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Abstract. Previous constructions of intersection spaces for stratified pseudo-

manifolds all required the stratification depth to be at most 1. Here, we construct

intersection spaces for certain simple stratifications of depth 2, involving different
singularity links.

1. Introduction

In [Ban10], we introduced a method that associates to certain classes of stratified
pseudomanifolds X CW complexes

I p̄X,

the intersection spaces of X, where p̄ is a perversity in the sense of Goresky and
MacPherson’s intersection homology, such that the ordinary (reduced) cohomology

H̃∗(I p̄X;Q) satisfies generalized Poincaré duality when X is closed and oriented.
The resulting cohomology theory X ; HI∗p̄ (X) = H∗(I p̄X) is not isomorphic to
intersection cohomology IH∗p̄ (X), since the former has a p̄-internal cup product while
the latter does not, in general. For example, the singular Calabi-Yau quintic

X = {z ∈ P4 | z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5z0z1z2z3z4 = 0}

has intersection cohomology ranks

rk IH2(X) = 25, rk IH3(X) = 2, rk IH4(X) = 25,

whereas
rkHI2(X) = 1, rkHI3(X) = 204, rkHI4(X) = 1.

The expository article [BM12] of the present volume provides a gentle introduction to
intersection spaces and surveys results obtained by Maxim and the author in [BM11]
on the stability of HI∗ under nearby smooth deformations of a singular projective
hypersurface. Given a spectrum E in the sense of stable homotopy theory, one may
form EI∗p̄ (X) = E∗(I p̄X). This, then, yields an approach to defining intersection
versions of generalized cohomology theories such as K-theory. The theory HI∗ also
addresses questions in type II string theory related to the existence of massless D-
branes arising in the course of a Calabi-Yau conifold transition. These questions are
answered by IH∗ for IIA theory, and by HI∗ for IIB theory; see Chapter 3 of [Ban10].
A de Rham-type description of HI∗ has been developed in [Ban11a], which has been
applied in [Ban11b] to obtain spectral sequence degeneration results for flat bundles
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and equivariant cohomology of isometric group actions.

Up to the present point, intersection spaces have only been constructed for singular
spaces that possess a stratification of depth at most 1, although a construction method
for greater depths has been proposed in [Ban10], pp. 186 – 189. In the present note,
we implement this method for certain stratifications of depth 2. We consider only
the two middle perversities m̄ and n̄. Let X be an n-dimensional, compact, oriented
PL pseudomanifold (without boundary) with n = 2k > 0 even. Suppose X can
be endowed with a PL stratification of the form X = Xn ⊃ X1 ⊃ X0 with X1 a
circle and X0 a point, such that the respective links L,L0 of the two singular strata
X1−X0, X0 are simply connected. For the link L of the odd-(co)dimensional stratum
X1−X0, we require the following strong version of the Witt condition: X satisfies the
strong Witt condition, if L possesses a CW structure such that the cellular boundary
operator Ck−1(L) → Ck−2(L) is injective. This condition implies of course that the
middle homology Hk−1(L) of the manifold L vanishes, which is the classical Witt
condition of [Sie83] when rational coefficients are used. The strong Witt condition is
obviously satisfied if L has no middle-dimensional cells. Closely related versions of this
condition have been considered in the literature before. Weinberger [Wei99] calls an
n-manifold antisimple, if its chain complex is chain homotopy equivalent to a complex
of projective modules P∗ with Pi = 0 for i = [n/2]. Hausmann considers manifolds
that have a handlebody without middle-dimensional handles, which is stronger than
our condition; see [Hau80, p.334, p.336]. For X satisfying the strong Witt condition,
we follow the method of [Ban10] to construct the two middle-perversity intersection
spaces Im̄X and I n̄X. As expected, they turn out to be equal, and we put IX =
Im̄X = I n̄X. The main theorem (Theorem 6.2) asserts that there exists a Poincaré
duality isomorphism

D : H̃n−r(IX;Q)
∼=−→ H̃r(IX;Q)

that is compatible with Poincaré-Lefschetz duality for the exterior of the singular set.

The basic paradigm for the construction of intersection spaces is to replace links
by their spatial homology truncations (Moore approximations), where the truncation
degree is determined by the perversity function. We review spatial homology trun-
cation in Section 3. The simple connectivity assumption on the links is adopted to
ensure the existence of homology truncations, and is in practice not always necessary.
Roughly, we proceed as follows: We first disassemble the boundary of a regular neigh-
borhood of the singular set, so that we can build a nice homotopy theoretic model
of it. This involves certain simple kinds of homotopy colimits, whose properties we
collect in Section 2. In the disassembled state, the pieces are the link bundle over
X1−X0, the space obtained from the link L0 of X0 by removing cone neighborhoods
of its two singular points, and a space L̈, PL homeomorphic to two copies of L, where
the two other pieces are glued. The gluing involves maps from L̈ to the other two
pieces. We then apply spatial homology truncation to truncate all these pieces (more
precisely, the bundle over X1 − X0 is truncated in a fiberwise fashion), as well as
the maps relating them to each other. Then the truncated pieces are reassembled
again, using the truncated maps, and IX is the homotopy cofiber of the map from
the reassembly to the complement of the open regular neighborhood of the singular
set.
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Notation and Conventions: If X and Y are topological spaces, A ⊂ X a subspace,
and f : A→ Y a continuous map, then Y ∪f X denotes the space obtained from the
disjoint union of X and Y by attaching X along A to Y using the map f , that is,
Y ∪f X = (Y tX)/(a ∼ f(a) for all a ∈ A). Our convention for the mapping cylinder
Y ∪f X× I of a map f : X → Y is that the attaching is carried out at time 1, that is,
the points of X×{1} ⊂ X×I are attached to Y using f . The homology H∗(f) of the
map f is defined to be H∗(f) = H∗(Y ∪fX×I,X×{0}). For products in cohomology
and homology, we will use the conventions of Spanier’s book [Spa66]. In particular,
for an inclusion i : A ⊂ X of spaces and elements ξ ∈ Hp(X), x ∈ Hn(X,A), the
formula ∂∗(ξ ∩ x) = i∗ξ ∩ ∂∗x holds for the connecting homomorphism ∂∗ (no sign).
For the compatibility between cap- and cross-product, one has the sign

(ξ × η) ∩ (x× y) = (−1)p(n−q)(ξ ∩ x)× (η ∩ y),

where ξ ∈ Hp(X), η ∈ Hq(Y ), x ∈ Hm(X), and y ∈ Hn(Y ).

2. Required Properties of Homotopy Pushouts

In order to form the intersection space of a given pseudomanifold, one has to glue
together pieces obtained at various stages of homology (Moore) towers. The gluing
is accomplished via homotopy pushouts, whose fundamentals we shall collect in the
present section. It is not possible to glue through ordinary pushouts, since the output
of spatial homology truncation is only well-defined up to homotopy.

A 3-diagram Γ of spaces is a diagram of the form

X
f←− A g−→ Y,

where A,X, Y are topological spaces and f, g are continuous maps. If A,X, Y are
CW complexes and f, g are cellular, then we call Γ a CW-3-diagram. The realization
|Γ| of Γ is the pushout of f and g, that is,

|Γ| = (X t Y )/(f(a) ∼ g(a), for all a ∈ A).

If Γ is a CW-3-diagram and g is the inclusion of a subcomplex, then |Γ| is a CW
complex, [May99]. In particular, the mapping cylinder cyl(f) is a CW complex in a
natural way. A morphism Γ→ Γ′ of 3-diagrams is a commutative diagram

(1) X

��

A
foo

��

g // Y

��
X ′ A′

f ′oo g′ // Y ′

in the category of topological spaces. If Γ and Γ′ are both CW-3-diagrams, then
we call the morphism cellular, if all vertical arrows are cellular maps. The universal
property of the pushout implies that a morphism Γ → Γ′ induces a map |Γ| → |Γ′|
between realizations. If Γ → Γ′ is cellular, with g, g′ subcomplex inclusions, then
|Γ| → |Γ′| is cellular. A homotopy theoretic weakening of a morphism is the notion
of an h-morphism Γ →h Γ′. This is again a diagram of the above form (1), but the
two squares are required to commute only up to homotopy. An h-morphism does not
induce a map between realizations. The remedy is to use the homotopy pushout, or
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double mapping cylinder. This is a special case of the notion of a homotopy colimit.
To a 3-diagram Γ we associate another 3-diagram H(Γ) given by

X ∪f A× I = cyl(f)
at 0←↩ A at 0

↪→ cyl(g) = Y ∪g A× I.

