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ABSTRACT. We begin this article by introducing smooth atlas stratified spaces. We show that this class is
closed under cartesian products; consequently, it is possible to define fiber bundles of smooth atlas stratified
spaces. We describe the resolution of such a space to a manifold with fibered corners and use this result in order
to prove that the class of smooth atlas stratified spaces coincides with that of Thom-Mather stratified spaces.
We then consider Witt pseudomanifolds (such as singular complex algebraic varieties) where it is well-known
that a bordism invariant signature is available and equal to the Fredholm index of a realization of the signa-
ture operator. For an oriented fiber bundle of stratified spaces, with Witt fibers, p : X →Y we define a bivariant
class Σ(p)∈KKℓ(X ,Y )[ 1

2 ], ℓ= dimX −dimY mod 2. Kasparov multiplication on the left by this element Σ(p)
defines the analytic Gysin map in analytic K-homology p! : Kan

j (Y )[
1
2 ]→ Kan

ℓ+ j(X)[ 1
2 ] and one of our main re-

sults is that this Gysin map preserves the analytic signature class of Witt spaces: p!(signK(Y )) = signK(X). We
prove in fact a more general result: for three fiber bundles p12 : X1 → X2, p23 : X2 → X3, p13 : X1 → X3 of Witt
pseudomanifolds satisfying p13 = p23 ◦ p12, we establish that Σ(p12)⊗Σ(p23) = Σ(p13) in KK∗(X1,X3)[

1
2 ].

We also discuss this latter result for other Dirac-type operators satisfying an analytic Witt condition, for exam-
ple the spin-Dirac operator on a fibration of psc-Witt spin pseudomanifolds. We next define the analytic Gysin
map associated to an oriented normally non-singular inclusion of Witt spaces and prove that it also preserves the
signature class. Finally, we relate the analytic signature class of a Witt space X , signK(X)∈ Kan

∗ (X)[ 1
2 ], with the

topological Siegel-Sullivan orientation ∆(X) ∈ KOtop
∗ (X)[ 1

2 ]: if Ψ2 : KOtop
∗ (X)[ 1

2 ]→ KOtop
∗ (X)[ 1

2 ] denotes the
second Adams operation and c : KOtop

∗ (X)→ Ktop
∗ (X) denotes complexification, then we show that signK(X)

corresponds to c◦ (Ψ2)−1∆(X) under the natural identification between Kan
∗ (X)[ 1

2 ] and Ktop
∗ (X)[ 1

2 ].
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1. INTRODUCTION AND MAIN RESULTS

1.1. Motivation and main results.
Let KO∗(−) denote topological KO-homology and let M be a smooth n-dimensional closed oriented

manifold. In [Sul71], Sullivan introduced a class1
∆SO(M) ∈ KOn(M), which is an orientation and plays

a fundamental rôle in studying the K-theory of manifolds. For instance, Sullivan showed that topologi-
cal block bundles away from 2 are characterized as spherical fibrations together with a KO[1

2 ]-orientation.
For certain classes of singular oriented pseudomanifolds, Goresky and MacPherson’s intersection homol-
ogy allowed for the construction of bordism invariant signature invariants that satisfy Novikov additivity, a
product formula, and agree with the signature of a manifold. Such a class of pseudomanifolds is given by
the Witt spaces considered by Siegel in [Sie83]. A stratified space is a Witt space if its even-dimensional
links have vanishing middle degree rational intersection homology groups with lower middle perversity, see
e.g., Section 2.5 below. For example, every pure-dimensional complex algebraic variety is a Witt space.
Siegel extended Sullivan’s orientation ∆SO to an orientation ∆(X) ∈ KOn(X)[1

2 ] for oriented compact Witt
spaces and used it to show that away from 2, Witt bordism and KO-homology can be identified. Under the
Pontrjagin character, ∆(X) is a lift of the Goresky-MacPherson L-class L∗(X) ∈ H∗(X ;Q).

The second named author proved in [Ban25] that the Siegel-Sullivan orientation ∆(X) is preserved under
KO-homological bundle transfer and Gysin restriction homomorphisms2 associated to oriented normally
non-singular bundles and inclusions of Witt spaces: Let j : X ↪→ Y be an oriented normally non-singular
codimension ℓ inclusion of closed piecewise linear (PL) Witt spaces. Since SO-bundles are KO[1

2 ]-oriented,
j has an associated Gysin homomorphism j! : KO∗(Y )[1

2 ]→ KO∗−ℓ(X)[1
2 ]. Under this homomorphism,

j!
∆(Y ) = ∆(X).

Similarly, an oriented PL bundle p : X →Y of compact Witt spaces with closed d-dimensional PL manifold
fiber has an associated bundle transfer homomorphism p! : KOn(Y )[1

2 ]→ KOn+d(X)[1
2 ], under which

p!
∆(Y ) = ∆(X).

In fact, this holds even when X is only a block bundle over Y . These results are obtained in [Ban25]
by lifting the construction of Siegel and Sullivan to the ring spectrum level. The lift is a multiplicative
morphism ∆ : MWITT → KO[1

2 ] where MWITT denotes the ring spectrum representing Witt space bordism.

1For an abelian group A, we use the notation A[ 1
2 ] to indicate A⊗ZZ[ 1

2 ].
2In this paper, in accordance with parts of the literature and in contrast with others, we will use the terms transfer map and Gysin

map interchangeably.
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One then uses the L-theoretic results of [Ban20] in the immersive case and [Ban24] in the submersive case.
As an application, these results lead under the Pontrjagin character to a computation of the L-classes of
singular Schubert varieties [BW24] and to a proof of the Brasselet-Schürmann-Yokura conjecture for such
varieties [BSW24].

Let us now move to the main results of this research. The work of Banagl takes place solely in topolog-
ical K-homology and employs heavily methods of stable homotopy theory. There is, however, a different
description of K-homology, due to Gennadi Kasparov; this goes under the name of analytic K-homology
and it is denoted by Kan

∗ (X) with X , say, a compact Hausdorff topological space. By definition,

Kan
∗ (X) := KK∗(C(X),C)

with KK denoting Kasparov bivariant K-theory. More generally, for each pair of Hausdorff compact spaces
X , Y one can define the abelian groups KK∗(X ,Y ) := KK∗(C(X),C(Y )). One important property of Kas-
parov bivariant K-theory is the existence of an associative product, the Kasparov product:

KK j(X ,Y )⊗KKℓ(Y,Z)−→ KK j+ℓ(X ,Z).

This product will play a fundamental rôle in this article.
As in the work of Banagl, we shall be interested in Witt pseudomanifolds, but since we plan to use

analytic methods we shall consider smoothly stratified Witt pseudomanifolds. Here smoothly stratified
means stratified in the sense of Thom-Mather but, as explained further below, this is a notion we revisit
and expand on in this article. Let X be such a space. It is well known, see, e.g., [MW97], [ALMP12, §6.2],
[ALMP17, §5.1] and §3.3 below, that there exists a well defined signature class in analytic K-homology
[Dsign

X ] ∈ KK∗(C(X),C), with Dsign
X the signature operator on the regular part of X endowed with a wedge

metric g (the class turns out to be independent of the choice of g). After inverting 2 (and normalizing to
better match the Sullivan orientation), this class determines a K-homology orientation which we denote

signK(X) := 2−⌊n/2⌋[Dsign
X ] ∈ Kn(X)[1

2 ], n = dimX .

Here is a (partial) list of the results established in this article.

• If W −X
p−−→ Y is an oriented fiber bundle of oriented Witt pseudomanifolds, then there exists an

‘analytic transfer class’ Σ(p) ∈ KK j(X ,Y )[1
2 ], with j equal to the dimension of W mod 2. This class

is defined by normalizing the class of the vertical family of signature operators associated to the fi-
bration W −X

p−−→Y . The bundle p is understood to trivialize locally via stratified diffeomorphisms.
• We can define an analytic Gysin map p! : Kan

∗ (Y )[1
2 ]→ Kan

∗+ j(X)[1
2 ] by taking the Kasparov product,

on the left, with Σ(p) ∈ KK j(X ,Y )[1
2 ].

• We show that the analytic Gysin map preserves the analytic K-homology orientation, viz.:

(1.1) p!signK(Y ) = signK(X).

This result extends the work of Banagl from bundles with nonsingular fiber to bundles with singular
(Witt pseudomanifold) fiber.

• Formula (1.1) is in fact a special case of a more general result that we also establish in this article:
if

X1
p12 //

p13   

X2

p23

��
X3

is a commutative diagram of Witt fiber bundles, then

(1.2) [Dsign
X1/X3

] = ℓ([Dsign
X1/X2

]⊗ [Dsign
X2/X3

]) in KK∗(C(X1),C(X3))
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with

ℓ=

{
2 if dimX1/X2 and dimX2/X3 are odd,
1 otherwise.

The corresponding analytic transfer classes satisfy

Σ(p13) = Σ(p12)⊗Σ(p23) in KK∗(C(X1),C(X3))[
1
2 ].

The result (1.1) is obtained by taking X3 = point, X1 = X , X2 = Y , p12 = p and p13, p23 equal to the
unique maps to a point.

• We discuss these results in the more general context of Dirac-type operators, giving results, for
example, on psc-Witt spin stratified pseudomanifolds [BPR21, BPR23].

• For a codimension ℓ normally non-singular inclusion j : X ↪→ Y of Witt pseudomanifolds we define
an element Σ( j) ∈ KKℓ(X ,Y )[1

2 ] and use Kasparov product on the left by this element in order to
define an analytic Gysin map j! : Kan

∗+ℓ(Y )[
1
2 ]→ Kan

∗ (X)[1
2 ]; also in this case we show that the Gysin

map preserves the analytic K-orientations:

(1.3) j!signK(Y ) = signK(X).

• We discuss the compatibility between the topological orientation class of an n-dimensional Witt
pseudomanifold, ∆(X) ∈ KOtop

n (X)[1
2 ], and the analytic K-orientation signK(X) ∈ Kan

n (X)[1
2 ]. It is

a folklore result that these two classes “correspond to each other”; we show that the situation is in
fact rather subtle, proving that if c : KO → K denotes complexification and Ψ2 : KO[1

2 ]→ KO[1
2 ] the

stable second Adams operation, then under the natural isomorphism between Ktop
n (X) and Kan

n (X)
the class

c(Ψ2)−1
∆(X) ∈ Ktop

n (X)[1
2 ]

corresponds to the class
signK(X) ∈ Kan

n (X)[1
2 ].

All these results are discussed in the second part of the paper. The first part is devoted instead to a founda-
tional treatment of smoothly stratified spaces. It was already observed by Verona in his seminal monograph
[Ver84] that the cartesian product of two Thom-Mather pseudomanifolds, endowed with the product stratifi-
cation and the product Thom-Mather control data, is not a Thom-Mather pseudomanifold unless one of the
two factors is a smooth manifold. We give a simple counterexample below, in Remark 2.12 . Inspired by
the treatment given in [AFT17], but adopting, crucially, a different notion of chart,3 we introduce the notion
of smooth atlas stratified space; this notion is such that if X and Y are smooth atlas stratified spaces, then
their product X ×Y is again a smooth atlas stratified space. Similarly, with this notion, it is possible to give
a consistent definition of fiber bundle of smooth atlas stratified spaces. We also provide a detailed account
of the process of resolution of a smooth atlas stratified space, giving as a final result a smooth manifold with
fibered corners, a notion due to Richard Melrose 4. In the context of Thom-Mather spaces this process is
due to Thom and Verona [Ver84]; recent treatments can be found in [BHS91] and also in [ALMP12], where
it was proved that the resolution has in fact the additional structure of manifold with fibered corners. For a
smooth atlas stratified space we give a self-contained treatment of the resolution process and use it in order
to show that the class of smooth atlas stratified spaces coincides with the class of Thom-Mather stratified
spaces. Together with known results due to Goresky [Gor76] (cf. [Teu81]) and Mather [Mat12] this will
establish the remarkable fact that

(1) Thom-Mather stratified spaces,
(2) Whitney embedded stratified spaces,
(3) manifolds with fibered corners,
(4) smooth atlas stratified spaces,

3See Remarks 2.3 and 2.14 for the consequence of this difference.
4A smooth manifold with fibered corners is also known as a manifold with corners and an iterated fibration structure.
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all describe the same singular spaces. With this result we end the first part of the paper and this contribution
of ours to the general theory of smoothly stratified spaces.

1.2. Organization of the paper.
Section 2 is entirely devoted to the treatment of smooth atlas stratified spaces. In Subsection 2.1 we give
a prelude of the general theory by treating the case of depth 1 spaces, introducing the relevant notions and
techniques in this particular case; along the way we illustrate how to resolve a depth 1 stratified space to a
manifold with fibered boundary. We also treat briefly the case of depth 2 stratified spaces, mainly in order
to clarify what kind of spaces we obtain along the resolution procedure for spaces of arbitrary depth. In
Subsection 2.2 we give the general definition of smooth atlas stratified space whereas in Subsection 2.3 we
describe in detail and full generality the process of resolution of such a space to a smooth manifold with
fibered corners. Finally in Subsection 2.4 we compare the class of smooth atlas stratified spaces with the
class of Thom-Mather stratified spaces, showing that they coincide. From now on we briefly refer to such
a space as a smoothly stratified space or a smoothly stratified pseudomanifold if we do make the additional
assumption ensuring the pseudomanifold property.
In Section 3 we recall the definition, through the signature operator, of the analytic orientation class of an
orientable smoothly stratified Witt pseudomanifold. We begin in Subsection 3.1 with a general discussion
about orientation classes for a generalized homology theory. In Subsection 3.2 we recall general results,
due to the first author and Gell-Redman [AGR23], about the analysis of (families of) Dirac operators as-
sociated to a wedge metric on the regular part of a smoothly stratified pseudomanifold. In Subsection 3.3
we recall the fundamentals of unbounded KK-theory and we show/recall that the signature operator on an
n-dimensional Witt pseudomanifold X does define a class in KKn(C(X),C) =: Kan

n (X); using this class we
define an ‘analytic orientation class’ signK(X) ∈ Kan

∗ (X)[1
2 ].

In Section 4 we discuss invariance properties of the analytic orientation class. In Subsection 4.1 we prove the
stratified diffeomorphism invariance of signK(X), whereas in Subsection 4.2 we extend results in [ALMP17]
and prove a general form of Witt bordism invariance for signK(X). Finally, in Subsection 4.3 we compare
smooth Witt bordism with PL-Witt bordism.
In Section 5 we tackle the analysis and geometry of a fiber bundle W ℓ −X

p−−→ Y of smoothly stratified
pseudomanifolds in which the fibers are ℓ-dimensional oriented Witt pseudomanifolds. The final goal is to
describe how to assign to such a fiber bundle a class [Dsign

X/Y ] in the KK-group KKℓ(C(X),C(Y )). To this end
we treat in Subsection 5.1 the grid resolution of such a fiber bundle; this is a fiber bundle of manifolds with
corners with iterated fibration structures fitting into the sequence of manifolds with corners

res(W )− resgrid(X)−→ res(Y ),

with res(W ) and res(Y ) the resolutions of the base and of the fiber. Using the grid resolution and the analysis
developed in [AGR23] we are able to define the class [Dsign

X/Y ] ∈ KKℓ(C0(X),C0(Y )) in Subsection 5.2; we

use the class Σ(p) = 2−⌊dimW⌋[Dsign
X/Y ] ∈ KKℓ(C0(X),C0(Y ))[1

2 ] and Kasparov product in order to define our

analytic Gysin map p! : Kan
∗ (Y )[1

2 ]→ Kan
∗ (X)[1

2 ]. In Subsection 5.3 we prove one of the main results of this
article: the functoriality formula for orientation classes (this is formula (1.2) in this Introduction, a result
that implies as a special case formula (1.1)).
In Section 6 we define the analytic Gysin map associated to a normally non-singular inclusion of two
oriented Witt pseudomanifolds and we prove that this Gysin map preserves the analytic orientation class.
Finally, in Section 7 we compare the Siegel-Sullivan class ∆(X) with the class signK(X), proving that
c(Ψ2)−1∆(X) ∈ Ktop

n (X)[1
2 ] corresponds to the class signK(X) ∈ Kan

n (X)[1
2 ] under the natural isomorphism

between topological and analytic K-homology.

1.3. Further remarks.

Remark 1.1. Having defined Σ(i) for oriented normally non-singular inclusions and Σ(p) for oriented fiber
bundles with Witt fibers, it would be natural to define the Gysin map f ! for any oriented map between
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smoothly stratified spaces f : X −→ Y which admits a factorization

X
i

↪−−→ Z
p−−→ Y

into such an i and p as Kasparov multiplication by Σ( f ) = Σ(i)⊗Σ(p). We do not take this step because we
have not established that this produces a well-defined element, i.e., that it is independent of the factorization.

For K-oriented maps between smooth manifolds, treated by Connes and Skandalis [CS81], every map has
such a factorization by taking Z = X ×Y, i the inclusion of X into the graph of f , and p the obvious projec-
tion. In this case one can show that Σ( f ) = Σ(i)⊗Σ(p) is well-defined by starting with two factorizations

Z
p

��
X

i
>>

i′ ��

Y

Z′
p′

??

then filling in the diamond
Z

p

##
X

i
;;

i′ ##

J // Z ×Y Z′

OO

��

Q // Y

Z′
p′

<<

and then showing that Σ(i)⊗Σ(p) (and by symmetry Σ(i′)⊗Σ(p′)) is equal to Σ(J)⊗Σ(Q) (see [CS81,
Proposition 4.9] for details). The problem with carrying this out for maps between stratified spaces is that it
is easy for i and i′ to be normally non-singular but for J not to be normally non-singular. (The difficulty boils
down to the fact that if X is a singular space then the inclusion of X as the diagonal in X2 is not normally
non-singular.)

Remark 1.2. Our approach, of defining Gysin maps in K-homology by assigning KK-classes to oriented
maps between spaces, follows Connes [Con82] and Connes-Skandalis [CS81, CS84] who worked out the
case of smooth manifolds and K-oriented maps. Later Hilsum [Hil89] worked in the setting of Lipschitz
manifolds and oriented maps and made use of the signature operator, as we do. In [HS87] Hilsum and Skan-
dalis extended the approach of Connes-Skandalis to K-oriented morphisms of spaces of leaves of foliated
smooth manifolds (Remark 7.1 in loc cit has a nice discussion of the relation between using K-oriented
maps versus oriented maps).

As the reader will see, our treatment is analytically quite intricate and one might very well wonder why
we can not just adapt the arguments of [CS84] to our singular case. In the latter, KK-classes are constructed
by quantizing normalizations of symbols of Dirac operators into bounded operators which are Fredholm
because the symbols are elliptic. When we pass to stratified pseudomanifolds we need to use the edge
calculus of Mazzeo [Maz91] (for spaces of depth 1) and, more generally, the edge calculus of [AGR23] (for
spaces of arbitrary depth). These calculi involve the symbol of the operator we are studying but also the
so-called normal operators associated to the boundary hypersurfaces of the resolution of our stratified space.
The analysis of the normal operators adds complexity to all the arguments having to do with Kasparov theory
(for example, elliptic operators need not be Fredholm and a given elliptic symbol can have more than one
Fredholm quantization) and prevents us from easily carrying out the arguments of [CS84].

There are other technical difficulties stemming from the fact that we wish to carry out analytic arguments
suited to smooth spaces but apply these arguments to singular spaces. This leads, for example, to the
discussion of various levels of resolution of a fiber bundle of smoothly stratified spaces in section 5.1 below.
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Remark 1.3. Why work with the signature operator instead of spin-c Dirac operators? One reason is that
if a stratified space is Witt then we know that the signature operator will be Fredholm (see, e.g., [Che83,
ALMP12]). In order for the spin-c Dirac operator associated to a wedge metric to induce Fredholm maps
between the natural Sobolev spaces it is necessary to (choose an appropriate domain and) guarantee that
certain model operators, the vertical spin-c Dirac operators on the link bundles, be invertible (see, e.g.,
[AGR16, Cho85]). This depends on more than the topology of the stratified space, or the choice of spin-c
structure, but depends even on the particular wedge metric being used. This difference makes the signature
operator a superior choice.

1.4. Acknowledgements. The authors thank the University of Heidelberg, Sapienza Universitá di Roma,
Stanford University, and Washington University in St. Louis for hosting research visits and are happy to
acknowledge interesting conversations with Daniel Grieser, Jens Kaad, Markus Land, Eric Leichtnam, Rafe
Mazzeo, Richard Melrose, Jonathan Rosenberg, Jörg Schürmann, Walter van Suijlekom, Lukas Waas, and
Jon Woolf. M. B. is funded by a research grant of the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Projektnummer 495696766. This research was also partially funded by INdAM,
Istituto Nazionale di Alta Matematica.

1.5. Notation. Various K-theoretic groups will play a rôle in the present paper and need to be distinguished
notationally. The symbols Ktop

∗ , K∗
top, KOtop

∗ and KO∗
top denote topological complex K-homology, topological

complex K-theory, topological real K-homology and topological real K-theory. These are represented by
ring spectra K and KO. The connective versions of these spectra will be denoted by k and ko. The geometric
complex K-homology of Baum and Douglas [BD82] will be written as Kgeo

∗ . The Kasparov K-groups of a
pair (A,B) of C∗-algebras are denoted by KK∗(A,B). Analytic complex K-homology groups of a (locally
compact Hausdorff) topological space X are given by the Kasparov groups Kan

∗ (X) = KK∗(C0(X),C).

2. SMOOTHLY STRATIFIED SPACES

We will describe the classes of spaces and operators that we will be working with. One notational con-
vention that we hope will make it easy to keep track of which statements refer to singular spaces and which
to smooth spaces is that we will use X to denote a stratified space, M to denote a smooth manifold with
corners, and

W — X −→ Y and L — M −→ N,

to denote fiber bundles of these spaces.

2.1. Prelude: Spaces of depth one and two. This section can be skipped. As the constructions below
can be rather intricate, we thought it might be useful to the reader to have a discussion of the simpler case
of depth one spaces. We do not reference the bibliography in this section and refer to the main text for
attributions of ideas.

By a depth one smoothly stratified space we mean first of all a Hausdorff, locally compact topological
space X with a countable basis for its topology which can be decomposed as the union of two smooth
manifolds. One of them is called the singular part and will be denoted Xsing or X0 and the other is called the
regular part and will be denoted Xreg or X1. The regular part is required to be open and dense. For simplicity
we will assume that X , X0, and X1 are connected.

(More generally below we will study stratified spaces with many strata. In that case we label them with
elements of a partially ordered set (poset) with the important requirement that if two strata have intersecting
closures then their labels are comparable.)

The usual extra structure to require is known as Thom-Mather data, making X a Thom-Mather stratified
space. In this case, this refers to a ‘tubular’ neighborhood T0 of X0 in X and a pair of continuous functions

π0 : T0 −→ X0, ρ0 : T0 −→ [0,∞)

such that π0|X0 = id and ρ
−1
0 (0) = X0 and with the property that

(π0,ρ0)|T0∩X1 : T0 ∩X1 −→ X0 × (0,∞)
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is a smooth submersion.
Suppose X and X ′ are both Thom-Mather stratified spaces of depth one, with Thom-Mather data (T0,π0,ρ0)

for X and (T ′
0,π

′
0,ρ

′
0) for X ′. The natural notion of morphism between them is a controlled map meaning a

continuous map
f : X −→ X ′

that restricts to smooth maps X0 −→ X ′
0 and X1 −→ X ′

1 and moreover (after possibly shrinking the size of
the tubular neighborhoods) satisfies

f (T0)⊆ T ′
0, f ◦π0 = π

′
0 ◦ f , ρ0 = ρ

′
0 ◦ f .

Given a Thom-Mather stratified space, one can resolve it to a smooth manifold with boundary (or more
generally corners) as follows. One can identify the neighborhood T0 with the total space of a fiber bundle

C(Z0) — T0 −→ X0

with fiber the cone over a smooth manifold Z0,

C(Z0) = [0,∞)×Z0⧸{0}×Z0 = {∗}⊔ (0,∞)×Z0.

The manifold Z0 is known as the link of X0 in X . If we remove T0 from X we obtain a smooth manifold with
boundary

M = res(X) := X \T0

known as the resolution of X .
This manifold M is an example of a manifold with fibered corners, though in this simple case M is a

manifold with fibered boundary and no actual corners. The extra structure here, which is inherited from the
fiber bundle T0 −→ X0, is a fiber bundle on the boundary of M,

Z0 — ∂M
φ0−−→ X0.

In order to be more systematic, and hopefully less confusing, with our notation we will denote the part of
the boundary of M that sits over X0 by ∂0M (in this case this is all of the boundary, ∂M = ∂0M, but when
there are more strata that will not be the case), then we will indicate the base of the fiber bundle by B0M and
the fiber by F0M, thus

F0M — ∂0M
φ0−−→ B0M, with F0M = Z0, ∂0M = ∂M, B0M = X0.

