ) = L∗(ν)∩ IT1,∗(Y ).

4.3. Algebraic Gysin Restriction of IT1,∗ in a Transverse Setup. Tight embeddings arise
frequently from transverse intersections in ambient smooth varieties, as we shall discuss next.
For this purpose, we require the notion of Tor-independence (compare [7, p. 1312]), which
can be thought of as a transversality condition in algebraic settings. For indications of this
viewpoint in the literature, see for instance Section 1.6 in Baum-Fulton-MacPherson [12, p.
165], Definition 1.1.1 in Levine-Morel [37, p. 1], as well as Sierra’s notion of homological
transversality [56].

Definition 4.11. Closed subschemes X ,Y ⊂ S of a scheme S are called Tor-independent if

TorOS
i (OX ,OY ) = 0 for all i > 0.

Proposition 4.12 (Proposition 6.3 in [7]). Let M ↪→W be a closed algebraic embedding of
smooth complex algebraic varieties. Let X ⊂W be a (possibly singular) algebraic subvariety,
equipped with an algebraic Whitney stratification and set Y = X ∩M. If

• each stratum of X is transverse to M, and
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• X and M are Tor-independent in W,
then the embedding g : Y ↪→ X is tight.

If the embeddings X ↪→W ←↩ M in the previous result satisfy an even stronger transver-
sality condition defined next, then the embedding Y = X ∩M ↪→ X is upwardly normally
nonsingular according to Proposition 4.14 below.

Definition 4.13 (see Definition 6.4 in [7]). Let X ↪→W ←↩ M be closed algebraic embed-
dings of algebraic varieties with M,W smooth. We say that these embeddings are upwardly
transverse, if X and M are Tor-independent in W , there exists an algebraic Whitney stratifica-
tion of X which is transverse to M in W , and there exists a (possibly non-algebraic) Whitney
stratification on the strict transform of X ×C in BlM×0(W ×C) which is transverse to the
exceptional divisor.

Proposition 4.14 (see Corollary 6.7 in [7]). If X ↪→W ←↩ M are upwardly transverse em-
beddings, then the embedding Y = X ∩M ↪→ X is upwardly normally nonsingular.

In the transverse situation, we obtain the following extension of Theorem 4.10 by elimi-
nating the strict transform condition. This constitutes the main result of this section.

Theorem 4.15. Let X ↪→W ←↩ M be closed algebraic embeddings of pure-dimensional com-
plex algebraic varieties with M,W smooth, X ,M irreducible, and X compact. We suppose that
X and M are Tor-independent in W, that X is generically transverse to M in W (see e.g. [10,
Section 3]), and that there exists a complex algebraic Whitney stratification of X ⊂W which
is transverse to M in W. Then, the embedding g : Y ↪→ X of the compact pure-dimensional
subvariety Y = X ∩M ⊂ X is tight, and the algebraic normal bundle N = NY X of g and the
topological normal bundle ν of the topologically normally nonsingular inclusion underlying
g satisfy

g!
algIT1,∗(X) = L∗(ν)∩ IT1,∗(Y ),

where g!
alg : HBM

∗ (X)→ HBM
∗ (Y ) denotes the algebraic Gysin homomorphism associated to

g constructed by Verdier in [58].

Proof. Since X admits by assumption a complex algebraic Whitney stratification which is
transverse to M in W , it follows that the product stratification on X×C is a complex algebraic
Whitney stratification which is transverse to M× 0 in W ×C. Thus, Theorem 3.6 implies
that the strict transform of X ×C in BlM×0(W ×C) admits a Whitney stratification which
is transverse to the exceptional divisor. Consequently, our transversality assumptions on X
and M imply that the embeddings X ↪→W ←↩ M are upwardly transverse in the sense of
Definition 4.13. (Recall from Example 4.6 that the complex algebraic Whitney stratification
on X is in particular an algebraic stratification.) Hence, it follows from Proposition 4.14 that
the embedding g : Y ↪→ X of the compact subvariety Y = X ∩M ⊂ X is upwardly normally
nonsingular (and, in particular, tight). Moreover, generic transversality of X and M in W
implies that Y is pure-dimensional according to [10, Corollary 3.4]. Finally, the algebraic
Gysin restriction formula for IT1,∗ follows from Theorem 4.10. □

5. ALGEBRAIC VERSUS TOPOLOGICAL GYSIN RESTRICTION

A normally nonsingular inclusion g : Y ↪→ X (see Definition 4.3) of a closed subset Y ⊂ X
with oriented normal bundle π : E → Y of rank r induces on singular homology groups a
topological Gysin homomorphism

g!
top : H∗(X ;Q)→ H∗−r(Y ;Q)



TOPOLOGICAL GYSIN COHERENCE FOR ALGEBRAIC CHARACTERISTIC CLASSES OF SINGULAR SPACES 19

given by the composition

H∗(X)
incl∗−−→ H∗(X ,X \Y ) e∗←−∼= H∗(E,E0)

u∩−−−→∼= H∗−r(E)
π∗−→∼= H∗−r(Y ),

where u ∈ Hr(E,E0) is the Thom class with E0 = E \Y the complement of the zero section
in E, and e∗ denotes the excision isomorphism induced by the open embedding j : E→ X .

The next proposition interprets the topological Gysin map on singular homology in terms
of transverse intersections.

Proposition 5.1 (see e.g. Proposition 2.5 in [10]). Let W be an oriented smooth manifold,
X ,K ⊂W Whitney stratified subspaces which are oriented pseudomanifolds with K ⊂ X and
K compact. Let M ⊂W be an oriented smooth submanifold which is closed as a subset.
Suppose that M is transverse to all strata of the Whitney stratified subspaces X ⊂W and
K ⊂W, and that M∩X is compact. Then the Gysin map

g!
top : H∗(X ;Q)−→ H∗−r(Y ;Q)

associated to the normally nonsingular embedding g : Y = M ∩X ↪→ X (see Theorem 4.4),
where r is the (real) codimension of Y in X, sends the fundamental class [K]X ∈ H∗(X ;Q)
of K to the fundamental class [K∩Y ]Y of the intersection K∩Y = M∩K (which is again an
oriented pseudomanifold),

g!
top[K]X = [K∩Y ]Y .

In the following, we shall discuss a variant of the topological Gysin map defined on Borel-
Moore homology groups. For reasonable compact spaces, both topological Gysin maps co-
incide under a natural identification of Borel-Moore homology with singular homology (see
Proposition 5.7 below). This variant is needed here to show that the algebraic and topological
Gysin maps coincide on algebraic cycles in a transverse setup (see Theorem 5.10 below).

Following Fulton [25, p. 371, Eq. (1)], we employ here a construction of Borel-Moore
homology defined for any topological space that can be embedded as a closed subset of some
Euclidean space. Namely, if the space X is embedded as a closed subset of Rn, then Fulton
sets HBM

∗ (X ;Q) = Hn−∗(Rn,Rn−X ;Q). When X is a compact ENR, then the Alexander
duality isomorphism Hn−∗(Rn,Rn−X ;Q)∼= H∗(X ;Q) provides a natural identification with
singular homology, HBM

∗ (X ;Q) ∼= H∗(X ;Q). For a detailed discussion of this viewpoint on
Borel-Moore homology, we refer to [26, Appendix B.2, pp. 215 ff.].

For a normally nonsingular inclusion g : Y ↪→ X of a closed subset Y ⊂ X as above with
oriented normal bundle π : E → Y of rank r, the topological Gysin map on Borel-Moore
homology,

g!!
top : HBM

∗ (X ;Q)→ HBM
∗−r(Y ;Q),

is given by the composition

HBM
∗ (X)

res−→ HBM
∗ (U)

u∩−−−→∼= HBM
∗−r(Y ),

where the first map restricts Borel-Moore cycles on X to the open tubular neighborhood
U := j(E) ⊂ X of Y ⊂ X , and the second map is given by cap product with the Thom class
u ∈ Hr(U,U0) = Hr(E,E0), where U0 =U \Y .

The cap product used in the definition of the topological Gysin map on Borel-Moore ho-
mology is the one mentioned by Fulton in [25, p. 371, Eq. (2)]. As explained in [25, p. 375],
its construction can be found in Fulton-MacPherson [27, Eq. (2), p. 36] in a more abstract
setting, and involves relative Čech cohomology groups as discussed by Dold [22, pp. 281 ff.].
For convenience, we provide here the construction of this cap product together with some of
its transformational properties (see Corollary 5.5).
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Remark 5.2. Recall from [22, Definition 6.1, p. 281] that the relative Čech cohomology
groups Ȟ i(A,B) are defined for any pair B ⊂ A of locally compact subspaces of an ENR.
Furthermore, for any locally compact subspaces A1,A2 of an ENR which are separated by
A1∩A2 (e.g. when A1,A2 are both open or closed in A1∪A2), there is an excision isomorphism
Ȟ∗(A1∪A2,A1)∼= Ȟ∗(A2,A1∩A2) by [22, p. 286, Eq. (6.16)].

Proposition 5.3. For a topological space X that can be embedded as a closed subset of some
Euclidean space, the following hold:

(1) For any closed subset Y ⊂ X, there is a cap product

Ȟ i(X ,X−Y )×HBM
k (X)

∩−→ HBM
k−i (Y ).

(2) Every open subset X ′ ⊂ X can be embedded as a closed subset of some Euclidean
space, and if X ′ is an open neighborhood of a closed subset Y ⊂ X, then we have a
commutative diagram

Ȟ i(X ,X−Y )

∼= ρ∗

��

× HBM
k (X)

r∗

��

∩ // HBM
k−i (Y )

=

��
Ȟ i(X ′,X ′−Y ) × HBM

k (X ′) ∩ // HBM
k−i (Y ),

where ρ∗ is the excision isomorphism induced by inclusion in Čech cohomology, and
r∗ is restriction of a Borel-Moore cycle to an open subset.