If Γ is a CW-3-diagram, then cyl(f) and cyl(g) are CW complexes and hence H(Γ)
is again a CW-3-diagram. We define the homotopy pushout, or homotopy colimit, of
Γ to be

hocolim(Γ) = |H(Γ)|.
If Γ is CW, then, as the two maps in H(Γ) are subcomplex inclusions, |H(Γ)| is a
CW complex. Sometimes, especially in large diagrams, we will omit parentheses and
briefly write HΓ for H(Γ), C∗|HΓ| for the chain groups C∗(|HΓ|), and H∗|HΓ| for
the homology groups H∗(|HΓ|). The morphism H(Γ)→ Γ given by

X ∪f A× I

r

��

Aoo

idA

��

// Y ∪g A× I

r

��
X A

foo g // Y,

where the maps r are the canonical mapping cylinder retractions, induces a canonical
map

hocolim(Γ) −→ |Γ|.
A morphism Γ→ Γ′, given by

X

ξ

��

A
foo

α

��

g // Y

η

��
X ′ A′

f ′oo g′ // Y ′,

induces a morphism H(Γ)→ H(Γ′), given by

X ∪f A× I

ξ∪(α×idI)

��

A?
_at 0oo

α

��

� � at 0 // Y ∪g A× I

η∪(α×idI)

��
X ′ ∪f ′ A′ × I A′? _at 0oo � � at 0 // Y ′ ∪g′ A′ × I,

which in turn induces a map hocolim(Γ) → hocolim(Γ′). If Γ → Γ′ is cellular, then
H(Γ) → H(Γ′) is cellular. Since the horizontal arrows are subcomplex inclusions,
hocolim(Γ) → hocolim(Γ′) is thus also cellular. If α, ξ and η are homeomorphisms,
then ξ ∪ (α × idI) and η ∪ (α × idI) are homeomorphisms and hence hocolim(Γ) →
hocolim(Γ′) is a homeomorphism. An h-morphism Γ→h Γ′ together with a choice of
homotopies between clockwise and counterclockwise compositions will induce a map
on the homotopy pushout,

hocolim(Γ) −→ |Γ′|.
Indeed, let

X

ξ

��

A
foo

α

��

g // Y

η

��
X ′ A′

f ′oo g′ // Y ′
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be the given h-morphism. Let F : A× I → X ′ be a homotopy between F0 = f ′α and
F1 = ξf. Let G : A× I → Y ′ be a homotopy between G0 = g′α and G1 = ηg. Then

X ∪f A× I

ξ∪fF

��

A?
_at 0oo

α

��

� � at 0 // Y ∪g A× I

η∪gG

��
X ′ A′

f ′oo g′ // Y ′,

commutes (on the nose) and thus defines a morphism H(Γ) → Γ′. This morphism
induces a continuous map on realizations hocolim(Γ) = |H(Γ)| → |Γ′|.

A pair (X,A) of (compactly generated) topological spaces is an NDR pair, if the
inclusion A ⊂ X is a closed cofibration. A relative CW complex, for instance, is an
NDR pair.

Proposition 2.1. If

(2) Y

φY'
��

A
foo

φA'
��

� � i // X

φX'
��

Y ′ A′
f ′oo � � i′ // X ′

is a commutative diagram of continuous maps such that i and i′ are inclusions of
NDR pairs and φY , φA, φX are homotopy equivalences, then

φY ∪ φX : Y ∪f X −→ Y ′ ∪f ′ X ′

is a homotopy equivalence.

This is Theorem 1.13 in Section 1 of [FHT01], where a proof can be found. For our
purposes, for example when cellular approximation is required, we need to weaken the
assumptions of the above proposition by requiring the left square of the diagram to be
merely homotopy commutative. A similar conclusion will then hold if the pushouts
are replaced by homotopy pushouts.

Proposition 2.2. If the right hand square of diagram (2) commutes and the left
hand square commutes up to homotopy, i and i′ are inclusions of NDR pairs and
φY , φA, φX are homotopy equivalences, then the homotopy pushouts of the first and
second row are homotopy equivalent,

Y ∪f A× I ∪i X ' Y ′ ∪f ′ A′ × I ∪i′ X ′.

(In fact, both of these homotopy pushouts are equivalent to Y ′ ∪f ′ X ′.)

Proof. Let H : A × I → Y ′ be a homotopy between H0 = f ′φA and H1 = φY f . We
claim that the map

φY ∪f H : Y ∪f A× I −→ Y ′

is a homotopy equivalence. To see this, consider the following homotopy {Fs}0≤s≤1,

Fs : Y ∪f A× I −→ Y ′.

For given s, Fs consists of φY on Y . On A × [s, 1] ⊂ A × I, use H(a, t), a ∈ A,
s ≤ t ≤ 1. On the remaining part A× [0, s] ⊂ A×I, use H(a, s) (constant in t). Then
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F0 = φY ∪f H and F1 is φY on Y and F1(a, t) = H(a, 1) = φY f(a) for all t. We may
think of F1 as the composition of the mapping cylinder retraction

r : Y ∪f A× I −→ Y

induced by projection, and φY : Y → Y ′. Since both of these maps are homotopy
equivalences, so is F1. Thus F0 = φY ∪f H is homotopic to a homotopy equivalence,
thus itself a homotopy equivalence. Applying Proposition 2.1 to the (on the nose)
commutative diagram

Y ∪f A× I

φY ∪fH'
��

A_?
at 0oo

φA'
��

� � i // X

φX'
��

Y ′ A′
f ′oo � � i′ // X ′

yields the result that

φY ∪f H ∪ φX : Y ∪f A× I ∪X −→ Y ′ ∪f ′ X ′

is a homotopy equivalence. Applying Proposition 2.1 to the commutative diagram

Y ′ ∪f ′ A′ × I

r′'
��

A′_?
at 0oo � � i′ // X ′

Y ′ A′
f ′oo � � i′ // X ′

where r′ is the mapping cylinder retraction, yields an equivalence

Y ′ ∪f ′ A′ × I ∪X ′
'−→ Y ′ ∪f ′ X ′.

Both equivalences together show that

Y ∪f A× I ∪i X ' Y ′ ∪f ′ A′ × I ∪i′ X ′.
�

Proposition 2.3. If a manifold M is decomposed as M = M+ ∪M0
M−, with M0

a compact codimension one submanifold and M± codimension 0 submanifolds with
common boundary ∂M+ = M0 = M+ ∩ M− = ∂M− so that M = |Γ| with Γ =
(M+ ←M0 →M−), then there is a homeomorphism |Γ| ∼= |H(Γ)|.

Proof. The codimension one submanifold M0 = ∂M+ has a collar in M+ and a collar
in M−, as M0 = ∂M−. Using this bicollar, a homeomorphism to the double mapping
cylinder can be readily constructed. �

3. Spatial Homology Truncation

The goal of spatial homology truncation is to associate to a CW complex K and
an integer k a complex t<kK together with a cellular map t<kK → K, which induces
an isomorphism Hr(t<kK) → Hr(K) in degrees r < k, whereas Hr(t<kK) = 0 for
r ≥ k.

Definition 3.1. A CW complex K is called k-segmented if it contains a subcomplex
K<k ⊂ K such that Hr(K<k) = 0 for r ≥ k and

i∗ : Hr(K<k)
∼=−→ Hr(K) for r < k,

where i is the inclusion of K<k into K.



FIRST CASES OF INTERSECTION SPACES IN STRATIFICATION DEPTH 2 7

Not every k-dimensional complex is k-segmented, but if K is simply connected,
then K is homotopy equivalent to a k-segmented complex by [Ban10, Prop. 1.6,
p. 12]. If the group of k-cycles of a k-dimensional CW complex K has a basis of
cells, then K is k-segmented. Spatial homology truncation should also apply to maps
f : K → L. However, counterexamples in [Ban10] show that in general there need not
exist a truncated map t<kf : t<kK → t<kL, which fits with the structural maps into
a homotopy commutative square, see pages 3–5 and p. 39 of loc. cit. This problem
can be addressed by introducing the following category.

Definition 3.2. The category CWk⊃∂ of k-boundary-split CW complexes consists of
the following objects and morphisms: Objects are pairs (K,Y ), where K is a simply
connected CW complex and Y ⊂ Ck(K;Z) is a subgroup of the k-th cellular chain
group of K that arises as the image Y = s(im ∂) of some splitting s : im ∂ → Ck(K;Z)
of the boundary map ∂ : Ck(K;Z)→ im ∂(⊂ Ck−1(K;Z)). (Given K, such a splitting
always exists, since im ∂ is free abelian.) A morphism (K,YK)→ (L, YL) is a cellular
map f : K → L such that f∗(YK) ⊂ YL.

Let HoCWk−1 denote the category whose objects are CW complexes and whose
morphisms are rel (k − 1)-skeleton homotopy classes of cellular maps. Let

t<∞ : CWk⊃∂ −→ HoCWk−1

be the natural projection functor, that is, t<∞(K,YK) = K for an object (K,YK) in
CWk⊃∂ , and t<∞(f) = [f ] for a morphism f : (K,YK) → (L, YL) in CWk⊃∂ . The
following theorem is part of Theorem 1.41 in [Ban10].

Theorem 3.3. Let k ≥ 3 be an integer. There is a covariant assignment t<k :
CWk⊃∂ −→ HoCWk−1 of objects and morphisms together with a natural trans-
formation embk : t<k → t<∞ such that for an object (K,Y ) of CWk⊃∂ , one has
Hr(t<k(K,Y )) = 0 for r ≥ k, and

embk(K,Y )∗ : Hr(t<k(K,Y ))
∼=−→ Hr(K)

is an isomorphism for r < k.

This means in particular that given a morphism f , one has squares

t<k(K,YK)
embk(K,YK)//

t<k(f)

��

t<∞(K,YK)

t<∞(f)

��
t<k(L, YL)

embk(L,YL)// t<∞(L, YL)

that commute in HoCWk−1. If k ≤ 2, then the situation is much simpler and the
category CWk⊃∂ is not needed at all. For k = 1, there is a covariant truncation
functor t<1 : CW0 → HoCW, where CW0 is the category of path-connected CW
complexes and cellular maps. For k = 2, there is a covariant truncation functor t<2 :
CW1 → HoCW, where CW1 is the category of simply connected CW complexes
and cellular maps. See [Ban10, Section 1.1.5]. We call a space T together with a
structural map e : T → K a cohomological k-truncation of K, if Hr(T ) = 0 for r ≥ k,
and e∗ : Hr(K)→ Hr(T ) is an isomorphism for r < k.