This notation is particularly useful when we study manifolds with fibered corners directly, as opposed to
starting with a stratified space and resolving it.

Every manifold with fibered boundary is the resolution of a Thom-Mather stratified space of depth one.
We have only to collapse the fibers of the fiber bundle φ0 in order to recover X from M. We obtain Thom-
Mather data from collar neighborhoods of the boundary of M.

If M and M′ are two manifolds with fibered boundary then the natural notion of morphism between them
is a fibered boundary map (more generally a fibered corners map) by which we mean a smooth map
f : M −→ M′ with the property that its restriction to ∂0M participates in a commutative diagram

∂0M
f //

φ0

��

∂0M′

φ ′
0
��

B0M
f̄ // B0M′

for some smooth map f̄ : B0M −→ B0M′. Every controlled map between Thom-Mather stratified spaces
X −→ X ′ induces a fibered boundary map between their resolutions, res(X) −→ res(X ′). The converse
statement is trickier to work out but it is easy to see that a fibered boundary diffeomorphism is equivalent to
a controlled isomorphism for some choice of Thom-Mather data.

These two ways of studying stratified spaces, as Thom-Mather stratified spaces or manifolds with fibered
corners, are well known. In this paper we introduce another way of studying the same class of spaces by
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making use of an appropriate atlas.

Let us go back to just having a Hausdorff, locally compact topological space X with a countable basis for
its topology and a decomposition into two smooth manifolds X0 and X1. (Though now we would be happy to
just assume that this is a decomposition into two subsets since it will follow from the atlas description that
the subsets are smooth manifolds.) We continue to assume that X1 is open and dense and that X , X0, and X1
are connected.

By a stratified chart around a point ζ ∈ X0 we will mean a homeomorphism

ϕ : U−→ Rh ×C(L)

sending ζ to {0}×{∗}, where the domain U is a neighborhood of ζ in X , h ∈ N0, L is a smooth manifold
which a priori could depend on ζ , and we require that

ϕ(U∩X0)⊆ Rh ×{∗} and ϕ(U∩X1)⊆ Rh × (C(L)\{∗}).
By a stratified chart around a point ζ ∈ X1 we will mean a homeomorphism

ϕ : U−→ Rn

sending ζ to {0}, where the domain U is a neighborhood of ζ contained in X1 and n ∈ N0.
To discuss compatibility of charts, we need to settle on when a continuous map

ψ : Rh ×C(L)−→ Rh′ ×C(L′)

should be considered a smooth stratified map. For us this will mean that there is a smooth map (between
smooth manifolds)

ψ̃ : Rh × [0,∞)×L −→ Rh′ × [0,∞)×L′

participating in a commutative diagram

Rh × [0,∞)×L
ψ̃ //

��

Rh′ × [0,∞)×L′

��
Rh ×C(L)

ψ // Rh′ ×C(L′)

where the vertical arrows are the collapse maps defining the cones. Having settled on this definition, it is
clear what we mean by compatibility of charts. Indeed the only interesting case is when we look at two
charts ϕ and ϕ ′ centered around points in X0,

ϕ : U−→ Rh ×C(L), ϕ
′ : U′ −→ Rh′ ×C(L′)

and in this case we require that either U∩U′ = /0 or that

ϕ
′ ◦ϕ

−1 : ϕ(U∩U′)−→ ϕ
′(U∩U′)

is a smooth map (in the sense just described) whose inverse is also a smooth map.
By a stratified atlas for X we mean a collection A of stratified charts whose domains form a basis for the

topology of X . A stratified space endowed with a stratified atlas is a smooth atlas stratified space.
A smooth stratified map between two smooth atlas stratified spaces (X ,A) and (X ′,A′) (of depth one) is

a continuous map f : X −→ X ′ satisfying f (X0)⊆ X ′
0 and f (X1)⊆ X ′

1 and such that for every stratified chart
(U,ϕ) on X and (U′,ϕ ′) on X ′, compatible with the respective atlases, satisfying f (U)⊆U′, the composition

ϕ
′ f ϕ

−1 : Rh ×C(Z)−→ Rh′ ×C(Z′)

is a smooth stratified map.
We explain below how to resolve a smooth atlas stratified space to a manifold with fibered boundary. The

key player is obtained from the space of paths that start at X0 and immediately move on to X1,

P0 = {χ : R+ −→ X smooth stratified map : χ(t) ∈ X0 ⇐⇒ t = 0}
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(where we are considering R+ as a stratified space of depth one with (R+)0 = {0} and (R+)1 = (0,∞)). By
definition of smooth stratified maps, whenever (U

ϕ−−→Rh×C(Z)) is a stratified chart centered at at point in
X0 and χ ∈ Pa, ϕ ◦χ has a lift

Rh × [0,∞)×Z

��
R+ ϕ◦χ //

ϕ̃◦χ

99

Rh ×C(Z).

Let us define an equivalence relation on P0 by

χ1 ∼ χ2 ⇐⇒


χ1(0) = χ2(0) and

ϕ̃ ◦χ1(0) = ϕ̃ ◦χ2(0) for all charts in A including χ1(0)

and denote the set of equivalence classes by S0,

S0 = P0⧸∼ .

(If X is a smooth manifold that we happen to be considering as a stratified space then S0 is the spherical
normal bundle of X0 in X . If X is the cone over a space Z, X =C(Z), then S0 is Z.) There is an obvious map

φ0 : S0 −→ X0, [χ] 7→ χ(0)

and we will see that the stratified charts on X can be used to structure φ0 as a smooth fiber bundle of smooth
manifolds.

To see this, start with any stratified coordinate chart centered at a point in X0, ϕ : U −→ Rh ×C(Z), and
denote

U0 = U∩X0, ϕ0 = ϕ|U0 : U0 −→ Rh

and then

φ
−1
0 (U0)

ϕ̃0 // Rh ×Z,

[χ] � // ϕ̃ ◦χ(0)

and ϕS0 = (ϕ−1
0 × id)◦ ϕ̃0 : φ

−1
0 (U0)−→ U0 ×Z.

The idea is to declare that ϕS0 is a diffeomorphism and we just need to check that this is unambiguous. But
if we started with another coordinate chart ϕ ′ : U′ −→Rh×C(Z), with U′

0 =U0, then on U∩U′ these charts
differ by a stratified diffeomorphism ϕ ′ = f ◦ϕ and, by definition of smooth stratified map, f participates
in a commutative diagram

Rh ×R×Z ⊇ V×R×Z
f̃ // V′×R×Z ⊆ Rh ×R×Z

Rh ×R+×Z ⊇ V×R+×Z
?�

OO

��

f̃≥0 // V′×R+×Z ⊆
?�

OO

��

Rh ×R+×Z

Rh ×C(Z) ⊇ V×C(Z)
f // V′×C(Z) ⊆ Rh ×C(Z)

and f̃ restricts to a stratified diffeomorphism V×{0}×Z −→V′×{0}×Z of the form (y,0,z) 7→ ( f̃ ′(y),0, f̃ ′′(y,z)).
It follows that ϕ ′

S0
: φ

−1
0 (U0)−→ U0 ×Z is given by

φ
−1
0 (U0)

ϕS0−−−→ U0 ×Z
f̃ ′′′−−−→ U0 ×Z, where f̃ ′′′(u,z) = (u, f̃ ′′(ϕ0(u),z))
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and hence differs from ϕS0 by a stratified diffeomorphism. Thus S0 inherits a smooth manifold structure.
Moreover, over each U0 we have a commutative diagram

φ
−1
0 (U0)

ϕS0 //

φ0 ##

U0 ×Z

||
U0

with the arrow on the right given by the projection onto the first factor, so φ0 : S0 −→ X0 is a smooth fiber
bundle with fiber Z.

Having defined S0 we define the resolution of X to be

res(X) = (X \X0)⊔S0.

(We also denote this by [X ;X0] and view it as the ‘radial blow-up’ of X along X0.) It is easy to see that
the stratified charts on X induce charts on res(X) making it a smooth manifold with boundary. Finally the
boundary of res(X) is S0 and so participates in the fiber bundle φ0.

(If X is a smooth manifold that we happen to be considering as a stratified space then, for example we
could pick a Riemannian metric on X and identify

res(X) = {x ∈ X : d(x,X0)≥ ε}

for some ε, so that ∂ res(X) can be identified with the spherical normal bundle of X0 in X and φ0 is the
projection map of this bundle. If X is the cone over a space Z, X = C(Z), then res(X) = R+ × Z and
φ0 : {0}×Z −→ Z is the identity map.)

In this way we have gone from smooth atlas stratified spaces of depth one to manifolds with fibered
boundary. This construction is reversible and we may obtain from any manifold with fibered boundary
a smooth atlas stratified space structure on the stratified space obtained by collapsing the boundary fiber
bundle. As we have noted above, Thom-Mather stratified spaces are also in one-to-one correspondence with
manifolds with fibered boundary, so all three of these spaces represent the same geometric objects. We
may add one more description to the list as it is well-known, thanks to the work of Mather [Mat12] and
Goresky [Gor76] (cf. Teufel [Teu81]), that Whitney stratified subspaces of Euclidean space are equivalent
to Thom-Mather stratified spaces.

Moreover, let us point out that the morphisms between smooth atlas stratified spaces are themselves
in one-to-one correspondence with those between manifolds with fibered boundary. Indeed, if X and X ′

are smooth atlas stratified spaces with resolutions res(X) and res(X ′) then every smooth stratified map
f : X −→ X ′ which satisfies that f (X0)⊆ X ′

0 and f (X1)⊆ X ′
1 is associated to a unique fibered boundary map

f̃ : res(X)−→ res(X ′) participating in a commutative diagram

res(X)
f̃ //

��

res(X ′)

��
X

f // X ′

where the vertical maps are obtained by collapsing the boundary fiber bundles. Moreover every fibered
boundary map res(X)−→ res(X ′) arises in this way.

There is one more type of space that will be used below: ‘hybrid’ spaces that arise as intermediate spaces
in the resolution process. Let us discuss the resolution of a very simple space of depth two to explain how
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these come about. Consider the ‘toy case’5 in which X is given by

X = Y ×C[0,1)(W ×C[0,1)(Z))

where Y, W, and Z are compact smooth manifolds and C[0,1) denotes the truncated cone. The strata of X are

X0 = Y ×{∗}, X1 = Y × (0,1)x ×W ×{∗}, X2 = Y × (0,1)x ×W × (0,1)r ×Z

and satisfy
X1 = X0 ∪X1 and X = X2 = X1 ∪X2.

A stratified chart around a point in X0 is a homeomorphism

ϕ : U−→ Rh0 ×C(W ×C[0,1)(Z))

where h0 is the dimension of Y. The restriction of ϕ to U∩X0 corresponds to a coordinate chart on Y. For a
point in X1 we can can choose a neighborhood U′ ⊆ X \X0 and a homeomorphism

ϕ
′ : U′ −→ Rh1 ×C(Z)

where h1 is the dimension of X1. The restriction of ϕ ′ to U′ ∩ X1 corresponds to a coordinate chart on
Y × (0,1)x ×W. Finally points in X2 have charts that are homeomorphisms of the form

ϕ
′′ : U′′ −→ Rh2

where h2 is the dimension of X2.
The resolution of X is obtained by first blowing-up X0 and then blowing-up (the lift of) X1. The first step

produces the hybrid space
X̃ = [X ;X0] = Y × [0,1)x ×W ×C[0,1)(Z)

where hybrid refers to the fact that this space presents a boundary as well as singularities6 This space has a
natural blow-down map

β̃ : X̃ −→ X

which is the identity map between Y × (0,1)x ×W ×C[0,1)(Z) and sends Y ×{0}×W ×C[0,1)(Z) to Y ×{∗}
in the natural way. The hybrid stratification of X̃ has three strata, which correspond to the three strata of X
by β̃ , namely

X̃0 = Y ×{0}×W ×C[0,1)(Z), X̃1 = Y × (0,1)x ×W ×{∗}, X̃2 = Y × (0,1)x ×W × (0,1)r ×Z.

The restriction of β̃ to X̃0 is the trivial fiber bundle

φ̃0 : Y ×{0}×W ×C[0,1)(Z)−→ X0 = Y ×{∗}

with fiber W ×C[0,1)(Z). Points in X̃0 have ‘res-charts’ in X̃ (where res refers to resolved) of the form

ϕ : U := V× [0,ε)×W ×C[0,1)(Z)−→ V×R+×W ×C[0,1)(Z)

where V is an open subset of Y. (What makes this a res-chart is that the restriction of ϕ to U∩ X̃0 is a
trivialization of φ̃0, its restriction to U∩ X̃1 has image in V×R+×W ×{∗}, and its restriction to U∩ X̃2
has image in V×R+×W × (0,1)r ×Z. The point in the latter two cases being that the image is in V×R+

times a stratum of the fiber of φ̃0.) Points in X̃ \ X̃0 have ‘sing-charts’ in X̃ which are just lifts (along β̃ ) of
stratified charts on X .

5This is not technically an example of a smoothly stratified space as we have defined them, since the link W ×C[0,1)(Z) is not
compact, but we will use it as it is easy to discuss. If the reader prefers an ‘honest’ example to work through, replacing the truncated
cones with suspensions produces Y ×S(W ×S(Z)) which is almost as simple.

6A similar notion is used by Verona [Ver84, §5] as an intermediate step in showing that Thom-Mather stratified spaces have
resolutions to smooth manifolds with corners. Verona refers to the intermediate spaces as ‘abstract stratifications with faces’.
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The resolution of X is obtained from X̃ by blowing-up the closure of X̃1 in X̃ , i.e., the smooth manifold
with boundary, X̃1 = Y × [0,1)x ×W ×{∗}. As this set consists of the cone points in the cone factor of X̃ ,
we have

res(X) = [X̃ ; X̃1] = Y × [0,1)x ×W × [0,1)r ×Z.
Let us denote the blow-down map by

β̃
′ : res(X)−→ X̃

and the composition of the two blow-down maps by β = β̃ ◦ β̃ ′ : res(X)−→ X .
The resolution of X is a smooth manifold with corners. It is partitioned into three subsets by the inverse

images along β of the stratification of X , thus

res(X)0 = Y ×{0}×W × [0,1)r ×Z, res(X)1 = Y × [0,1)x ×W ×{0}×Z,

res(X)2 = Y × (0,1)x ×W × (0,1)r ×Z.

The first of these (and also the second) consists of a collective boundary hypersuface (i.e., a disjoint union
of boundary hypersurfaces) and the last of these is simply the interior of res(X). There are natural (in this
case trivial) fiber bundle structures

φ0 : res(X)0 −→ Y, with fiber W × [0,1)r ×Z,

given by β |res(X)0 , and
φ1 : res(X)1 −→ Y × [0,1)x ×W, with fiber Z,

given by β̃ ′|res(X)1 . Note that in the former case the base of the fiber bundle is X0 and the fiber is the resolution
of the link of X0 in X and the latter case the base of the fiber bundle is the resolution of the closure of X1
in X and the fiber is the link of X1 in X . At the corner res(X)0 ∩ res(X)1 = Y ×{0}×W ×{0}×Z these
fiber bundles are compatible in that there is a fiber bundle φ10 : Y ×{0}×W −→ Y (in this case trivial)
participating in a commutative diagram of fiber bundles

res(X)0 ∩ res(X)1
φ1 //

φ0

&&

Y ×{0}×W
φ10

yy
Y

It is convenient to also endow res(X)2 with a fiber bundle but in this case we just take the identity map to
itself. This structure makes res(X) a manifold with fibered corners.

2.2. Smooth atlas stratified spaces. We find it convenient to adopt the point of view of [AFT17] in which
smoothly stratified spaces are defined as topologically stratified spaces with a choice of smooth stratified
atlas. Our definition of smooth function between stratified spaces, and hence of what constitutes a smooth
stratified atlas, differs from that of [AFT17], see Remark 2.3. For this reason we develop the theory of these
spaces without making use of the results in loc cit. We will then explain why this class of spaces coincides
with that of stratified spaces in the sense of Thom-Mather, and with the class of manifolds with fibered cor-
ners. (The latter also goes by many names, e.g., interior maximal manifolds with fibered corners in [KR23]
and manifolds with corners and iterated fibration structures in [AGR23].)

Definition 2.1 (Conical poset stratifications). [AFT17], [Lur, Appendix A.5]
• If A is a partially ordered set (poset) then a subset U ⊆ A is open if it is ‘closed upwards’ meaning

that if x ≤ y and x ∈ U then y ∈ U.
• If A is a finite poset and X a second countable, Hausdorff topological space then an A-stratification

of X is a continuous surjective map X → A. Open subsets of poset-stratified spaces naturally inherit
poset-stratifications (though generally with a different poset). If A consists of a single point we refer
to the poset-stratification as the trivial stratification.
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• Given an A-stratification of X , we let Xa, X≤a, X<a, X≥a, X>a, denote the inverse images of the
corresponding subsets of A.

• If A and A′ are posets, we define A×A′ to be the poset with

(a,a′)≤ (b,b′) ⇐⇒ (a ≤ b) & (a′ ≤ b′).

We define the product of two poset-stratified spaces X → A and X ′ → A′, to be X ×X ′ → A×A′ with
the product map.

• Let [1] be the two-element poset {0 < 1} and let R+ → [1] denote the [1]-stratification of R+ in
which 0 ∈ R+ is the inverse image of 0 ∈ [1].

• If A is a poset we define C(A) to be the poset obtained from A by adjoining a new smallest element
denoted ∗ or equivalently as the quotient poset

C(A) = ([1]×A)⧸({0}×A).

If X is a topological space then C(X) denotes the quotient topological space

C(X) = (R+×X)⧸({0}×X)

and we denote the cone point by ∗. The poset-stratification R+×X → [1]×A descends to a poset-
stratification C(X)→ C(A). (Our convention is that C( /0) consists of a single point {∗}. We some-
times use C[0,1](X) to indicate the quotient ([0,1]×X)⧸({0}×X).)

• A continuous stratified map f between two poset-stratified spaces, X → A and X ′ → A′, is a
commutative diagram of continuous maps

X
f //

��

X ′

��
A

S( f ) // A′.

A stratified homeomorphism is a continuous stratified map that has a continuous stratified inverse.
• Let X be an A-stratified space and let ζ ∈ Xa ⊆ X . A stratified chart around ζ consists of an open

subset U ⊆ X containing ζ , a natural number h, a compact A>a-stratified space Z, and a stratified
homeomorphism

ϕ : U−→ Rh ×C(Z)

which sends ζ to the point {0}×{∗}, where we regard U as poset-stratified as an open subset of X ,
and Rh ×C(Z) as stratified with the product of the trivial stratification on Rh and the C(A>a)∼= A≥a
stratification on C(Z). (If A>a = /0 then Z = /0 and C(Z) = {∗}.)

• A conical A-stratification of an A-stratified space X consists of a collection of stratified charts on
X , {Uα ,ϕα}α∈A , such that the domains of these stratified charts form a basis for the topology of X .

If X is a conically A-stratified space then the connected components of Xa, which we refer to as the strata
of X , are topological manifolds and satisfy the ‘frontier condition’, i.e., if a connected component Y of some
Xa intersects the closure of a connected component Y ′ of some Xa′ then Y is contained in the closure of Y ′,

Y ∩Y ′ ̸= /0 =⇒ Y ⊆ Y ′

(see [Fri20, Lemma 2.3.7]), moreover in this case a ≤ a′ holds in A. Spaces with conical A-stratifications are
referred to as C0-stratified spaces in [AFT17]. If we assume that strata of X are comparable only when their
closures intersect, then spaces with conical A-stratifications coincide with Siebenmann’s ‘CS sets’ [Sie72],
[Fri20, Definition 2.3.1] (cf. [Pfl01, Definition 3.10.1]). If ζ ∈ Xa ∈ X has a stratified chart U−→Rh×C(Z)
then the space C(Z) is determined up to stratified homeomorphism but Z itself is not, see [Fri20, Example
2.3.12]. In this generality Z is referred to as a link of ζ in X . For smooth atlas stratified spaces, defined
momentarily, Z will be determined up to stratified diffeomorphism and referred to as the link of ζ in X .
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For simplicity, we will assume that every Xa is connected. This does not represent a real loss of gener-
ality as one could always refine the stratification to achieve it without changing the geometry. We refer to
each Xa as a stratum.

If X is an A-stratified space, define the depth of X to be the length of the longest ascending sequence
a1 < a2 < · · · of elements in the range of X → A. If X is conically stratified and ζ ∈ X define the depth of ζ

in X to be the depth of a link of ζ in X (by convention, ζ has depth zero if its link in X is /0).
Note that is X is endowed with a conical A-stratification then the points of depth zero are dense in X and

the corresponding strata are maximal. We denote the union of these strata by

Xreg = {ζ ∈ X : depth (ζ ) = 0}
and refer to it as the regular part of X .

Note that different components of the regular part might have different dimensions. For example, if
Z = {pt} ⊔ S1 then we can identify C(Z) with the subset of R3 consisting of the x-y plane and the non-
negative z-axis and so its regular part with the positive z-axis and the x-y plane minus the origin. A conical
A-stratified pseudomanifold is a conical A-stratified space whose regular part is dense and has a fixed
dimension and whose other strata have dimension at least two less than the regular part.

Definition 2.2 (Smooth atlas stratified spaces and functions). Our definition proceeds by induction on depth.
A smoothly stratified space of depth 0 is a smooth manifold and a smooth stratified map between

smoothly stratified spaces of depth zero is a smooth map of smooth manifolds.
Assume inductively that we have defined smoothly stratified spaces of depth less than k, as well as smooth

stratified maps between stratified spaces of depth less than k.
We first define smooth stratified maps between spaces that play the rôle of coordinate charts as follows.

If Z1 −→ A1 and Z2 −→ A2 are smooth atlas stratified spaces of depth less than k, h1,h2 ∈ N0, and

f : Rh1 ×C(Z1)−→ Rh2 ×C(Z2)

is a continuous stratified map then we will say that it is a smooth stratified map if there a smooth stratified
map

f̃ : Rh1 ×R×Z1 −→ Rh2 ×R×Z2,

(as defined by the inductive hypothesis) that makes the diagram

Rh1 ×R×Z1
f̃ // Rh2 ×R×Z2

Rh1 ×R+×Z1
?�

OO

��

Rh2 ×R+×Z2
?�

OO

��
Rh1 ×C(Z1)

f // Rh2 ×C(Z2),

where the descending vertical arrows are the quotient maps of the cones, commutative. (If Z2 = /0 then the
corresponding f̃ maps Rh1 ×R×Z1 into Rh2 .)

Next, let X be a conically A-stratified space of depth k. By a smoothly stratified chart on X we mean a
stratified chart

X ⊇ U
ϕ−−→ Rh ×C(Z)

in which Z is a smoothly stratified space of depth less than k. Two smoothly stratified charts {U1,ϕ1} and
{U2,ϕ2} are compatible if either U1 ∩U2 = /0 or the stratified homeomorphism

ψ = ϕ2 ◦ϕ
−1
1 : ϕ1(U1 ∩U2)−→ ϕ2(U2 ∩U2),

where ϕ j(U1 ∩U2) is stratified as an open subset of Rh j ×C(Z j), is a smooth stratified map and so is its
inverse.
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A smoothly stratified atlas on a conically poset-stratified space X of depth k consists of a collection of
compatible smoothly stratified charts {Uα ,ϕα}, whose domains form an open cover of X . Two smoothy
stratified atlases are equivalent if their charts are mutually compatible.

A smooth atlas stratified space of depth k consists of a conically poset-stratified space X of depth
k together with an equivalence class of smoothly stratified atlases, (X ,A ). A smooth stratified map f :
X −→ Y between smoothly stratified spaces of depth at most k is a continuous stratified map such that
for each smooth chart (U1,ϕ1) on X and (U2,ϕ2) on Y, compatible with the respective atlases, satisfying
f (U1)⊆ U2, the composition

ϕ2 f ϕ
−1
1 : Rh1 ×C(Z1)−→ Rh2 ×C(Z2)

is a smooth stratified map. A stratified diffeomorphism between two smoothly stratified spaces of depth at
most k is a stratified homeomorphism that is smooth with smooth inverse.

We will usually refer to a smooth atlas stratified space simply as a smoothly stratified space. This is
justified by the fact, established in §2.4, that this is the same class of spaces as Thom-Mather stratified
spaces and (hence) as Whitney stratified subsets of Euclidean space.