(3) Any cartesian diagram of closed embeddings

Y ′ = X ′∩Y

g′

��

fY // Y

g
��

X ′
fX

// X

induces compatible cap products

Ȟ i(X ′,X ′−Y ′) × HBM
k (X ′)

fX∗
��

∩ // HBM
k−i (Y

′)

fY∗
��

Ȟ i(X ,X−Y )

f ∗X

OO

× HBM
k (X)

∩ // HBM
k−i (Y ),

where f ∗X is the induced map on Čech cohomology, and fX∗, fY∗ are induced on
Borel-Moore homology by the proper maps fX , fY .

Proof. Suppose that X is embedded as a closed subset of Rn. For the construction of the cap
product in claim (1), let (U,V )⊃ (X ,X−Y ) be an open neighborhood pair in Rn. Since both
V and U−X are open in U , singular cohomology comes with a standard cup product

H i(U,V )×H j(U,U−X)
∪−→ H i+ j(U,V ∪ (U−X)).

Now it follows from X−Y ⊂V that U−Y = (X−Y )∪ (U−X)⊂V ∪ (U−X). Hence, there
is a restriction homomorphism

H i+ j(U,V ∪ (U−X))−→ H i+ j(U,U−Y ).
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Composing with it, we obtain a cup product1

H i(U,V )×H j(U,U−X)
∪−→ H i+ j(U,U−Y ).

Using excision, this can be rewritten as a product

H i(U,V )×H j(Rn,Rn−X)
∪−→ H i+ j(Rn,Rn−Y ).

Next, we note that X−Y ⊂ X are locally compact subsets of the ENR Rn by [22, Lemma 8.3,
p. 80] because they are locally closed subsets by assumption. Therefore, the relative Čech
cohomology groups

Ȟ i(X ,X−Y ) := colim{H i(U,V ) | (U,V )⊃ (X ,X−Y )}

are defined as in [22, Definition 6.1, p. 281]. Consequently, there is a cup product

Ȟ i(X ,X−Y )×H j(Rn,Rn−X)
∪−→ H i+ j(Rn,Rn−Y ).

By the definition of Borel-Moore homology used by Fulton, we have

H j(Rn,Rn−X) = HBM
n− j(X), H i+ j(Rn,Rn−Y ) = HBM

n−i− j(Y ).

We arrive at the desired cap product

Ȟ i(X ,X−Y )×HBM
k (X)

∩−→ HBM
k−i (Y ).

As for claim (2), let X ′ ⊂ X be an open neighborhood of the closed subset Y ⊂ X . Then,
there exists an open subset W ⊂ Rn such that X ′ =W ∩X . We note that X ′ is a closed subset
of the manifold W , which can be embedded as a closed subset of some Euclidean space. If
(U,V )⊃ (X ,X−Y ) is an open neighborhood pair in Rn, then (W ∩U,W ∩V )⊃ (X ′,X ′−Y )
is an open neighborhood pair in W , and the diagram of restrictions

H i(U,V )

��

× H j(Rn,Rn−X)

��

∪ // H i+ j(Rn,Rn−Y )

��
H i(W ∩U,W ∩V ) × H j(W,W −X ′) ∪ // H i+ j(W,W −Y )

commutes by naturality of the cup product. Finally, we obtain the desired commutative di-
agram by passing to the colimits to obtain the induced map on Čech cohomology (see [22,
Definition 6.3, p. 282]), and by definition of the restriction map in Borel-Moore homology
(see [26, Eq. (30), p. 218]).

To show claim (3), we observe that any open neighborhood pair (U,V ) ⊃ (X ,X −Y ) in
Rn induces compatible cup products

H i(U,V ) × H j(U,U−X ′)

��

∪ // H i+ j(U,U−Y ′)

��
H i(U,V )

OO

× H j(U,U−X)
∪ // H i+ j(U,U−Y ),

where the vertical arrows are induced by inclusion. The claim now follows by passing to the
colimits to obtain the induced map on Čech cohomology (see [22, Definition 6.3, p. 282]),
and by definition of the pushforward for proper maps in Borel-Moore homology (see [26, p.
218]). □

1In Fulton-MacPherson [27, Eq. (2), p. 36], the additional asumption V ∩X = X−Y is imposed.
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Remark 5.4. In Proposition 5.1, the assumption that K is compact can be dropped when
using the topological Gysin map on Borel-Moore homology instead of singular homology.
The proof is very similar, but uses base change as stated in Proposition 5.3(3), as well as the
fact that the topological Gysin map in Borel-Moore homology maps the fundamental class to
the fundamental class.

Corollary 5.5. For any closed subset Y of an ENR X, we have a cap product

H i(X ,X−Y )×HBM
k (X)

∩−→ HBM
k−i (Y )

with the properties (2) and (3) of Proposition 5.3 with respect to singular cohomology.

Proof. Since X is an ENR, we can embed it as a closed subset of some Euclidean space Rn

according to [22, Proposition 8.1 and Lemma 8.2, p. 80], so that the previous proposition
yields a cap product using Čech cohomology. By assumption, X is an ENR, and hence the
open subset X−Y ⊂ X is an ENR as well. By [22, Proposition 6.12, p. 285], Ȟ i(X ,X−Y ) is
therefore naturally isomorphic to singular cohomology H i(X ,X−Y ). □

Remark 5.6. For Y = X an ENR, the cap product of Corollary 5.5 specializes to a cap prod-
uct of the form H∗(X)×HBM

∗ (X)→ HBM
∗ (X). This is the cap product that appears in Theo-

rem 4.10 and Theorem 4.15. When X is a compact CW complex, this cap product corresponds
to the ordinary cap product under the natural identification of Borel-Moore homology with
singular homology. (In fact, if α ∈ H i(X ;Q) = Ȟ i(X ;Q) is represented by αU ∈ H i(U ;Q)
on some open neighborhood U of X ⊂ Rn, then there is a commutative diagram

Hn−(i+ j)(U,U−X)
αU∩− // Hn− j(U,U−X)

H i+ j(U)

−∩µX

OO

αU∪−
// H j(U),

−∩µX

OO

where µX ∈ Hn(U,U −X ;Q) denotes the orientation class of X ⊂U . Passing to Čech coho-
mology of X in the lower horizontal row induces the ordinary cup product map

α ∪− : Hn−(i+ j)(X)→ Hn− j(X),

and the vertical maps become Alexander duality isomorphisms H∗(X)∼=Hn−∗(U,U−X) (see
e.g. Bredon [15, Theorem 8.3, p. 351]). Then, the claim follows by applying HomQ(−,Q)
to the resulting commutative diagram, and identifying H∗(−) ∼= HomQ(H∗(−),Q) via the
Kronecker pairing. Note that the involved Q-vector spaces are finite dimensional.)

Proposition 5.7. Let (X ,Y ) be a compact CW pair such that X is endowed with a topologi-
cally cone-like topological stratification. If the inclusion g : Y ↪→ X is normally nonsingular
with oriented normal bundle ν : E→ Y of rank r, the topological Gysin maps

g!
top,g

!!
top : H∗(X)−→ H∗−r(Y )

coincide under the natural identification of Borel-Moore homology with singular homology.

Proof. We may identify a closed tubular neighborhood of Y ⊂ X with the total space of the
disc bundle Dν of the topological normal bundle ν of the normally nonsingular inclusion
g : Y ↪→ X . Let Sν ⊂Dν denote the sphere bundle and D◦ν = Dν−Sν the open disc bundle.
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Furthermore, Z = X −D◦ν is a closed subset of X . The ENR X can be embedded a closed
subset of some Euclidean space Rn. Then, we obtain a commutative diagram

Hn−k(Rn−Sν ,Rn−Dν) Hn−k(Rn−Z,Rn−X)
incl∗ //incl∗

∼=
oo Hn−k(Rn,Rn−X)

Hk(Dν ,Sν)

∼= −∩ϑ

OO

Hk(X ,Z)

∼= −∩ϑ

OO

incl∗
//

incl∗
∼=oo Hk(X)

∼= −∩ϑ

OO

and for any open neighborhood U of Dν ⊂ Rn a commutative diagram

Hn−k(U−Sν ,U−Dν)
incl∗
∼=
// Hn−k(Rn−Sν ,Rn−Dν)

Hk(Dν ,Sν)

∼= −∩ϑ |U

OO

= // Hk(Dν ,Sν),

∼= −∩ϑ

OO

where the vertical maps are Alexander duality isomorphisms described by cap product with
an orientation ϑ of Rn, or its restriction to U (see e.g. Bredon [15, Theorem 8.3, p. 351], who
also provides a description of the Alexander duality isomorphisms on the (co)chain level in
[15, p. 349]).

The Thom class τ(ν) ∈ Hr(Dν ,Sν) = Ȟr(Dν ,Sν) can be represented by an element t ∈
Hr(U,V ) for some open neighborhood pair (U,V ) of (Dν ,Sν) in Rn. By making V smaller
if necessary, we may assume without loss of generality that the inclusion (U,V )⊂ (U,U−Y )
is a homotopy equivalence of pairs. Let u ∈ Hr(U,U −Y ) be the element that restricts to t.
Writing W =U−Sν , we obtain the commutative diagram

Hn−(k−r)(W,W −Y )
u|W∩− // Hn−k(W,W −D◦ν) = Hn−k(U−Sν ,U−Dν)

Hk−r(Y )

∼= −∩ϑ |W

OO

Hk−r(Dν)
incl∗
∼=oo

τ(ν)∪−
// Hk(Dν ,Sν)

∼= −∩ϑ |U

OO

where the vertical maps are Alexander duality isomorphisms described by cap product with
the orientation ϑ |W of W or the orientation ϑ |U of U . Again, one checks commutativity of
the diagram by using the description of the Alexander duality isomorphisms on the (co)chain
level provided in [15, p. 349].

Finally, the claim follows by applying HomQ(−,Q) to the concatenation of the above
three commutative diagrams, and identifying H∗(−)∼= HomQ(H∗(−),Q) via the Kronecker
pairing. Note that the involved Q-vector spaces are finite dimensional. □

Let A∗(Z) denote the Chow groups of a complex variety Z and let cl = clZ : A∗(Z)→
HBM

2∗ (Z) be the cycle map from Chow homology to rational Borel-Moore homology. Let

u f ∈ H2d(X ,X−Y )

be the orientation class of the regular closed embedding f : Y ↪→ X as in [25, 19.2, p. 378].
The cap product of Corollary 5.5 can be used to evaluate the orientation class of a closed

regular embedding on a cycle class in Borel-Moore homology as follows.