8 MARKUS BANAGL

4. Homological Tools

Let j be a positive integer.

Definition 4.1. A CW complex K satisfies condition (INJj) if and only if the cellular
chain boundary operator ∂j : Cj(K)→ Cj−1(K) is injective.

The condition is in particular satisfied if K has no j-cells. It implies of course that
Hj(K) = 0. Let Zj(K) ⊂ Cj(K) denote the subgroup of j-cycles.

Lemma 4.2. If K satisfies condition (INJj), then the following statements hold (for
(1) and (2) assume that K is simply connected):
(1) There is a unique completion of K to an object (K,Yj) ∈ CWj⊃∂ , namely Yj =
Cj(K).
(2) There is a unique completion of K to an object (K,Yj+1) ∈ CWj+1⊃∂ , namely
Yj+1 = 0.
(3) K is j-segmented and (j + 1)-segmented.
(4) t<j(K,Yj) = t<j+1(K,Yj+1) = Kj .
(5) t<j+1(K,Yj+1) is an (integral) cohomological (j + 1)-truncation.

Proof. The injectivity of ∂j : Cj(K) → Cj−1(K) means that Zj(K) = 0. Hence, for
the decomposition Zj(K) ⊕ Yj = Cj(K) to hold, we must take Yj = Cj(K). The
injectivity of ∂j also implies that ∂j+1 = 0 : Cj+1(K)→ Cj(K) and thus Zj+1(K) =
Cj+1(K). Hence, for the decomposition Zj+1(K)⊕Yj+1 = Cj+1(K) to hold, we must
take Yj+1 = 0. This proves (1) and (2). The (j + 1)-skeleton of K has the form

Kj+1 = Kj−1 ∪
⋃
α

yjα ∪
⋃
β

zj+1
β ,

where the yjα are the j-cells and the zj+1
β the (j + 1)-cells of K. Since {zj+1

β } is a

basis for Zj+1(K), Lemma 1.2 of [Ban10] implies that Kj+1, and thus K, is (j + 1)-
segmented. Furthermore, Proposition 1.3 of loc. cit. shows that the truncating
subcomplex t<j+1(K,Yj+1 = 0) ⊂ Kj+1 is unique (if we insist on not changing the
j-skeleton) and given by t<j+1(K,Yj+1) = Kj because K has no (j + 1)-cells that
are not cycles. Similarly, the empty set is a basis for Zj(K) = 0, so we may apply
Lemma 1.2 of [Ban10] to conclude that Kj , and thus K, is j-segmented, proving (3).
By Proposition 1.3 loc. cit., the truncating subcomplex t<j(K,Yj) ⊂ Kj is unique (if
we insist on not changing the (j − 1)-skeleton) and given by

t<j(K,Yj) = Kj−1 ∪
⋃
α

yjα = Kj ,

since {yjα} is the set of j-cells of K that are not cycles. This proves statement (4).
Statement (5) follows from Remark 1.42 of [Ban10], observing that Ext(Hj(K),Z) = 0
is a consequence of (INJj). �

To a CW-3-diagram we wish to associate certain Mayer-Vietoris type sequences
that compute the homology of their homotopy pushouts. Furthermore, to cellular
morphisms of such diagrams we wish to associate long exact sequences of these Mayer-
Vietoris sequences. This is carried out in the rest of this section through a progression
of ever more general statements culminating in Proposition 4.5. The reader may want
to consult [Wal99, Chapter 0] for a general setup of n-ads of CW complexes, but we
only need n = 3, i.e. triads.
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Lemma 4.3. Let (Q;Q+, Q−) be a CW-triad so that Q = Q+ ∪ Q− and Q0 =
Q+∩Q− is a subcomplex of Q+ and of Q−. Let i : Q0 ↪→ Q be the inclusion map and
q−∗ : C∗(Q)→ C∗(Q)/C∗(Q+), q+

∗ : C∗(Q)→ C∗(Q)/C∗(Q−) the natural projections.
Then:
(1) The inclusions Q− ⊂ Q, Q+ ⊂ Q induce isomorphisms

C∗(Q−)

C∗(Q0)

∼=−→ C∗(Q)

C∗(Q+)
,
C∗(Q+)

C∗(Q0)

∼=−→ C∗(Q)

C∗(Q−)
.

(2) The sequence

0→ C∗(Q0)
i∗−→ C∗(Q)

(q−∗ ,−q
+
∗ )−→ C∗(Q)

C∗(Q+)
⊕ C∗(Q)

C∗(Q−)
→ 0

is exact.

Proof. (1) Since Q+ ∪Q− = Q, the claim follows from the short exact sequences

0→ C∗(Q+)

C∗(Q+ ∩Q−)
−→ C∗(Q)

C∗(Q−)
−→ C∗(Q)

C∗(Q+ ∪Q−)
→ 0,

0→ C∗(Q−)

C∗(Q+ ∩Q−)
−→ C∗(Q)

C∗(Q+)
−→ C∗(Q)

C∗(Q+ ∪Q−)
→ 0

of the triad (Q;Q+, Q−); see [Wal99, p. 5] for these sequences.

(2) The injectivity of i∗ is clear. Let [a] ∈ C∗(Q)/C∗(Q+), [b] ∈ C∗(Q)/C∗(Q−). By
(1), there exist chains α ∈ C∗(Q−), β ∈ C∗(Q+) with q−∗ (α) = [a], q+

∗ (β) = [b]. Since
q−∗ (β) = 0 and q+

∗ (α) = 0, we have

(q−∗ ,−q+
∗ )(α− β) = (q−∗ (α− β),−q+

∗ (α− β))
= (q−∗ (α),−q+

∗ (−β))
= ([a], [b]).

Thus (q−∗ ,−q+
∗ ) is surjective. The composition (q−∗ ,−q+

∗ )◦i∗ is zero because Q0 ⊂ Q+,
Q0 ⊂ Q−. Let q ∈ C∗(Q) be a chain such that q−∗ (q) = 0, q+

∗ (q) = 0. This implies that
q ∈ C∗(Q+) ∩ C∗(Q−) = C∗(Q+ ∩Q−) = C∗(Q0), proving exactness at C∗(Q). �

Let (Q;Q+, Q−) be a CW-triad with Q = Q+ ∪ Q− and set Q0 = Q− ∩ Q+. Let
(R;R+, R−) be a CW-triad with R = R+ ∪R− and set R0 = R− ∩R+. Let Γ be the
CW-3-diagram

Q+ ←↩ Q0 ↪→ Q−

and let Θ be the CW-3-diagram

R+ ←↩ R0 ↪→ R−.

Suppose that Γ is a CW sub-3-diagram of Θ, that is, there is a commutative diagram

Q+

��

Q0
oo //

��

Q−

��
R+ R0

oo // R−

of subcomplex inclusions. Assume furthermore that the equations

R+ ∩Q = Q+, R− ∩Q = Q−
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hold. These equations imply

R0 ∩Q = (R+ ∩R−) ∩Q = (R+ ∩Q) ∩ (R− ∩Q) = Q+ ∩Q− = Q0.

Since Q+ = Q ∩R+, the triad (R;R+, Q) has an associated exact sequence

0→ C∗(Q)

C∗(Q+)
−→ C∗(R)

C∗(R+)
−→ C∗(R)

C∗(Q ∪R+)
→ 0.

Similarly, since Q− = Q∩R−, the triad (R;R−, Q) has an associated exact sequence

0→ C∗(Q)

C∗(Q−)
−→ C∗(R)

C∗(R−)
−→ C∗(R)

C∗(Q ∪R−)
→ 0.

These two sequences add to give an exact sequence

0→ C∗(Q)

C∗(Q+)
⊕ C∗(Q)

C∗(Q−)
−→ C∗(R)

C∗(R+)
⊕ C∗(R)

C∗(R−)
−→ C∗(R)

C∗(Q ∪R+)
⊕ C∗(R)

C∗(Q ∪R−)
→ 0.

Lemma 4.3 applied to the triads (Q;Q+, Q−) and (R;R+, R−) delivers exact sequences

0→ C∗(Q0) −→ C∗(Q) −→ C∗(Q)

C∗(Q+)
⊕ C∗(Q)

C∗(Q−)
→ 0,

0→ C∗(R0) −→ C∗(R) −→ C∗(R)

C∗(R+)
⊕ C∗(R)

C∗(R−)
→ 0.

We obtain the following commutative 3 × 3-diagram with exact columns and exact
rows:

0

��

0

��

0

��

0 // C∗(Q0) //

��

C∗(Q) //

��

C∗(Q)
C∗(Q+) ⊕

C∗(Q)
C∗(Q−)

//

��

0

0 // C∗(R0) //

��

C∗(R) //

��

C∗(R)
C∗(R+) ⊕

C∗(R)
C∗(R−)

//

��

0

C∗(R0)
C∗(Q0)

��

C∗(R)
C∗(Q)

��

C∗(R)
C∗(Q∪R+) ⊕

C∗(R)
C∗(Q∪R−)

��
0 0 0

The inclusion C∗(R0)→ C∗(R) induces a map C∗(R0)/C∗(Q0)→ C∗(R)/C∗(Q). The
identity on C∗(R) induces quotient maps

C∗(R)

C∗(Q)
−→ C∗(R)

C∗(Q ∪R+)
,
C∗(R)

C∗(Q)
−→ C∗(R)

C∗(Q ∪R−)
.
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We use these to complete the above diagram to a commutative diagram

0

��

0

��

0

��

0 // C∗(Q0) //

��

C∗(Q) //

��

C∗(Q)
C∗(Q+) ⊕

C∗(Q)
C∗(Q−)

//

��

0

0 // C∗(R0) //

��

C∗(R) //

��

C∗(R)
C∗(R+) ⊕

C∗(R)
C∗(R−)

//

��

0

0 // C∗(R0)
C∗(Q0)

//

��

C∗(R)
C∗(Q)

��

// C∗(R)
C∗(Q∪R+) ⊕

C∗(R)
C∗(Q∪R−)

��

// 0,

0 0 0

which has exact top and middle row, as well as exact columns. By the 3×3-lemma, the
bottom row is exact as well. Using the isomorphisms of Lemma 4.3(1), this diagram
can be rewritten as

0

��

0

��

0

��

0 // C∗(Q0) //

��

C∗(Q) //

��

C∗(Q−)
C∗(Q0) ⊕

C∗(Q+)
C∗(Q0)

//

��

0

0 // C∗(R0) //

��

C∗(R) //

��

C∗(R−)
C∗(R0) ⊕

C∗(R+)
C∗(R0)

//

��

0

0 // C∗(R0)
C∗(Q0)

//

��

C∗(R)
C∗(Q)

��

// C∗(R)
C∗(Q∪R+) ⊕

C∗(R)
C∗(Q∪R−)

��

// 0.