As anticipated, the advantage of this definition is that it helps to generalize the constructions of differential
geometry to stratified spaces. For example, let us consider the Cartesian product. An easy induction shows
that if X1 −→ A1 and X2 −→ A2 are smooth atlas stratified spaces then so is X1 × X2 −→ A1 × A2 with
coordinate charts given by the product of coordinate charts on each factor. Indeed, for the inductive step it
suffices to recall that

Rh1 ×C(Z1)×Rh2 ×C(Z2) = Rh1+h2 ×C(Z1 ∗Z2),

where Z1 ∗Z2, the join of Z1 and Z2, is given by

Z1 ∗Z2 =C[0,1](Z1)×Z2
⊔

Z1×Z2

Z1 ×C[0,1](Z2)

and so, inductively, a smooth atlas stratified space.
Similarly, a fiber bundle of smoothly stratified spaces

W — X
φ−−→ Y

is a smooth map between smoothly stratified spaces X
φ−−→ Y such that for every point in Y there is an open

neighborhood U of that point and a stratified diffeomorphism W ×U−→ φ−1(U) such that the diagram

W ×U //

��

φ−1(U)

φ

��
U
� � // Y

in which the left vertical arrow is the canonical projection, commutes. The stratum poset of X is the product
of those of W and Y.

A smoothly stratified pseudomanifold is a smoothly stratified space whose regular part is dense and has
a fixed dimension and whose other strata have dimension at least two less than the regular part. We say that
a smoothly stratified space is orientable if its regular part is an orientable manifold and an orientation refers
to an orientation of the regular part.

Remark 2.3 (Relation to conically smooth stratified spaces). Our definition of smooth atlas stratified spaces
is inspired by that of “conically smooth stratified spaces” in [AFT17], however our notion of smooth function
is different from theirs. Suppose Z is a smooth manifold and let us consider what constitutes a smooth
stratified function from C(Z) to itself. For us, this is the same as a stratified function F : C(Z) −→ C(Z)
that lifts to a smooth function R+× Z −→ R+× Z; equivalently, a stratified function F : C(Z) −→ C(Z)
which restricted to the regular parts (0,∞)×Z −→ (0,∞)×Z extends by continuity to a smooth function
[0,∞)×Z −→ [0,∞)×Z.
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On the other hand, from [AFT17, Definition 3.3.1], a function F : C(Z)−→C(Z) will be conically smooth
if its restriction to the regular parts (0,∞)×Z −→ (0,∞)×Z is smooth and f is “conically smooth along
R0”. Let us consider what this means for a function whose restriction to the regular parts is of the form

F(s,z) = (s, fs(z))

where s 7→ fs is a smooth family of functions on Z. From [AFT17, Definition 3.1.4], in order for this to be
“C1 along R0,” we make use of the dilation γt(s,z) = (ts,z), consider

D f : (0,∞)×Z −→ (0,∞)×Z,

D f (s,z) := lim
t→0

(γ−1
t ◦ f ◦ γt)(s,z) = (s, f0(z)),

and require for this function to extend to a continuous function C(Z)−→C(Z). This computation also shows
that D(D f ), defined in the same way, is again equal to D f . Thus as long as f0 : Z −→ Z is a continuous
function, F will be conically smooth along R0 and hence conically smooth as a map C(Z) −→C(Z). Note
that, e.g., by mollification, it is possible for any continuous function f0 : Z −→ Z to appear as the limit of a
family fs(z) which is smooth in both s and z for s > 0. On the other hand, in order for F to be smooth in our
sense f0(z) must be smooth. (The authors are grateful to Lukas Waas for explaining this example to them.)

2.3. The resolution of a smooth atlas stratified space. There is a resolution process for smoothly strat-
ified spaces, somewhat analogous to a C∞ resolution of singularities, that can be interpreted as saying that
any smoothly stratified space of finite depth can be obtained from a manifold with corners by making certain
identifications on the boundaries. In fact this construction establishes an equivalence of categories between
smoothly stratified space of finite depth and a class of manifolds identified by Richard Melrose. We discuss
the resolution of a stratified space with a single singular stratum into a smooth manifold with fibered bound-
ary in the prelude above. For a stratified space with more than a single singular stratum, the resolution of X
is a manifold with corners and its structure is the following.

Definition 2.4 (Manifolds with fibered corners). [ALMP12, Definition 2], [AM11, Definition 3.3]
Let M be a second countable Hausdorff topological space.

• A chart with corners on M consists of an open subset U⊆ M and a homeomorphism

ϕ : U−→ Rh × [0,∞)k

for some h,k ≥ 0. Two charts, (U1,ϕ1) and (U2,ϕ2), are compatible if either U1 ∩U2 = /0 or

ϕ2 ◦ϕ
−1
1 : ϕ1(U1 ∩U2)−→ ϕ2(U1 ∩U2)

is a diffeomorphism of open subsets of Rh1 × [0,∞)k1 and Rh2 × [0,∞)k2 . (This means that there are
open sets V j ⊆ Rh j+k j such that

ϕ j(U j ∩U j) = V j ∩ (Rh j × [0,∞)k j)

and a diffeomorphism V1 −→ V2 that restricts to ϕ2 ◦ϕ
−1
1 . In particular h1 + k1 = h2 + k2 =: n,

h1 = h2, and k1 = k2.
• A C∞-structure with corners on M is a collection, {Uα ,ϕα}α∈A , of compatible charts with corners

on M such that the domains of these stratified charts form a basis for the topology of M.
• If M has a C∞-structure with corners and ζ ∈ X is represented by (x1, . . . ,xn) in some chart with

corners then the number of zeros in this n-tuple,which we denote by c(ζ ), is independent of the chart.
By a boundary hypersurface of M we mean the closure of a component of {ζ ∈ M : c(ζ ) = 1}
and by a collective boundary hypersurface we mean the union of a disjoint collection of boundary
hypersurfaces.

• The space M is a manifold with corners if it is endowed with a C∞-structure with corners and every
boundary hypersurface is embedded. (Equivalently, for every boundary hypersurface H there is a
non-negative smooth function ρ : M −→R such that ρ−1(0) = H and near each point of H there are
coordinates with ρ as a first element. We call such a function a boundary defining function for H.)
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• By a boundary stratification of a manifold with corners M we mean a poset-stratification S : M −→
A such that, for each a ∈ A,

∂aM := S−1(a)

is either the interior of M or a collective boundary hypersurface and such that if S−1(a)∩S−1(b) ̸= /0
then a and b are comparable.

• An iterated fibration structure on a manifold with corners M with a boundary stratification S :
M −→ A consists of, for each a ∈ A, a smooth fiber bundle with compact fibers,

FaM−∂aM
φa−−→ BaM,

where the base BaM and the fiber FaM are smooth manifolds with corners, and, whenever S−1(a)∩
S−1(b) ̸= /0 and a < b, a commutative diagram of smooth fiber bundles

∂aM∩∂bM
φb //

φa

%%

∂aBbM
φba

zz
BaM

where ∂aBbM is a collective boundary hypersurface of BbM. For the interior of M the fiber bundle
is the identity map M◦ −→ M◦.

• We refer to a manifold with corners with an iterated fibration structure as a manifold with fibered
corners.

• If M and N are manifolds with corners and iterated fibration structures then by a smooth fibered
corners map between them we mean a smooth stratified map between them that sends fibers of
each boundary fiber bundle of M to fibers of the corresponding boundary fiber bundle of N. By a
fibered corners diffeomorphism we mean an invertible smooth fibered map whose inverse is also
a smooth fibered map.

Remark 2.5. Note that if M is a connected manifold with fibered corners then the interior of M corresponds
to a maximum in the poset of strata. In the terminology of [KR23] what we have described is an “interior
maximal” manifold with fibered corners. As we shall have no need of other iterated fibration structures we
omit the ‘interior maximal’ qualifier.

Remark 2.6. If M is a manifold with fibered corners and FaM − ∂aM
φa−−→ BaM is one of the correspond-

ing boundary fiber bundles, then both the fiber FaM and the base BaM themselves inherit the structure of
manifold with fibered corners (see, e.g., [KR23, Proposition 4.2]).

Remark 2.7. Note that a manifold with corners can be considered as a smoothly stratified space with strata
given by the connected components of the level sets of the codimension function c above. Endowing (R+)h

with this stratification, which we refer to as the natural stratification of a manifold with corners, we
can obtain a smooth stratified atlas from an atlas of charts with corners. This is generally not a boundary
stratification as just defined but will be useful in section 5.1. (For example if M = [0,1]2 then an example of
a boundary stratification would be to take A = {0,1}, ∂0M = {0,1}× [0,1] and ∂1M = [0,1]×{0,1}, while
the natural stratification would have strata (0,0), (0,1), (1,0), (1,1), {0}× (0,1), {1}× (0,1), (0,1)×{0},
and (0,1)×{1}.)

To resolve a stratified space we will perform a radial blow-up of a minimal singular stratum thereby
replacing it with a boundary hypersurface. To carry this out systematically we will need to introduce another
definition for the intermediate spaces we will encounter.

Definition 2.8 (Hybrid spaces and functions). We will define hybrid spaces as particular types of poset
stratified spaces, inductively by depth. A hybrid space of depth zero is a smooth manifold and a smooth
hybrid function is an ordinary smooth function. A hybrid space of depth one is either a smooth manifold
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with boundary or a smooth atlas stratified space of depth one, with the corresponding smooth functions as
defined above.

Assume inductively that we have defined hybrid spaces of depth less than k and the corresponding smooth
functions and let A be poset of depth k. Let X be a connected second countable Hausdorff topological space
with a poset-stratification X −→ A. Assume that A is partitioned into

A = Ares ⊔Asing ⊔{reg}.

The stratum Xreg, known as the regular part, is open and dense, and reg is the maximum element of A. The
set Ares (which will correspond to the strata that have already been resolved) and the set Asing (which will
correspond to the strata that have not yet been resolved) are possibly empty, and no element of Ares is greater
than an element in Asing.

For a ∈ Ares, Xa is a hybrid space of depth less than k and participates in a fiber bundle

Z — Xa
φa−−→ BaX

where BaX is a smooth manifold with corners with a boundary stratification and Z is a hybrid space of depth
less than k. A res-chart centered at a point ζ ∈ Xa is a map ϕ : U−→ R+×V×Z, where V is a coordinate
chart in BaX , with the property that U∩Xa = φ−1

a (V) and ϕ|U∩Xa participates in a trivialization of φa,

(2.1) φ−1
a (V)

ϕ|U∩Xa //

φa

""

V×Z

}}
V

and such that ϕ is a stratified homeomorphism which sends strata of U corresponding to Ares to (strata of
R+×V) times Z and strata of U corresponding to Asing to R+×V times (strata of Z).

For a ∈ Asing ∪{reg}, Xa is a smooth manifold. A sing-chart centered at a point ζ ∈ Xa consists of a
smoothly stratified chart which does not intersect any Xb with b ∈ Ares.

A smooth hybrid map between sets of the form

(2.2) (R+)h ×Z ⊇ V×Z −→ V′×Z′ ⊆ (R+)h′ ×Z′,

in which Z and Z′ are hybrid spaces of depth less than k, is a poset-stratified map when the first factors are
endowed with a boundary stratification if appropriate (i.e., if V has boundary) which is also a smooth map
when the first factors are considered as smooth (i.e., trivially stratified).

Two overlapping charts are compatible if the corresponding transition map of the form (2.2) is a smooth
hybrid difeomorphism.

A hybrid atlas on X consists of a collection of compatible charts whose domains form a basis for the
topology of X . A space X as above endowed with a hybrid atlas is a hybrid space of depth k. A smooth
map between hybrid spaces of depth at most k is a continuous stratified map whose localization to charts in
the atlases is smooth as described above.

To show that every smooth atlas stratified space resolves to a manifold with fibered corners, the key result
is the following proposition.

Proposition 2.9. Let X −→ A be a hybrid space with partition A = Ares ⊔Asing ⊔{reg} such that Asing ̸= /0,
and let a be a minimal element of Asing.

i) the closure of Xa in X , Xa, is a smooth manifold with corners,
ii) there is a hybrid space Sa participating in a fiber bundle

Z — Sa
φa−−→ Xa

where Z is the link of Xa in X ,
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iii) a hybrid atlas on X induces a hybrid atlas on

[X ;Xa] := (X \Xa)⊔Sa

endowed with the poset stratification [X ;Xa]−→ A′ where

A′ = A with A′
res = Ares ∪{a}, A′

sing = Asing \{a}
and where the strata are

[X ;Xa]b =


Xb \Xa if b < a
Sa if b = a
Xb otherwise

iv) if there is a stratum Xb such that Xb ∩Xa ̸= /0 (necessarily b < a) and

Xb
φb−−→ BbX , [X ;Xa]b

φ̃b−−→ BbX

are the corresponding fiber bundles, then

[X ;Xa]b ∩Sa = φ
−1
a (Xa ∩Xb)

participates in the commutative diagram

[X ;Xa]b ∩Sa
φa //

φ̃b %%

Xa ∩Xb

φb{{
BbX

Proof. We proceed by induction on the depth of A. If the depth of A is zero then there is nothing to prove.
i) Let us denote the link of Xa in X by Z, so that each point in Xa has a stratified chart that identifies a

neighborhood with Rh ×C(Z). Our immediate goal is to show that points in the closure of Xa have compat-
ible charts with image in (R+)h ×C(Z). Note that here to ease the notational burden we will use charts into
(R+)h ×C(Z) with the understanding that they are homeomorphisms onto their image but while we assume
that this image projects onto the second factor we do not assume that it is onto the first factor. Thus when we
use (R+)h we are allowing corners up to codimension h but not asserting that this codimension is realized.
If we recall that a smooth map defined on (R+)h means the restriction of a smooth map defined on some
open set in Rh, then our notion of smooth map between the images of charts of this form is as one would
expect.

We know that strata in Asing whose closures have non-trivial intersection satisfy the frontier condition, so
if ζ ∈ Xa \Xa is contained in Xb then b ∈ Ares. If

ϕ : U−→ R+×V×W

is a res-chart of Xb centered at ζ , where we are using the notation from Definition 2.8, then ϕ(U∩Xa) is of
the form R+×V×W ′ for some stratum W ′ of W. Now W is itself a hybrid space and since approaching W ′

from W \W ′ corresponds via ϕ to approaching Xa from X \Xa, W ′ must be a stratum in the ‘sing’ part of
the partition of the strata of W. Thus points in W ′ have sing-charts in W of the form ϕ ′ : V′ −→ Rh′ ×C(L)
for some h′ and L (the link of W ′ in W ). Let U′ ⊆ X be ϕ−1(R+×V×V′). By combining ϕ with an open
embedding of V into an appropriate (R+)h′′ and with ϕ ′ we obtain

ψ : U′ ϕ−−→ R+×V×V′ −→ R+× (R+)h′′ ×Rh′ ×C(L).

Since the restriction of ψ to U′ ∩Xa is a coordinate chart (a sing-chart for Xa) we see that 1+ h′+ h′′ = h
and L = Z. To simplify the notation we assume that the image of ψ lies in R+× (R+)h′′ × (R+)h′ ×C(Z) =
(R+)h ×C(Z) (by composing with a stratified diffeomorphism if necessary) and we refer to

ψ : U′ −→ (R+)h ×C(Z),

as an extended coordinate chart.
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Note that

(2.3) ψ(U′∩Xa)⊆ (R+)h ×{∗}

(since ϕ ′(W ′)⊆ Rh′ ×{∗}) and that every point in Xa \Xa is in the domain of such an extended coordinate
chart. These charts and the compatibility they inherit from that of the charts of X give Xa the structure of a
smooth manifold with corners.

ii) Let A be the union of a hybrid atlas for X and the extended coordinate charts for points in Xa \Xa
from (i), and let Aa be the subset of those charts centered at points in Xa,

Aa = {(U ϕ−−→ (R+)h ×C(Z)) ∈ A : ϕ
−1((R+)h ×{∗})⊆ Xa}.

Let us consider R+ −→ [1] as a smooth atlas stratified space with poset {0 < 1} and R+
0 = {0}, and let Pa

be the paths in X that start at Xa and immediately move on to ‘higher’ strata,

Pa = {χ : R+ −→ X smooth stratified map : χ(t) ∈ Xa ⇐⇒ t = 0}.

By definition of smooth stratified maps, whenever (U
ϕ−−→ (R+)h×C(Z)) ∈Aa and χ ∈Pa, ϕ ◦χ has a lift

(R+)h ×R+×Z

��
R+ ϕ◦χ //

ϕ̃◦χ

88

(R+)h ×C(Z)

Let us define an equivalence relation on Pa by

χ1 ∼ χ2 ⇐⇒


χ1(0) = χ2(0) and

ϕ̃ ◦χ1(0) = ϕ̃ ◦χ2(0) for all charts in Aa including χ1(0)

and denote the set of equivalence classes by Sa,

Sa = Pa⧸∼ .

To give the set Sa some more structure, first note that there is an obvious map

φa : Sa −→ Xa, [χ] 7→ χ(0).

Next, given (U
ϕ−−→ (R+)h ×C(Z)) ∈ Aa, let us denote

Ua = U∩Xa, ϕa = ϕ|Ua : Ua −→ (R+)h

and then

(2.4) ϕ̃a : φ−1
a (Ua) // (R+)h ×Z,

[χ] � // ϕ̃ ◦χ(0)

and ϕSa = (ϕ−1
a × id)◦ ϕ̃a : φ

−1
a (Ua)−→ Ua ×Z.
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If (U′ ϕ ′
−−→ (R+)h ×C(Z)) ∈ Aa is another chart with U′ ∩Xa = Ua then, on U∩U′, ϕ ′ = f ◦ϕ for some

stratified diffeomorphism whose lift

(2.5) (R+)h ×R×Z ⊇ V×R×Z
f̃ // V′×R×Z ⊆ (R+)h ×R×Z

(R+)h ×R+×Z ⊇ V×R+×Z
?�

OO

��

f̃≥0 // V′×R+×Z ⊆
?�

OO

��

(R+)h ×R+×Z

(R+)h ×C(Z) ⊇ V×C(Z)
f // V′×C(Z) ⊆ (R+)h ×C(Z)

restricts to a stratified diffeomorphism V×{0}×Z −→V′×{0}×Z of the form (y,0,z) 7→ ( f̃ ′(y),0, f̃ ′′(y,z)).
It follows that ϕ ′

Sa
: φ−1

a (Ua)−→ Ua ×Z is given by

φ
−1
a (Ua)

ϕSa−−−→ Ua ×Z
f̃ ′′′−−−→ Ua ×Z, where f̃ ′′′(u,z) = (u, f̃ ′′(ϕa(u),z))

and hence differs from ϕSa by a stratified diffeomorphism. Thus we may, without ambiguity, give Sa the
structure of a hybrid stratified space by requiring that all of the maps ϕSa are hybrid diffeomorphisms.
Finally, over each Ua we have a commutative diagram

φ−1
a (Ua)

ϕSa //

φa ##

Ua ×Z

||
Ua

with the arrow on the right given by the projection onto the first factor, so φa : Sa −→ Xa is a stratified fiber
bundle with fiber Z.

iii) Next we define the blow-up of X along Xa to be

[X ;Xa] = (X \Xa)⊔Sa

together with a blow-down map
β : [X ;Xa]−→ X

given by collapsing the fibers of φa. We define a poset stratification [X ;Xa]−→ A by

[X ;Xa]b =


closure of β−1(Xb \Xa) if b < a
Sa if b = a
β−1(Xb) otherwise

(which is just a more careful version of the statement in the proposition). We will show that a hybrid atlas for
X induces a hybrid atlas for [X ;Xa] with a moved from the ‘sing’ part of the partition of A to the ‘res’ part.
That is, we will show that we can produce a hybrid atlas for [X ;Xa] for which points in a stratum indexed by
Ares ∪{a} have res-charts and point in a stratum indexed by Asing \{a} have sing-charts.

First let us produce res-charts for the new res stratum [X ;Xa]a = Sa. The interesting charts we need
to consider are the ones obtained from A as follows. If (U

ϕ−−→ (R+)h ×C(Z)) ∈ Aa then, recalling the
definition of ϕ̃a from (2.4), we let Ua = U∩Xa and

Û= (U\Ua)⊔φ
−1
a (Ua), ϕ̂ = ϕ|U\Ua ⊔ ϕ̃a : Û−→ (R+)h ×R+×Z

where we are identifying Image(ϕ̃a) ⊆ (R+)h × Z as a subset of (R+)h ×{0}× Z. Let us consider the

behavior of this construction when changing coordinate chart. Suppose (U′ ϕ ′
−−→ (R+)h ×C(Z)) ∈ Aa is
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another chart with U∩U′ ̸= /0 then, on U∩U′, ϕ ′ = f ◦ϕ for some stratified diffeomorphism participating
in a diagram like (2.5) and, since f |V×(0,∞)×Z = f̃ |V×(0,∞)×Z and ϕ̃ ′ = f̃ |V×{0}×Z ◦ ϕ̃, we have

ϕ̂
′ = f̃≥0 ◦ ϕ̂.

Thus ϕ̂ and ϕ̂ ′ are compatible res-charts for [X ;Xa].
(Although we started our induction with the case of depth zero, we note that the proof thus far could be

used to establish the case of depth one as the base of the induction.)
Now let us consider a stratum [X ;Xa]b, b ̸= a. For b ∈ Asing, the pull-back of a sing-chart from X to [X ;Xa]

is again a sing-chart. Indeed, a sing-chart centered at a point ζ ∈Xb is a stratified diffeomorphism of the form
ϕ : U−→Rℓ×C(W ) with U⊆ X \Xa and, since β restricts to the identity map between [X ;Xa]\ [X ;Xa]a and
X \Xa, ϕ ◦β : β−1(U)−→ Rℓ×C(W ) is a sing-chart. Similarly compatibility between these sing-charts is
clear because their overlap takes place in X \Xa and so is untouched by the blow-up of Xa.

It remains to consider a stratum [X ;Xa]b, with b ∈ Ares. If [X ;Xa]b, does not intersect the new ‘front face’
[X ;Xa]a = Sa then res-charts of Xb lift to res-charts of [X ;Xa]b essentially unchanged, so let us assume that
[X ;Xa]b ∩Sa ̸= /0, i.e., that Xb ∩Xa ̸= /0. Let us denote the fiber bundle of Xb by

W — Xb
φb−−→ BbX .

The discussion in (i) shows that the restriction of φb to Xb ∩Xa still fibers over BbX and (as we did above)
we denote the fiber by W ′, thus

W ′ — Xb ∩Xa
φb|Xb∩Xa−−−−−−→ BbX .

Since Xa is a minimal sing-stratum in the stratification of X ,W ′ is a minimal sing-stratum in the stratification
of W and so our inductive hypothesis applies and we know that [W ;W ′] is a hybrid space. It follows that
blowing-up Xa in X has the effect of blowing-up W ′ in each fiber of φb and so produces the fiber bundle

[W ;W ′] — [X ;Xa]b
φ̃b:=φb◦β−−−−−−→ BbX .

A trivialization of φb lifts to a trivialization of φ̃b and correspondingly a lift of a res-chart ϕ : U −→ R+×
V×W for Xb lifts to a res-chart ϕ̃ : Ũ−→ R+×V× [W ;W ′] for [X ;Xa]b.

iv) Finally let us consider the relation between the fiber bundles φa and φ̃b. We have seen how blowing-up
Xa in X has the effect of blowing-up W ′ in each fiber W of φb. The ‘front face’ of [X ;Xa], i.e., the boundary
hypersurface produced by the blow=up, [X ;Xa]a, thus corresponds to the front face of [W ;W ′] in each fiber
of φ̃b. That is to say that φ̃b restricts to a fiber bundle

ff[W ;W ′] — [X ;Xa]b ∩ [X ;Xa]a
φ̃b−−→ BbX .

On the other hand, since φa is equal to the restriction of β to [X ;Xa]a we have

φa
(
[X ;Xa]b ∩ [X ;Xa]a

)
= Xb ∩Xa.

Thus we have the commutative diagram

[X ;Xa]a ∩ [X ;Xa]b
φa //

φ̃b ''

Xa ∩Xb

φb|Xa∩Xb{{
BbX

as required. □

If X −→ A is a smooth atlas stratified space and then repeated applications of this proposition produce
the resolution of X , res(X), a smooth manifold with corners with a boundary stratification parametrized by
A. That is to say,

res(X) := [· · · [X ;Xa0 ];Xa1 ]; · · · ;Xan ],
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where a0, . . . ,an is any non-decreasing enumeration of A. (It is easy to see that the result is independent of
the order, up to a fibered corner diffeomorphism.) The natural map

βX : res(X)−→ X ,

known as the blow-down map, is the composition of the blow-down maps of the individual blow-ups.