Theorem 5.8 (see Theorem 19.2 in Fulton [25]). Let f : Y ↪→ X be a regular embedding of
complex algebraic varieties of codimension d. Then, for all k-cycles α on X,

clY ( f !
algα) = u f ∩ clX (α)
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in HBM
2k−2d(Y ).

Remark 5.9. More generally, Theorem 19.2 in [25] uses the refined Gysin homomorphism
[25, Section 6.2] associated to the fiber square formed by the regular embedding f : Y ↪→
X and a morphism g : X ′ → X . However, for g = idX the refined Gysin homomorphism
coincides with Verdier’s algebraic Gysin homomorphism f !

alg for regular embeddings (see
[25, p. 117], where we note that f !

alg = f ∗ in Fulton’s notation).

Theorem 5.10. Let W be a smooth complex algebraic variety, M ⊂ W a smooth closed
subvariety and X ⊂W a closed subvariety such that an algebraic Whitney stratification of
X in W is transverse to M and X and M are Tor-independent in W. Then the algebraic and
topological Gysin restriction homomorphisms associated to the inclusion g : Y =X∩M ↪→X ,

g!
alg,g

!!
top : HBM

∗ (X)−→ HBM
∗−2d(Y )

coincide on algebraic cycles, where d is the complex codimension of the embedding g.

Proof. By smoothness, the closed embedding M⊂W is regular with algebraic normal bundle
NMW . The Tor-independence of X and M ensures that the closed embedding g : Y ↪→ X
is regular as well, and that the excess normal bundle vanishes, i.e. the canonical closed
embedding NY X → j∗NMW is an isomorphism of algebraic vector bundles, where j is the
embedding j : Y ↪→ M. According to Verdier [58, p. 222, 9.2.1], the algebraic Gysin map
of a closed regular embedding commutes with the cycle map from Chow to Borel-Moore
homology. Thus there is a commutative diagram

(8) A∗(X)

cl
��

g!
alg // A∗−d(Y )

cl
��

HBM
2∗ (X)

g!
alg // HBM

2∗−2d(Y ).

Since X and M are transverse and Tor-independent in W , Proposition 4.12 implies that the
embedding g : Y ↪→ X is tight, i.e. the underlying topological embedding (in the analytic
topology) is normally nonsingular with tubular neighborhood described by the disc bundle
Dν of a topological normal bundle ν which is isomorphic to the underlying topological vector
bundle of the algebraic normal bundle NY X . Let Sν ⊂ Dν denote the sphere bundle and
D◦ν = Dν−Sν the open disc bundle. Then, Proposition 5.3 yields a commutative diagram

(9) H i(X ,X−Y )

∼= ρ∗

��

× HBM
p− j(X)

r∗

��

∩ // HBM
p−i− j(Y )

=

��
H i(D◦ν ,(D◦ν)−Y ) × HBM

p− j(D
◦ν)

∩ // HBM
p−i− j(Y ),

where the left vertical arrow is the excision isomorphism induced by inclusion, and the middle
vertical arrow is restriction of a Borel-Moore cycle to an open subset.

Let

ug ∈ H2d(X ,X−Y )
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be the orientation class of the regular closed embedding g : Y ↪→ X as in [25, 19.2, p. 378].
We shall next compute this class. Consider the cartesian diagram of closed embeddings

Y = M∩X

j
��

g // X

i
��

M
f

// W.

By [25, Lemma 19.2 (a), p. 379], applied to the above cartesian diagram containing the
regular embeddings f and g,

i∗(u f ) = ug ∈ H2d(X ,X−Y ), i∗ : H2d(W,W −M)→ H2d(X ,X−Y ).

Let νM be the underlying topological vector bundle of the algebraic normal bundle NMW .
By tightness of the embedding g : Y ↪→ X , there is an isomorphism ν = j∗νM , j : Y ↪→ M
inherited from the isomorphism of algebraic vector bundles. Let iD : Dν → DνM denote the
bundle map covering j. Then by naturality of the Thom class

t(ν) = i∗Dt(νM).

Consider the following factorization of the above cartesian diagram:

Y

j
��

0 // Dν
� � ρ //

iD
��

X

i
��

M 0 // DνM
� � δ // W.

By [25, p. 372, bottom],

δ
∗(u f ) = t(νM),

since f is a closed embedding of nonsingular varieties. Therefore,

ρ
∗(ug) = ρ

∗i∗(u f ) = ı∗Dδ
∗(u f ) = i∗Dt(νM) = t(ν).

By Theorem 5.8,

(10) ug∩ cl(α) = cl(g!
algα)

for any algebraic cycle α ∈ A∗(X). Using Verdier’s diagram (8), and the commutativity of
the cap diagram (9), we obtain for α ∈ A∗(X),

g!
alg(cl(α)) = cl(g!

algα)

= ug∩ cl(α)

= ρ
∗(ug)∩ r∗(cl(α))

= t(ν)∩ r∗(cl(α)).

Thus for any class β ∈ HBM
∗ (X) in the image of the cycle map,

g!
alg(β ) = t(ν)∩ r∗β = g!!

top(β ).

□
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6. GYSIN COHERENT CHARACTERISTIC CLASSES

In this section, we recall the notion of Gysin coherent characteristic classes (see Defi-
nition 6.2 below), and state the uniqueness theorem, which is the main result of [10] (see
Theorem 6.4 below). In the present paper, we shall discuss algebraic characteristic classes
such as Todd classes (see Section 9), Chern classes (see Section 8), as well as motivic Hodge
classes (see Section 7) within the framework of Gysin coherence.

In the following, by a variety we mean a pure-dimensional complex quasiprojective alge-
braic variety.

Let X be a family of inclusions i : X →W , where W is a smooth variety, and X ⊂W is a
compact irreducible subvariety. We require the following properties for X:

• For every Schubert subvariety X ⊂ G of a Grassmannian G, the inclusion X → G is
in X.

• If i : X →W and i′ : X ′→W ′ are in X, then the product i× i′ : X ×X ′→W ×W ′ is
in X.

• Given inclusions i : X →W and i′ : X ′→W ′ of compact subvarieties in smooth va-
rieties, and an isomorphism W

∼=−→W ′ that restricts to an isomorphism X
∼=−→ X ′, it

follows from i ∈ X that i′ ∈ X.
• For all closed subvarieties X ⊂ M ⊂W such that X is compact and M and W are

smooth, it holds that if the inclusion X →M is in X, then the inclusion X →W is in
X.

Next, for a given family X of inclusions as above, by X-transversality, we mean a symmet-
ric relation for closed irreducible subvarieties of a smooth variety that satisfies the following
properties:

• The intersection Z∩Z′ of two X-transverse closed irreducible subvarieties Z,Z′ ⊂W
of a smooth variety W is proper, that is, Z ∩Z′ is pure-dimensional of codimension
c+ c′, where c and c′ are the codimensions of Z and Z′ in W , respectively.

• The following analog of Kleiman’s transversality theorem holds for the action of
GLn(C) on the Grassmannians G = Gk(Cn). If i : X → G and i′ : X ′→ G are inclu-
sions in X, then there is a nonempty open dense subset U ⊂GLn(C) (in the complex
topology) such that X is X-transverse to g ·X ′ for all g ∈U .

• Locality: If Z,Z′ ⊂W are X-transverse closed irreducible subvarieties of a smooth
variety W and U ⊂W is a (Zariski) open subset that has nontrivial intersections with
Z and Z′, then Z∩U and Z′∩U are X-transverse in U .

Example 6.1. The family X0 consisting of all inclusions of compact irreducible subvari-
eties in smooth varieties satisfies the above family requirements. Furthermore, a notion of
X0-transversality is obtained by calling two closed irreducible subvarieties Z,Z′ ⊂W of a
smooth variety W X0-transverse if they admit complex algebraic Whitney stratifications (see
Example 4.6) such that every stratum of Z is transverse to every stratum of Z′ (as smooth
submanifolds of W ). This uses Kleiman’s transversality theorem [34].

Recall from Section 5 that every inclusion f : M→W of a smooth closed subvariety M of
(complex) codimension c in a smooth variety W induces a topological Gysin map on singular
homology, f !

top : H∗(W ;Q)→ H∗−2c(M;Q).

Definition 6.2. A Gysin coherent characteristic class cℓ with respect to X is a pair

cℓ= (cℓ∗,cℓ∗)
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consisting of a function cℓ∗ that assigns to every inclusion f : M →W of a smooth closed
subvariety M ⊂W in a smooth variety W an element

cℓ∗( f ) = cℓ0( f )+ cℓ1( f )+ cℓ2( f )+ · · · ∈ H∗(M;Q), cℓp( f ) ∈ H p(M;Q),

with cℓ0( f ) = 1, and a function cℓ∗ that assigns to every inclusion i : X →W of a compact
possibly singular subvariety X ⊂W of complex dimension d in a smooth variety W an element

cℓ∗(i) = cℓ0(i)+ cℓ1(i)+ cℓ2(i)+ · · ·+ cℓ2d(i) ∈ H∗(W ;Q), cℓp(i) ∈ Hp(W ;Q),

with cℓ2d(i) = [X ]W , such that the following properties hold:

(1) (Multiplicativity) For every i : X →W and i′ : X ′→W ′, we have

cℓ∗(i× i′) = cℓ∗(i)× cℓ∗(i′).

(2) (Isomorphism invariance) For every f : M →W and f ′ : M′ →W ′, and every iso-
morphism W

∼=−→W ′ that restricts to an isomorphism φ : M
∼=−→M′, we have

φ
∗cℓ∗( f ′) = cℓ∗( f ).

Moreover, for every i : X →W and i′ : X ′→W ′, and every isomorphism Φ : W
∼=−→

W ′ that restricts to an isomorphism X
∼=−→ X ′, we have

Φ∗cℓ∗(i) = cℓ∗(i′).