0 0 0

Given a map a : (X,Y )→ (X ′, Y ′) of pairs, we write H∗(a, a|) for

H∗(X
′ ∪a X × I, (Y ′ ∪a| Y × I) ∪ (X × {0})).

Lemma 4.4. Let Θ be any CW-3-diagram

S+
f←− S0

g−→ S−

and let Γ, given by

P+
f |←− P0

g|−→ P−,
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be a cellular subdiagram of Θ. Then the inclusion morphism

(3) P+� _

��

P0

f |oo g| //
� _

��

P−� _

��
S+ S0

foo g // S−

induces on homology the following commutative diagram with exact Mayer-Vietoris-
type rows and exact columns:
(4)

Hr(P0) //

��

Hr|HΓ| //

��

Hr(g|)⊕Hr(f |)
∂∗ //

��

Hr−1(P0)

��
Hr(S0) //

��

Hr|HΘ| //

��

Hr(g)⊕Hr(f)
∂∗ //

��

Hr−1(S0)

��
Hr(S0, P0) //

∂∗

��

Hr(|HΘ|, |HΓ|) //

∂∗

��

Hr(g, g|)⊕Hr(f, f |)
∂∗ //

∂∗

��

Hr−1(S0, P0)

Hr−1(P0) // Hr−1|HΓ| // Hr−1(g|)⊕Hr−1(f |).

Proof. The inclusion Γ ⊂ Θ induces an inclusion H(Γ) ⊂ H(Θ):

Q+ := P+ ∪f | P0 × I� _

��

Q0 := P0_?
at 0oo � � at 0 //

� _

��

P− ∪g| P0 × I =: Q−� _

��
R+ := S+ ∪f S0 × I R0 := S0_?

at 0oo � � at 0 // S− ∪g S0 × I =: R−.

Both H(Γ) and H(Θ) are CW-3-diagrams. With

Q = |H(Γ)| = Q+ ∪Q0 Q−, R = |H(Θ)| = R+ ∪R0 R−,

the equations

Q+ ∩Q− = Q0, R+ ∩R− = R0, R+ ∩Q = Q+, R− ∩Q = Q−
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hold. Thus the previous considerations yield a commutative 3×3-diagram with exact
rows and columns:

0

��

0

��

0

��

0 // C∗(P0) //

��

C∗|H(Γ)| //

��

C∗(P−∪g|P0×I)
C∗(P0) ⊕ C∗(P+∪f|P0×I)

C∗(P0)
//

��

0

0 // C∗(S0) //

��

C∗|H(Θ)| //

��

C∗(S−∪gS0×I)
C∗(S0) ⊕ C∗(S+∪fS0×I)

C∗(S0)
//

��

0

0 // C∗(S0)
C∗(P0)

//

��

C∗|H(Θ)|
C∗|H(Γ)|

��

// C∗|H(Θ)|
C∗(|HΓ|∪S+∪fS0×I) ⊕

C∗|H(Θ)|
C∗(|HΓ|∪S−∪gS0×I)

��

// 0.

0 0 0

Let (A;A+, A−) be the CW-triad

A = |HΘ|, A+ = |HΓ| ∪R+, A− = R−,

which satisfies A+ ∪A− = A. With A0 = A+ ∩A−, we have

A0 = (R+ ∩R−) ∪ (|HΓ| ∩R−) = S0 ∪Q−.

The isomorphism

C∗(A)

C∗(A+)
∼=
C∗(A−)

C∗(A0)

of Lemma 4.3(1) thus identifies

C∗|H(Θ)|
C∗(|HΓ| ∪ S+ ∪f S0 × I)

∼=
C∗(S− ∪g S0 × I)

C∗(P− ∪g| P0 × I ∪ S0)
.

In particular,

H∗(|H(Θ)|, |HΓ| ∪ S+ ∪f S0 × I) ∼= H∗(g, g|),

and similarly

H∗(|H(Θ)|, |HΓ| ∪ S− ∪g S0 × I) ∼= H∗(f, f |).

The above chain-level 3×3-diagram then induces the desired diagram of exact Mayer-
Vietoris-type sequences on homology. �

Proposition 4.5. Let Γ be any CW-3-diagram

X+
ξ+←− X0

ξ−−→ X−

and let Γ′ be any CW-3-diagram

Y+
η+←− Y0

η−−→ Y−.
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Any cellular morphism ε : Γ→ Γ′ given by

X+

ε+

��

X0

ξ+oo ξ− //

ε0

��

X−

ε−

��
Y+ Y0

η+oo η− // Y−

induces on homology the following commutative diagram with exact Mayer-Vietoris-
type rows and exact columns:

(5) Hr(X0) //

ε0∗

��

Hr|HΓ| //

|Hε|∗
��

Hr(ξ−)⊕Hr(ξ+)
∂∗ //

ε−∗⊕ε+∗
��

Hr−1(X0)

ε0∗

��
Hr(Y0) //

��

Hr|HΓ′| //

��

Hr(η−)⊕Hr(η+)
∂∗ //

��

Hr−1(Y0)

��
Hr(ε0) //

∂∗

��

Hr(|Hε|) //

∂∗

��

Hr(η−, ξ−)⊕Hr(η+, ξ+)
∂∗ //

∂∗

��

Hr−1(ε0)

Hr−1(X0) // Hr−1|HΓ| // Hr−1(ξ−)⊕Hr−1(ξ+).

Here, the map |Hε| : |HΓ| → |HΓ′| is induced by ε as explained in Section 2.

Proof. Set S+ = Y+ ∪ε+ X+× I, S0 = Y0 ∪ε0 X0× I, S− = Y− ∪ε− X−× I, and define
the CW-3-diagram Θ = Γ′ ∪ε Γ× I to be

S+ S0

σ+=η+∪ξ+×idIoo σ−=η−∪ξ−×idI // S−.

Then Γ is a cellular subdiagram of Θ by including Γ at the free end of the cylinders:

(6) X+� _

at 0

��

X0

ξ+oo ξ− //
� _

at 0

��

X−� _

at 0

��
Y+ ∪ε+ X+ × I Y0 ∪ε0 X0 × I

σ+oo σ− // Y− ∪ε− X− × I.

The canonical cellular inclusion ι : Γ′ ↪→ Θ given by

Y+� _

ι+

��

Y0

η+oo η− //
� _

ι0

��

Y−� _

ι−

��
Y+ ∪ε+ X+ × I Y0 ∪ε0 X0 × I

σ+oo σ− // Y− ∪ε− X− × I

induces a cellular morphism H(ι) : H(Γ′)→ H(Θ) given by

(7) Y+ ∪η+
Y0 × J� _

ι+∪ι0×idJ

��

Y0_?
at 0oo � � at 0 //

� _

ι0

��

Y− ∪η− Y0 × J� _

ι−∪ι0×idJ

��
S+ ∪σ+ S0 × J S0_?

at 0oo � � at 0 // S− ∪σ− S0 × J,

where we have written J for the second copy of the unit interval in order to distinguish
it from the first copy, I. The realization |H(ι)| : |H(Γ′)| → |H(Θ)| is a cellular
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map and a homotopy equivalence, since |H(Θ)| deformation retracts to |H(Γ′)| by
deformation retracting I = [0, 1] to 1. More formally, applying Proposition 2.1 to

Y±� _

ι±'
��

Y0 × {1}
η±oo � � incl //

� _

ι0'
��

Y0 × J� _

ι0×idJ'
��

S± S0 × {1}
σ±oo � � incl // S0 × J,

we see that ι± ∪ ι0 × idJ are homotopy equivalences. Then applying Proposition 2.1
to (7), we deduce that |H(ι)| is an equivalence. Diagram (6) is of type (3), so that
by Lemma 4.4, we have a commutative diagram

Hr(X0) //

��

Hr|HΓ| //

��

Hr(ξ−)⊕Hr(ξ+)
∂∗ //

��

Hr−1(X0)

ε0∗

��
Hr(S0) //

��

Hr|HΘ| //

��

Hr(σ−)⊕Hr(σ+)
∂∗ //

��

Hr−1(S0)

��
Hr(S0, X0) //

∂∗

��

Hr(|HΘ|, |HΓ|) //

∂∗

��

Hr(σ−, ξ−)⊕Hr(σ+, ξ+)
∂∗ //

∂∗

��

Hr−1(S0, X0)

Hr−1(X0) // Hr−1|HΓ| // Hr−1(ξ−)⊕Hr−1(ξ+)

with exact rows and columns. Using the deformation retraction I = [0, 1] 7→ 1
throughout the diagram, we obtain the desired diagram (5). �

In constructing the duality isomorphism D of Theorem 6.2, we shall make use of
Lemma 4.6 below, a standard result from linear algebra. The lemma is ultimately
really only relevant in the middle dimension, see Remark 6.4 following the proof of
the theorem.