Theorem 2.10. Whenever X −→ A is a smooth atlas stratified space, its resolution res(X) inherits from
X the structure of a manifold with fibered corners with boundary stratification parametrized by A. The
restriction of βX : res(X) −→ X , the blow-down map, to res(X)◦ is a diffeomorphism onto Xreg. Moreover,
for each a ∈ A we have

(2.6) ∂ares(X) = β
−1
X (Xa),

and, if Z is the link of Xa in X , then the corresponding fiber bundle satisfies

Fares(X) = res(Z) — ∂ares(X)
φa−−→ Bares(X) = res(Xa), φa|(∂ares(X))◦ = βX |(∂ares(X))◦ .

Whenever M −→ A is a manifold with fibered corners whose boundary stratification is parametrized by A
there is a smooth atlas stratified space X −→ A such that M = res(X).

Next, suppose X ′ −→ A′ is another smooth atlas stratified space and f : X −→ X ′ is a stratified map such
that

(2.7) f (Xreg)⊆ X ′
reg.

Then f is a smooth stratified map if and only if there exists a smooth fibered corners map f̃ : res(X) −→
res(X ′), called the ‘lift’ of f , participating in a commutative diagram

(2.8) res(X)
f̃ //

βX
��

res(X ′)

βX ′
��

X
f // X ′

Every smooth fibered corners map satisfying

(2.9) f̃ (res(X)◦)⊆ res(X ′)◦

is the lift of one and only one smooth stratified map.
It follows that resolution induces an equivalence of categories between smooth atlas stratified spaces and

smooth stratified maps satisfying (2.7) and manifolds with fibered corners and smooth fibered corners maps
satisfying (2.9).

Proof. The statements about the structure of res(X) follow immediately from the proposition. So too does
that fact that every manifold with fibered corners M is the resolution of a smooth atlas stratified space.
Indeed note that blowing-up a minimal singular stratum of a hybrid space is reversible. So starting with M
we can choose a maximal boundary stratum and blow it down to obtain a hybrid space with one singular
stratum. Iterating until we have blown-down all of the res-strata produces a smooth atlas stratified space
whose resolution is, manifestly, equal to M.

Next let us consider the statements about lifting maps. First note that two maps f̃ and f participating in
(2.8) mutually determine each other since the blow-down map identifies the interior of the manifold with
corners with the regular part of the stratified space and these are each dense in their corresponding space.
Thus if a map has a lift, it is unique.

Given a smooth stratified map f : X −→ X ′ and a minimal stratum Xa of X there is a stratum X ′
a′ of

X ′ such that f (Xa) ⊆ X ′
a′ . It is easy to see that f will lift to a smooth map f̃ : [X ;Xa] −→ [X ′;X ′

a′ ]. (We
assume that Xa and X ′

a′ are singular strata for the sake of concreteness.) Indeed, denote the blow-down maps

by β : [X ;Xa] −→ X and β ′ : [X ′;X ′
a′ ] −→ X ′ and suppose U

ϕ−−→ Rh ×C(Z) and U′ ϕ ′
−−→ Rh′ ×C(Z′) are

coordinate charts of points in Xa, X ′
a′ , respectively, such that f (U)⊆ U′. Each of these charts induce a chart
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of the corresponding blown-up space, Ũ
ϕ̃−−→ Rh ×R+×Z and Ũ′ ϕ̃ ′

−−→ Rh ×R+×Z′, and by definition of
smoothness there is a lift f̃U of f |U fitting into a commutative diagram

Ũ

β

��

ϕ̃ %%

f̃U // Ũ′

β ′

��

Rh ×R+×Z //

��

Rh ×R+×Z′
ϕ̃ ′−1

99

��
Rh ×C(Z) // Rh ×C(Z′)

ϕ ′−1

%%
U

ϕ

99

f |U // U′

From the definition of smooth atlas we see that this lift of f |U is independent of the particular coordinate
chart used in its definition and hence lifting f one coordinate chart at a time produces a global lift f̃ .

If X and X ′ are hybrid spaces then the analogous argument, with greater notational complexity, shows
that f lifts to f̃ : [X ;Xa]−→ [X ′;X ′

a′ ]. In this way, lifting one blow-up at a time, we see that smooth stratified
maps satisfying (2.7) lift to maps of the resolutions. (Note that if (2.7) does not hold then the analogous
result is usually false. Indeed if f (Xreg)⊆ X ′

a′ then lifting f would require a smooth f̃ satisfying

∂a′res(X ′)

φa′
��

res(X)

f̃
99

f // res(X ′
a′)

and this is clearly topologically obstructed.)
On the other hand given a smooth fibered corners map f̃ : res(X)−→ res(X ′), the definition of smoothness

requires that f̃ sends the fibers of a boundary fiber bundle of X to the fibers of the corresponding boundary
fiber bundle of X ′ and so it descends to a map between the spaces obtained by blowing-down these boundary
faces. Successively blowing-down all of the boundary fiber bundles we end up with a map between X and
X ′ such that (2.8) commutes.

Finally note that uniqueness implies that the lift of a composition is the composition of the lifts. Thus
resolution and blow-down are mutually inverse functors of categories between smooth atlas stratified spaces
and smooth stratified maps satisfying (2.7) and manifolds with fibered corners and smooth fibered corners
maps satisfying (2.9). □

The idea of resolving a stratified space to a manifold with corners goes back to Thom [Tho69]. For
Thom-Mather stratified spaces (which we will discuss next) resolution was worked out by Verona [Ver84,
§6.3.1]. That one obtains a manifold with fibered corners was pointed out by Melrose, see [ALMP12, §2]
where this is discussed following [BHS91].

Resolution of ‘conically smooth’ spaces is studied in [AFT17, §7] where it is referred to as ”Unzip”. In
[AFT17, Theorem 7.3.8] the authors establish that Unzip is a functor, however see Remark 2.3.

Below, we will find it useful to identify the C∗-algebra of continuous functions on a smooth atlas stratified
space X with a C∗-subalgebra of the continuous functions on res(X). Specifically, we define

(2.10) CΦ(res(X)) = { f ∈ C(res(X)) : for all a ∈ S(X) we have f |∂aX ∈ φ
∗
aC(BaX)}
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and it is easy to see that pull-back along the blow-down map βX : res(X)−→ X establishes an isomorphism
of ∗-algebras between C(X) and CΦ(res(X)). We see that the smooth functions X −→ C are precisely the
functions in C(X) that pull-back along βX to be in C∞

Φ
(res(X)) := CΦ(res(X))∩C∞(res(X)).

2.4. Smooth atlas stratified spaces and Thom-Mather stratified spaces. This section will not be used
in the rest of the paper. In this subsection we will show that the class of spaces we defined in Definition
2.2 coincide with Thom-Mather stratified spaces. We will first show that Thom-Mather stratified spaces are
examples of smooth atlas stratified spaces. The converse is easy thanks to the resolution process.

Definition 2.11. A Thom-Mather stratified space consists of a triple (X ,S,T) where:

i) X is a Hausdorff, locally compact topological space with a countable basis for its topology.
ii) S is a locally finite family of locally closed subsets of X , known as the strata of X , each of which is a

smooth manifold. The strata cover X and satisfy the frontier condition

L,M ∈ S and L∩M ̸= /0 =⇒ L ⊆ M.

iii) T contains, for each M ∈ S, a triple (TM,πM,ρM) in which TM is an open neighborhood of M in X , and

πM : TM −→ M, ρM : TM −→ [0,∞)

are continuous functions such that πM|M = idM and ρ
−1
M (0) = M. The neighborhood TM is known as a

tubular neighborhood of M in X and the triple (TM,πM,ρM) as the control data of M in X ,

The control data are compatible in that, if L and M are distinct strata such that L ⊆ M and TL,M = TL ∩M,
πL,M = πL|TL,M , ρL,M = ρL|TL,M , then

(πL,M,ρL,M) : TL,M −→ L× (0,∞)

is a smooth submersion and, if N is a third distinct stratum such that M ⊆ N, then for any ζ ∈ TL,M ∩TL,N ∩
π
−1
M,N(TL,M) we have

πL,MπM,N(ζ ) = πL,N(ζ ), ρL,MπM,N(ζ ) = ρL,N(ζ ).

Remark 2.12. As mentioned above, the main reason we work with smooth atlas stratified spaces is that they
make it easy to work with fiber bundles of stratified spaces. An example of the complications that arise when
working with Thom-Mather stratified spaces is that, while the product of Thom-Mather stratified spaces is
again a Thom-Mather stratified space, the product of the Thom-Mather data is not Thom-Mather data for the
product (pointed out in, e.g., [Ver84, §1.2.9]). For a simple example, consider Y = [0,∞)x as a Thom-Mather
stratified space with strata {0} and (0,∞), and with Thom-Mather data

T{0} = [0,1), π{0}(x) = 0, ρ{0}(x) = x,

T(0,∞) = (0,∞), π(0,∞)(x) = x, ρ(0,∞) = 0.

Now on X = Y 2 with the product stratification, the product Thom-Mather data would be

T(0,0) = [0,1)x × [0,1)x′ , π(0,0)(x,x
′) = (0,0), ρ(0,0)(x,x

′) = x+ x′,

T{0}×(0,∞) = [0,1)x × (0,∞)x′ , π{0}×(0,∞)(x,x
′) = (0,x′), ρ{0}×(0,∞)(x,x

′) = x,

T(0,∞)×{0} = (0,∞)x × [0,1)x′ , π(0,∞)×{0}(x,x
′) = (x,0), ρ(0,∞)×{0}(x,x

′) = x′,

T(0,∞)2 = (0,∞)2, π(0,∞)(x,x
′) = (x,x′), ρ(0,∞)2 = 0

and the problem is that this data does not satisfy the compatibility condition

ρ(0,0) ◦π{0}×(0,∞) = ρ(0,0) on T(0,0)∩T{0}×(0,∞),

as this would imply, e.g., that ρ(0,0)(0,x′) = ρ(0,0)(x,x′) for all (x,x′) in this set. This makes the definition of
a fiber bundle of Thom-Mather stratified spaces inconvenient.
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Given a Thom-Mather stratified space (X ,S,T), we can naturally consider S as a poset with L ≤ M ⇐⇒
L ⊆ M and X as poset stratified by the obvious map X −→ S.

A controlled map between Thom-Mather stratified spaces (X ,SX ,TX) and (Y,SY ,TY ) is a continuous
stratified map f between X −→ SX and Y −→ SY such that, whenever f (Xa)⊆ Yb, the restriction

f |Xa : Xa −→ Yb

is a smooth map and (possibly after shrinking the size of the tubular neighborhoods) we have

f (TXa)⊆ TYb , f ◦πXa = πYb ◦ f , ρXa = ρYb ◦ f .

A controlled isomorphism is a bijective controlled map whose inverse is also controlled, hence it is in
particular a homeomorphism that restricts to a diffeomorphism on each stratum.

An important property of controlled isomorphisms, identified by Brasselet-Hector-Saralegi [BHS91] is
that they lift under ‘déplissage’. In particular this means that for every controlled isomorphism

f : Rh1 ×C(Z1)−→ Rh2 ×C(Z2)

there a controlled isomorphism

f̃ : Rh1 ×R×Z1 −→ Rh2 ×R×Z2,

that makes the diagram

Rh1 ×R×Z1
f̃ // Rh2 ×R×Z2

Rh1 ×R+×Z1
?�

OO

��

Rh2 ×R+×Z2
?�

OO

��
Rh1 ×C(Z1)

f // Rh2 ×C(Z2),

where the descending vertical arrows are the quotient maps of the cones, commutative. (We have taken
this property and, for not necessarily bijective maps, made it the definition of smooth stratified maps in the
setting of smooth atlas stratified spaces above.)

Theorem 2.13. Thom-Mather stratified spaces admit smooth stratified atlases such that controlled isomor-
phisms are smooth stratified diffeomorphisms.

Smooth atlas stratified spaces admit control data giving them the structure of a Thom-Mather stratified
space.

Proof. Since the statement is obvious for Thom-Mather stratified spaces of depth zero, let us assume induc-
tively that we have established the statement of the proposition for stratified spaces of depth less than some
ℓ ∈ N.

Let us recall some of the well-known consequences of Thom’s first isotopy lemma [Ver84, Theorem
2.6] when applied to the Thom-Mather control data. This lemma says that every proper continuous map
F : X −→ M between a Thom-Mather stratified space X and a smooth manifold M, whose restriction to
each stratum of X is a smooth submersion, is a locally trivial fibration. Thus such a map participates in a
fiber bundle whose fiber is a Thom-Mather stratified space and with structure group given by the controlled
isomorphisms of the fiber.

If M is a stratum of a Thom-Mather stratified space with control data (TM,πM,ρM) then (possibly after
shrinking TM and scaling ρM) we can apply the isotopy lemma to recognize

F = (πM,ρM)|TM\M : TM \M −→ M× (0,1),

which the definition of Thom-Mather spaces assures us is a smooth submersion when restricted to each
stratum of TM \ M, as a locally trivial fibration. If we denote the restriction of πM to H = ρ

−1
M (1

2) by
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φM : H −→ M then we can identify the typical fiber of F with H × (0,1), recognize that φH is a locally
trivial fiber bundle, and, if we denote the typical fiber of φH by Z, finally conclude that πM : TM −→ M is a
locally trivial fiber bundle with fiber C[0,1)(Z).

In more detail, for every point p ∈ M there is a neighborhood V ⊆ M and a stratified homeomorphism
ψ : π

−1
M (V)−→ V×C[0,1)(Z) participating in the commutative diagram

π
−1
M (V)

ψ //

πM ""

V×C[0,1)(Z)

zz
V

where the unlabeled arrow is the obvious map. If ψ ′ : π
−1
M (V)−→ V×C[0,1)(Z) is another such homeomor-

phism then the transition map

ψ
′ ◦ψ

−1 : V×C[0,1)(Z)−→ V×C[0,1)(Z)

is the identity on the first factor and is a controlled isomorphism on the second factor. As mentioned above,
this controlled isomorphism lifts to a controlled isomorphism on the ‘déplissage’ and so, if the depth of Z is
less than ℓ, a stratified diffeomorphism thanks to the inductive hypothesis.

Thus if (X ,S,T) is a Thom-Mather stratified space of depth at most ℓ then we obtain stratified charts from
the trivializing neighborhoods of these fiber bundle structures on the tubular neighborhoods of the strata
of X , together with the coordinate charts of the regular part of X . The analysis above shows that this is a
smooth stratified atlas. Finally this same analysis shows that a controlled isomorphism is a smooth stratified
diffeomorphism.

Next if we start with a smooth atlas stratified space X −→ A we can obtain control data by using its
resolution β : res(X) −→ X . This goes back at least to [Ver84, §5-6] but a nice exposition can be found in
[KR23, Proposition A.4], to which we refer the reader for details. □

Remark 2.14. Note that the unzip result in [AFT17, §7] should imply a categorical equivalence between
the category of conically smooth spaces and stratified diffeomorphisms and the category of manifolds with
fibered corners and fibered diffeomorphisms; however if this were true then the conically smooth maps
would coincide with our smooth maps between smooth atlas stratified spaces and Remark 2.3 shows that
this is not the case. (In particular [AFT17, Conjecture 1.5.3] is true and well-known for Thom-Mather
stratified spaces and hence for smooth atlas stratified spaces.)

In [NV23], it is shown that Thom-Mather stratified spaces are conically smooth spaces. The authors do
not make use of the resolution studied in [AFT17, §7] to relate the two types of spaces, perhaps because
they were unaware of the parallel resolution result in [Ver84] for Thom-Mather spaces.

In summary, we now know that
(1) Thom-Mather stratified spaces,
(2) Whitney embedded stratified spaces,
(3) manifolds with fibered corners,
(4) smooth atlas stratified spaces,

all describe the same singular spaces, which we refer to as smoothly stratified spaces.

2.5. Witt spaces. In this short subsection we recall the main objects we will be studying throughout the
rest of the paper.

Definition 2.15 (Witt spaces [Sie83, Definition 2.1]).
A smoothly stratified space X is a Witt space if whenever Z is the link in X of a singular stratum we either

have that ℓ = dimZ is odd or that IHm
ℓ/2(Z;Q) = 0, where IHm

∗ (Z;Q) denotes the lower middle perversity
intersection homology groups of Z with rational coefficients [GM80, §5.1].
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Siegel introduced Witt spaces, though he worked with PL stratified spaces. He introduced a bordism
theory of oriented PL Witt pseudomanifolds7, ΩWitt

∗ (−), which is now well known to be a homology theory.
The name ‘Witt spaces’ comes from the fact that the bordism groups of a point can be computed to essentially
equal the Witt groups of Q; specifically, [Sie83, pg. 1068]

Ω
Witt
q (pt) =


Z if q = 0
0 if q ̸≡ 0 mod 4
Witt(Q) if q > 0, q ≡ 0 mod 4

One can also consider the bordism theory based on cycles given by continuous maps on smoothly stratified
oriented Witt pseudomanifolds, Ω

Witt,∞
∗ (−). We show in Proposition 4.5 that these are naturally equivalent.)

Natural examples of oriented Witt pseudomanifolds include pure-dimensional complex algebraic vari-
eties, or indeed any stratified space all of whose strata are even-codimensional.

3. THE ANALYTIC ORIENTATION CLASS OF A WITT PSEUDOMANIFOLD

3.1. K-homology orientations. Let E be a ring spectrum. We review E-homological orientation classes of
manifolds, see e.g. Rudyak [Rud98]. First, spheres Sn are E-oriented as follows. Let 1 ∈ π0(E) be the unit
of the homotopy ring π∗(E). The homology theory E∗ determined by E has a suspension isomorphism

σ∗ : π0(E) = Ẽ0(S0)
≃−→ Ẽn(Sn) = En(Sn,∗).

One defines the orientation of Sn to be [Sn]E := σ∗(1). Now let M be an n-dimensional topological manifold,
say without boundary. For every point p ∈ M and every disc neighborhood U ⊂ M of p, let collp,U : M → Sn

be the map which collapses the complement of U . If U ′ is another disc neighborhood of p, then collp,U ′
and

collp,U are homotopic. Thus we obtain a well-defined homotopy class

collp : M → Sn.

Definition 3.1. An element [M]E ∈ En(M) is called an E-orientation of M, if

(3.1) collp
∗ [M]E =±[Sn]E

for every p ∈ M.

Suppose that M is connected. Then the homotopy classes collp and collp′ coincide for any two points
p, p′ ∈ M by choosing a path from p to p′. So it suffices for connected manifolds to verify (3.1) at a single
point p. If M is E-oriented, then the Poincaré duality map

−∩ [M]E : Ek(M)−→ En−k(M)

is an isomorphism.

Proposition 3.2. Let φ : E → F be a ring morphism of ring spectra and M an n-dimensional manifold. If
[M]E ∈ En(M) is an E-orientation of M, then its image φ∗[M]E ∈ Fn(M) is an F-orientation of M.

Proof. The morphism φ induces a natural transformation φ∗ : E∗(−)→ F∗(−) of homology theories. This
transformation commutes with the induced homomorphisms collp

∗ , and with the suspension isomorphisms.
Furthermore, it maps the unit 1 ∈ Ẽ0(S0) to the unit 1 ∈ F̃0(S0). Therefore, for every p ∈ M,

collp
∗ φ∗[M]E = φ∗ collp

∗ [M]E =±φ∗[Sn]E =±φ∗σE,∗(1) =±σF,∗φ∗(1) =±σF,∗(1) =±[Sn]F .

□

Since complexification and the stable second Adams operation are multiplicative, Proposition 3.2 together
with Theorem 7.2 implies that the (normalized) class signK(M) of the signature operator is a K[1

2 ]-orientation
for a closed smooth HZ-oriented manifold M. (It is not an orientation at 2.)

7Recall from §2.2 that a pseudomanifold is a stratified space whose regular part is dense and has a fixed dimension and whose
other strata have dimension at least two less than the regular part.
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3.2. Wedge metrics and Dirac-type operators. We recall the definition of wedge Dirac-type operators
from [AGR23]. The example most important to us will be the signature operator of a wedge metric acting
on wedge differential forms.

Let M be a manifold with fibered corners and let M −→ S(M) denote the corresponding boundary strati-
fication. Wedge one forms are defined by

V∗
w = {θ ∈ C∞(M;T ∗M) : for each a ∈ S(M) and y ∈ BaM, θ |

φ
−1
a (y) = 0}

and by the Serre-Swan theorem or by direct construction as in [Mel93, §8.1-8.2] there is a vector bundle
wT ∗M −→ M

endowed with a bundle map i : wT ∗M −→ T ∗M with the property that

i∗C∞(M; wT ∗M) = V∗
w ⊆ C∞(M;T ∗M).

In particular, i is a bundle isomorphism over M◦ and hence
wT ∗M|M◦ is canonically isomorphic to T ∗(M◦).

Since M is homotopic to M◦, it follows that wT ∗M is isomorphic to T ∗M over M (although not naturally and i

is not an isomorphism over the boundary of M). In local coordinates near the total space of FaM — ∂aM
φa−−→

BaM, (x,y1, . . . ,yh,z1, . . . ,zv), in which x is a boundary defining function for ∂aM, y j are coordinates pulled-
back from BaM, and zk are coordinates on FaM, a differential form

θ = a(x,y,z)dx+b j(x,y,z)dy j + ck(x,y,z)dzk

is in V∗
w if and only if the coefficients ck vanish when x = 0 and so the differentials dx, dy1, . . . ,dyh,

x dz1, . . . ,x dzv make up a local frame for V∗
w. Abusing notation we think of elements of V∗

W as sections
of wT ∗M. Importantly though, a form like x dz1 does not vanish at {x = 0} when thought of as a section of
wT ∗M (e.g., because dz1 is not a section of wT ∗M so x dz1 is not x times another section).

The wedge tangent bundle wT M is the dual bundle to the wedge cotangent bundle. A general wedge
metric can be defined as a bundle metric on wT M but it is convenient to require more structure. Namely, a
product-type wedge metric is one that near each ∂aM has the form

dx2 + x2g∂aM/BaM +φ
∗
a gBaM

where g∂aM/BaM + φ ∗
a gBaM is a submersion metric on ∂aM. A totally geodesic wedge metric is one that

coincides with a product-type wedge metric at each ∂aM up to O(x2). (See [AGR23, §1.2] for more details,
and also [KR23, §6].)

For totally geodesic wedge metrics (and more generally) one can use the Koszul formula to see that the
Levi-Civita connection defines a connection on the wedge tangent bundle,

∇
M : C∞(M; wT M)−→ C∞(M;T ∗M⊗wT M),

and hence also on the wedge cotangent bundle.

Definition 3.3. Let M be a manifold with fibered corners and a wedge Riemannian metric gM. A wedge
Clifford module on M consists of a complex vector bundle E −→ M endowed with a Hermitian metric gE ,
a metric connection ∇E , and a bundle homomorphism (referred to as Clifford multiplication)

cl : C⊗Cl(wT ∗M,gM)−→ End(E)

satisfying that, for any θ ∈ C∞(M; wT ∗M) and V ∈ C∞(M;T M),

gE(cl (θ)·, ·) =−gE(·, cl (θ)·) and ∇
E
V cl (θ) = cl (θ)∇E

V + cl (∇M
V θ).

The corresponding Dirac-type operator is the differential operator given by the composition

ðE : C∞
c (M

◦;E) ∇E

−−−→ C∞
c (M

◦;T ∗M⊗E) cl−−→ C∞
c (M

◦;E),

where we have used that T ∗M and wT ∗M are canonically isomorphic over the interior of M.
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A Z2-graded wedge Clifford module is a wedge Clifford module in which E has a splitting E = E+⊕E−

which is orthogonal with respect to gE , parallel with respect to ∇E , and odd with respect to cl .

Using the metrics on M and on E we can define L2(M;E) and consider ðE as a symmetric unbounded
operator with initial domain C∞

c (M
◦;E). Elliptic regularity in this setting establishes that any element of

L2(M;E) that is mapped into L2(M;E) by ðE (acting distributionally) must have Sobolev regularity but
measured using “edge vector fields”. An edge vector field on M is one that is tangent to the fibers of all of
the boundary fiber bundles of the iterated fibration structure on M and we denote the corresponding Sobolev
space by H1

e (X ;E). Thus the elliptic regularity statement is that

Dmax(ðE) := {u ∈ L2(M;E) : ðEu ∈ L2(M;E)} ⊆ H1
e (X ;E).

For our purposes, the initial domain C∞
c (M

◦;E) of ðE is too small and the maximal domain, Dmax(ðE), is
too large so we use an intermediate domain known as the ‘vertical APS domain’ (so called because of its
close relation to the domain introduced by Atiyah-Patodi-Singer in [APS75]). This domain is defined as

DVAPS(ðE) := ρ
1/2H1

e (X ;E)∩Dmax(ðE)

where ρ is a ‘total boundary defining function’, i.e., a smooth non-negative function that vanishes simply at
the boundary of M. In [AGR23] this was shown to be a natural choice of domain for ðE and to have several
nice properties as long as an ‘analytic Witt assumption’ is satisfied.