(3) (Naturality) For every i : X →W and f : M →W such that X ⊂ M, the inclusion
iM := i| : X →M satisfies

f∗cℓ∗(iM) = cℓ∗(i).

(4) (Gysin restriction in a transverse setup) There exists a notion of X-transversality such
that the following holds. For every inclusion i : X →W in X and every inclusion
f : M →W such that M is irreducible, and M and X are X-transverse in W , the
inclusion j : Y → M of the pure-dimensional compact subvariety Y := M ∩X ⊂ M
satisfies

f !
topcℓ∗(i) = cℓ∗( f )∩ cℓ∗( j).

Such a class cℓ is called Gysin coherent characteristic class if X = X0 is the family of all
inclusions of compact irreducible subvarieties in smooth varieties (compare Example 6.1).

The genus |cℓ∗| of a Gysin coherent characteristic class cℓ with respect to X is defined as
the composition of cℓ∗ with the homological augmentation, |cℓ∗|= ε∗cℓ∗ ∈Q.

Example 6.3. In [10, Section 9], the framework of Gysin coherence with respect to the fam-
ily X0 of Example 6.1 is applied to Goresky-MacPherson L-classes (see Example 6.3 below),
where X0-transversality is chosen to mean simultaneously topological transversality with re-
spect to appropriate Whitney stratifications and generic transversality. It is shown that the pair
(cℓ∗,cℓ∗) given by cℓ∗( f : M ↪→W ) = L∗(νM⊂W ) and cℓ∗(i : X ↪→W ) = i∗L∗(X), where L∗ is
Hirzebruch’s cohomological L-class of a vector bundle and L∗ is the Goresky-MacPherson L-
class, forms a Gysin coherent characteristic class. The associated genus is the signature σ(X)
of the Goresky-MacPherson intersection form on middle-perversity intersection homology of
X .

The main result of [10] is the following
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Theorem 6.4 (Uniqueness Theorem). Let cℓ and c̃ℓ be Gysin coherent characteristic classes
with respect to X. If cℓ∗ = c̃ℓ

∗
and |cℓ∗| = |c̃ℓ∗| for the associated genera, then we have

cℓ∗(i) = c̃ℓ∗(i) for all inclusions i : X → G in X of compact irreducible subvarieties in ambi-
ent Grassmannians.

Remark 6.5. An inspection of the proof of the uniqueness theorem above shows that it suffices
to request the assumption cℓ2d(i) = [X ]W in the definition of Gysin coherent classes cℓ only
for irreducible X . In fact, this assumption is only used in the proof of Theorem 7.1 and in the
proof of Theorem 6.4 in [10], where the varieties under consideration are irreducible.

7. THE CLASS IT1,∗ AS A GYSIN COHERENT CHARACTERISTIC CLASS

The class IT1,∗ fits into the framework of Gysin coherent characteristic classes (Defini-
tion 6.2), as we shall show in Theorem 7.4 below. Our method of proof requires moving vari-
eties into transverse position by means of suitable generalizations of Kleiman’s transversality
theorem. Such generalizations are known in the Cohen-Macaulay context (see Sierra [56]).
Rational and normal Gorenstein singularities are Cohen-Macaulay. For instance, Schubert
varieties as well as toric varieties have rational singularities, and hence are Cohen-Macaulay.

As in Section 6, by a variety we mean a pure-dimensional complex quasiprojective alge-
braic variety. For later use in the proof of Theorem 7.4 below, we record the following

Proposition 7.1. For an irreducible projective variety X of complex dimension d, the highest
non-trivial homogeneous component of the class

IT1,∗(X) = IT1,0(X)+ IT1,1(X)+ · · · ∈ H∗(X ;Q)

is the fundamental class, IT1,2d(X) = [X ]X .

Proof. Since X is compact and irreducible, we know that H2d(X ;Q) is generated by the
fundamental class [X ]X , and that Hi(X ;Q) = 0 for i > 2d. Therefore, writing IT1,2d(X) =
r · [X ]X for some r ∈Q, it remains to show that r = 1. For this purpose, we fix an embedding
X ⊂ Pm and a complex algebraic Whitney stratification on X (see Example 4.6). By applying
a topological version of Kleiman’s transversality theorem (see e.g. [30, p. 39, Theorem 1.3.6
and Example 1.3.7]), we find a generic linear subspace H ⊂ Pm of complex codimension d
that is transverse to all strata of X . Then, the intersection Y := H ∩X is a pure 0-dimensional
closed subvariety of a smooth Zariski open subvariety U ⊂ X . Therefore, the closed regular
embedding g : Y ↪→X is tight (see Definition 4.8). Moreover, the inclusion E ⊂BlY×0(X×C)
of the smooth exceptional divisor E factorizes over the smooth variety BlY×0(U ×C), and
is therefore topologically normally nonsingular. Consequently, the embedding g : Y ↪→ X
is upwardly normally nonsingular (see Definition 4.9). Thus, Theorem 4.10 states that the
algebraic Gysin map g!

alg : H2∗(X ;Q)→ H2∗−2d(Y ;Q) associated to the upwardly normally
nonsingular embedding g : Y ↪→ X with underlying topological normal bundle ν satisfies

g!
algIT1,∗(X) = L∗(ν)∩ IT1,∗(Y ).

Since the compact subvariety Y ⊂ Pm has pure dimension 0, it consists of a finite number
k > 0 of points. (By construction, k is the degree of the embedding X ↪→ Pm, and is hence
positive.) As any vector bundle over a one-point space is trivial, we have L∗(ν) = 1. Thus,
g!

algIT1,∗(X) = IT1,∗(Y ). Furthermore, we have g!
alg[X ]X = [Y ]Y (see e.g. [25, p. 100, Example

6.2.1], and use that the algebraic Gysin map of a closed regular embedding commutes with
the cycle map from Chow to Borel-Moore homology according to Verdier [58, p. 222, 9.2.1]).
Altogether, we conclude that

r · [Y ]Y = g!
alg(r · [X ]X ) = g!

algIT1,2d(X) = IT1,0(Y ) ∈ H0(Y ;Q).
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By applying the augmentation ε∗ : H0(Y ;Q)→Q and using that Y is smooth, we obtain

r · k = r · ε∗ · [Y ]Y = ε∗IT1,0(Y ) = ε∗T1,0(Y ) = ε∗L0(Y ) = σ(Y ) = k.

Since k > 0, we conclude that r = 1. □

Remark 7.2. The statement and proof of Proposition 7.1 hold similarly for IT0,∗(X). In fact,
Theorem 4.10 is also valid for IT0,∗ with correction factor T ∗0 (NMW ) = td∗(NMW ) instead
of T ∗1 (ν f ) = L∗(ν f ) as an inspection of the proof of Theorem 6.30 in [7] shows. (In fact,
the assumption y = 1 is only used in the proof of Proposition 6.26 in [7] to conclude that
T ∗1 (1X ) = L∗(1X ) = 1∈H∗(X ;Q) for the trivial line bundle 1X on a complex algebraic variety
X , but we also have T ∗0 (1X ) = td∗(1X ) = 1 ∈ H∗(X ;Q).)

Remark 7.3. For an alternative proof of Proposition 7.1, we note that ITy,2d(X) = ITy,2d(Xreg)

under the identification H2d(X ;Q) = HBM
2d (Xreg;Q), where Xreg denotes the open smooth part

of X . For the manifold M = Xreg, we observe ITy,∗(M) = T ∗y (T M)∩ [M] with T 0
y (T M) = 1.

In Theorem 7.4 below, let XCM denote the family of all inclusions i : X →W of com-
pact irreducible subvarieties X in smooth varieties W such that X is Cohen-Macaulay. We
note that XCM has all the required properties. In fact, all inclusions of Schubert subvarieties
in Grassmannians are contained in XCM because Schubert varieties are Cohen-Macaulay.
Furthermore, the family XCM is stable under products (because the product of two Cohen-
Macaulay schemes is again Cohen-Macaulay, see e.g. the proof of the Lemma in [28, p.
108]), isomorphisms of smooth ambient spaces, and inclusions into larger smooth ambient
spaces.

Theorem 7.4. The pair L= (L∗,L∗) defined by L∗( f ) = L∗(ν f ) for every inclusion f : M→
W of a smooth closed subvariety M ⊂W in a smooth variety W with normal bundle ν f , and
by L∗(i) = i∗IT1,∗(X) for every inclusion i : X→W of a compact possibly singular subvariety
X ⊂W in a smooth variety W is a Gysin coherent characteristic class with respect to XCM .

Proof. By the properties of the cohomological Hirzebruch L-class, the class L∗( f )=L∗(ν f )∈
H∗(M;Q) is normalized for all f . Moreover, by Proposition 7.1, the highest nontrivial
homogeneous component of the class IT1,∗(X) = IT1,0(X) + IT1,1(X) + · · · ∈ H∗(X ;Q) is
IT1,2d(X) = [X ]X , where d denotes the complex dimension of X , and X may be assumed to be
irreducible by Remark 6.5. Consequently, the highest nontrivial homogeneous component of
L∗(i)= i∗IT1,∗(X)∈H∗(W ;Q) is the ambient fundamental class i∗IT1,2d(X)= i∗[X ]X = [X ]W .

We proceed to check the axioms of Gysin coherent characteristic classes for the pair L.
As for axiom (1), we have IT1,∗(X×X ′) = IT1,∗(X)× IT1,∗(X ′) in H∗(X×X ′;Q) for all pure-
dimensional compact complex algebraic varieties X and X ′ by Corollary 2.16. Hence, for
every i : X →W and i′ : X ′→W ′, the claim follows by applying (i× i′)∗ and using naturality
of the cross product:

L∗(i× i′) = (i× i′)∗IT1,∗(X×X ′) = (i× i′)∗(IT1,∗(X)× IT1,∗(X ′))

= i∗IT1,∗(X)× i′∗IT1,∗(X ′) = L∗(i)×L∗(i′).