Lemma 4.6. ([Ban10, Lemma 2.46]) Let

A //

��

B //

��

C // D //

��

E

��
A′ // B′ // C ′ // D′ // E′

be a commutative diagram of rational vector spaces with exact rows. Then there exists
a map C → C ′ completing the diagram commutatively.

5. Construction of the Intersection Spaces

Let Xn be an oriented, compact, PL stratified pseudomanifold of even dimension
n = 2k with a PL stratification of the form Xn = Xn ⊃ X1 ⊃ X0, X1

∼= S1,
X0 = {x0}. There are thus three strata. (The case of a depth 1 stratified space Xn

with stratification X̂n = Xn ⊃ X̂1
∼= S1, X̂0 = ∅, and possibly twisted link bundle

(mapping torus) can be treated within the present framework by inserting a point

x0 ∈ X̂1 as a new stratum X̂0 = {x0}, whose link is the suspension of the link of

X̂1.) Let N0 be a regular neighborhood of x0 in X. Then N0 = cone(L0), where
L0 is a compact PL stratified pseudomanifold of dimension n − 1, the link of x0.



16 MARKUS BANAGL

Set X ′ = X − int(N0), a compact pseudomanifold with boundary. This X ′ has one
singular stratum, X ′1 = X1 ∩X ′ ∼= ∆1, where ∆1 is a closed interval. Let L be the
link of X ′1, a closed manifold of dimension n − 2. To be able to carry out spatial
homology truncation, we assume that the links L and L0 are simply connected. (In
specific cases this assumption is not always necessary, since a space may very well
have a Moore approximation even if it is not simply connected.) The space L0 may
be singular with singular stratum L0∩X1 = L0∩X ′1 = ∂∆1 = {∆0

0,∆
0
1} (two points).

The link L, being triangulable, certainly has some CW structure.

Assumption: The space L possesses a CW structure such that condition (INJk−1)
is satisfied.

(This is the strong Witt condition from the introduction.) Fix such a CW structure
on L from now on. A regular neighborhood of ∆0

i , i = 0, 1, in L0 is PL homeomorphic
to cone(L). If we remove the interiors of these two cones from L0, we obtain a compact
(n− 1)-manifold W , which is a bordism between L at ∆0

0 and L at ∆0
1. Choose any

CW structure on W so that ∂W is a subcomplex (This is possible, since W can be
triangulated with ∂W as a simplicial subcomplex.) A normal regular neighborhood
of X ′1 in X ′ is PL homeomorphic to a product ∆1× cone(L). In more detail, this can
be seen as follows: By Theorem 2.1 of [Sto72], a normal regular neighborhood N of
X ′1 in X ′ is the total space N = |ξ| of a cone block bundle ξ, with fiber cone(L) over
X ′1. As the base X ′1 is PL homeomorphic to ∆1, Theorem I, 1.1 of [Sto72, Appendix]
applies to show that ξ is trivial, that is, there is a cone block bundle isomorphism
ξ ∼= X ′1 × cone(L). Thus N = |ξ| ∼= X ′1 × cone(L) ∼= ∆1 × cone(L). Removing

from X ′ the preimage of X ′1 ×
◦

cone(L), where
◦

cone(L) denotes the open cone, under
the trivialization, we get a compact n-manifold M with boundary ∂M . In order to
describe ∂M as the realization of a 3-diagram, set NL = cl ∂(N−(N ∩∂X ′)), where cl
is closure in X ′. Then NL is the total space of the link bundle of X1 −X0, restricted
to X ′1. In the terminology of [Sto72], NL is the rim of the cone block bundle ξ. This
rim is a compact manifold with boundary ∂NL which is equal to the boundary of
W . Let us denote this common boundary by Λ. Then ∂M = |Θ|, where Θ is the
3-diagram

W Λ_?
incloo � � incl // NL.

Let

φ : (N,NL, N ∩ ∂X ′)
∼=−→ (∆1 × cone(L),∆1 × L, (∂∆1)× cone(L))

denote the above trivialization of the regular neighborhood and let Γ∂ be the 3-
diagram

W L̈
f ′oo � � incl× id // L,

where we wrote L = ∆1 × L, L̈ = ∂∆1 × L, and the map f ′ is the composition

L̈
φ|−1

−→ Λ ↪→W.
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Then φ induces a morphism Θ→ Γ∂ given by

W Λ

φ|∼=
��

_?
incloo � � incl // NL

φ|∼=
��

W L̈
f ′oo � � incl× id // L.

This morphism induces a homeomorphism ∂M = |Θ| ∼= |Γ∂ |, and a homeomorphism
|H(Θ)| ∼= |H(Γ∂)|. For example, if the link-type does not change running along X1 −
X0 into x0, then L0 is the suspension of L and W is the cylinder W ∼= I × L.
The boundary of M is a mapping torus with fiber L and we may think of f ′ as the
monodromy of the mapping torus. In the diagram Γ∂ , L is equipped with the product
CW structure. The map f ′ is in general not cellular.

We shall proceed to define the middle perversity intersection spaces Im̄X and I n̄X.
It will turn out that the above strong Witt assumption (INJk−1) on L implies that
Im̄X = I n̄X. Roughly, the construction paradigm of intersection spaces says that in
order to obtain I p̄X, for a given perversity p̄, every link L of a stratum of codimension
c must be replaced by its spatial homology kL(p̄)-truncation (Moore approximation),
where

kL(p̄) = c− 1− p̄(c).
The first step is to replace Γ∂ by a CW-3-diagram Γ in which f ′ is replaced by a
cellular approximation. Thus, let Γ be the CW-3-diagram

W L̈
foo � � // L,

where f is a cellular approximation of f ′. In the h-morphism Γ∂ → Γ defined by

W L̈
f ′oo � � // L

W L̈
foo � � // L,

the left hand square commutes up to homotopy and the right hand square commutes.
Hence, we may apply Proposition 2.2 to obtain a homotopy equivalence

|H(Γ∂)| ' |H(Γ)|.
By Proposition 2.3,

|Θ| ∼= |H(Θ)|.
Composing, we get a homotopy equivalence

∂M = |Θ| ∼= |H(Θ)| ∼= |H(Γ∂)| ' |H(Γ)|.
The space |H(Γ)| will be the homotopy theoretic model of the boundary of M that
we will subsequently work with.

Let us first discuss the intersection space for the lower middle perversity p̄ = m̄.
For our X, we must truncate L and W . The truncation degrees are

kL(m̄) = n− 2− m̄(n− 1) = k,

kW (m̄) = n− 1− m̄(n) = k.

Thus there is one common cut-off degree for both L and W , namely k.



18 MARKUS BANAGL

By Lemma 4.2(2), (L, YL = 0) is the unique completion of L to an object in
CWk⊃∂ . Note that W is simply connected: Write W ′ for the space obtained from L0

by deleting one of the two points in L0 ∩X1. A neighborhood in L0 of such a point
is PL homeomorphic to the cone on L. By the Seifert-van Kampen theorem,

1 = π1(L0) ∼= π1(W ′) ∗π1(L) π1(cone(L)) = π1(W ′)

and so

1 = π1(W ′) ∼= π1(W ) ∗π1(L) π1(cone(L)) = π1(W ),

using the simple connectivity of L. Let (W,YW ) be any completion of W to an
object in CWk⊃∂ . Let fi : L = ∆0

i × L → W be the restriction of f to ∆0
i × L ⊂

∂∆1 × L = L̈, i = 0, 1. Since the cellular maps fi satisfy fi∗(YL) ⊂ YW , they both
define morphisms fi : (L, YL) → (W,YW ) in CWk⊃∂ . Thus there exist truncation
cellular maps t<k(fi) : t<k(L, YL)→ t<k(W,YW ) such that

L<k
t<k(fi)//

eL

��

W<k

eW

��
L

fi // W

commutes (a priori) up to homotopy rel (k−1)-skeleton, where we have written L<k =
t<k(L, YL), W<k = t<k(W,YW ), eL is a cellular rel (k − 1)-skeleton representative of
the homotopy class embk(L, YL), and eW is a cellular rel (k−1)-skeleton representative

of embk(W,YW ). We set L̈<k = (∆0
0 × L<k) t (∆0

1 × L<k),

t<k(f) = t<k(f0) t t<k(f1) : L̈<k −→W<k,

and eL̈ = eL t eL : L̈<k → L̈. The diagram

(8) L̈<k
t<k(f)//

eL̈

��

W<k

eW

��
L̈

f // W

commutes (a priori) up to homotopy rel (k − 1)-skeleton. By Lemma 4.2(4), L<k =

Lk−1 and thus L̈<k = L̈k−1. The map t<k(f) factors as

L̈k−1 f |−→W k−1 ⊂W<k.

The map eL̈ is the skeletal inclusion L̈k−1 ↪→ L̈. Since the restriction of eW to W k−1

is the skeletal inclusion W k−1 ↪→ W , we deduce that the diagram (8) commutes on
the nose, not just up to homotopy.