To state this assumption, note that for any α ∈ S(M), a wedge Dirac-type operator ðE takes the form
1
x
(a(x,y,z)x∂x +bi(x,y,z)x∂y j + ck(x,y,z)∂zk + f (x,y,z))

near ∂αM = {x = 0}. We refer to

ðE
α = xðE |∂α M = ck(0,y,z)∂zk + f (0,y,z)

as the boundary family of ðE at ∂αM. It is a family of operators on the fibers of φα : ∂αM −→ BαM. In fact
it is practically equal to a family of Dirac-type operators with respect to an induced wedge Clifford module,
see [AGR23, Lemma 2.2]. We say that ðE satisfies the analytic Witt condition if every boundary family,
endowed with its vertical APS domain, is invertible.

In [AGR23, Theorem 1] it is shown that if M is compact and ðE satisfies the analytic Witt condition then
(ðE ,DVAPS(ðE)) is closed8, Fredholm, and self-adjoint with compact resolvent. In case M is non-compact,
but the links of the associated stratified space are compact, the method described in [ALMP18, §3] and
implemented in, e.g., the proof of [ALMP18, Theorem 5.2] shows that (ðE ,DVAPS(ðE)) is closed, locally
Fredholm, and self-adjoint with locally compact resolvent9.

The most important special case of this construction for us is the signature operator. First if we replace
the ordinary differential forms on M with the wedge differential forms, defined to be the sections of the
exterior powers of the wedge cotangent bundle,

C∞
c (M;Λ

∗(wT ∗M)),

then the de Rham operator d + δ is a wedge Dirac-type operator. The analytic Witt assumption is satisfied
by d +δ if and only if M is (the resolution of) a Witt pseudomanifold in the sense of Siegel [Sie83] (this is
why it is called the analytic Witt assumption); see e.g., [ALMP18, Corollary 4.2].

To define the signature operator we first replace wedge cotangent bundle with its complexification wT ∗
CM =

wT ∗M⊗C and then let ⋆ be the involution obtained from the Hodge star ∗ by multiplying it with an appro-
priate (form degree dependent) power of i so that ⋆2 = 1. If dimM is even then the signature operator
Dsign

M = ðsign is the operator induced by the de Rham operator together with the Z2-grading induced by ⋆.
If dimM is odd then the de Rham operator commutes with ⋆ and the signature operator (known as the ‘odd

8In the statement of [AGR23, Theorem 1] the vertical APS domain is defined as the graph closure of the domain defined above
but the proof of [AGR23, Theorem 4.3] shows that the domain is already closed in the graph norm.

9By locally compact we mean an operator whose product with any smooth function of compact support is a compact operator
and by locally Fredholm we mean an operator that is invertible up to a locally compact operator.
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signature operator’) is its restriction to the +1 eigenspace of ⋆. (In either case, the analytic Witt assumption
for the signature operator holds precisely when the analytic Witt assumption for the de Rham operator does,
i.e., when M is a Witt pseudomanifold.)

Summarizing, we have the following fundamental result:

Theorem 3.4. Let X be a smoothly stratified Witt pseudomanifold and let M = res(X) be its resolution, a
manifold with fibered corners. We endow the regular part of X and thus the interior of M with a wedge
metric g. Then the signature operator Dsign

M associated to g satisfies the analytic Witt condition and there-
fore admits a closed self-adjoint extension DVAPS(ðsign)) ⊂ L2(M,Λ∗(wT ∗M)) which is Fredholm and has
compact resolvent.

For some wedge metrics on a Witt space, called adapted iterated edge metrics in [ALMP12, §5.4], the
de Rham operator is essentially self-adjoint as an unbounded operator on L2 differential forms. Any wedge
metric can be deformed to one of this form and this deformation produces a homotopy of the de Rham (or
signature) operators within Fredholm operators (see [AGR23, Remark 4.9]). Thus for some purposes, e.g.,
defining a K-homology class, one may if convenient assume that the operator is essentially self-adjoint.

3.3. KK-theory and the analytic signature orientation class of a Witt space. We find it convenient to
make use of the unbounded description of KK-theory set out by van den Dungen and Mesland in [vdDM20].
For the reader’s convenience we start by reviewing some of the relevant notions.

Let A and B be countably generated, σ -unital, Z2-graded C∗-algebras. A B-Hilbert module E is a right
B-module equipped with a B-valued inner product ⟨·, ·⟩E which is complete with respect to the norm ∥v∥E =
∥⟨v,v⟩E∥

1/2
B . A B-Hilbert module is an (A,B)-bimodule if A acts on it via adjointable bounded operators.

Let D : dom(D)⊆ E−→ E be a closed, densely defined, self-adjoint and regular10 operator and define

Lip(D) = {T adjointable, bounded operator on E :

T (dom(D))⊆ dom(D) and [D,T ] is adjointable and bounded},

LipK(D) = {T ∈ Lip(D) : T (Id+D2)−1/2,T ∗(Id+D2)−1/2 ∈KB}.

An unbounded A-B-cycle11 is a Z2-graded Hilbert bi-module AEB together with an odd regular self-adjoint
operator D on E such that the elements of A act as operators in the closure of LipK(D). Direct sum makes
the set of unbounded A-B-cycles into a semi-group. The equivalence classes of unbounded A-B-cycles with
respect to operator homotopy form a group with respect to direct sum denoted

UKK(A,B).

Van den Dungen and Mesland show that if A is separable the bounded transform induces an isomorphism

UKK(A,B)∼= KK(A,B).

The odd KK-groups UKK1
(A,B) ∼= KK1(A,B) are defined by the same procedure as above but work-

ing with ungraded Hilbert bi-modules. We will denote the even groups by UKK(A,B) ∼= KK(A,B) or
UKK0

(A,B)∼= KK0(A,B) interchangeably. A superindex in this setting is to be understood modulo two.

10To say that D is regular is to say that D and D∗ are densely defined and that Id+D∗D has dense range.
11An unbounded Kasparov module for (A,B), in the sense of Baaj-Julg [BJ83] is an (A,B)-bimodule E together with a self-

adjoint regular operator D on E, homogeneous of degree one, such that (1+D2)−1a extends to an element of KB for all a ∈ A and
such that there is a dense ∗-subalgebra A⊆ A contained in Lip(D).

A significant complication of using unbounded Kasparov modules is that in order to define the direct sum of two modules we
would require that the subalgebra A is the same for the two modules. This is avoided with unbounded A-B-cycles where instead it
is required that A ⊆ Lip(D).
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Roughly speaking if X and Y are stratified spaces (and more generally) then

K0
c(X) := KK(C,C0(X)) = “Fredholm operators parametrized by X”,

Kan
0 (X) := KK(C0(X),C) = “Fredholm operators on X”,

KK(C0(X),C0(Y )) = “Fredholm operators on X parametrized by Y ”.

In particular a wedge Dirac operator on X satisfying the analytic Witt condition will define a class in Kan
0 (X)

and, as we will show in §5, a family of wedge Dirac-type operators on the fibers of X −→ Y satisfying the
analytic Witt condition will define a class in KK(C0(X),C0(Y )).

Let us describe the case of a single operator in detail. Suppose X is a smoothly stratified space (not
necessarily compact) with resolution M = res(X), that (gM,E −→ M,gE ,∇

E , cl ) is a wedge Clifford module
on M and that the associated Dirac-type operator ðE

M satisfies the analytic Witt condition. Let us set

A =CΦ,0(M) :=CΦ(M)∩C0(M), B = C, E= L2(M;E)

and endow E with a left A-action and right B-action, both given by multiplication, and note that the L2-
inner product on E is a B-valued inner product so that E is a Hilbert A-B-bimodule, Z2-graded if E is. The
operator ðE

M,VAPS is closed, densely defined, self-adjoint and regular and C∞
Φ,c(M) := C∞

Φ
(M)∩C∞

c (M) ⊆
LipK(ðE

M,VAPS) so the elements of A act as operators in the closure of LipK(ðE
M,VAPS). Thus we obtain a class

[ðE
M,VAPS] ∈ UKKdimX

(CΦ,0(M),C)∼= KKdimX(CΦ,0(M),C) = KKdimX(C0(X),C) = Kan
dimX(X).

The case of most interest to us is the K-class of the signature operator of a Witt pseudomanifold X ,

[Dsign
M ] ∈ Kan

dimX(X).

For compatibility with the Sullivan orientation, as we will show below in §7, it is natural to define

signK(X) = 2−⌊dimX/2⌋[Dsign
M ] ∈ Kan

dimX(X)[1
2 ].

We refer to this as the analytic signature orientation of a Witt space.

Remark 3.5. The class of the signature operator in Kan
dimX(X) coincides with that defined in [ALMP12, §6.2]

(and that defined in [MW97]). See also the definition of the K-homology class of the signature operator on
Cheeger spaces (generalizing Witt spaces) in [ALMP17, §5.1].

4. INVARIANCE PROPERTIES OF THE ANALYTIC SIGNATURE ORIENTATION

In this section we consider the behavior of the analytic signature orientation under changes of the under-
lying structure.

4.1. Stratified diffeomorphism invariance.

Proposition 4.1. The analytic signature orientation of a smoothly stratified oriented Witt space is indepen-
dent of the choice of wedge metric used in its definition.

If φ : X → Y is a stratified diffeomorphism between smoothly stratified oriented Witt spaces, then

φ∗signK(X) = signK(Y ) ∈ Kan
∗ (Y ) = KK∗(C0(Y ),C).

Proof. If g and g′ are wedge metrics on X then they are quasi-isometric and hence the space of L2 sections of
wedge differential forms is the same for both metrics (though of course the L2-norm of an individual element
is not). The path of wedge metrics t 7→ tg+(1− t)g′ lifts to an operator homotopy between the correspond-
ing signature operators, endowed with their VAPS domain. Since operator homotopies between Kasparov
bimodules do not change the KK-class, we see that the analytic signature orientation is independent of the
metric.

Let gY be a wedge metric on Y and consider φ ∗g on X . It can be proved that this is also a wedge metric.
This can certainly be proved directly as in [BHS92, Lemme 5.2]. However, it also follows from the following
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general principle: a wedge metric gY extends to define a bundle metric on the wedge cotangent bundle over
the resolved manifold of Y , Ỹ ; a stratified diffeomorphism φ lifts to a diffeomorphism φ̃ of the resolutions
and thus induces a well-defined bundle map, covering φ̃ , between the respective wedge-cotangent bundles.
The pull-back of the metric gY is then a metric on the wedge-cotangent bundle of the resolved manifold X̃ ;
such a metric defines on the interior of X̃ , which is the regular part of X , a wedge metric.

Consider any class [H,α : C(X)→B(H),F ] ∈ Kan
∗ (X) and recall that if ψ : X → Y is a continuous map,

then
ψ∗[H,α : C(X)→B(H),F ] := [H,α ◦ψ

∗ : C(Y )→B(H),F ] ∈ Kan
∗ (Y ) .

A similar formula works in the unbounded picture, considering a suitable dense subalgebra A(X) of C(X).
Consider now H ′

X := L2(X reg,Λ∗(X reg),φ ∗gY ) and the class

[H ′
X ,MX : A(X)→B(H ′

X),D
′
X ] ∈ Kan

∗ (X)

with D′
X the signature operator associated to φ ∗gY , A(X) the dense subalgebra of Lipschitz functions on X

and MX equal to the multiplication operator. By wedge-metric invariance

[H ′
X ,MX : A(X)→B(H ′

X),D
′
X ] = [Dsign

X ] ∈ Kan
∗ (X)

On the other hand, let now HY be the space of L2-forms on Y associated to gY . Pull-back by φ defines a
unitary isomorphism U : HY → H ′

X such that U−1 ◦D′
X ◦U = Dsign

Y or, equivalently, U ◦Dsign
Y ◦U−1 = D′

X .
Thus, on the one hand,

φ∗[D
sign
X ] = φ∗[H ′

X ,MX : A(X)→B(H ′
X),D

′
X ] = [H ′

X ,MX ◦φ
∗ : A(Y )→B(H ′

X),D
′
X ]

and, on the other hand,
[Dsign

Y ] = [HY ,MY : A(Y )→B(HY ),D
sign
Y ].

We set M′ :=MX ◦φ ∗; we want to show that

[H ′
X ,M

′ : A(Y )→B(H ′
X),D

′
X ] = [HY ,MY : A(Y )→B(HY ),D

sign
Y ].

But for ω ∈ HY we have

M′( f )(Uω) = φ
∗( f )(φ ∗

ω) = φ
∗( f ω) =U(MY ( f )(ω)).

Together with our remarks so far, this means that the 2 cycles

(H ′
X ,M

′ : A(Y )→B(H ′
X),D

′
X) and (HY ,MY : A(Y )→B(HY ),D

sign
Y )

are unitarily equivalent, and so define the same K-theory class, which is what we wanted to show. □

Remark 4.2. For a general wedge Clifford module (gM,E −→ M,gE ,∇
E), the resulting K-homology class

may well depend on the metrics involved. The reason that the argument above does not apply is that, while a
homotopy of metrics lifts to a homotopy of the corresponding Dirac-type operators, this homotopy might not
take place within Fredholm operators. For the signature operator the analytic Witt condition is independent
of the metric but for example the dimension of the space of harmonic spinors on a surface of genus greater
than two depends on the metric [Hit74, Theorem 2.6].

4.2. Witt bordism invariance. The following proposition, for smooth manifolds, is Proposition 4.1 in
[PRW95] (cf. [BDT89, Propositions 4.4 & 5.4]). Our proof follows [Hig89, §5] (cf.[HR00, Proposition
11.2.15]). A different approach for smooth manifolds can be found in [MP92].

Proposition 4.3 (The boundary of Dirac is the Dirac of the boundary).
Let W be a smoothly stratified space with boundary X = ∂W, and denote their resolutions by N = res(W ),

and M = res(X) = ∂N. Let (gN ,E −→ N,gE ,∇
E) be a wedge Clifford module on N whose associated Dirac-

type operator ðE
N,VAPS satisfies the analytic Witt condition. If W is even-dimensional, assume that E is

graded with grading operator γ. Let ν be a normal vector field to M and define a wedge Clifford module
(gN |M,∂E −→ M,gE |∂E ,∇

E |∂E) on M as follows:
(1) If W is odd-dimensional, ∂E = E|M, graded by Clifford multiplication by iν ;
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(2) if W is even-dimensional, ∂E is the +1 eigenspace of the involution iνγ.

Then the wedge Dirac-type operator associated to this Clifford module, ð∂E
M,VAPS satisfies the analytic Witt

condition and the boundary map in K-homology, ∂ : Kan
dimW (W,∂W )−→ Kan

dim∂W (∂W ), satisfies

∂ [ðE
N,VAPS] = [ð∂E

M,VAPS].

Proof. It is pointed out in [Hig89, §5] that if A is a C∗-algebra and J an ideal in A, so that we have a short
exact sequence

0 −→ J −→ A −→ A⧸J −→ 0,

then the boundary map ∂ : KK j(J,C)−→ KK j−1(A⧸J,C) factors as

(4.1) KK j(J,C)−→ KK j(C0((0,1))⊗A⧸J,C)−→ KK j−1(A⧸J,C)

where the first map is defined using the mapping cone associated to the short exact sequence and the second
map is the inverse of the Kasparov product with the class

[ð(0,1)] ∈ KK1(C0(0,1),C) = Kan
1 ((0,1))

of the Dirac operator on the positively oriented open unit interval.
We wish to apply this with A=C0(W ), J = { f ∈C0(W ) : f |X = 0}, so that A⧸J =C0(X). Naturality of the

boundary map allows us to replace W with a collar neighborhood of X so instead we take A =C0([0,1)×X)
and J = C0((0,1)×X). Arguing as in the proof of [Hig89, Theorem 5.1] this has the happy consequence
that the first map in (4.1) is the identity map and hence the boundary map in K-homology is the inverse of
the Kasparov product with [ð(0,1)]. Thus we can conclude the proof if we can show that

[ðE
N,VAPS] = [ð(0,1)]⊗ [ð∂E

M,VAPS] ∈ Kan
dimW ([0,1)×X ,{0}×X).

This can be checked using the fact (e.g., from [BJ83, (1)]) that the Kasparov product of [ð(0,1)] and [ð∂E
M,VAPS]

is represented by ð(0,1)⊗̂I + I⊗̂ð∂E
M,VAPS. This is also a particular case of Theorem 5.16 below. □

In the non-singular situation, the following proposition has been established in [PRW95, pg. 290],
[RW06, Theorem 2]. We note that certain bordism invariance results for the signature operator K-homology
class on Witt spaces have also been obtained by Hilsum in [Hil14, Section 3].

We use the notation [Dsign
W,∂W ] to denote the class induced by the signature operator of a wedge metric on

an oriented Witt space with boundary in the K-homology group of W relative to ∂W.

Proposition 4.4.
(1) If W is an oriented smoothly stratified Witt space with boundary then the boundary map in K-

homology, ∂ : Kan
dimW (W,∂W )−→ Kan

dim∂W (∂W ), satisfies

∂ [Dsign
W,∂W ] = k[Dsign

∂W ] with k =

{
1 if dimW is even
2 if dimW is odd

(2) Let X be a compact oriented smoothly stratified Witt space, Y any finite CW complex, and let
f : X →Y be a continuous map. Then f∗[D

sign
X ]∈ KdimY (Y ) is a Witt bordism invariant of the pair

(X , f ).

Proof. (1) Denote the resolution of W by N = res(W ) and that of ∂W by M = res(∂W ) = ∂N. Since the
signature operator of a wedge metric on W is a Dirac-type operator we know from Proposition 4.3 that
∂ [Dsign

W ] is the K-homology class of a Dirac-type operator ð on ∂W. Without loss of generality we may
assume that the wedge metric on N is collared near ∂N, i.e., that there is a collar neighborhood of N which
is isometric to [0,1)×M for some wedge metric on M, and we may restrict attention to this neighborhood.
Rosenberg and Weinberger computed the decomposition of the signature operator on a product of closed
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manifolds in [RW06, Lemma 6] but, as the computation only involves the Clifford algebras and gradings, it
applies to [0,1)×M, and shows that, in K-homology,

[Dsign
[0,1)×∂W ] = k [Dsign

[0,1)]⊗ [Dsign
∂W ] with k =

{
1 if dimW is even
2 if dimW is odd

Finally we know from the proof of Proposition 4.3 that the boundary map in K-homology for a product is
the inverse of the Kasparov product by the Dirac operator on the interval, so the result follows.

(2) Let n = dimX . Suppose that f : X −→ Y is Witt nullbordant. Thus, there is a compact smoothly
stratified oriented Witt space W with boundary ∂W = X and a continuous map F : W → Y that extends f .
Let i : X ↪→W denote the inclusion of the boundary and consider the commutative diagram

Kn+1(W,X)
∂∗ // Kan

n (X)

f∗ %%

i∗ // Kan
n (W )

F∗
��

Kan
n (Y ),

whose top row is exact. If n is even, then from (1) we know ∂ [Dsign
W,X ] = [Dsign

X ] and thus

f∗[D
sign
X ] = F∗i∗[D

sign
X ] = F∗i∗∂ [Dsign

W,X ] = 0.

If n is odd, then (1) asserts that ∂ [Dsign
W,X ] = 2[Dsign

X ]. Therefore, f∗[D
sign
X ] is either zero or has order 2:

2 f∗[D
sign
X ] = F∗i∗(2[D

sign
X ]) = F∗i∗∂ [Dsign

W,X ] = 0 ∈ Kan
n (Y ).

In either case, f∗[D
sign
X ] vanishes in the localization Kan

n (Y )[1
2 ]. However as in [RW06, Theorem 2] it is

possible to use arguments from [PRW95, §4] to avoid having to invert 2.
Specifically, Pedersen, Roe, and Weinberger point out that on a smooth manifold with boundary equipped

with a unit vector field ν which is normal to the boundary (but defined on all of the manifold) the operator
of right Clifford multiplication by iν is an involution and the restriction of the signature operator to either
of its eigenspaces produces an operator whose boundary is the signature operator of the boundary on the
nose. The argument above then establishes that f∗[D

sign
X ] = 0 ∈ Kan

n (Y ). A smooth manifold with boundary
admits such a vector field if and only if its Euler characteristic vanishes. Rosenberg and Weinberger explain
how to reduce to this case by making modifications (either a connected sum or punching out a small disk)
away from the boundary.

To apply these arguments to our situation first note that if two bundles are isomorphic and one has a
nowhere vanishing section then so does the other. If N is the resolution of W, N = res(W ), then we may
‘round out the corners’ and homotope N to a smooth manifold with boundary N′. If N has vanishing Euler
characteristic then N′ has a smooth nowhere vanishing vector field normal to the boundary. Since the tangent
bundle of N is isomorphic to the pull-back of the tangent bundle of N′, N also has a nowhere vanishing vector
field which we can assume (by how we round out the corners) is normal to the boundary hypersurfaces of N
that correspond to the boundary of W. Next, since the wedge tangent bundle of N is isomorphic (albeit not
naturally isomorphic) to the ordinary tangent bundle, we see that there is a nowhere vanishing wedge vector
field on N, normal to the lift of the boundary of W, which we can normalize to have everywhere unit length.
Applying the Pedersen, Roe, and Weinberger argument as done in [RW06, Theorem 2] then establishes the
result. □

Recall from §2.5 that ΩWitt
n denotes the bordism theory based on oriented PL Witt pseudomanifolds and

Ω
Witt,∞
n denotes the corresponding theory based on oriented smoothly stratified Witt pseudomanifolds. The

proposition implies that the assignment

(4.2) [ f : W n → X ] 7→ f∗[DW ]
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constitutes a well defined homomorphism

Ω
Witt,∞
n (X)−→ Kan

n (X).

Since bordism of PL stratified Witt spaces is isomorphic to bordism of smoothly stratified Witt spaces
(Proposition 4.5), we may also regard this as a homomorphism

Ω
Witt
n (X)−→ Kan

n (X).

This map is a natural transformation of homotopy functors, but not of homology theories (Rosenberg-
Weinberger [RW06, Remark 4]). The modified map

(4.3)
θ : Ω

Witt,∞
n (X)[1

2 ]−→ Kan
n (X)[1

2 ],

θ([ f : W n → X ]⊗Z r) := r2−⌊n/2⌋ f∗[D
sign
W ] = r f∗(signK(W )),

is a natural transformation of homology theories, since the powers of 2 correctly absorb the behavior of the
connecting homomorphism as described in Proposition 4.4 (1).

4.3. Witt bordism: smooth versus PL. In several places, particularly in Section 7 where we consider a
natural transformation from Witt bordism to analytic K-homology via the signature operator, we need to
identify Siegel’s bordism theory of PL Witt spaces with bordism of smoothly stratified Witt spaces. Let us
discuss this identification in more detail. Recall that ΩWitt

∗ (−) denotes the bordism theory of PL Witt spaces
as introduced in [Sie83]. This functor is well-known to be a homology theory. Let Ω

Witt,∞
∗ (−) denote the

bordism theory based on cycles given by continuous maps on closed smoothly stratified Witt spaces. This
functor is a homology theory as well, since transversality is available for smoothly stratified spaces.

Proposition 4.5. Triangulation induces a natural equivalence of homology theories

t : Ω
Witt,∞
∗ (−)−→ Ω

Witt
∗ (−).