Next, let us show that the pair L is compatible with ambient isomorphisms as stated in axiom
(2). As for L∗, we consider f : M→W and f ′ : M′ →W ′, and an isomorphism W

∼=−→W ′

that restricts to an isomorphism φ : M
∼=−→M′. Then, we have φ ∗ν f ′ = ν f , and thus

φ
∗L∗( f ′) = φ

∗L∗(ν f ′) = L∗(φ ∗ν f ′) = L∗(ν f ) = L∗( f ).

As for L∗, we consider i : X → W and i′ : X ′ → W ′, and an isomorphism Φ : W
∼=−→W ′

that restricts to an isomorphism Φ0 : X
∼=−→ X ′. Then, we have Φ0∗IT1,∗(X) = IT1,∗(X ′) by
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Proposition 2.17. Hence, we obtain

Φ∗L∗(i) = Φ∗i∗IT1,∗(X) = i′∗Φ0∗IT1,∗(X) = i′∗IT1,∗(X ′) = L∗(i′).

To verify axiom (3), we consider i : X →W and f : M →W such that X ⊂ M. Then, the
inclusion iM := i| : X →M satisfies f ◦ iM = i, and we obtain

f∗L∗(iM) = f∗iM∗ IT1,∗(X) = i∗IT1,∗(X) = L∗(i).

Finally, to show axiom (4), let us call closed irreducible subvarieties Z,Z′ ⊂W of a smooth
variety W XCM-transverse if Z and Z′ are simultaneously complex algebraic Whitney trans-
verse (that is, they admit complex algebraic Whitney stratifications such that every stratum of
Z is transverse to every stratum of Z′ as smooth submanifolds of W ), generically transverse
(see e.g. [10, Section 3]), and Tor-independent (see Definition 4.11) in W . This notion of
XCM-transversality has indeed all required properties. (In fact, properness of XCM-transverse
intersections follows from generic transversality according to [10, Corollary 3.4]. Next, to
obtain the desired analog of Kleiman’s transversality theorem for the action of GLn(C) on the
Grassmannians G = Gk(Cn), we consider inclusions X → G and X ′→ G in XCM . Then, we
apply suitable versions of Kleiman’s transversality theorem to obtain an open dense subset U
of GLn(C) (in the complex topology) such that X is XCM-transverse to g ·X ′ for all g ∈U .
Here, Kleiman’s transversality theorem holds for (complex algebraic) Whitney transversality
by [10, Theorem 2.2] since X and X ′ are compact, for generic transversality by [10, Theorem
3.5] since X and X ′ are irreducible, and for Tor-independence by Sierra’s general homologi-
cal Kleiman-Bertini theorem [56, Corollary 4.3, p. 608] since X and X ′ are Cohen-Macaulay.
We also note that Zariski dense open subsets are also dense in the complex topology by [42,
Theorem 1, p. 58]. Finally, locality holds evidently for our notion of XCM-transversality.)
Now, consider an inclusion i : X →W in XCM and an inclusion f : M →W (of a smooth
closed subvariety M ⊂W in a smooth variety W ) such that M is irreducible, and M and X
are XCM-transverse in W . Then, Theorem 4.15 implies that the embedding g : Y ↪→ X of the
compact subvariety Y = X ∩M ⊂ X is tight, and the algebraic normal bundle N = NY X of
g and the topological normal bundle ν of the topologically normally nonsingular inclusion
underlying g satisfy

g!
algIT1,∗(X) = L∗(N)∩ IT1,∗(Y ) = L∗(ν)∩ IT1,∗(Y ),

where g!
alg : H∗(X ;Q)→H∗(Y ;Q) denotes the algebraic Gysin homomorphism associated to

g as constructed in Verdier [58] (where we may use the natural identification of Borel-Moore
homology and singular homology because X and Y are compact). Furthermore, since i∈XCM
and M and X are XCM-transverse in W , Theorem 5.10 and Proposition 5.7 imply that the
algebraic Gysin map g!

alg : H∗(X ;Q)→ H∗(Y ;Q) coincides with the topological Gysin map
g!

top : H∗(X ;Q)→H∗(Y ;Q) on all fundamental classes [Z]X of closed irreducible subvarieties
Z ⊂ X . As IT1,∗(X) is an algebraic cycle according to Remark 2.12, we obtain

g!
topIT1,∗(X) = g!

algIT1,∗(X).

Next, recall from Theorem 4.4 that the inclusion g : Y ↪→ X is normally nonsingular with
topological normal bundle ν = j∗ν f given by the restriction under the inclusion j : Y →M of
the normal bundle ν f of M in W . Using the base change f !

topi∗ = j∗g!
top for topological Gysin

maps (see [10, Proposition 2.4]), as well as L∗(ν) = L∗( j∗ν f ) = j∗L∗(ν f ), we conclude that

f !
topL∗(i) = f !

topi∗IT1,∗(X) = j∗g!
topIT1,∗(X) = j∗g!

algIT1,∗(X) = j∗(L∗(ν)∩ IT1,∗(Y ))

= j∗( j∗L∗(ν f )∩ IT1,∗(Y )) = L∗(ν f )∩ j∗IT1,∗(Y ) = L∗( f )∩L∗( j).

□
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Remark 7.5. A similar proof shows that the pair (cℓ∗,cℓ∗) given by cℓ∗( f : M ↪→ W ) =
td∗(NMW ) and cℓ∗(i : X ↪→W ) = i∗IT0,∗(X) is also an example of a Gysin coherent charac-
teristic class with respect to XCM . In fact, Theorem 4.10 (and consequently, Theorem 4.15) is
also valid for IT0,∗ with correction factor T ∗0 (NMW ) = td∗(NMW ) instead of T ∗1 (ν f ) = L∗(ν f )
as an inspection of the proof of Theorem 6.30 in [7] shows (compare Remark 7.2). See
Remark 8.8 for IT−1,∗(X).

When X is singular, the intersection Todd class IT0∗(X) is generally different from the
Baum-Fulton-MacPherson Todd class td∗(X) studied in Section 9. Let us consider the nor-
malization π : X ′ → X of a singular curve X such that π is a homeomorphism. Let T0∗ =

τ∗ ◦mC0, where mC0 : K0(var/X)→ Kalg
0 (X) is the evaluation at y = 0 of the motivic Chern

class transformation mCy of [14], recalled here in Remark 2.14. Following [14, Example 3.1],
let us show that T0∗(X) ̸= td∗(X). The normalization π restricts to an isomorphism of regular
parts. It is also an isomorphism of the singular parts since those are finite sets of points and
the homeomorphism π restricts to a bijection between them. Thus, the scissor relation in
the motivic group K0(var/X) yields π∗[idX ′ ] = [idX ]. Then, as the smoothness of X ′ implies
mC0[idX ′ ] = [OX ′ ] (Du Bois would suffice), we find

T0∗(X) := T0∗[idX ] = T0∗π∗[idX ′ ] = π∗T0∗[idX ′ ] = π∗τ∗mC0[idX ′ ] = π∗τ∗[OX ′ ].

As X is singular,
π∗[OX ′ ] = [OX ]+n · [Opt], n > 0.

Hence,

T0∗(X) = π∗τ∗[OX ′ ] = τ∗π∗[OX ′ ] = τ∗([OX ]+n · [Opt]) = td∗(X)+n · [pt] ̸= td∗(X).

On the other hand, since π is a resolution of singularities, ICH
X is a direct summand of

π∗QH
X ′ [1] (see [52, Corollary 4.6]). As π is in fact a small resolution, we have π∗(QH

X ′) =

ICH
X [−1]. Moreover, in view of Remark 2.14, we have [OX ′ ] =mC0[idX ′ ] =MHC0∗χHdg[idX ′ ] =

MHC0∗[QH
X ′ ]. All in all, we obtain

T0∗(X) = π∗τ∗[OX ′ ] = π∗τ∗MHC0∗[QH
X ′ ] = π∗MHT0∗[QH

X ′ ] = MHT0∗[π∗QH
X ′ ]

= MHT0∗[ICH
X [−1]] = IT0∗(X).

Therefore, IT0∗(X) = T0∗(X) ̸= td∗(X). (A similar example shows that IT0∗(X) ̸= T0∗(X) in
general.)

Recall from Example 6.3 that the pair (cℓ∗,cℓ∗) given by cℓ∗( f : M ↪→W ) = L∗(νM⊂W )
and cℓ∗(i : X ↪→W ) = i∗L∗(X), where L∗ is the Goresky-MacPherson L-class, forms a Gysin
coherent characteristic class, and hence a Gysin coherent characteristic class with respect
to XCM as defined at the beginning of this section. Since the L-genus, i.e. the signature,
agrees with the genus of IT1∗ on complex projective algebraic varieties by Saito’s intersection
cohomology Hodge index theorem (see [46], [40, Section 3.6]), the uniqueness theorem for
Gysin coherent characteristic classes (Theorem 6.4) implies

Theorem 7.6. We have i∗L∗(X) = i∗IT1,∗(X) for all inclusions i : X → G of compact irre-
ducible Cohen-Macaulay subvarieties in ambient Grassmannians.

Since Schubert varieties in a Grassmannian are Cohen-Macaulay, and their homology in-
jects into the homology of the ambient Grassmannian, we obtain

Corollary 7.7. We have L∗(X) = IT1,∗(X) for all Schubert varieties X in a Grassmannian.
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8. THE CHERN CLASS AS A GYSIN COHERENT CHARACTERISTIC CLASS

Let c∗ : F(X) −→ HBM
2∗ (X)⊗Q denote the (rationalized) Chern class transformation of

MacPherson [38] defined on the group F(X) of Z-valued algebraically constructible func-
tions on the possibly singular complex algebraic variety X . (Such a constructible function is
a linear combination of indicator functions 1Z with Z ⊂ X a closed irreducible subvariety.)
The Chern-Schwartz-MacPherson class c∗(X) of a possibly singular irreducible complex al-
gebraic variety X is defined as

c∗(X) := c∗(1X ) ∈ HBM
2∗ (X ;Q).

While the Chern classes c∗(X) were originally defined with integral coefficients, we need to
consider them with rational coefficients to be able to study them in the framework of Gysin
coherence.