Applying Proposition 4.5 to the cellular morphism

W<k

eW

��

L̈<k
t<kfoo

� _

��

L̈<k� _

��
W L̈

foo L̈
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yields the commutative diagram

(9) Hr(L̈<k)
(t<kf)∗ //

��

Hr(W<k) //

eW∗

��

Hr(t<kf)
∂∗ //

��

Hr−1(L̈<k)

��
Hr(L̈)

f∗ //

��

Hr(W ) //

��

Hr(f)
∂∗ //

��

Hr−1(L̈)

��
Hr(L̈, L̈<k) //

∂∗

��

Hr(eW ) //

∂∗

��

Hr(f, t<kf)
∂∗ //

∂∗

��

Hr−1(L̈, L̈<k)

Hr−1(L̈<k) // Hr−1(W<k) // Hr−1(t<kf)

with exact rows and columns.

Lemma 5.1. The map
Hr(f) −→ Hr(f, t<kf)

is an isomorphism for r ≥ k, while

Hr(f, t<kf) = 0

for r < k.

Proof. The proof is based on an examination of the above diagram (9) in the three
cases r < k, r = k, and r > k. Suppose r < k. Then Hr(W<k) → Hr(W ) and
Hr−1(W<k)→ Hr−1(W ) are isomorphisms. By exactness of the second column of the
diagram, Hr(eW ) = 0. Similarly, the exactness of the long sequence of the last column

implies that Hr−1(L̈, L̈<k) = 0. By the exactness of the third row, Hr(f, t<kf) = 0.

Suppose next that r = k. Since L satisfies condition (INJk−1) and L̈ ∼= L t L, we

have Hk−1(L̈<k) ∼= Hk−1(L̈) = 0. Together with Hk(W<k) = 0, the exactness of the
top row shows that Hk(t<kf) = 0. An application of the 5-lemma to the ladder

Hk−1(L̈<k) //

∼=
��

Hk−1(W<k) //

∼=
��

Hk−1(t<kf)
∂∗ //

��

Hk−2(L̈<k) //

∼=
��

Hk−2(W<k)

∼=
��

Hk−1(L̈) // Hk−1(W ) // Hk−1(f)
∂∗ // Hk−2(L̈) // Hk−2(W )

yields that
Hk−1(t<kf) −→ Hk−1(f)

is an isomorphism. The exact sequence

0 = Hk(t<kf)→ Hk(f)→ Hk(f, t<kf)
∂∗=0−→ Hk−1(t<kf)

∼=→ Hk−1(f)

shows that
Hk(f) −→ Hk(f, t<kf)

is an isomorphism.
If r > k, then using the exact sequences

0 = Hr(W<k) −→ Hr(t<kf) −→ Hr−1(L̈<k) = 0

and
0 = Hr−1(W<k) −→ Hr−1(t<kf) −→ Hr−2(L̈<k) = 0,
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we obtain

Hr(t<kf) = 0, Hr−1(t<kf) = 0.

(If r = k + 1, then Hr−2(L̈<k) = 0 is implied by (INJk−1).) From the exactness of
the sequence

0 = Hr(t<kf)→ Hr(f)→ Hr(f, t<kf)
∂∗−→ Hr−1(t<kf) = 0

we deduce that the middle map is an isomorphism. �

Set L<k = ∆1 × L<k. The notation L<k is potentially ambiguous because it
could also be construed to indicate a spatial homology truncation t<k of L. This
ambiguity is deliberate, for ∆1 × L<k is indeed a valid homology truncation of L:
The map id∆1 × incl : L<k = ∆1 × L<k → ∆1 × L = L induces an isomorphism
Hr(L<k) ∼= Hr(L<k) ∼= Hr(L) ∼= Hr(L) for r < k, and Hr(L<k) ∼= Hr(L<k) vanishes
in degrees r ≥ k. Let Γm̄ be the 3-diagram

W<k L̈<k
t<k(f)oo � � incl× id // L<k.

The diagram of commutative squares

W<k

eW

��

L̈<k
t<k(f)oo

� _

eL̈=incl

��

� � incl× id // L<k� _
id∆1 × incl

��
W L̈

foo � � incl× id // L

defines a cellular morphism ε : Γm̄ → Γ, which induces a cellular map |H(ε)| :
|H(Γm̄)| → |H(Γ)|.

Definition 5.2. The lower middle perversity intersection space Im̄X of X is the
homotopy cofiber of the composition

|H(Γm̄)| |H(ε)|−→ |H(Γ)| ' ∂M ↪→M.

For the upper middle perversity p̄ = n̄, we have the cut-off values

kL(n̄) = n− 2− n̄(n− 1) = k − 1,

kW (n̄) = n− 1− n̄(n) = k.

The intersection space I n̄X is defined using the construction principle of Definition
5.2, employing an appropriate diagram Γn̄ instead of Γm̄. Let us construct this Γn̄.
Since L satisfies condition (INJk−1), Lemma 4.2(1) asserts that (L, Y ′L = Ck−1(L))
is the unique completion of L to an object in CWk−1⊃∂ . Furthermore, by Lemma
4.2(4),

t<kL(n̄)(L, Y
′
L) = t<k−1(L, Y ′L) = t<k(L, YL = 0) = Lk−1.

Therefore, a CW-3-diagram Γn̄ of the required type

t<kW (n̄)(W,YW )← ∂∆1 × t<kL(n̄)(L, Y
′
L) ↪→ ∆1 × t<kL(n̄)(L, Y

′
L)
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can be defined by

Γn̄ =
(
t<k(W,YW )← ∂∆1 × t<k−1(L, Y ′L) ↪→ ∆1 × t<k−1(L, Y ′L)

)
=

(
W<k ← ∂∆1 × t<k(L, YL) ↪→ ∆1 × t<k(L, YL)

)
=

(
W<k

t<k(f)←− L̈<k ↪→ L<k

)
= Γm̄.

Thus, as expected,

Im̄X = I n̄X

due to the strong Witt assumption on L. We shall denote this space by IX.

6. The Duality Theorem

Rational homology and cohomology will be used throughout this section. Let e :
|HΓm̄| → ∂M be the composition of |Hε| with the homotopy equivalence |HΓ| ' ∂M .

Proposition 6.1. Cap product with the fundamental class [∂M ] ∈ Hn−1(∂M) in-
duces an isomorpism

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

such that

Hn−r(∂M)
e∗ //

−∩[∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr−1(∂M) // Hr−1(e)

commutes. This isomorphism is determined uniquely by the above commutativity re-
quirement.

Proof. The morphism ε : Γm̄ → Γ induces a map of standard Mayer-Vietoris sequences
for double mapping cylinders:

Hn−r−1(L̈)
δ∗ //

restr

��

Hn−r|HΓ| //

|Hε|∗

��

Hn−r(W )⊕Hn−r(L)
f∗+restr //

e∗W⊕restr

��

Hn−r(L̈)

restr

��
Hn−r−1(L̈<k)

δ∗ // Hn−r|HΓm̄| // Hn−r(W<k)⊕Hn−r(L<k) // Hn−r(L̈<k)

(The last arrow in the bottom row is (t<kf)∗+restr.) Using the homotopy equivalence
|HΓ| ' ∂M, this diagram may be rewritten as
(10)

Hn−r−1(L̈)
δ∗ //

restr

��

Hn−r(∂M) //

e∗

��

Hn−r(W )⊕Hn−r(L) //

e∗W⊕restr

��

Hn−r(L̈)

restr

��
Hn−r−1(L̈<k)

δ∗ // Hn−r|HΓm̄| // Hn−r(W<k)⊕Hn−r(L<k) // Hn−r(L̈<k).
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An application of Proposition 4.5 to ε : Γm̄ → Γ yields a commutative diagram

Hr−1(L̈<k) //

��

Hr−1|HΓm̄| //

|Hε|∗

��

Hr−1(L<k, L̈<k)⊕Hr−1(t<kf) //

incl∗ ⊕eW∗
��

Hr−2(L̈<k)

��
Hr−1(L̈) //

��

Hr−1|HΓ| //

��

Hr−1(L, L̈)⊕Hr−1(f) //

��

Hr−2(L̈)

��
Hr−1(L̈, L̈<k) //

��

Hr−1(|Hε|) //

��

Hr−1(L,L<k ∪ L̈)⊕Hr−1(f, t<kf) //

��

Hr−2(L̈, L̈<k)

Hr−2(L̈<k) // Hr−2|HΓm̄| // Hr−2(L<k, L̈<k)⊕Hr−2(t<kf)

with exact rows and columns. Again using |HΓ| ' ∂M, we can in particular extract
the following map of Mayer-Vietoris sequences:
(11)

Hr−1(L̈) //

��

Hr−1(∂M) //

��

Hr−1(L, L̈)⊕Hr−1(f) //

��

Hr−2(L̈)

��
Hr−1(L̈, L̈<k) // Hr−1(e) // Hr−1(L,L<k ∪ L̈)⊕Hr−1(f, t<kf) // Hr−2(L̈, L̈<k).