Proof. Let Y be a CW complex and let f : Xn → Y be a continuous map on a closed smoothly stratified
Witt space X . By Goresky [Gor78], Thom-Mather pseudomanifolds can be triangulated compatibly with
the stratification. The triangulation can be taken to be a smooth embedding on the interiors of simplices.
Choose a Goresky-triangulation of X . This choice yields a PL pseudomanifold X with the same underlying
topological space as X . It is not clear that different choices of Goresky-triangulations yield PL-isomorphic
PL pseudomanifolds. Nevertheless, we claim that ( f : X → Y ) 7→ ( f : X → Y ) induces a well-defined
homomorphism t : Ω

Witt,∞
∗ (Y )→ ΩWitt

∗ (Y ). The reason is indicated by Goresky and MacPherson in Section
5.3 of [GM80]: Goresky’s techniques imply that any two Goresky-triangulations of X are concordant. This
yields a triangulation of the cylinder X × [0,1], which is then a PL bordism between the two triangulations
of X . The map f extends continuously over the cylinder by f × id[0,1]. If F : W → Y is a smoothly
stratified Witt nullbordism for f : X = ∂W → Y , then we may Goresky-triangulate W to obtain a PL Witt
nullbordism F : W →Y for f : X →Y , where X is chosen to be the restriction of the Goresky-triangulation
of W to the boundary. Hence we obtain a well-defined map t and this map is a homomorphism. It is
natural in Y , since maps induced by g : Y → Y ′ are just given by composing f and g. For Y a point, the
map t was already considered by Zentarra in [Zen19], who proved that it is an isomorphism over a point.
(The map is surjective, since Siegel’s generators of ΩWitt

4k (pt) are given by Whitehead-triangulating certain
compact smooth manifolds and then coning off the boundary. The smooth manifold with cone attached to
the boundary then possesses a smooth stratification such that a Goresky-triangulation may be taken to be
the Whitehead triangulation, coned off. The map is injective as is seen by carefully verifying that Siegel’s
singular surgeries can be carried out within the class of smoothly stratified spaces. In addition to the fact that
Siegel’s intersection form invariant w(−) ∈ Witt(Q) is a topological invariant, one exploits the observation
that if the triangulation restricts to a smooth embedding on the interiors of simplices, then the skeletal
filtration determined by the triangulation is indeed a smooth Thom-Mather stratification.) Finally, t is an
equivalence, for t is a natural transformation of homology theories which is an isomorphism on coefficient
groups. □
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5. ANALYTIC TRANSFER OF THE SIGNATURE ORIENTATION ALONG A FIBRATION

The goal of this section is to describe how to assign to every fiber bundle of smoothly stratified spaces

W −X
p−−→ Y,

in which the fibers are oriented Witt pseudomanifolds, a class in the KK-group KK(C0(X),C0(Y )). Indeed
from [ALMP12, AGR23] the family of vertical signature operators associated to any choice of vertical
wedge metric is a family of Fredholm operators and we will see that it defines the desired class. To do this,
in order to apply the theory developed in [AGR23], we discuss the “grid resolution” of this fiber bundle to a
fiber bundle of manifolds with corners with iterated fibration structures,

res(W )− resgrid(X)−→ res(Y ).

5.1. Resolutions of a stratified fiber bundle. Starting with a fiber bundle of smoothly stratified spaces

W −X
p−−→ Y,

we will discuss the partial resolutions that result from resolving the base or the fibers and the grid resolution
that results from resolving both. The grid resolution continues to participate in a fiber bundle. One could go
further and fully resolve X but, unless one of W or Y is smooth, at the cost of the fiber bundle structure.

In the simplest interesting situation when X is the product of two stratified spaces of positive depth,
X = W ×Y, endowed with the projection onto Y, p : X −→ Y, the partial resolutions of base and fiber are,
respectively

resbase(X , p) =W × res(Y ), resfib(X , p) = res(W )×Y,
and the grid resolution of X is

resgrid(X , p) = res(W )× res(Y ).
This is a smooth manifold with corners but, as neither Y nor W are smooth, this is not equal to the resolution
of X and it does not have a natural iterated fibration structure. Indeed in [KR23] Kottke and Rochon have
shown that res(X) can be obtained from res(W )× res(Y ) by a sequence of real blow-ups of appropriate
submanifolds of the boundary producing what they call the ‘ordered product’ ×̃ so that

res(X) = res(W )×̃res(Y ).

It is worth noting that the lifted projection res(X) −→ res(Y ) is no longer a fiber bundle map (it is a “b-
fibration”), as this is one of the reasons why we have use for the grid resolution.

While the grid resolution is a smooth manifold with corners, the partial resolutions of base and fiber
above are the product of a smooth manifold with corners and a smoothly stratified space. For the purpose
of regularity we consider such a product as a smoothly stratified space with the stratification obtained by
endowing the manifold with corners with its natural stratification (see Remark 2.7).

Prelude: When the base and fiber each have depth one. Since the constructions below are a bit intricate,
we thought it would be useful to first describe the simplest interesting situation. This prelude can be skipped.

Suppose that W — X
p−−→ Y is a fiber bundle of smoothly stratified spaces where W has singular part W0

and regular part W1 and Y has singular part Y0 and regular part Y1 and X has poset stratification given by the
product poset

(0,1)

$$
(0,0)

::

$$

(1,1)

(1,0)

::

where we have chosen that the first entry corresponds to the fiber and the second entry corresponds to the
base. The regular part of X is Xreg = X(1,1), the singular part of X is Xsing = X(0,0) ∪X(0,1) ∪X(1,0). The
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singular stata X(0,1) and X(1,0) are disjoint but their closures are both obtained by the inclusion of X(0,0). Note
that p−1(Y0) = X(0,0)∪X(1,0) and p−1(Y1) = X(0,1)∪X(1,1).

Resolving along the base: The resolution of the base res(Y ) comes with a blow-down map βY : res(Y )−→
Y and we obtain the partial resolution of X along the base by pulling-back p along βY , i.e.,

resbase(X , p) //

p
��

X

p

��
res(Y )

βY // Y.

The induced map p̄ participates in a fiber bundle

W — resbase(X , p)
p−−→ res(Y )

(and for the purposes of regularity we note that if we regard res(Y ) with its natural stratification as a man-
ifold with boundary, i.e., the stratification with strata ∂ res(Y ) = ∂0res(Y ) and res(Y )◦, then p̄ is a smooth
fiber bundle of smoothly stratified spaces). The new base res(Y ) is a manifold with fibered boundary with
boundary fiber bundle

F0res(Y ) — ∂0res(Y )
φ0−−→ B0res(Y ) = Y0.

We denote the pre-image of the boundary of res(Y ) under p̄ by ∂ h
0 resbase(X , p) with the h exponent denoting

‘horizontal’, it fits into the restriction of the pull-back diagram above,

∂ h
0 resbase(X , p) //

p
��

X(0,0)∪X(1,0)

p
��

∂0res(Y )
φ0 // Y0

since φ0 = βY |∂0res(Y ). The unlabeled arrow in this diagram is a fiber bundle map, just as the labeled arrows
are, and we denote it by

Fh
0 resbase(X , p) — ∂

h
0 resbase(X , p)

φ h
0−−→ X(0,0)∪X(1,0) =: Bh

0resbase(X , p).

Note that here Fh
0 resbase(X , p) = F0res(Y ) is a smooth manifold and Bh

0resbase(X , p) is a smoothly stratified
space. We refer to the fiber bundle φ h

0 and its compatibility with the fiber bundle φ0 as a horizontal iterated
fibration structure on resbase(X , p).

Resolving along the fibers: Returning to our fiber bundle W — X
p−−→ Y, we can use the fact that p is a

smooth map of smoothly stratified spaces to see that it induces a fiber bundle

W0 — X(0,0)∪X(0,1) −→ Y.

We can use this to simultaneously resolve all of the fibers of p to obtain the partial resolution of X with
respect to the fibers, resfib(X , p). The resolution maintains the fiber bundle structure and we denote the
result by

res(W ) — resfib(X , p)
p̂−−→ Y.

This partial resolution replaced X(0,0) ∪X(0,1) with a new boundary face which we denote ∂ v
0 resfibX , with

the v exponent denoting ‘vertical’. The restriction of p̂ to this face is a fiber bundle over Y with fiber the
boundary of the resolution of W,

∂0res(W ) — ∂
v
0 resfib(X , p)

p̂−−→ Y.
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The blow-down maps of the fibers, βW : res(W )−→W, fit together into βfib : resfib(X , p)−→ X so that

res(W )

βW

��

resfib(X , p)
p̂

$$
βfib

��

Y

W X

p
99

and if we restrict this diagram to ∂ v
0 resfib(X , p), we get

∂0res(W )

φ0=βW |∂0res(W )

��

∂ v
0 resfib(X , p)

φ v
0=βfib|∂v

0 resfib(X ,p)

��

p̂

%%
Y

W0 X(0,0)∪X(0,1)

p
99

This shows how the boundary fiber bundles of the fibers of p̂,

F0res(W ) — ∂0res(W )
φ0−−→ B0res(W ) =W0,

fit together into

Fv
0 resfib(X , p) — ∂

v
0 resfib(X , p)

φ v
0−−→ Bv

0resfib(X , p) = X(0,0)∪X(0,1).

We refer to the fiber bundle φ v
0 and its compatibility with the fiber bundles φ0 and p̂ as a vertical iterated

fibration structure on resfib(X , p).
Resolving both the base and the fibers: If we resolve the fiber bundle W — X

p−−→Y along the base we again
have a stratified fiber bundle whose fiber is W and so we may proceed as above and resolve along the fibers.
We refer to the result as the grid resolution of X ,

resgrid(X) = resfib(resbase(X , p), p).

The result is a smooth manifold with corners that participates in a smooth fiber bundle

res(W ) — resgrid(X)
p̃−−→ res(Y )

where the base and the fiber are smooth manifolds with fibered boundary. The only displeasing aspect of
resgrid(X) is that it does not have a natural structure of manifold with fibered corners. The problem is that
the two boundary hypersurfaces of resgrid(X) correspond to the labels (0,1) and (1,0) and, since these are
non-comparable elements of the poset, their corresponding boundary hypersurfaces should not intersect.
This is easily fixed, we need only blow-up their intersection to obtain the resolution of X ,

res(X) = [resgrid(X);∂
v
0 resgrid(X)∩∂

h
0 resgrid(X)].

As this blow-up does not treat all of the fibers of p̃ equally, the fiber bundle structure of p does not survive
beyond the grid resolution.

Returning to the general case, let W — X
p−−→ Y be a fiber bundle of smoothly stratified spaces, so that

the poset of X satisfies
S(X) = S(W )×S(Y )

(with the obvious notation). By resolving the strata corresponding to (maxS(W ))×S(Y ) of X we will obtain
the partial base resolution of X , which will fiber over the resolution of Y with typical fiber W, and similarly
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by resolving the strata corresponding to S(W )×(maxS(Y )) of X we will obtain the partial fiber resolution of
X , which will fiber over Y with typical fiber the resolution of W. In general neither of these partial resolutions
will result in a smooth manifold with corners. Once we perform both resolutions (in either order) we will
obtain the grid resolution of X , resgrid(X), which will be a smooth manifold with corners but it will not have
a natural iterated fibration structure. Instead it will have two structures, one inherited from the base Y and
the other inherited from the fiber W. We will start by defining these structures, then we will construct the
grid resolution, and then we will show that it has the advertised properties.

Definition 5.1.
(1) Let W — X

ψ−−→ N be a fiber bundle of smoothly stratified spaces in which the base is a smooth
manifold with corners. A horizontal iterated fibration structure consists of an iterated fibration
structure on the base N, associated to the boundary stratification N −→ S(N), such that:

• For all α ∈ S(N), with corresponding fiber bundle FαN — ∂αN
φα−−→ BαN, ∂ h

αX := ψ−1(∂αN)
is either a disjoint union of connected codimension one strata of X or the regular part of X , and
participates in a fiber bundle of smoothly stratified spaces

Fh
α X — ∂

h
αX

φ h
α−−→ Bh

aX .

If α,γ ∈ S(N) are such that ∂ h
αX ∩∂ h

γ X ̸= /0 and α < γ, there is a commutative diagram of fiber
bundles of smoothly stratified spaces

∂ h
αX ∩∂ h

γ X
φ h

γ //

φ h
α

$$

∂ h
γ Bh

αX
φ h

γα

{{
Bh

αX

where ∂ h
γ Bh

αX is a disjoint union of connected codimension one strata of Bh
αX .

• For all α ∈ S(N), the restriction of ψ to a map ∂ h
αX −→ ∂αN is the pull-back of a fiber bundle

Bh
αX

ψh
α−−−→ BαN, i.e.,

(5.1) ∂ h
αX

φ h
α //

ψ

��

Bh
αX

ψh
α

��
∂αN

φα // BαN

is a pull-back diagram.
(2) Let L — X

ψ−−→ Y be a fiber bundle of smoothly stratified spaces in which the fiber is a smooth
manifold with corners. A vertical iterated fibration structure12 consists of an iterated fibration
structure on the fiber L, associated to the boundary stratification L −→ S(L), such that:

• For all a∈ S(L), with corresponding fiber bundle FaL — ∂aL
φa−−→BaL, there is ∂ v

a X ⊆X , either
a disjoint union of connected codimension one strata of X or the regular part of X , such that
ψ restricted to ∂ v

a X fibers over Y with fiber ∂aL. Each ∂ v
a X participates in a fiber bundle of

smoothly stratified spaces

Fv
a X — ∂

v
a X

φ v
a−−→ Bv

aX .

12When the base is smooth, this is referred to as a locally trivial family of manifolds with corners and iterated fibration
structures in [AGR23, Definition 1.3].
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If a,b ∈ S(L) are such that ∂ v
a X ∩ ∂ v

b X ̸= /0 and a < b, there is a commutative diagram of fiber
bundles of smoothly stratified spaces

∂ v
a X ∩∂ v

b X
φ v

b //

φ v
a

%%

∂ v
b Bv

aX
φ v

ba

{{
Bv

aX

where ∂ v
b Bv

aX is a disjoint union of connected codimension one strata of Bv
aX .

• For all a ∈ S(L), there is a fiber bundle map BaL — Bv
aX

ψv
a−−→Y participating in the commuta-

tive diagram

∂ v
a X �
� //

φ v
a
��

X

ψ

��

Bv
aX

ψv
a !!

Y

(3) We say that a fiber bundle carries a grid iterated fibration structure if it is equipped with both a
horizontal and a vertical iterated fibration structure.

Starting with a fiber bundle W — X
p−−→ Y of smoothly stratified spaces, we obtain the partial resolution

corresponding to the base by considering the pull-back of p along the blow-down map from the resolution
of Y,

(5.2) resbase(X , p) := β
∗
Y X , where β ∗

Y X

p
��

// X

p

��
res(Y )

βY // Y.

The partial resolution corresponding to the fiber is obtained by resolving the strata of X corresponding to
S(W )× (maxS(Y )). As these strata are transverse to the fibers of p, the composition of the blow-down map
with p is again a fiber bundle map, p̂,

resfib(X , p)
βfib //

p̂ $$

X

p
��

Y

with typical fiber res(W ). Indeed, given an open cover of Y, {Uℓ} that is trivializing for p and the corre-
sponding transition functions φℓ,ℓ′ : Uℓ ∩Uℓ′ −→ Diff(W ) (valued in the stratified diffeomorphisms of W ),
we can lift these to φ̃ℓ,ℓ′ : Uℓ∩Uℓ′ −→ Diff(res(W )) (valued in the fibered diffeomorphisms of res(W )) and
obtain transition functions for p̂.

Finally the grid resolution of W — X
p−−→ Y is obtained by performing both of these partial resolutions,

resgrid(X , p) = resfib(resbase(X , p), p̄)
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and so fits into the diagram

(5.3) resgrid(X , p)
β̄X //

p̃ &&

β ∗
Y X

p̄
��

// X

p

��
res(Y )

βY // Y.

Theorem 5.2. If W — X
p−−→ Y is a fiber bundle of smoothly stratified spaces then its partial resolutions

corresponding to the base and fiber inherit a horizontal and vertical iterated fibration structure, respectively.
Its grid resolution thus has a grid iteration fibration structure.

Proof. To simplify notation we assume during this proof that two strata are comparable if and only if their
closures intersect. Thus, e.g., the closure of Wa is W≤a.

Let us start by establishing the vertical iterated fibration structure of the partial resolution corresponding
to the fiber.

Without loss of generality let us assume that Y is connected and let us denote by ◦ the maximum on S(Y ),
so that Y◦ is equal to the regular part of Y. Every stratum Wa, a ∈ S(W ), corresponds to a stratum Xa×◦, where
a×◦ ∈ S(W )×S(Y ) = S(X), and by restricting p we obtain a fiber bundle of smoothly stratified spaces

W≤a — Z≤a := X(≤a)×(≤◦)
p≤a:=p|X(≤a)×(≤◦)−−−−−−−−−−−→ Y.

Just as discussed above for p, p≤a lifts to the resolution of Z≤a corresponding to the fibers,

p̂≤a : resfib(Z≤a, p≤a)−→ Y.

Now if we recall from Theorem 2.10 (see (2.6)) that res(W≤a) is the base of the boundary fiber bundle of

W corresponding to a, ∂ares(W )
φa−−→ Bares(W ), then since resolving the stratum Xa×◦ of X resolves the

corresponding stratum of each fiber, we see that we have a commutative diagram

∂aresfib(X , p) �
� //

φa

��

resfib(X)

p̂

��

res(Z≤a)

p̂≤a '' Y

and hence the vertical iterated fibration structure we expected.
Next let us establish the horizontal iterated fibration structure of the partial resolution corresponding to

the base. Let us momentarily introduce the notation

X̃ = resbase(X , p).

For each α ∈ S(Y ) the stratum Yα of Y has closure Y≤α and we denote the restriction of p to this closure
by

X |≤α
� � //

p|≤α

��

X

p

��
Y≤α
� � // Y
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where X |≤α = p−1(Y≤α). Next define

Bh
α X̃ := resbase(X |≤α , p|≤α) := β

∗
Y≤α

X |≤α , where β ∗
Y≤α

X |≤α

p≤α

��

// X |≤α

p|≤α

��
res(Y≤α)

βY≤α // Y≤α .

Recall that res(Y≤α) is the base of a fiber bundle projection in the iterated fibration structure of res(Y ),

∂α res(Y )
φα−−→ Bα res(Y ) = res(Y≤α),

and let us define ∂ h
α X̃ := p−1(∂α res(Y )), where p is the map in (5.2). We claim that there is a fiber bundle

map φ h
α : ∂ h

α X̃ −→ Bh
α X̃ that participates in a pull-back diagram

(5.4) ∂ h
α X̃

φ h
α //

p
��

Bh
α X̃

p≤α

��
∂α res(Y )

φα // Bα res(Y ).

To prove the claim, we will use that res(Y ) is obtained from Y by performing a radial blow-up of the
singular strata of Y in any non-decreasing order. If we denote by Ỹ1 the space obtained from Y by blowing-
up all of the strata that come before Yα , then the closure of the pre-image of Yα in Ỹ1 is precisely res(Y≤α) =
Bα res(Y ) since we have blown-up all of the singular strata of Y≤α . Let us denote the partial blow-down map
Ỹ1 −→ Y by γ1, so we have

Bα res(Y ) �
� //

βY≤α

��

Ỹ1

γ1

��
Y≤α
� � // Y.

Next let Ỹ2 be the space obtained from Ỹ1 by blowing-up Bα res(Y ), let γ2 : Ỹ2 −→ Ỹ1 denote the blow-
down map, and let ∂αỸ2 = γ

−1
2 (Bα res(Y )) be the boundary hypersurface resulting from the blow-up. The

restriction of γ2 to ∂αỸ2 is a fiber bundle projection onto Bα res(Y )), which we denote by γ2,α . Finally,
as res(Y ) is obtained by performing blow-ups on Ỹ2, there is a blow-down map γ3 : res(Y ) −→ Ỹ2 whose
restriction to ∂α res(Y ) is a blow-down map γ3,α : ∂α res(Y )−→ ∂αỸ2. Thus we have

res(Y )

βY

''
γ3

// Ỹ2 γ2
// Ỹ1 γ1

// Y

∂α res(Y )
φα

99

?�

OO

γ3,α // ∂αỸ2

?�

OO

γ2,α // Bα res(Y )
?�

OO

βY≤α // Y≤α

?�

OO

Let us denote the composition of the maps along the bottom of this diagram by ψα : ∂α res(Y )−→Y≤α . Now
notice that both of the fiber bundle maps

p̄ : β
∗
Y X −→ res(Y ) and p≤α : β

∗
Y≤α

X |≤α −→ res(Y≤α) = Bα res(Y )
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are obtained by pulling-back p : X −→ Y in the former case and p restricted to Y≤α in the latter case. Thus
they are related by

β ∗
Y X

p̄

��

**
ψ∗

αX |≤α

, �

99

��

**

γ∗1 X

��

((res(Y )

**

β ∗
Y≤α

X |≤α

, �

::

p≤α

��

))

X

��

∂α res(Y )
, �

::

φα **

Ỹ1

((

X |≤α

. �

>>

��

Bα res(Y )
, �

::

βY≤α ))

Y

Y≤α

. �

==

from which we recognize that the restriction of p̄ : β ∗
Y X −→ res(Y ) to the pre-image of ∂α res(Y ) is equal to

the pull-back of p≤α : β ∗
Y≤α

X |≤α −→ Bα res(Y ) along φα . That is

β ∗
Y X |∂α res(Y )

//

p
��

β ∗
Y≤α

X |≤α

p≤α

��
∂α res(Y )

φα // Bα res(Y )

is, as indicated, a pull-back diagram. Recognizing that this diagram is the same as (5.4) establishes the claim
and produces the desired horizontal iterated fibration structure. □

It will happen that we will start out with a fiber bundle of smoothly stratified spaces

W — X
p−−→ Y

then we will resolve it to some extent in order to carry out analytic constructions but we will then want
to make conclusions that refer back to the original stratified spaces. For this reason it is convenient to be
able to recognize the continuous functions on the stratified spaces among the continuous functions on the
resolutions.

Analogously to how we defined CΦ(res(X)) in (2.10), we can define

(5.5) CΦ−v(resfib(X)) = { f ∈ C(resfib(X)) : for all a ∈ S(W ), we have f |∂ v
a resfib(X) ∈ (φ v

a )
∗C(Bv

aX)},

CΦ−h(resbase(X)) = { f ∈ C(resbase(X)) : for all α ∈ S(Y ), we have f |
∂ h

α resbase(X) ∈ (φ h
α)

∗C(Bh
αX)

}
,

and the analogous CΦ−h,Φ−v(resgrid(X)), and these too will be ∗-isomorphic to C(X).
Finally we point out that the Kottke-Rochon result mentioned above, [KR23, Theorem 5.1], extends to fiber
bundles. That is to say

res(X) = [resgrid(X); codim 2 corners ]

where the codimension two corners are blown-up in any order consistent with the partial order on S(X) =
S(W )× S(Y ). Indeed the proof of this result in loc cit is coordinate based so it continues to hold in this
setting.
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Similarly, by choosing a connection for resgrid(X)
p̃−−→ res(Y ) we can consider a Riemannian metric on

the interior of resgrid(X) of the form
gresgrid(X)/res(Y )⊕ p̃∗gres(Y )

where the first summand is a family of wedge metrics on the fibers of p̃ and the second summand is the
lift of a wedge metric on res(Y ). The argument in [KR23, Alternate proof of Theorem 6.8] shows that this
metric lifts to res(X) to be a non-degenerate and non-singular bundle metric on

β
∗
res(X)

(
wT resgrid(X)/res(Y )⊕wT res(Y )

)
,

where βres(X) : res(X) −→ resgrid(X) is the blow-down map. As pointed out in loc cit, it follows that this
pull-back bundle is isomorphic to the wedge tangent bundle of res(X),

(5.6) wT res(X) = β
∗
res(X)

(
wT resgrid(X)/res(Y )⊕wT res(Y )

)
.

(Note that resgrid(X) generally does not have an iterated fibration structure and hence does not have a wedge
tangent bundle.)

In fact, Kottke-Rochon show that if the vertical and horizontal wedge metrics are product-type (which
they call rigid), then so is the lift to res(X). It follows that the same holds for totally-geodesic wedge metrics.

5.2. Vertical wedge Dirac-type operators and the analytic transfer map. In this section we gather to-
gether the final pieces needed to assign a KK-class to a fiber bundle of oriented Witt pseudomanifolds. More
generally, we explain how a family of wedge Dirac-type operators defines a KK-class. Starting with a fiber
bundle of stratified spaces, we pass to the grid resolution to apply results from [AGR23] but we want the
KK-class to correspond to the initial stratified spaces. This is where the structure developed above comes in
as it allows us to show that the C∗-algebras of functions that we use on the resolved spaces can be identified
with the continuous functions on the stratified spaces.

Our first step is to describe the structure of wedge differential forms on a fiber bundle of manifolds with
corners L — M

ψ−−→ N endowed with a grid iteration fibration structure. We shall have need of the vertical
wedge cotangent bundle, defined as follows. First recall that the vertical tangent bundle, which we denote
T M/N −→M, is the vector bundle given by the null space of Dψ and its restriction to any fiber Lq =ψ−1(q)
is equal to its tangent bundle T Lq. The vertical cotangent bundle, which we will denote T ∗M/N −→ M, is
the dual bundle to the vertical tangent bundle. Finally, to define the vertical wedge cotangent bundle we
proceed as above to first describe the vertical wedge one-forms,

V∗
w(M/N) = {θ ∈ C∞(M;T ∗M/N) : for each a ∈ S(L) and y ∈ Bv

aM, θ |
φ
−1
a (y) = 0},

and then appeal to the Serre-Swan theorem to obtain the associated bundle, denoted
wT ∗M/N −→ M.

Next we consider how this construction relates to the horizontal iterated fibration structure.