In [53], the second author derives the following Verdier-Riemann-Roch type theorem for
the behavior of the Chow homology Chern class transformation c∗ : F(X)→ A∗(X) under
refined Gysin maps associated to transverse intersections in a microlocal context.

Theorem 8.1 (see Corollary 2.7 in [53]). Let f : M→W be a closed embedding of smooth
complex varieties with algebraic normal bundle N = NMW. Let X ⊂W be a (Zariski) closed
subspace, and set Y := f−1(X) = M ∩ X ⊂ M. Assume that γ ∈ F(X) is a constructible
function such that f is non-characteristic with respect to the support supp(CC(γ)) of the
characteristic cycle CC(γ) of γ . Then,

( f , i)!
ref(c∗(γ)) = c∗(N|Y )∩ c∗(g∗(γ)) ∈ A∗(Y ),

where ( f , i)!
ref : A∗(X)→ A∗(Y ) denotes the refined Gysin map associated to the cartesian

square of closed embeddings

Y := M∩X

��

g // X

i
��

M
f

// W

(see Fulton [25, Section 6.2]).

Remark 8.2. As pointed out in [53], the non-characteristic condition for γ ∈ F(X) in Theo-
rem 8.1 above is for example satisfied when M is transverse to all strata of a complex algebraic
Whitney stratification of X ⊂W , and γ is constructible with respect to this stratification, i.e.,
γ|S is locally constant for all strata S of X .

A simple consequence is that the highest non-trivial homogeneous component of the Chern
class is the fundamental class (compare Proposition 7.1).

Corollary 8.3. For an irreducible projective variety X of complex dimension d, the highest
non-trivial homogeneous component of the class

c∗(X) = c0(X)+ c1(X)+ · · · ∈ A∗(X)

is the fundamental class, cd(X) = [X ]X .

Proof. Since X is irreducible, we know that Ad(X) is generated by the fundamental class
[X ]X , and that Ai(X) = 0 for i > d. Therefore, writing cd(X) = r · [X ]X for some r ∈ Z, it
remains to show that r = 1. For this purpose, we fix an embedding X ⊂ Pm =: W and a
complex algebraic Whitney stratification on X (see Example 4.6). By applying a topological
version of Kleiman’s transversality theorem (see e.g. [30, p. 39, Theorem 1.3.6 and Example
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1.3.7]), we find a generic linear subspace H ⊂ Pm = W of complex codimension d that is
transverse to all strata of X . Then, the intersection Y := H ∩ X is a pure 0-dimensional
closed subvariety of a Zariski open subset U ⊂ X . Hence, the closed embedding g : Y ↪→ X
is regular since it is the composition of a smooth embedding of smooth varieties and an open
embedding. Therefore, the refined Gysin map ( f , i)!

ref : A∗(X)→ A∗(Y ) associated to the
cartesian square of closed embeddings

Y := H ∩X

��

g // X

i
��

H
f

// W

coincides with the algebraic Gysin map g!
alg : A∗(X)→ A∗(Y ) because f and g are both codi-

mension d regular embeddings (see Fulton [25, p. 99, Remark 6.2.1]). By Remark 8.2, the
constructible function

γ := 1X ∈ F(X)

satisfies the non-characteristic property of Theorem 8.1 because M := H is by assumption
transverse to all strata of the given complex algebraic Whitney stratification on X , and γ|S =
1S is locally constant for all strata S of X . The pull-back g∗ : F(X)→ F(Y ) induced by the
closed embedding g : Y ↪→ X satisfies g∗(γ) = g∗(1X ) = 1H∩X = 1Y . Hence, Theorem 8.1
yields

g!
alg(c∗(X)) = ( f , i)!

ref(c∗(X)) = c∗(N|Y )∩ c∗(Y ) ∈ A∗(Y ).

Since the compact subvariety Y ⊂ Pm has pure dimension 0, it consists of a finite number
k > 0 of points. (By construction, k is the degree of the embedding i : X ↪→ Pm, and is hence
positive.) As any vector bundle over a one-point space is trivial, we have c∗(N|Y ) = 1. Thus,
g!

alg(c∗(X)) = c∗(Y ). Furthermore, we have g!
alg([X ]X ) = [Y ]Y (see e.g. [25, p. 100, Example

6.2.1]). Altogether, we conclude that

r · [Y ]Y = ( f , i)!
ref(r · [X ]X ) = ( f , i)!

ref(cd(X)) = c0(Y ) ∈ A0(Y ).

By applying the augmentation ε∗ : A0(Y )→ Z and using that Y is smooth, we obtain

r · k = r · ε∗ · [Y ]Y = ε∗c0(Y ) = k.

Since k > 0, we conclude that r = 1. □

Remark 8.4. As in Remark 7.3, an alternative proof of Corollary 8.3 can be obtained by
observing that the restriction of cd(X) to the regular part of X is cd(Xreg). The restriction
Ad(X)→ Ad(Xreg) is an isomorphism by [25, Proposition 1.8, p. 21] (recall that X is assumed
to be irreducible).

Theorem 8.1 implies the following result.

Corollary 8.5. Let X ↪→W ←↩ M be closed algebraic embeddings of pure-dimensional com-
plex quasiprojective algebraic varieties with M,W smooth. Let V ⊂ X be an irreducible
closed subvariety. We suppose that X ⊂W is equipped with a complex algebraic Whitney
stratification such that M is transverse to all strata, and V is a union of strata. Then the
refined Gysin map

( f , i)!
ref : A∗(X)−→ A∗−c(Y )
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associated to the cartesian square of inclusions

Y := M∩X

��

g // X

i
��

M
f

// W

satisfies ( f , i)!
ref[V ]X = [V ∩Y ]Y , where c denotes the complex codimension of M in W.

Proof. By Remark 8.2, the constructible function

γ := 1V ∈ F(X)

satisfies the non-characteristic property of Theorem 8.1 because the given complex algebraic
Whitney stratification on X is such that M is transverse to all strata, and V is a union of strata.
The pull-back g∗ : F(X)→F(Y ) satisfies g∗(γ)= g∗(1V )= 1V∩Y . Hence, Theorem 8.1 yields

(11) ( f , i)!
ref(c∗(1V )) = c∗(N|Y )∩ c∗(1V∩Y ) ∈ A∗(Y ).

The inclusions α : V ↪→ X and β : V ∩Y ↪→ Y are closed embeddings, and hence proper.
The induced maps α∗ : F(V )→ F(X) and β∗ : F(V ∩Y )→ F(Y ) satisfy α∗(1V ) = 1V and
β∗(1V∩Y ) = 1V∩Y , respectively. (In general, the push-forward ϕ∗ : F(U)→ F(U ′) of a proper
morphism ϕ : U→U ′ is defined on a subvariety Z⊂U by ϕ∗(1Z)(v) = χ(Z∩ϕ−1(v)), where
χ denotes the topological Euler characteristic, see [25, p. 376, Example 19.1.7].) Since c∗
commutes with proper push-forward according to [25, p. 377, Example 19.1.7], equation
(11) becomes

(12) ( f , i)!
ref(α∗c∗(V )) = c∗(N|Y )∩β∗c∗(V ∩Y ) ∈ A∗(Y ).

Let d denote the complex dimension of V . Then, the highest non-trivial homogeneous
component of c∗(V ) is cd(V ) = [V ]V by Corollary 8.3. Similarly, since V ∩Y = V ∩M is
pure (d− c)-dimensional, the highest non-trivial homogeneous component of c∗(V ∩Y ) is
cd−c(V ∩Y ) = [V ∩Y ]V∩Y . Consequently, evaluation of equation (12) in degree d− c yields

( f , i)!
ref([V ]X ) = [V ∩Y ]Y ∈ Ad−c(Y ).

□

Since c∗(X)∈ A∗(X) is an algebraic cycle, there exist a finite number of irreducible closed
subvarieties V1, . . . ,Vr ⊂ X such that

(13) c∗(X) =
r

∑
l=1

λl [Vl ]X , λl ∈ Z.

For an irreducible closed subvariety X ⊂W of a smooth variety W , we call a complex alge-
braic Whitney stratification of X ⊂W c∗(X)-constructible if there is a representation (13) in
which every Vl is a union of strata of X . It follows from [30, p. 43, Section 1.7, Theorem]
that such Whitney stratifications exist on X ⊂W .

Theorem 8.6. Let X ↪→W ←↩ M be closed algebraic embeddings of pure-dimensional com-
plex algebraic varieties with M,W smooth. Suppose that X is equipped with a complex al-
gebraic Whitney stratification that is c∗(X)-constructible, and such that M is transverse to
all strata of X and Y = M ∩X is compact. Then, the topologically normally nonsingular
inclusion g : Y = M∩X ↪→ X satisfies

g!!
top(c∗(X)) = c∗(N|Y )∩ c∗(Y ) ∈ HBM

2∗ (Y )⊗Q,

where N = NMW denotes the complex normal bundle of M in W.
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Proof. By Remark 8.2, the constructible function

γ := 1X ∈ F(X)

satisfies the non-characteristic property of Theorem 8.1 because M is by assumption trans-
verse to all strata of the given complex algebraic Whitney stratification on X , and γ|S = 1S is
locally constant for all strata S of X . The pull-back g∗ : F(X)→ F(Y ) induced by the closed
embedding g : Y ↪→ X satisfies g∗(γ) = g∗(1X ) = 1M∩X = 1Y . Hence, Theorem 8.1 yields

( f , i)!
ref(c∗(X)) = c∗(N|Y )∩ c∗(Y ) ∈ A∗(Y ).

By assumption, the Chern-Schwartz-MacPherson class c∗(X) can be written in the form (13)
for some irreducible closed subvarieties V1, . . . ,Vr ⊂ X such that every Vl is a union of strata
of the given complex algebraic Whitney stratification on X . Therefore, Corollary 8.5 implies
that

( f , i)!
ref(c∗(X)) = ( f , i)!

ref

r

∑
l=1

λl [Vl ]X =
r

∑
l=1

λl · ( f , i)!
ref([Vl ]X ) =

r

∑
i=1

λl [Vl ∩Y ]Y .