We shall distinguish the cases r > k and r ≤ k. Suppose that r > k. Then, since
n = 2k, n− r < k and the maps restr and e∗W in diagram (10) are isomorphisms. By
the 5-lemma, e∗ : Hn−r(∂M)→ Hn−r|HΓm̄| is an isomorphism as well. Let us prove
next that Hr−1(∂M)→ Hr−1(e) is an isomorphism. Since r − 1 ≥ k, the maps

Hr−1(f) −→ Hr−1(f, t<kf) and Hr(f) −→ Hr(f, t<kf)

are isomorphisms by Lemma 5.1. Applying the same lemma to

L̈<k
//

��

L<k

��
L̈ // L

instead of

L̈<k
//

��

W<k

��
L̈

f // W,

we see that the maps

Hr−1(L, L̈) −→ Hr−1(L,L<k ∪ L̈)

and
Hr(L, L̈) −→ Hr(L,L<k ∪ L̈)

are isomorphisms. The map

Hr−1(L̈) −→ Hr−1(L̈, L̈<k)

is an isomorphism, as follows from the exact sequence

Hr−1(L̈<k) −→ Hr−1(L̈) −→ Hr−1(L̈, L̈<k)
∂∗−→ Hr−2(L̈<k)
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by observing that Hr−1(L̈<k) = 0 and even Hr−2(L̈<k) = 0, since in the worst case
(when r − 2 = k − 1),

Hk−1(L̈<k) = Hk−1(Lk−1)⊕Hk−1(Lk−1)

and

Hk−1(Lk−1) = ker(∂k−1 : Ck−1(L)→ Ck−2(L)) = 0

by condition (INJk−1). The map

Hr−2(L̈) −→ Hr−2(L̈, L̈<k)

is injective by Hr−2(L̈<k) = 0. In summary, the diagram (11) has the form

Hr(L, L̈)⊕Hr(f)
∼= //

∂∗

��

Hr(L,L<k ∪ L̈)⊕Hr(f, t<kf)

∂∗

��
Hr−1(L̈)

∼= //

��

Hr−1(L̈, L̈<k)

��
Hr−1(∂M) //

��

Hr−1(e)

��
Hr−1(L, L̈)⊕Hr−1(f)

∼= //

∂∗

��

Hr−1(L,L<k ∪ L̈)⊕Hr−1(f, t<kf)

∂∗

��
Hr−2(L̈)

� � // Hr−2(L̈, L̈<k).

This is enough to deduce from a sharp version of the 5-lemma that Hr−1(∂M) →
Hr−1(e) is an isomorphism, as claimed. Let

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

be the unique isomorphism such that the square

Hn−r(∂M)
e∗

∼=
//

−∩[∂M ] ∼=
��

Hn−r|HΓm̄|

��
Hr−1(∂M)

∼= // Hr−1(e)

commutes.

Suppose that r ≤ k. If r < k, then n− r ≥ k + 1 and Hn−r−1(L̈<k) = 0. If r = k,
then

Hn−r−1(L̈<k) = Hom(Hk−1(L̈k−1),Q) = 0

by condition (INJk−1). Since Hn−r(W<k) = 0 and Hn−r(L<k) = 0, the exactness of

Hn−r−1(L̈<k)
δ∗−→ Hn−r|HΓm̄| −→ Hn−r(W<k)⊕Hn−r(L<k)

shows that

Hn−r|HΓm̄| = 0.
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We shall show that Hr−1(e) = 0 also. The exactness of

Hr−1(L̈<k)
∼=−→ Hr−1(L̈)

0−→ Hr−1(L̈, L̈<k)
0−→ Hr−2(L̈<k)

∼=−→ Hr−2(L̈)

implies that Hr−1(L̈, L̈<k) = 0. Since r − 1 < k, we infer from Lemma 5.1 that

Hr−1(f, t<kf) = 0. Similarly, Hr−1(L,L<k∪L̈) = 0, which can either also be deduced

from Lemma 5.1 by taking W = L, f = incl : L̈ ↪→ L, W<k = L<k = I × Lk−1,
t<k(f) = incl : (∂I)× Lk−1 → I × Lk−1, or directly from the exact sequence

0 = Hr−1(I×L, I×L<k) −→ Hr−1(L,L<k ∪ L̈) −→ Hr−2((∂I)×L, (∂I)×L<k) = 0.

The vanishing of Hr−1(e) follows from the exactness of

Hr−1(L̈, L̈<k) −→ Hr−1(e) −→ Hr−1(f, t<kf)⊕Hr−1(L,L<k ∪ L̈).

Thus for r ≤ k, the zero map is the unique isomorphism

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

such that the commutativity requirement is met. �

To a triple of continuous maps

A
φ //

ψφ ��@
@@

@@
@@

B

ψ

��
C

one can associate the 3-diagrams

Γ(φ) =
(
B

φ←− A× {1} ↪→ cone(A)
)
, Γ(ψ) =

(
C

ψ←− B × {1} ↪→ cone(B)
)
,

Γ(ψφ) =
(
C

ψφ←− A× {1} ↪→ cone(A)
)
,

and the morphisms Γ(φ)→ Γ(ψφ)→ Γ(ψ) given by

B

ψ

��

A× {1}
φoo

id

��

� � // cone(A)

id

��
C

id

��

A× {1}
ψφoo

φ

��

� � // cone(A)

cone(φ)

��
C B × {1}

ψoo � � // cone(B).

These morphisms induce maps |Γ(φ)| → |Γ(ψφ)| → |Γ(ψ)|. Applying this to the triple

(12) |HΓm̄| e //

g
##GG

GG
GG

GG
G ∂M� _

j

��
M,

and observing |Γ(g)| = IX and |Γ(j)| = M/∂M, we obtain a map γ : IX →M/∂M .
Let µ : M → IX denote the canonical inclusion of the target of the map g into the
mapping cone IX of this map.
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Theorem 6.2. Let X be an n-dimensional, compact, oriented PL pseudomanifold
with n even. Suppose X can be endowed with a PL stratification of the form X =
Xn ⊃ X1 ⊃ X0 with X1

∼= S1 and X0 a point, such that the links of the two strata
are simply connected and X satisfies the strong Witt condition. Then there exists a
Poincaré duality isomorphism

D : H̃n−r(IX)
∼=−→ H̃r(IX)

for the reduced (co)homology of the middle perversity intersection space IX of X
that extends Poincaré duality for the exterior (M,∂M) of the singular set, that is, D
makes

H̃n−r(IX)
µ∗ //

D∼=
��

Hn−r(M)

∼= −∩[M,∂M ]

��
H̃r(IX)

γ∗ // Hr(M,∂M)

commute.

Proof. The isomorphismD will be fitted into an isomorphism between the cohomology
exact sequence of the pair |HΓm̄| → M and the complementary homology exact
sequence of the triple (12). Proposition 6.1 provides a commutative square

(13) Hn−r(∂M)
e∗ //

−∩[∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr−1(∂M) // Hr−1(e).

The connecting homomorphism ∂∗ : Hn(M,∂M)→ Hn−1(∂M) sends the fundamen-
tal class [M,∂M ] to ∂∗[M,∂M ] = [∂M ]. Since for j∗ : Hn−r(M) → Hn−r(∂M) and
ξ ∈ Hn−r(M) we have

∂∗(ξ ∩ [M,∂M ]) = j∗ξ ∩ ∂∗[M,∂M ]

(see [Spa66], Chapter 5, Section 6, 20, page 255), the square

(14) Hn−r(M)
j∗ //

−∩[M,∂M ] ∼=
��

Hn−r(∂M)

∼= −∩[∂M ]

��
Hr(M,∂M)

∂∗ // Hr−1(∂M)

commutes. Since g∗ = e∗ ◦ j∗ and the connecting homomorphism

∂∗ : Hr(M,∂M) −→ Hr−1(e)

of the triple factors as

Hr(M,∂M)
∂∗−→ Hr−1(∂M) −→ Hr−1(e),

composing diagram (14) and diagram (13) yields a commutative square

Hn−r(M)
g∗ //

−∩[M,∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr(M,∂M)
∂∗ // Hr−1(e).
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We use these squares in the diagram

Hn−r−1(M)
g∗ //

−∩[M,∂M ] ∼=
��

Hn−r−1|HΓm̄|

∼=
��

δ∗ // Hn−r(g) // Hn−r(M)
g∗ //

−∩[M,∂M ] ∼=
��

Hn−r|HΓm̄|

∼=
��

Hr+1(M,∂M)
∂∗ // Hr(e)

j∗ // Hr(g) // Hr(M,∂M)
∂∗ // Hr−1(e),

By Lemma 4.6, there exists a map

D : H̃n−r(IX) = Hn−r(g) −→ Hr(g) = H̃r(IX)

filling in the diagram commutatively. By the 5-lemma, D is an isomorphism. �

Remark 6.3. The simple connectivity conditions on the links L,L0 only enter in so far
as to ensure that the homological truncations L<k, W<k exist. Actually, regardless of
simple connectivity, the strong Witt condition on L alone guarantees that L<k exists
(because then we may take L<k = Lk−1). The simple connectivity of both L and
L0 is a sufficient condition for the existence of W<k, but certainly not a necessary
condition. Example 6.5 below illustrates this by considering nonsimply connected
links such that L<k,W<k exist with the correct properties. The simple connectivity
assumption never enters otherwise in the proof of Proposition 6.1 and Theorem 6.2, so
that these results remain true for nonsimply connected L,L0, provided the truncations
exist.