Proposition 5.3. Let L — M
ψ−−→ N be a fiber bundle of manifolds with corners endowed with a grid

iteration fibration structure.
For every α ∈ S(N) and every k ≥ 0, we have a pull-back diagram

Λk(wT ∗M/N)|∂α N
//

��

Λk(wT ∗Bh
αM/BαN)

��
∂ h

αM
φ h

α // Bh
αM

where φ h
α : ∂ h

αM −→ Bh
αM is the fiber bundle from Definition 5.1(1).
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Proof. We first note that commutativity of the diagram (5.1) implies that the differential of φ h
α , Dφ h

α :
T ∂ h

αM −→ T Bh
αM restricts to a map between the vertical tangent bundles,

T (∂ h
αM/∂αN)−→ T (Bh

αM/BαN).

As (5.1) is a pull-back diagram, Dφ h
α sends each fiber of the vertical bundle of ψ isomorphically onto the

corresponding fiber of the vertical bundle of ψh
α . Indeed, if U ⊆ BαN is an open set such that we may

trivialize ψh
α over U and p over φ−1

α (U) then the diagram restricts to

(5.7) φ−1
α (U)×L

φα×id //

��

U×L

��
φ−1

α (U)
φα // U

where L is the typical fiber of ψh
α (and ψ), and then the claimed behavior of Dφ h

α is clear. It follows that the
vertical tangent bundles participate in a pull-back diagram

(5.8) T (∂ h
αM/∂αN) //

��

T (Bh
αM/BαN)

��
∂ h

αM
φ h

α // Bh
αM,

i.e., (φ h
α)

∗T (Bh
αM/BαN) = T (∂ h

αM/∂αN).
We can then obtain a bundle morphism

(φ h
α)

∗T ∗(Bh
αM/BαN)−→ ((φ h

α)
∗T (Bh

αM/BαN))∗ = T ∗(∂ h
αM/∂αN)

by noting that any element
θ ∈ (φ h

α)
∗T ∗(Bh

αM/BαN))|
ζ∈∂ h

α M

defines a functional on T (∂ h
αM/∂αN)|

ζ∈∂ h
α M since we have identified it with T (Bh

αM/BαN)|
φ h

α (ζ )∈Bh
α M. This

bundle morphism restricts to an isomorphism between fibers and hence justifies the pull-back diagram

T ∗(∂ h
αM/∂αN) //

��

T ∗(Bh
αM/BαN)

��
∂ h

αM
φ h

α // Bh
αM.

Again appealing to (5.7), we see that this identification restricts to a bijection between the vertical wedge
one-forms on ∂ h

αM and the vertical wedge one-forms on Bh
αM and so induces a bundle isomorphism

(φ h
α)

∗(wT ∗(Bh
αM/BαN))∼= wT ∗(∂ h

αM/∂αN).

Finally, since pull-back commutes with taking exterior products, the statement of the proposition follows.
□

A useful consequence of this proposition is that we can define vertical wedge bundles of the partial
resolution corresponding to the fibers of a fiber bundle of stratified spaces.

Remark 5.4. Let us consider what this says in the setting of the prelude from section 5.1. We start with
W — X

p−−→ Y, a fiber bundle of smoothly stratified spaces where the base and fiber have stratifications of
depth one and we denote its grid resolution by

W̃ = res(W ) — X̃ = resgrid(X)
p̃−−→ Ỹ = res(Y ).

As this is a fiber bundle of smooth manifolds, its vertical tangent bundle is T X̃⧸W̃ = Ker(Dp̃)⊆ T X̃ . One
consequence of (the proof of) Proposition 5.3 that we want to point out is that there is also vertical tangent
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bundle even if we only resolve the fibers. Indeed, there is a natural map resgrid(X)
β h

X−−→ resfib(X) which
collapses the fibers of ∂ h

0 X̃ , i.e., replaces ∂ h
0 X̃ with Bh

0X̃ , and (5.8) shows that the vertical tangent bundle is
the pull-back of a vector bundle on resfib(X) along β h

X . The proposition points out that this is true also for
the wedge cotangent bundle.

Definition 5.5 (Vertical cotangent bundle of vertical iterated fibration structures).
Let L — X

p−−→Y be a fiber bundle of smoothly stratified spaces, in which the fiber is a smooth manifold
with corners, endowed with a vertical iterated fibration structure, let

L — M = resbase(X , p)
p−−→ N = res(Y )

be the partial resolution corresponding to the base, and let βX : M −→ X denote the blow-down map. Since

M
p−−→ N has a grid iterated fibration structure, it follows from Proposition 5.3 that there is a vector bundle

over X , which we will call the vertical wedge cotangent bundle of X
p−−→ Y and denote wT ∗X/Y −→ X ,

which pulls-back along βX to the vertical wedge cotangent bundle of M
p−−→ N,

wT ∗M/N //

��

wT ∗X/Y

��
M

βX // X .

The bundle wT ∗X/Y −→ X is smooth as a fiber bundle of smoothly stratified spaces and restricts to each
fiber of p to the cotangent bundle of L,

wT ∗X/Y |p−1(y) =
wT ∗Ly.

Of course one can similarly define the vertical wedge tangent bundle and the bundles of vertical wedge
differential forms of a vertical iterated fibration structure.

Our next objective is to obtain KK-classes from vertical families of Dirac-type operators associated to
vertical iterated fibration structures, which we will accomplish by applying results from [AGR23]. As this
paper worked in the setting of fiber bundles of smooth manifolds with corners we will also make use of grid
iterated fibration structures.

Definition 5.6.

(1) Let L — X
p−−→ Y be a fiber bundle of smoothly stratified spaces, in which the fiber is a smooth

manifold with corners, endowed with a vertical iterated fibration structure, let gX/Y be a smooth
family of (totally geodesic) wedge metrics on the fibers of p, i.e., a bundle metric on the vertical
wedge tangent bundle, wT X/Y, which restricts to each fiber to be a totally geodesic wedge metric.
A p-vertical wedge Clifford structure on X consists of a smooth complex vector bundle E −→
X endowed with a Hermitian metric gE , a metric connection ∇E , and a bundle homomorphism
(referred to as Clifford multiplication)

cl : C⊗Cl(wT ∗X/Y,gX/Y )−→ End(E)

compatible with the metric and the connection.
(2) Given a fiber bundle of smooth manifolds with corners, L — M

ψ−−→N, endowed with a grid iterated
fibration structure, a horizontal system of vertical wedge Clifford structures consists of a ψ-
vertical wedge Clifford structure, (gM/N ,EM −→ M,gEM ,∇

EM , cl ), and, for each α ∈ S(N) with
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associated pull-back diagram of fiber bundles

∂ h
αM

φ h
α //

ψ

��

Bh
αM

ψh
α

��
∂αN

φα // BαN,

a ψh
α -vertical wedge Clifford structure (gBh

α M/Bα N ,Eα −→Bh
αM,gEα

,∇Eα , cl ), such that these satisfy

(φ h
α)

∗(gBh
α M/Bα N ,Eα −→ Bh

αM,gEα
,∇Eα , cl ) = (gM/N ,EM −→ M,gEM ,∇

EM , cl )|Bh
α M.

Note that Proposition 5.3 is implicitly used in asking for the Clifford multiplication on ∂ h
αM to be the

pull-back of the Clifford multiplication on Bh
αM. The same proposition also shows that the bundle of wedge

differential forms makes up part of a horizontal system of vertical wedge Clifford structures, which we can
complete by picking a suitable vertical wedge metric. The fact that this horizontal system is pulled-back
from a vertical iterated fibration structure is no coincidence. Indeed, immediately from the definition we see
that if L — X

p−−→ Y has a vertical iterated fibration structure,

L — M = resbase(X , p)
p−−→ N = res(Y )

is the partial resolution corresponding to the base, and βX : M −→ X is the blow-down map, then any
p-vertical wedge Clifford structure (gX/Y ,E −→ X ,gE ,∇

E , cl ) can be pulled-back along βX to produce a
horizontal system of vertical wedge Clifford structures. It is also easy to see that all horizontal systems can
be obtained in this way.

Associated to a vertical iterated fibration structure, L — X
p−−→ Y, endowed with a p-vertical wedge

Clifford structure is a family of wedge Dirac-type operators,

Y ∋ y 7→ ðE
Ly

defined as in §3.2, which we denote ðE
X/Y . We denote the realization of this family acting on L2 sections of

E with the vertical APS domain by ðE
X/Y,VAPS.

Similarly if L — M
ψ−−→ N is a fiber bundle of smooth manifolds with corners endowed with a grid

iterated fibration structure and a horizontal system of vertical wedge Clifford structures, we can define a
family of wedge Dirac-type operators in the same way. We denote the resulting family by ðE

M/N and the
realization of this family acting on L2 sections of E with the vertical APS domain by ðE

M/N,VAPS.

In either case we say that the family of Dirac-type operators satisfies the analytic Witt condition if the
individual Dirac-type operators satisfy the condition (as described in §3.2).

Theorem 5.7. [AGR23, Theorem 1] Let L — M
ψ−−→ N be a fiber bundle of smooth manifolds with corners

endowed with a ψ-vertical iterated fibration structure and a ψ-vertical wedge Clifford structure. If the
corresponding family of Dirac-type operators ðE

M/N,VAPS satisfies the analytic Witt condition then it is a
family of self-adjoint Fredholm operators with compact resolvent.

This theorem does not require a grid iterated fibration structure but it does require that the spaces involved
are all smooth manifolds with corners. However by applying it to fiber bundles L — M

ψ−−→ N of smooth
manifolds with corners that are endowed with a grid iterated fibration structures and a horizontal system of
vertical wedge Clifford structures, we can obtain the following corollary.

Corollary 5.8. Let L — X
p−−→ Y be a fiber bundle of smoothly stratified spaces, in which the fibers are

smooth manifolds with corners, endowed with a p-vertical wedge Clifford structure. If the corresponding
family of Dirac-type operators ðE

X/Y,VAPS satisfies the analytic Witt condition then it is a family of self-adjoint
Fredholm operators with compact resolvent.
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This corollary is the result we have been aiming for. Our aim has been to assign a KK-class to a fiber
bundle of smoothly stratified Witt spaces by means of the vertical signature operators (to be realized in
Corollary 5.10 below). This leads us to using the grid resolution for a couple of reasons: first, defining
Clifford structures requires tangent bundles and, second, the results (and proofs) in [AGR23] assume fiber
bundles of smooth manifolds with corners. What we have shown is that we can start with a fiber bundle of
smoothly stratified spaces, resolve only the fibers, and still make sense of and apply the results of [AGR23].
We will now carry out the usual repackaging of these results to obtain an unbounded cycle and define a
KK-class. (The final result will be nicest if we start with a fiber bundle in which all of the space involved
are potentially singular spaces and we assume that the Clifford structure is defined on the partial resolution
of the fibers.)

Thus let Z — X
p−−→ Y be a fiber bundle of smoothly stratified spaces and let

L := res(Z) — X̂ := resfib(X , p)
p̂−−→ Y

be the partial resolution with respect to the fibers. Suppose that L — X̂
p̂−−→ Y is endowed with a p-vertical

wedge Clifford structure (gX̂/Y ,E −→ X̂ ,gE ,∇
E , cl ) whose associated Dirac-type operators satisfy the ana-

lytic Witt condition. Let us endow
E′ = Cc(X̂reg;E)

with the C0(Y )-valued inner product defined by

⟨·, ·⟩E′ : E′×E′ // C0(Y )

( f ,h) � //
(

y 7→
∫

p−1(y) gE( f (ζ ),h(ζ )) dvolgLy

)
and then define E to be the closure of E′ with respect to the resulting norm. Since E is a Hilbert module over
C0(Y ) it can be identified with the space of continuous sections vanishing at infinity of a continuous field of
Hilbert spaces over Y. In this case, of the Hilbert bundle

L2(L;E)−L2(X̂/Y ;E)−→ Y

induced by p, so that we have
E= C0(Y ;L2(X̂/Y ;E)).

We let CΦ−v(X̂) (defined in (5.5)) act on E by left multiplication and C(Y ) act on E by right multiplication
and we obtain a CΦ−v(X̂)-C(Y ) Hilbert bi-module, Z2-graded if E is Z2-graded. Define ðE

X̂/Y
to be the

operator on E given by

(5.9) (ðEX̂/Y ω)(y) = ðLy,VAPS(ω(y)),

for all ω ∈ dom(ðEX̂/Y ) = {ω ∈ E : ω(y) ∈DVAPS(ðE
Ly
) & ðEX̂/Y ω ∈ E}.

Since ðE
X̂/Y,VAPS

is closed, densely defined and dom(ðE
X̂/Y

)|y∈Y is dense in dom(ðE
Ly
) (in fact they are equal),

it follows from [Hil89, Proposition 2.9] that ðE
X̂/Y

is self-adjoint and regular.

Next note that elements h ∈ C1
Φ−v(X̂) are such that [ðE

X̂/Y
,h] is adjointable and bounded and such that

multiplication by h preserves the VAPS-domain. Hence C1
Φ−v(X̂)⊆ Lip(ðE

X̂/Y
) and Lip(ðE

X̂/Y
) = LipK(

E
X̂/Y

)

since the resolvent of each ðE
Ly,VAPS is compact. Thus the closure of LipK(

E
X̂/Y

) contains the multiplication

operators acting by elements of CΦ−v(X̂). This shows that these data define an unbounded CΦ−v(X̂)-C(Y )-
cycle,

[C0(Y ;L2(X̂/Y ;E)),ðEX̂/Y ] ∈ UKKdimZ
(CΦ−v(X̂),C(Y )).
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If X is not compact, but the links of Z are compact, then as discussed at the end of §3.2 we can define a
KK-class using functions that vanish at infinity. Finally, since CΦ−v(X̂) is ∗-isomorphic to C(X) and the
unbounded KK-groups coincide with those defined by Kasparov we can summarize this as folllows.

Corollary 5.9. If Z — X
p−−→Y is a fiber bundle of smoothly stratified spaces, resfib(X , p)

p̂−−→Y is endowed
with a p̂-vertical wedge Clifford structure whose associated Dirac-type operators satisfy the analytic Witt
condition and E, ðE

X̂/Y
are defined as above then these data define

[ðEX̂/Y ] ∈ KKdimX/Y (C0(X),C0(Y )).

The case of most interest to us comes from specializing this corollary to the signature operator.

Corollary 5.10. To any smooth oriented fiber bundle p : X −→ Y of stratified spaces, whose typical fiber Z
is a Witt pseudomanifold, there is associated a KK-class

[Dsign
X/Y ] ∈ KKdimX/Y (C0(X),C0(Y ))

given by the KK-class of the family of signature operators associated to any totally geodesic vertical wedge
metric.

Proof. For any choice of totally geodesic vertical wedge metric Corollary 5.9 defines a KK-class from the
family of signature operators of the resolutions of the fibers of p, so we only need to justify that this class
is independent of the choice of metric, and so it suffices to note that any two appropriate totally geodesic
vertical wedge metric can be connected by a homotopy which induces a homotopy of the corresponding
families of signature operators and hence does not affect the KK-class. □

Just as we defined the analytic orientation by normalizing the K-homology class of the signature operator
after inverting 2, so too do we define the analytic transfer class in KK-theory as a normalized version of the
class of the vertical family of signature operators after inverting 2. This has two advantages: first, product
formulas will hold ‘on the nose’ without occasional factors of two (see Corollary 5.17) and secondly, to be
consistent with the K-homology class of the signature operator when Y is a point (see Proposition 5.13).

Definition 5.11. Let p : X −→ Y be a smooth oriented fiber bundle of stratified spaces whose typical fiber
Z is a Witt pseudomanifold. We define the analytic transfer class associated to p to be13

Σ(p) = 2−⌊dimZ/2⌋[Dsign
X/Y ] ∈ KKdimX/Y (C0(X),C0(Y ))[1

2 ].

Another important special case is when the partial resolution corresponding to the fibers of the fiber
bundle Z — X

p−−→ Y,

X̂ = resfib(X , p)
p̂−−→ Y

admits a vertical wedge spin structure; that is, when the vertical wedge tangent bundle wT X̂/Y is spin.
Choosing a spin bundle and a vertical wedge metric we obtain a family of spin Dirac operators and if they
satisfy the analytic Witt condition then we obtain a KK-class.

Corollary 5.12. To any smooth fiber bundle p : X −→Y of smoothly stratified spaces, whose vertical wedge
tangent bundle wT resfib(X , p)/Y is endowed with a spin structure, there is for each vertical wedge metric g
an associated a KK-class

[Dspin
X/Y ] ∈ KKdimX/Y(C0(X),C0(Y ))

given by the KK-class of the corresponding family of spin Dirac operators.

13NB: In the setting of Lipschitz manifolds, Hilsum [Hil89, §2.4] uses the same notation with a slightly different meaning: for
him Σ(p) denotes the class of [Dsign

X/Y ].
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Unlike for smooth manifolds, the class of the spin Dirac operator in KK-theory will depend on the choice
of wedge metric. Indeed, whether or not the spin Dirac operator is Fredholm will depend on the choice of
metric.

A natural condition that ensures that the analytic Witt condition holds is known as ‘psc-Witt’. Suppose
that (X ,g) is a smoothly stratified pseudomanifold all of whose strata are spin, endowed with wedge metric
g, we say that the psc-Witt condition holds if the induced metrics on the links of X have positive scalar
curvature (see [BPR21, BPR23]). Since all of the strata are spin, the boundary family at each stratum con-
sists of the spin Dirac operators of the links and hence the Lichnerowicz formula shows that the psc-Witt
condition implies the analytic Witt condition. A stronger sufficient condition is to assume that the wedge
metric has non-negative scalar curvature near the singularities; this implies that the operators are also essen-
tially self-adjoint (see, e.g., [AGR16, §7]). (One can analogously treat spin-c structures; the analogue of the
psc-Witt condition is the ‘generalized psc-Witt condition’ see [BR24].)

Note that if in the fiber bundle Z — X
p−−→Y the base Y consists of a single point then the construction of

the unbounded CΦ−v(X̂)-C(Y )-cycle coincides with the construction of the KK-class associated to a single
Dirac-type operator in §3.3. The special case of the signature operator is important enough for us that we
label it as a proposition.

Proposition 5.13. Let Xn be an orientable compact closed n-dimensional smoothly stratified Witt pseudo-
manifold. Then the Gysin element of the constant map h : X → pt agrees with the class of the signature
operator,

Σ(h) = signK(X) in Kn(X)[1
2 ]

Definition 5.14. The analytic transfer maps associated to any smooth oriented fiber bundle p : X −→ Y
of stratified spaces, whose typical fiber Z is an oriented Witt pseudomanifold, are the maps induced by
Kasparov product with Σ(p). We denote the corresponding maps in K-homology by

Kan
∗ (Y )[1

2 ] = KK∗(C0(Y ),C)[1
2 ]

p!
// KK∗(C0(X),C)[1

2 ] = Kan
∗ (X)[1

2 ]

[A] � // Σ(p)⊗ [A],

and the corresponding map in topological K-theory by

K∗(Y )[1
2 ] = KK∗(C,C0(X))[1

2 ]
p! // KK∗(C,C0(Y ))[1

2 ] = K∗(Y )[1
2 ]

[A] � // [A]⊗Σ(p)

where ⊗ denotes the Kasparov product.

5.3. Functoriality for fibrations. In this section our aim is to start with a commutative diagram of fiber
bundles of smoothly stratified spaces

(5.10) X1
p12 //

p13   

X2

p23

��
X3

and enough data to define appropriate Dirac-type operators and then to understand the relation between
the corresponding KK-classes. In particular we will generalize [RW06, Lemma 6] and relate the analytic
signature class of p13 with the Kasparov product of those of p12 and p23 in Corollary 5.17. An important
special case corresponds to taking X3 to be a single point:

Theorem 5.15. If X
p−−→ Y is an oriented fiber bundle map of Witt pseudomanifolds, then

signK(X) = Σ(p)⊗ signK(Y ) = p!signK(Y ) in Kan
dimX(X)[1

2 ]
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i.e., the analytic transfer map takes the signature orientation of the base Y to the signature orientation of
the total space X .

A special case of this latter result, when X −→Y is a real oriented vector bundle over a Witt pseudoman-
ifold, was worked out by Hilsum in [Hil14, Théorème 4.4, pg. 187].

Our proof of the functoriality, just as proofs of similar statements for smooth manifolds in, e.g., [KvS18,
vdD22], consists of relating the corresponding Dirac-type operators and then using Kucerovsky’s unbounded
version of the Connes-Skandalis characterization of the Kasparov product [Kuc97].

We will show something more general than the relation between the analytic signature classes, namely that
data sufficient to define a family of Dirac-type operators for p12 and p23 are also sufficient to define a family
of Dirac-type operators for p13 and that the resulting KK-classes are related by Kasparov product. To state
this more precisely let us start by denoting the typical fiber of the map pi j by Fi j so that

res(F12) — X̂1 := resfib(X1, p12)
p̂12−−−→ X2,

res(F23) — X̂2 := resfib(X2, p23)
p̂23−−−→ X3,

res(F13) = res(F12)×̃res(F23) — X̃1 := resfib(X1, p13)
p̂13−−−→ X3,

where ×̃ denotes the ordered product of Kottke-Rochon [KR23] mentioned in §5.1. Locally over an open
set U⊆ X3 on which we can trivialize all of the pi j we have natural maps

res(F12)×̃res(F23)×U //

��

res(F12)×F23 ×U

��
res(F23)×U // F23 ×U

��
U

and these maps fit together into the diagram

resfib(X1, p13)
α //

β

��

resfib(X1, p12)

��
resfib(X2, p23) // X2

��
X3.

The bundle

(5.11) α
∗wT ∗X̂1/X2 ⊕β

∗wT ∗X̂2/X3 −→ resfib(X1, p13)

is, by [KR23, Alternate proof of Theorem 6.8] mentioned above (5.6), the vertical wedge cotangent bundle
of resfib(X1, p13) −→ X3,

wT ∗X̃1/X3. Thus vertical wedge metrics for X̂1 −→ X2 and X̂2 −→ X3 induce a
vertical wedge metric for X̃1 −→ X3.

If we are given

• a vertical wedge Clifford structure (gX̂1/X2
,E12 −→ X̂1,gE12 ,∇

E12 , cl ), for X̂1 = resfib(X1, p12)
p̂12−−−→

X2,

• a vertical wedge Clifford structure (gX̂2/X3
,E23 −→ X̂2,gE23 ,∇

E23 , cl ), for X̂2 = resfib(X2, p23)
p̂23−−−→

X3,
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then we define a bundle E13 −→ resfib(X1, p13) by

E13 = α
∗E12⊗̂β

∗E23,

where ⊗̂ denotes the graded tensor product14. There is an induced bundle metric gE13 = α∗gE12 ⊗β ∗gE23 , an
induced connection

∇
E13,⊕ = α

∗
∇

E12 ⊗1+1⊗β
∗
∇

E23 ,

and an induced Clifford action: at each ζ ∈ X̃1,

for any θ ⊗η ∈ Cl(α∗wT ∗
α(ζ )X̂1/X2)⊗̂Cl(β ∗wT ∗

β (ζ )X̂2/X3),

and σ ⊗ τ ∈ α
∗(E12)α(ζ )⊗̂β

∗(E23)β (ζ ),

cl (θ ⊗η)(σ ⊗ τ) = (−1)deg(ω)deg(σ)cl (θ)σ ⊗ cl (η)τ.

Thanks to the identification of wT ∗X̃1/X3 with α∗wT ∗X̂1/X2 ⊕ β ∗wT ∗X̂2/X3, this defines an action of the
complexified Clifford algebra of wT ∗X̃1/X3 on E13.

Thus we almost have an induced vertical Clifford structure for X̃1 −→ X3. The only issue is that ∇E13,⊕ is
a Clifford connection with respect to the connection

∇
X̃1/X3,⊕ = α

∗
∇

X̂1/X2 ⊗1+1⊗β
∗
∇

X̂2/X3 ,

and this is generally not equal to the vertical Levi-Civita connection determined by gX̃1/X3
, ∇X̃1/X3 . If we

denote the difference between the two connections by

∇
X̃1/X3 −∇

X̃1/X3,⊕ = ω

then ω is an one-form valued in the endomorphisms of vertical tangent bundle. We can regard ω as a
T ∗X̃1-valued vertical wedge two form using the identification

(ω(V1,V2),V3) = gX̃1/X3
((∇

X̃1/X3
V3

−∇
X̃1/X3,⊕
V3

)V1,V2),

where V3 ∈ C∞(X̃1;T X̃1) and V1,V2 ∈ C∞(X̃1; wT X̃1/X3), and then define

cl (ω) ∈ C∞(X̃1;T ∗X̃1 ⊗Cl(wT ∗X̃1/X3)), cl (ω) = 1
2 ∑

a,b
ω(ea,eb)⊗ cl (ea)cl (eb),

where ea runs over an orthonormal basis of wT X̃1/X3, and it follows from [BGV04, Proposition 10.12] that

∇
E13 := ∇

E13,⊕+ cl (ω)

is a Clifford connection with respect to ∇X̃1/X3 . We refer to the data defined in this way, (gX̃1/X3
,E13 −→

X̃1,gE13 ,∇
E13 , cl ), as the induced vertical Clifford structure for the fiber bundle resfib(X1, p13)−→ X3.