By applying the cycle map cl : A∗(Y )→HBM
2∗ (Y )⊗Q from Chow homology to Borel-Moore

homology, we conclude that
r

∑
i=1

λl [Vl ∩Y ]Y = cl( f , i)!
ref(c∗(X)) = cl(c∗(N|Y )∩ c∗(Y ))

= c∗(N|Y )∩ cl(c∗(Y )) ∈ HBM
2∗ (Y )⊗Q,

where the cycle map cl and the cap product with Chern classes are compatible by [25, p. 374,
Prop. 19.1.2]. Furthermore, by the analog of Proposition 5.1 for the topological Gysin map
in Borel-Moore homology (see Remark 5.4), we have

r

∑
i=1

λl [Vl ∩Y ]Y =
r

∑
i=1

λlg!!
top([Vl ]X ) = g!!

top

r

∑
i=1

λl [Vl ]X = g!!
top(c∗(X)) ∈ HBM

2∗ (Y )⊗Q.

□

Note that the following theorem does not require a Cohen-Macaulay assumption.

Theorem 8.7. The pair (cℓ∗,cℓ∗) given by cℓ∗( f : M ↪→W ) = c∗(NMW ) and cℓ∗(i : X ↪→
W ) = i∗c∗(X) forms a Gysin coherent characteristic class.

Proof. By the properties of the cohomological Chern class c∗, the class cℓ∗( f ) = c∗(N f ) ∈
H∗(M;Q) is normalized for all f . Moreover, by Corollary 8.3, the highest nontrivial homo-
geneous component of the class c∗(X) = c0(X)+ c1(X)+ · · · ∈ H∗(X ;Q) is cd(X) = [X ]X ,
where d denotes the complex dimension of X , and X may be assumed to be irreducible
by Remark 6.5. Consequently, the highest nontrivial homogeneous component of cℓ∗(i) =
i∗c∗(X) ∈ H∗(W ;Q) is the ambient fundamental class i∗cd(X) = i∗[X ]X = [X ]W .

We proceed to check the axioms of Gysin coherent characteristic classes for the pair cℓ.
As for axiom (1), multiplicativity c∗(X ×X ′) = c∗(X)× c∗(X ′) holds for all compact irre-
ducible complex algebraic varieties X and X ′ by Kwiecinski [35] and Kwiecinski-Yokura
[36]. Hence, for every i : X→W and i′ : X ′→W ′, the claim follows by applying (i× i′)∗ and
using naturality of the cross product:

cℓ∗(i× i′) = (i× i′)∗c∗(X×X ′) = (i× i′)∗(c∗(X)× c∗(X ′))

= i∗c∗(X)× i′∗c∗(X
′) = cℓ∗(i)× cℓ∗(i′).
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Next, let us show that the pair cℓ is compatible with ambient isomorphisms as stated in axiom
(2). As for c∗, we consider f : M→W and f ′ : M′→W ′, and an isomorphism W

∼=−→W ′ that
restricts to an isomorphism φ : M

∼=−→M′. Then, we have φ ∗N f ′ = N f , and thus

φ
∗cℓ∗( f ′) = φ

∗c∗(N f ′) = c∗(φ ∗N f ′) = c∗(N f ) = cℓ∗( f ).

As for cℓ∗, we consider i : X →W and i′ : X ′→W ′, and an isomorphism Φ : W
∼=−→W ′ that

restricts to an isomorphism Φ0 : X
∼=−→ X ′. Then, we have

c∗(X ′) = c∗(1X ′) = c∗(Φ0∗1X ) = Φ0∗c∗(1X ) = Φ0∗c∗(X)

because c∗ : F(X) −→ HBM
2∗ (X)⊗Q commutes with proper push-forward (see e.g. [25, p.

377, top]). Hence, we obtain

Φ∗cℓ∗(i) = Φ∗i∗c∗(X) = i′∗Φ0∗c∗(X) = i′∗c∗(X
′) = cℓ∗(i′).

To verify axiom (3), we consider i : X →W and f : M →W such that X ⊂ M. Then, the
inclusion iM := i| : X →M satisfies f ◦ iM = i, and we obtain

f∗cℓ∗(iM) = f∗iM∗ c∗(X) = i∗c∗(X) = cℓ∗(i).

Finally, to show axiom (4), let us recall from Example 6.1 that X = X0 is the family of all
inclusions i : X ↪→W of compact irreducible subvarieties X in smooth varieties W . Further-
more, let us call two closed irreducible subvarieties Z,Z′ ⊂W of a smooth variety W X0-
transverse if they admit complex algebraic Whitney stratifications such that every stratum of
Z is transverse to every stratum of Z′, where the stratification of Z (resp. Z′) can be chosen to
be c∗(Z)-constructible when Z is compact (resp. c∗(Z′)-constructible when Z′ is compact).
Then, the notion of X0-transversality satisfies all required properties. (In fact, the intersection
Z∩Z′ of two X0-transverse closed irreducible subvarieties Z,Z′ ⊂W of a smooth variety W
is proper, which follows from the transversality of the strata of the complex algebraic Whit-
ney stratifications of Z and Z′. Moreover, for any inclusions i : X → G and i′ : X ′ → G in
X0, there is a nonempty open dense subset U ⊂ GLn(C) (in the complex topology) such that
X is X0-transverse to g ·X ′ for all g ∈ U . This can be achieved by applying a topological
version of Kleiman’s transversality theorem (see e.g. [30, p. 39, Theorem 1.3.6 and Example
1.3.7]) to complex algebraic Whitney stratifications on the compact varieties X and X ′ that
are c∗(X)-constructible and c∗(X ′)-constructible, respectively. Finally, to see that our notion
of X0-transversality satisfies locality, we suppose that Z,Z′ ⊂W are X0-transverse. Then, the
desired transverse Whitney stratifications on Z ∩U and Z′ ∩U are obtained by intersecting
those on Z and Z′ with U . Moreover, if, say, Z∩U is compact, and hence a complete variety,
then it is also a closed subset of Z, see e.g. [42, p. 55, property i)]. But since Z ∩U is also
non-empty open subset of the irreducible space Z, we conclude that Z∩U = Z. Hence, Z is
compact and c∗(Z)-constructible, that is, Z∩U is c∗(Z∩U)-constructible.) Now, consider an
inclusion i : X→W in X0 and an inclusion f : M→W (of a smooth closed subvariety M⊂W
in a smooth variety W ) such that M is irreducible, and M and X are X0-transverse in W . By
definition of X0-transversality, X can be equipped with a complex algebraic Whitney strati-
fication that is c∗(X)-constructible, and such that M is transverse to all strata of X . Hence,
by Theorem 8.6 and Proposition 5.7 (where we may use the natural identification of Borel-
Moore homology and singular homology because X and Y are compact), the topologically
normally nonsingular inclusion g : Y = M∩X ↪→ X satisfies

g!
top(c∗(X)) = c∗( j∗N)∩ c∗(Y ) ∈ H2∗(Y )⊗Q,

where N = NMW denotes the complex normal bundle of M in W , and j : Y ↪→M is the inclu-
sion. Using the base change f !

topi∗ = j∗g!
top for topological Gysin maps (see [10, Proposition
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2.4]), as well as c∗( j∗N) = j∗c∗(N), we conclude that

f !
topcℓ∗(i) = f !

topi∗c∗(X) = j∗g!
topc∗(X) = j∗(c∗( j∗N)∩ c∗(Y ))

= j∗( j∗c∗(N)∩ c∗(Y )) = c∗(N)∩ j∗c∗(Y ) = cℓ∗( f )∩ cℓ∗( j).

This completes the proof of Theorem 8.7. □

Remark 8.8. A similar proof shows that the pair (cℓ∗,cℓ∗) given by cℓ∗( f ) = c∗(N f ) and
cℓ∗(i) = i∗Ic∗(X) is also an example of a Gysin coherent characteristic class. Here, Ic∗(X) :=
c∗χstalk(ICH

X [−n]), with the constructible function χstalk given by the stalkwise Euler charac-
teristic. (For completeness, we also point out that Ic∗(X) = IT−1,∗(X), where the special-
ization y =−1 is possible in Definition 2.11 because we actually have ITy∗(X) ∈ HBM

2∗ (X)⊗
Q[y±1] as shown in [52, p. 465, Proposition 5.21]. However, an alternative proof in analogy
with Remark 7.5 will only yield a Gysin coherent characteristic class with respect to XCM .)

Remark 8.9. The same type of argument can be used to show that the pair (cℓ∗,cℓ∗) given by
cℓ∗( f ) = c∗(N f ) and cℓ∗(i) = i∗cM

∗ (X) is another example of a Gysin coherent characteristic
class, where

cM
∗ (X) := c∗(EuX ) ∈ HBM

2∗ (X ;Q)

is the Chern-Mather class of a possibly singular irreducible complex projective algebraic
variety X , and EuX denotes the Euler obstruction constructible function of X introduced by
MacPherson [38]. In the proof, one exploits the following well known properties (see e.g.
Parusiński and Pragacz [44, Lemma 1.1]):

(1) EuX (x) = 1 for x ∈ Xreg.
(2) EuX×X ′(x,x′) = EX (x) ·EuX ′(x′) for x ∈ X ,x′ ∈ X ′.
(3) EuX is constructible with respect to any complex Whitney stratification of X .
(4) f ∗(EuX ) = EuM∩X for a complex manifold embedding f : M→W transversal to a

complex Whitney stratification of X .

We have seen that the three generalizations c∗, cM
∗ and Ic∗ of the Chern class to singular

varieties give rise to Gysin coherent classes. As these classes are generally not equal, their
associated genera must already be different in light of the Uniqueness Theorem 6.4 for Gysin
coherent classes. Indeed,

|c∗|(X) = χ(X)

the topological Euler characteristic,

|cM
∗ |(X) = χ(X ;EuX ) = ∑

S
EuX (S) ·χ(S),

where the sum ranges over all connected strata S of a complex algebraic Whitney stratification
of X , and

|Ic∗|(X) = |IT−1∗|(X) = Iχ−1(X) = χ(IH∗(X ;Q)),

the intersection cohomology Euler characteristic.