Remark 6.4. The construction of the duality isomorphism D in the proof of Theorem
6.2 uses Lemma 4.6 and thus involves an element of choice. A canonical construction
of an isomorphism D : H̃n−r(IX) → H̃r(IX) in all degrees r except the middle,
avoiding that lemma, runs as follows: Suppose r > k. Then, as was shown in the
proof of Proposition 6.1, e∗ : Hn−r(∂M) → Hn−r|HΓm̄| and Hr−1(∂M) → Hr−1(e)
are isomorphisms. From the exact sequences

Hn−(r+1+i)(∂M)
∼=−→
e∗

Hn−(r+1+i)|HΓm̄| δ∗−→ Hn−(r+i)(e)

−→ Hn−(r+i)(∂M)
∼=−→
e∗

Hn−(r+i)|HΓm̄|, i = 0, 1,

we deduce that Hn−r−1(e) = 0 and Hn−r(e) = 0. The exact triple sequence

Hn−r−1(e)
δ∗−→ Hn−r(M,∂M) −→ Hn−r(g) −→ Hn−r(e)

implies that Hn−r(M,∂M)→ Hn−r(g) is an isomorphism. From the sequences

Hr+i(∂M)
∼=−→ Hr+i(e)

∂∗−→ Hr+i−1|HΓm̄|

−→ Hr+i−1(∂M)
∼=−→ Hr+i−1(e), i = 0, 1,

we infer that Hr|HΓm̄| = 0 and Hr−1|HΓm̄| = 0. Hence Hr(M) → Hr(g) is an
isomorphism by the exactness of

Hr|HΓm̄| g∗−→ Hr(M) −→ Hr(g)
∂∗−→ Hr−1|HΓm̄|.

Define D to be the unique isomorphism such that the square

Hn−r(M,∂M)
∼= //

−∩[M,∂M ] ∼=
��

Hn−r(g)

D

��
Hr(M)

∼= // Hr(g)
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commutes. Suppose r < k. Then, as was established in the proof of Proposition 6.1,
Hn−(r+1)|HΓm̄| = 0 and Hr(e) = 0. Therefore, by the exactness of

0 = Hn−(r+1)|HΓm̄| δ∗−→ Hn−r(g) −→ Hn−r(M)
g∗−→ Hn−r|HΓm̄| = 0,

the map Hn−r(g)→ Hn−r(M) is an isomorphism. The exact sequence

0 = Hr(e) −→ Hr(g) −→ Hr(M,∂M)
∂∗−→ Hr−1(e) = 0

shows that Hr(g) → Hr(M,∂M) is an isomorphism. Define D to be the unique
isomorphism such that

Hn−r(g)
∼= //

D

��

Hn−r(M)

∼= −∩[M,∂M ]

��
Hr(g)

∼= // Hr(M,∂M)

commutes. In the middle dimension r = k, we have Hk−1(e) = 0 and Hk(∂M) →
Hk(e) is an isomorphism. Hence the commutative diagram with exact rows

Hk+1(M,∂M)
∂∗ // Hk(∂M) //

∼=
��

Hk(M) //

��

Hk(M,∂M)
∂∗ // Hk−1(∂M)

��
Hk+1(M,∂M)

∂∗ // Hk(e) // Hk(g) // Hk(M,∂M)
∂∗ // Hk−1(e) = 0

shows that Hk(g)→ Hk(M,∂M) is a surjection and Hk(M)→ Hk(g) is an injection.

Not every stratified pseudomanifold possesses an intersection space. This is not
unexpected in view of the rich internal algebraic structure of HI∗, as opposed to
intersection cohomology IH∗. For a given perversity, obstructions to constructing an
intersection space arise from certain differentials in the Serre spectral sequences of
the link bundles. The techniques introduced in the present paper seem to be useful in
studying other depth 2 stratifications as well, or perhaps even higher depth, but will
not in general by themselves suffice to construct intersection spaces in more general
situations. For example, one might consider a stratification Xn ⊃ X2 ⊃ X0 with X2

a 2-sphere and X0 a point. Then, as X2 − X0 is contractible, the link bundle over
X2−X0 is trivializable (as it is in this paper) and its total space looks like int(D2)×L.
The link L0 of X0 looks like L0 = W ∪∂W S1 × cone(L), where W is a manifold with
boundary ∂W = S1×L. The exterior ∂M of the singular set looks like |Γ∂ |, with Γ∂
the 3-diagram

W
f←− S1 × L ↪→ D2 × L.

The map f is a homeomorphism onto its image ∂W . To form the intersection space,
one would have to produce the broken arrow in the 3-diagram

Γm̄ =
(
W<kW L99 S

1 × L<kL ↪→ D2 × L<kL
)

by suitably truncating f . However, as mentioned above, fiberwise truncation of maps
is generally obstructed. Appropriate assumptions on links and/or structure groups of
the involved bundles will imply that these obstructions vanish. Thus, particular fea-
tures of the geometry of a given pseudomanifold X enter in an interesting, nontrivial
way to enable or disable the existence of intersection spaces for X.
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We conclude with a simple 6-dimensional example, illustrating in particular Propo-
sition 6.1.

Example 6.5. Suppose that X is a 6-dimensional pseudomanifold with stratification
X6 ⊃ X1 ⊃ X0, X1 a circle and X0 a point. Suppose the link L of X1 − X0 is
the 4-manifold L = S1 × S3. Let T be a 2-torus with two disjoint small open discs
removed. The boundary of T consists of two circles, ∂T = S1

c t S1
d . The 5-manifold

W = T × S3 has boundary ∂W = S1
c × S3 t S1

d × S3. Suppose that the link L0 of X0

is

L0 = W ∪∂W (cone(S1
c × S3) t cone(S1

d × S3))

and that the link bundle ∆1 × L is attached to W by the identity maps {0} × L id−→
S1
c × S3 and {1} × L id−→ S1

d × S3. We equip the circle factor of L with the CW
structure S1 = e0 ∪ e1 and the 3-sphere factor with the structure S3 = e0

S ∪ e3
S . Then

L receives the product cell structure. We endow T with the CW structure

T = (e0
0 ∪ e0

1) ∪ (a ∪ b ∪ c ∪ d ∪ e1
d) ∪ e2,

where a, b, c, d and e1
d are 1-cells such that a, b, c are all attached as loops to e0

0,
whereas d is attached as a loop to e0

1 and e1
d joins the two 0-cells e0

0 and e0
1. The

2-cell e2 is attached by the word abe1
dd(e1

d)
−1a−1b−1c−1. Then S1

c ⊂ T and S1
d ⊂ T

are the subcomplexes S1
c = e0

0 ∪ c, S1
d = e0

1 ∪ d. The space W receives the product
cell structure. As ∂2 : C2(T ) → C1(T ) maps e2 to d − c, we have [c] = [d] ∈ H1(T ).
This group H1(T ) has rank 3 generated by [a], [b] and [c] = [d]. Consequently, the
homology of W is given by the following generators:

H0(W ) [e0
0 × e0

S ]
H1(W ) [a× e0

S ], [b× e0
S ], [c× e0

S ]
H2(W ) 0
H3(W ) [e0

0 × e3
S ]

H4(W ) [a× e3
S ], [b× e3

S ], [c× e3
S ]

H5(W ) 0

Note that the strong Witt condition on L is satisfied, as L has no 2-dimensional cells.
The link L0 is not homeomorphic to the suspension of L, since H1(L0) has rank 2,
generated by [a×e0

S ] and [b×e0
S ], while the suspension has trivial first homology. Thus

X cannot be restratified with depth 1. Note also that L is not simply connected, but
this presents no problem, since the required spatial homology truncation does exist
and is given by the 1-skeleton:

L<k = L<3 = L<2 = L1 = (e0 ∪ e1)× e0
S = S1 × pt .

The structural map eL is the inclusion eL : L<k = S1 × pt ↪→ S1 × S3 = L. The
spatial homology truncation of W is

W<k = W<3 = W<2 = T × e0
S .

Thus W<3 is precisely the 2-skeleton W 2 of W and the structural map eW : W<3 →W
is the skeletal inclusion W 2 ↪→ W . The map f : L̈ → W is the inclusion given

on the component {0} × L by {0} × L
id−→ S1

c × S3 ↪→ ∂W ↪→ W and on the

component {1}×L by {1}×L id−→ S1
d ×S3 ↪→ ∂W ↪→W . Its homological truncation

t<kf = t<3f : L̈<3 →W<3 is the inclusion given on the two components of L̈<3 by

{0} × (e0 ∪ e1)× e0
S

id−→ (e0
0 ∪ c)× e0

S ↪→ T × e0
S
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and

{1} × (e0 ∪ e1)× e0
S

id−→ (e0
1 ∪ d)× e0

S ↪→ T × e0
S .

The diagram of inclusions

L̈<3
� � t<3f //

� _

eL̈

��

W<3� _

eW

��
L̈

� � f // W

commutes. The m̄-perverse 3-diagram Γm̄ is given by

Γm̄ = ( W<3 L̈<3

t<3foo � � incl× id // L<3 )

= ( T × e0
S (∂I)× S1 × e0

S
? _oo � � // I × S1 × e0

S ),

that is, a handle I×S1 is attached to T along the two boundary circles of the surface
T . Hence |HΓm̄| is the orientable closed surface Σ2 of genus 2. The map

e = |H(ε)| : |HΓm̄| −→ |HΓ| = ∂M

is given by

idΣ2
× incl : Σ2 × e0

S ↪→ Σ2 × S3.

A straightforward calculation yields the following table of generators, illustrating the
Poincaré duality isomorphism

Hn−r|HΓm̄|
∼=−→ Hr−1(e)

of Proposition 6.1.

Hn−r|HΓm̄| Hr−1(e)
r = 0 0 0
r = 1 0 0
r = 2 0 0
r = 3 0 0
r = 4 [Σ2 × pt]∗ [pt×S3]
r = 5 [a× pt]∗ [b× S3]

[b× pt]∗ [a× S3]
[c× pt]∗ [z × S3]
[z × pt]∗ [c× S3]

r = 6 1 = [pt]∗ [Σ2 × S3]

Here, [·] denotes the homology class of a cycle and [·]∗ the image in cohomology of the
linear dual of a homology class under the universal coefficient isomorphism. Poincaré
duals are listed next to each other in the same row. The cycle z is z = I ∪∂I e1

d.
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