9. THE TODD CLASS AS A GYSIN COHERENT CHARACTERISTIC CLASS

Let τ∗ : K0(X)−→HBM
2∗ (X)⊗Q denote the Todd class transformation of Baum, Fulton and

MacPherson [11], [27]. Recall from Remark 2.5 that this transformation is compatible with
its Chow homology analog τ∗ : K0(X)−→ A∗(X)⊗Q under the cycle map cl : A∗(X)⊗Q→
HBM

2∗ (X)⊗Q. Baum, Fulton and MacPherson [11] define the Todd class of a possibly singular
complex algebraic variety X as

td∗(X) := τ∗([OX ]) ∈ HBM
2∗ (X ;Q).
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Its genus | td∗ | (for X compact) is the arithmetic genus of a singular variety, i.e. the holomor-
phic Euler characteristic.

Todd classes can be studied within the framework of Gysin coherent characteristic classes
by a similar method to that used for the class IT1,∗ in Section 7. In the following result, we
are therefore using the same definition of the set XCM and the notion of XCM-transversality
as in Theorem 7.4 (and its proof) to be able to replace the algebraic by the topological Gysin
map in Verdier’s Gysin restriction formula for the Todd class.

Theorem 9.1. The pair (cℓ∗,cℓ∗) defined by cℓ∗( f ) = td∗(N f ) for every inclusion f : M→W
of a smooth closed subvariety M ⊂W in a smooth variety W with complex normal bundle
N f , and by cℓ2∗(i) = i∗ td∗(X) for every inclusion i : X →W of a compact possibly singular
subvariety X ⊂W in a smooth variety W, is a Gysin coherent characteristic class with respect
to XCM .

Proof. By the properties of the cohomological Todd class, the class cℓ∗( f ) = td∗(N f ) ∈
H∗(M;Q) is normalized for all f . Moreover, the highest non-vanishing homogeneous com-
ponent of td∗(X) is the fundamental class tdd(X) = [X ]X ∈ H2d(X ;Q) according to [25, p.
353, Theorem 18.3.5(5)]. Consequently, the highest nontrivial homogeneous component of
cℓ2∗(i) = i∗ td∗(X) ∈ H∗(W ;Q) is the ambient fundamental class i∗ tdd(X) = i∗[X ]X = [X ]W .

We proceed to check the axioms of Gysin coherent characteristic classes for the pair cℓ.
As for axiom (1), the multiplicativity property td∗(X ×X ′) = td∗(X)× td∗(X ′) holds for all
compact irreducible complex algebraic varieties X and X ′ by [25, p. 360, Example 18.3.1].
Hence, for every i : X→W and i′ : X ′→W ′, the claim follows by applying (i× i′)∗ and using
naturality of the cross product:

cℓ2∗(i× i′) = (i× i′)∗ td∗(X×X ′) = (i× i′)∗(td∗(X)× td∗(X ′))

= i∗ td∗(X)× i′∗ td∗(X ′) = cℓ2∗(i)× cℓ2∗(i′).

Next, let us show that the pair cℓ is compatible with ambient isomorphisms as stated in axiom
(2). As for cℓ∗, we consider f : M→W and f ′ : M′→W ′, and an isomorphism W

∼=−→W ′

that restricts to an isomorphism φ : M
∼=−→M′. Then, we have φ ∗N f ′ = N f , and thus

φ
∗cℓ∗( f ′) = φ

∗ td∗(N f ′) = td∗(φ ∗N f ′) = td∗(N f ) = cℓ∗( f ).

As for cℓ∗, we consider i : X →W and i′ : X ′→W ′, and an isomorphism Φ : W
∼=−→W ′ that

restricts to an isomorphism Φ0 : X
∼=−→ X ′. Invariance Φ0∗ td∗(X) = td∗(X ′) under algebraic

isomorphisms Φ0 : X
∼=→ X ′ follows from [25, p. 360, Example 18.3.3]. Hence, we obtain

Φ∗cℓ2∗(i) = Φ∗i∗ td∗(X) = i′∗Φ0∗ td∗(X) = i′∗ td∗(X ′) = cℓ2∗(i′).

To verify axiom (3), we consider i : X →W and f : M →W such that X ⊂ M. Then, the
inclusion iM := i| : X →M satisfies f ◦ iM = i, and we obtain

f∗cℓ2∗(iM) = f∗iM∗ td∗(X) = i∗ td∗(X) = cℓ2∗(i).

Finally, to show axiom (4), let us proceed as in the proof of Theorem 7.4 and call closed
irreducible subvarieties Z,Z′ ⊂W of a smooth variety W XCM-transverse if Z and Z′ are
simultaneously complex algebraic Whitney transverse (that is, they admit complex alge-
braic Whitney stratifications such that every stratum of Z is transverse to every stratum of
Z′ as smooth submanifolds of W ), generically transverse (see e.g. [10, Section 3]), and Tor-
independent (see Definition 4.11) in W . Now, consider an inclusion i : X →W in XCM and
an inclusion f : M→W (of a smooth closed subvariety M ⊂W in a smooth variety W ) such
that M is irreducible, and M and X are XCM-transverse in W . Then, Proposition 4.12 implies
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that the embedding g : Y ↪→ X of the compact subvariety Y = X ∩M ⊂ X is tight. For the
regular closed embedding g : Y ↪→ X with algebraic normal bundle N = NY X , we have the
Gysin restriction formula g!

alg td∗(X) = td∗(N)∩ td∗(Y ) on Chow homology (see [25, p. 361,
Example 18.3.5]). The latter is a direct consequence of the Verdier-Riemann-Roch formula
for the Todd class transformation τ∗, which was conjectured by Baum-Fulton-MacPherson in
[11, p. 137], and proved by Verdier [58, p. 214, Theorem 7.1] (see also [25, p. 349, Theorem
18.2(3)]). By invoking the cycle map cl : A∗(X)⊗Q→ HBM

2∗ (X)⊗Q, we obtain

g!
alg td∗(X) = g!

alg cl(td∗(X)) = clg!
alg td∗(X)

= cl(td∗(N)∩ td∗(Y )) = td∗(N)∩ cl(td∗(Y )) = td∗(N)∩ td∗(Y ),

where we used that, according to Verdier [58, p. 222, 9.2.1], the algebraic Gysin map of a
closed regular embedding commutes with the cycle map (see diagram (8)), and that the cycle
map cl and the cap product with Chern classes are compatible by [25, p. 374, Prop. 19.1.2]
(where note that the Todd class of a complex vector bundle is a rational polynomial in Chern
classes, see e.g. [25, p. 56, Example 3.2.4]). Since i ∈XCM and M and X are XCM-transverse
in W , Theorem 5.10 and Proposition 5.7 (where we may use the natural identification of
Borel-Moore homology and singular homology because X and Y are compact) imply that the
algebraic Gysin map g!

alg : H∗(X ;Q)→ H∗(Y ;Q) coincides with the topological Gysin map
g!

top : H∗(X ;Q)→H∗(Y ;Q) on all fundamental classes [Z]X of closed irreducible subvarieties
Z ⊂ X . As td∗(X) ∈ H∗(X ;Q) is an algebraic cycle according to Remark 2.5, we obtain

g!
top td∗(X) = g!

alg td∗(X).

Since the embedding g : Y ↪→ X is tight, we know that the underlying inclusion Y ⊂ X is
topologically normally nonsingular with topological normal bundle ν isomorphic (as a topo-
logical vector bundle) to the underlying topological vector bundle of the algebraic normal
bundle N = NY X . Next, recall from Theorem 4.4 that the inclusion g : Y ↪→ X is nor-
mally nonsingular with topological normal bundle ν = j∗ν f given by the restriction under
the inclusion j : Y → M of the normal bundle ν f of M in W , which is the the underly-
ing topological vector bundle of the algebraic normal bundle N f = NMW . Using the base
change f !

topi∗ = j∗g!
top for topological Gysin maps (see [10, Proposition 2.4]), as well as

td∗(N) = td∗( j∗N f ) = j∗ td∗(N f ), we conclude that

f !
topcℓ2∗(i) = f !

topi∗ td∗(X) = j∗g!
top td∗(X) = j∗g!

alg td∗(X) = j∗(td∗(N)∩ td∗(Y ))

= j∗( j∗ td∗(N f )∩ td∗(Y )) = td∗(N f )∩ j∗ td∗(Y ) = cℓ∗( f )∩ cℓ2∗( j).

This completes the proof of Theorem 9.1. □
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[17] S. E. Cappell, L. G. Maxim, J. Schürmann, J. L. Shaneson, Equivariant characteristic classes of singular
complex algebraic varieties, Comm. Pure Appl. Math. 65 (2012), no. 12, 1722 – 1769. 3, 9

[18] S. E. Cappell, L. G. Maxim, J. L. Shaneson, Hodge genera of algebraic varieties. I, Comm. Pure Appl. Math.
61 (2008), no. 3, 422–449. 9

[19] S. E. Cappell, J. L. Shaneson, Genera of algebraic varieties and counting lattice points, Bull. Amer. Math.
Soc. (N.S.) 30 (1994), no. 1, 62 – 69. 9
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Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. x+495pp. 11

[22] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972. 19, 20, 21, 22
[23] J. Fernández de Bobadilla, I. Pallarés, The Brasselet-Schürmann-Yokura conjecture on L-classes of singular
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[41] L. Maxim, J. Schürmann, Characteristic Classes of Singular Toric Varieties, Comm. Pure Appl. Math. 68

(2015), 2177 – 2236. 3
[42] D. Mumford, The Red Book of Varieties and Schemes, (second, expanded edition), Lecture Notes in Mathe-

matics 1358, Springer-Verlag Berlin Heidelberg, 1999. 16, 30, 36
[43] C. A. M. Peters, J. H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Gren-

zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics], 52. Springer-Verlag Berlin, 2008. xiv+470 pp. 8,
10
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