Finally, if the vertical wedge Clifford structures for X̂1
p̂12−−−→ X2 and X̂2

p̂23−−−→ X3 are Z2-graded then we
endow the vertical wedge Clifford structure for X̂1 −→ p̂13X3 with the natural Z2-grading. If neither of these
is Z2-graded then we endow the vertical wedge Clifford structure for X̂1 −→ p̂13X3 with the Z2-grading
obtained by considering the ungraded Clifford structures as Cl(1) structures in the usual way (see, e.g.,
[vSV22, Appendix A] and [BMvS16, Examples 2.38-2.40]).

Theorem 5.16. Suppose we are given fiber bundles of smoothly stratified spaces as in (5.10) and vertical
Clifford structures for resfib(X1, p12) −→ X2 and resfib(X2, p23) −→ X3, and suppose that the families of
Dirac-type operators of these two families, as well as that of the induced vertical Clifford structure for
resfib(X1, p13)−→ X3, satisfy the analytic Witt condition. Then the associated KK-classes satisfy

[ðE13
X1/X3

] = [ðE12
X1/X2

]⊗ [ðE23
X2/X3

] ∈ KKdimX1/X3(C0(X1),C0(X3)).

14The graded tensor product of Clifford modules is discussed in, e.g., [ABS64, §6].
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Proof. For simplicity, let us first assume that dimX1/X2 and dimX2/X3 are even.
Let (Ei j,ð

Ei j

Xi/X j
), with (i, j) ∈ {(1,2),(2,3),(1,3)}, denote the three unbounded cycles. Recall that Ei j is

defined as the closure of Cc(Xi,reg;Ei j) with respect to the C0(X j)-valued inner product induced by integation
along the fibers Xi/X j.

Step 1: We can assume without loss of generality that, for each ζ ∈ X2,

(5.12) DVAPS(ðE
F12,ζ

) = ρH1
e (F12,ζ ;E).

Indeed, it is pointed out in [AGR16, Remark 4.9] that any family of wedge Dirac-type operators satisfying
the analytic Witt condition is homotopic through Fredholm families of wedge Dirac-type operators satisfy-
ing the analytic Witt condition to one whose “indicial roots” are as large as desired.15 Since this does not
change the KK-class of the family of Dirac-type operators we do not lose any generality by assuming that
this condition holds.

Step 2: We can identify E12 ⊗C(X2) E23 with E13.

Recall (e.g., from [Lan95, Chapter 4]) that the interior tensor product used here is defined by first endow-
ing the algebraic tensor product E12 ⊗alg E23 with the inner product given on simple tensors by

⟨ f ⊗h, f ′⊗h′⟩= ⟨h,⟨ f , f ′⟩h′⟩,

modding out by N = {z ∈ E12 ⊗alg E23 : ⟨z,z⟩ = 0} and then completing with respect to this inner product.
In our setting this inner product is given on simple tensors with f , f ′ ∈ E12 and h,h′ ∈ E23 by

X3 ∋ q 7→ ⟨ f ⊗h, f ′⊗h′⟩(q) =
∫

r∈p̂−1
23 (q)

gE23(h(r),⟨ f , f ′⟩(r)h′(r)) dvolres(F23,q)

=
∫

r∈p̂−1
23 (q)

gE23

(
h(r),

(∫
s∈p̂−1

12 (r)
gE12( f (s), f ′(s)) dvolres(F12,r)

)
h′(r)

)
dvolres(F23,q).

Notice, directly from the definition of the Ei j, that we obtain the same completion if we start with the
algebraic tensor product Cc(X1,reg;E12)⊗algCc(X2,reg;E23) and that then we may rewrite the inner product as
an integral over the fibers of p̂13 : X̃1 −→ X3,

X3 ∋ q 7→ ⟨ f ⊗h, f ′⊗h′⟩(q)

=
∫

p̂−1
13 (q)

gE12(α
∗ f ,α∗ f ′)gE23(β

∗h,β ∗h′) dvolF
12,p−1

23 (q)
β
∗dvolF23,q

=
∫

p̂−1
13 (q)

gα∗E12⊗β ∗E23( f ⊗β
∗h, f ′⊗β

∗h′) dvolF13,q ,

where we have used that α|X̃1,reg
= id. Thus the completion with respect to this inner product produces

C(X3,L2(X1,reg/X3)) = C(X3,L2(X̃1/X3)) = E13, as promised.

Step 3: We obtain a local expression relating the Dirac-type operators.

15As noted in [AGR16, Remark 4.9] the deformation is through Dirac-type operators but other structures are not necessarily
preserved. For example it is not necessarily possible to arrange (5.12) for the signature operator. Indeed a simple computation such
as [ALMP12, Lemma 5.6] shows that (5.12) for the signature operator requires a “thick Witt condition”:

IHk
m(Z) = 0 if |dimZ −2k| ≤ 1

2 .

(This seems to have been overlooked in [HLV18] and this hypothesis should be included in their Theorem 1.1.) However it is
possible to deform the signature operator to a Dirac-type operator satisfying (5.12).
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This is straightforward since we may, by localizing on X3 and restricting to the regular parts, reduce to
relating the the Dirac-type operator on the total space of the fiber bundle of smooth manifolds,

F12,reg — F13,reg −→ F23,reg,

with the family of Dirac-type operators on the fibers and a lift of the Dirac-type operator on the base and this
is carried out in Proposition 10.12 and Theorem 10.19 in [BGV04] (see also [KvS18, Theorem 22], [KvS20,
Theorem 30]). Thus we may write, as differential operators acting on smooth sections over the regular part
of X1,

ðE13
X1/X3

= ðE12
X1/X2

+ ð̃E23
X2/X3

− 1
4 ∑

a<b
∑
c

gX1/X2([ fa, fb],ec)cl ( f a)cl ( f b)cl (ec)

where ð̃E23
X2/X3

is a lift of ðE23
X2/X3

to X1, and in the final sum ( fa) runs over an orthonormal frame for wT X2/X3,

lifted to X1 and (ec) runs over an orthonormal frame for wT X1/X2. Let us define

DE13
X1/X3

= ðE12
X1/X2

+ ð̃E23
X2/X3

and point out that DE13
X1/X3

is a relatively compact perturbation of ðE13
X1/X3

when both are endowed with the

VAPS domain of the latter since from, e.g., [AGR23, §1.2], the final sum in the expression for ðE13
X1/X3

is a
uniformly bounded section of the endomorphism bundle of E13 and, from [AGR23, Theorem 1], the VAPS
domain includes compactly into L2. In particular, since the domain for ðE13

X1/X3
is pointwise equal to the VAPS

domain of ðE13
X1/X3

we can replace this operator with DE13
X1/X3

, with the same domain, and obtain the same class
in KK∗(C0(X1),C0(X3)).

Step 4: We use the characterization of the Kasparov product from [Kuc97].

To prove the theorem it is sufficient, following loc cit, to show
i) (connection) for all ξ in a dense subset of C(X1) ·C(X2,L2(X1/X2;E12)), the operator[(

0 T ∗
ξ

Tξ 0

)
,

(
ðE23

X2/X3
0

0 DE13
X1/X3

)]
, where Tξ (e) = ξ ⊗ e

is bounded on dom(ðE23
X2/X3

⊕DE13
X1/X3

),

ii) (compatibility) there is a dense submodule W of E13 such that, for any µ13,µ12 ∈ R\{0},

ðE12
X1/X2

(iµ13 +DE13
X1/X3

)−1(iµ12 +ðE12
X1/X2

)−1

is defined on W.
iii) (positivity) for any µ13,µ12 ∈ R\{0}, there exists λ > 0 such that

⟨(ðE12
X1/X2

⊗1)ξ ,DE13
X1/X3

ξ ⟩+ ⟨DE13
X1/X3

ξ ,(ðE12
X1/X2

⊗1)ξ ⟩ ≥ −λ ⟨ξ ,ξ ⟩,

for all ξ ∈ (iµ13 +DE13
X1/X3

)−1(iµ12 +ðE12
X1/X2

)−1W.

To establish the connection condition (i), we choose to use C∞
c (X1,reg;E12) as the dense subset of C(X1) ·

C(X2,L2(X1/X2;E12)) and then, as we are working over the regular part, we may appeal to the computation
done in [KvS20, Theorem 23] to see that (i) comes down to the boundedness of the map

E13 ∋ r 7→ (DX1/X2ξ )⊗ r+(−1)|ξ |i∑
a

∇
X1/X3
fa

ξ ⊗ cl ( fa)r

for each fixed ξ , and this is manifest.
To establish condition (ii) it is sufficient, by [Kuc97, Lemma 10] to establish that

dom(DE13
X1/X3

)⊆ dom(ðE12
X1/X2

)
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and, from the description of these domains in (5.9), to establish this over each point ζ ∈ X3. The domain of
DE13

X1/X3
|ζ∈X3 is defined by requiring Sobolev regularity with respect to all edge vector fields on F13 and ρ1/2

decay at all boundary hypersurfaces of F13, whereas the domain of ðE12
X1/X2

)|ζ∈X3 only imposes these require-
ments with respect to the p12-horizontal edge vector fields and boundary hypersurfaces, so this inclusion is
clear.

Finally to establish (iii) we can appeal to the computation done in [KvS20, Lemma 17] and the proof of
[KvS20, Theorem 23] to see that it suffices to show that there exists a constant C > 0 such that for any ξ in
the domain of ðE12

X1/X2
,

∥ |∇X1/X2ξ |gX1/X2
∥L2 ≤C(∥ξ∥L2 +∥ðE12

X1/X2
ξ∥L2).

While the analogous inequality holds for edge Sobolev spaces (by, e.g., the bounded geometry of edge
metrics) this inequality does not hold in general for elliptic wedge differential operators. This is why in
Step 1 we arranged for the VAPS domain of each operator in the family ðE12

X1/X2
is ρH1

e (p̂−1
12 (ζ );E) as this

inequality does hold for elements in this space.
The only difference when either dimX1/X2 or dimX2/X3 is odd is the treatment of the gradings. This

aspect can be handled just as when the underlying spaces are smooth and the fiber bundles are trivial. We
refer to [BMvS16, Examples 2.38-2.40] and especially [Wah10] for a thorough discussion. □

Corollary 5.17. Given fiber bundles of smoothly stratified spaces as in (5.10), if the fibers of p12 and p23
are smooth oriented Witt pseudomanifolds then so are the fibers of p13 and the associated analytic signature
classes satisfy

[Dsign
X1/X3

] = ℓ
(
[Dsign

X1/X2
]⊗ [Dsign

X2/X3
]
)

in KK∗(C0(X1),C0(X3)),

with ℓ=

{
2 if dimX1/X2 and dimX2/X3 are odd
1 otherwise

Correspondingly, we have

Σ(p13) = Σ(p12)⊗Σ(p23) in KK∗(C0(X1),C0(X3))[
1
2 ].

Proof. The fact that the fibers of p13 satisfy the topological Witt condition reduces to the fact that the product
of Witt spaces is a Witt space, which is proved, e.g., in Proposition 9.1.25 of [Fri20].

The theorem establishes that the product of [Dsign
X1/X2

] and [Dsign
X2/X3

] is the KK-class of a family of Dirac-type
operators associated to p13, and the construction above specializes to show that this operator is d+δ acting
on the vertical wedge differential forms, so it is only necessary to work out the grading. That this results
in the formula in the statement of the corollary is explained in [RW06, Lemma 6] (see also [Wah10] and
[Ebe25, Proposition 2.29]).

For the analytic transfer classes, if we define

i = dimX1 −dimX2, j = dimX2 −dimX3

then Σ(p13) is equal to 2−⌊(i+ j)/2⌋[Dsign
X1/X3

] so it suffices to note that

ℓ
(
2−⌊(i+ j)/2⌋)= 2−⌊i/2⌋2−⌊ j/2⌋, with ℓ=

{
2 if i and j are odd
1 otherwise

□

It is instructive to consider the case of Theorem 5.15 where p is the factor projection of a product bundle,
which generalizes [RW06, Lemma 6, p. 51] from the manifold case to singular spaces.
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Corollary 5.18. Let Xn and Y m be closed smoothly stratified Witt spaces. Then the product X ×Y is a closed
smoothly stratified Witt space, and the K-homology class of the signature operator on X ×Y satisfies

[Dsign
X×Y ] = ℓ

(
[Dsign

X ]⊠ [Dsign
Y ]
)

in Kan
n+m(X ×Y ), with ℓ=

{
2 if dimX and dimY are odd
1 otherwise

where ⊠ denotes the external Kasparov product Kan
n (X)⊗Kan

m (Y ) → Kan
n+m(X ×Y ). Correspondingly we

have
signK(X ×Y ) = signK(X)⊠ signK(Y ) in Kan

n+m(X ×Y )[1
2 ].

Proof. Apply the theorem to the case in which X1 = X ×Y, X2 =Y, X3 = pt and p12 is the natural projection
X ×Y −→ Y. □

Another interesting case concerns spin Dirac operators. If the vertical Clifford structures on p12 and p23
correspond to spin structure on their fibers, then the induced vertical Clifford structure on p13 does as well
and we have the following result.

Corollary 5.19. Given fiber bundles of smoothly stratified spaces as in (5.10), whose vertical wedge tangent
bundles are spin, equipped with vertical wedge metrics such that the associated vertical families of spin
Dirac operators satisfy the analytic Witt condition, the associated KK-classes satisfy

[Dspin
X1/X3

] = [Dspin
X1/X2

]⊗ [Dspin
X2/X3

] ∈ KKdimX1/X3(C0(X1),C0(X3)).

Remark 5.20. The corollary applies, for example, if the fibers of p12, p23, and p13 all satisfy the psc-Witt
condition (described after Corollary 5.12).

Notice that, unlike the topological Witt condition, assuming that the fibers of p12 and p23 satisfy this
condition does not imply that the fibers of p13 will satisfy the psc-Witt condition. Indeed, it is not difficult to
see that the product of two cones satisfying the psc-Witt condition need not satisfy the psc-Witt condition.

5.4. Base change. In this subsection we show that the Gysin homomorphism associated to a fiber bundle
is compatible with pull-back along proper smooth maps of stratified spaces.

Specifically suppose that p : X −→Y is a smooth oriented fiber bundle of stratified spaces, whose typical
fiber Z is a Witt pseudomanifold, W is another smoothly stratified space and f : W −→Y is a proper smooth
stratified map, and then consider the Cartesian diagram

f ∗X
g //

q
��

X

p
��

W
f // Y

with f ∗X
q−−→W the pull-back bundle. We assume that X is endowed with a vertical totally geodesic wedge

metric and then we endow f ∗X with the pull-back metric along g. We have two bivariant classes

[Dsign
X/Y ] ∈ KK(C0(X),C0(Y )), [Dsign

f ∗X/W ] ∈ KK(C0( f ∗X),C0(W )),

where Dsign
X/Y denotes the vertical family of signature operators endowed with their VAPS domain, and simi-

larly for Dsign
f ∗X/W , and by Kasparov multiplication they define two homomorphisms

[Dsign
X/Y ]⊗· : Kan

∗ (Y )−→ Kan
∗ (X), [Dsign

f ∗X/W ]⊗· : Kan
∗ (W )−→ Kan

∗ ( f ∗X).

We will deduce base change from the following:

Theorem 5.21. If f , g, p, and q are above then the following holds

[Dsign
X/Y ]⊗ f∗α = g∗([D

sign
f ∗X/W ]⊗α), ∀α ∈ Kan

∗ (W ).
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Proof. Since f is proper, it defines f ∗ : C0(Y )→C0(W ), a C∗-algebra homomorphism, and

f∗(α) = [ f ∗]⊗α, with [ f ∗] ∈ KK(C0(Y ),C0(W ))

and, since g is also proper, similarly for g∗, with [g∗] ∈ KK(C0(X),C0( f ∗X)). Here we are using the well
known fact that if A and B are two C∗-algebras and φ : A → B is a homomorphism then there is a natural
KK-class

[φ ] := [B,φ : A → B,0] ∈ KK(A,B)
where we regard B as a B-Hilbert module with the B-valued inner product equal to ⟨b,b′⟩ := (b′)∗b. This
class [φ ] ∈ KK(A,B) has the property that φ ∗ : KK(B,D)→ KK(A,D) is given by [φ ]⊗ (−) : KK(B,D)→
KK(A,D) for any C∗-algebra D.
Hence, by associativity of the Kasparov product, we see that the theorem is equivalent to the equality

[Dsign
X/Y ]⊗ [ f ∗] = [g∗]⊗ [Dsign

f ∗X/W ] in KK(C0(X),C0(W )) .

In general if
x = [E1,φ1 : A → B(E1),F1] ∈ KK(A,D)

and if λ : D → B is a C∗-homomorphism and

y = [B,λ : D → B,0] ∈ KK(D,B)

then
x⊗y = [E = E1 ⊗λ B,φ1 ⊗λ Id,F ⊗ Id] ∈ KK(A,B).

One should observe that λ induces a group homomorphism:

λ∗ : KK(−,D)→ KK(−,B)

and
x⊗y = λ∗x.

Similarly if
x = [D,µ : A → D,0] ∈ KK(A,D)

and
y = [E2,φ2 : D → B(E2),F2] ∈ KK(D,B)

then
x⊗y = [E = D⊗φ2 E2

Φ≃ E2, f ⊗φ2 Id,Φ∗F2Φ] ∈ KK(A,B).
Notice that µ induces

µ
∗ : KK(D,−)→ KK(A,−)

and it holds that
µ
∗y = x⊗y .

We go back to our specific situation and write down the relevant cycles.
Let E be the bundle of exterior powers of wedge vertical differential forms on X ,

E = Λ
∗(wT ∗X/Y ).

We denote by L2(X/Y ;E) the bundle of Hilbert spaces over Y with fiber at y ∈ Y given by L2(Xy,Ey) with
Xy = p−1(y) and Ey the restriction of E to Xy. Then

[Dsign
X/Y ] := [HX/Y :=C0(Y,L2(X/Y ;E)),φ : C0(X)→ B(HX/Y ),D

sign
X/Y ] ∈ KK(C0(X),C0(Y ))

where C0(Y,L2(X/Y ;E)) denotes continuous sections vanishing at infinity of the bundle of Hilbert spaces
L2(X/Y ;E). We also have [ f ∗] ∈ KK(C0(Y ),C0(W )) given by

[C0(W ), f ∗ : C0(Y )→C0(W ),0] ∈ KK(C0(Y ),C0(W )).

Next we write the elements appearing on the right hand side of the base change formula. These are

[g∗] = [C0( f ∗X),g∗ : C0(X)→C0( f ∗X),0] ∈ KK(C0(X),C0( f ∗X)),
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whereas [Dsign
f ∗X/W ] is given by

[H f ∗X/W :=C0(W,L2( f ∗X/W,g∗E)), φ̃ : C0( f ∗X)→ B(H f ∗X/W ),Dsign
f ∗X/W ] ∈ KK(C0( f ∗X),C0(W )).

Lemma 5.22. There is an isomorphism

L2( f ∗X/W,g∗E) = f ∗L2(X/Y ;E)

of bundles of Hilbert spaces over W.

Proof. By our definition of fiber bundle of smoothly stratified spaces, we know that there is an open cover
of Y, {Ui}i∈A, together with corresponding local trivializations of p : X → Y of the form

p−1(Ui)
ϕi //

p
##

Z ×Ui

||
Ui

where the right arrow is the projection onto the right factor and where ϕi is a stratified diffeomorphism.
Whenever i, j ∈A are such that Ui j :=Ui ∩U j ̸= /0 the map

Z ×Ui j
ϕ j◦ϕ

−1
i−−−−−→ Z ×Ui j

necessarily has the form (z,u) 7→ (ρi j(u)(z),u) with transition functions ρi j, a family of stratified diffeomor-
phisms of Z parametrized by points of Ui j. (This family is smooth in the sense that they fit together into the
smooth map ϕ j ◦ϕ

−1
i . ) If i, j,k ∈A are such that Ui ∩U j ∩Uk ̸= /0 then, on this set, the transition functions

satisfy the cocycle condition ρi j = ρk j ◦ρi j.
At a point u ∈Ui j, the stratified diffeomorphism ρi j(u) : Z → Z induces an isomorphism of Hilbert spaces

ρ∗
i j(u) : L2(Z) → L2(Z) by pulling back an L2-function on Z via ρi j(u), i.e. (ρ∗

i j(u))(h) = h ◦ (ρi j(u)) for
h ∈ L2(Z). This yields a system {ρ∗

i j : Ui j → GL(L2(Z))} of transition functions satisfying the cocycle
condition. This system is the system of transition functions associated to the bundle L2(X/Y ) of Hilbert
spaces.

The pulled-back smooth stratified fiber bundle q : f ∗X → W is trivialized over the open cover {Vi =
f−1(Ui)}i∈A of W, with local trivializations

q−1(Vi)
ψi:=(πL◦ϕi◦g,q) //

p
""

Z ×Vi

}}
Vi

where πL : Z×Ui −→ Z is the projection onto the left factor. Whenever i, j ∈A are such that Vi j :=Vi∩Vj ̸= /0
the map

Z ×Vi j
ψ j◦ψ

−1
i−−−−−→ Z ×Vi j

is given by (z,u) 7→ (ρi j( f (u))(z),u), i.e., the transition functions of q are τi j = ρi j ◦ f . At a point v ∈Vi j, the
stratified diffeomorphism τi j(v) : Z → Z induces an isomorphism of Hilbert spaces τ∗

i j(v) : L2(Z)→ L2(Z)
by pulling back an L2-function on Z via τi j(v), i.e. (τ∗

i j(v))(h) = h ◦ (τi j(v)) for h ∈ L2(Z). This yields a
system {τ∗

i j : Vi j → GL(L2(Z))} of transition functions satisfying the cocycle condition which is the system
of transition functions for the Hilbert space bundle L2( f ∗X/W ). On the other hand, the transition functions
of the pullback Hilbert space bundle f ∗L2(X/Y ) over W are given by composing the transition functions of
L2(X/Y ) with f , that is, f ∗L2(X/Y ) has transition functions σi j : Vi j → GL(L2(Z)), σi j(v) = ρ∗

i j ◦ f . Now,
on a function h ∈ L2(Z),

σi j(v)(h) = ρ
∗
i j( f (v))(h) = h◦ (ρi j( f (v))) = h◦ (τi j(v)) = (τ∗

i j(v))(h).
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This shows that f ∗L2(X/Y ) and L2( f ∗X/W ) have the same transition functions with respect to {Vi j}. □

Consequently,

[Dsign
f ∗X/W ] = [H f ∗X/W :=C0(W, f ∗L2(X/Y ;E)), φ̃ : C0( f ∗X)→ B(H f ∗X/W ),Dsign

f ∗X/W ]

Notice that the left hand side of base change, [Dsign
X/Y ]⊗ [ f ∗], is also equal to

( f ∗)∗[HX/Y :=C0(Y,L2(X/Y ;E)),φ : C0(X)→ B(HX/Y ),D
sign
X/Y ] ∈ KK(C0(X),C0(W ))

The definition we have given thus gives for [Dsign
X/Y ]⊗ [ f ∗] the following element

[HX/Y ⊗ f ∗ C0(W ),φ ⊗ f ∗ Id : C0(X)→ B(HX/Y ⊗ f ∗ C0(W )),Dsign
X/Y ⊗ Id]

The right hand side, on the other hand, is equal to

(g∗)∗[H f ∗X/W :=C0(W,L2( f ∗X/W,g∗E)), φ̃ : C0( f ∗X)→ B(H f ∗X/W ),Dsign
f ∗X/W ] ∈ KK(C0(X),C0(W ))

which is in turn equal to

[H f ∗X/W :=C0(W,L2( f ∗X/W,g∗E)), φ̃ ◦ (g∗) : C0(X)→ B(H f ∗X/W ),Dsign
f ∗X/W ]

that we can write, thanks to the lemma, as

[C0(W, f ∗L2(X/Y,E)), φ̃ ◦ (g∗) : C0(X)→ B(C0(W, f ∗L2(X/Y,E))),Dsign
f ∗X/W ]

and this can be written as

[C0(W, f ∗L2(X/Y,E)), φ̃ ◦ (g∗) : C0(X)→ B(C0(W, f ∗L2(X/Y,E))), f ∗Dsign
X/Y ]

because the vertical wedge metric on f ∗X is the pull-back of the corresponding metric on X .
This finishes the proof of Theorem 5.21. □

Remark 5.23. It is convenient to note, as this will show up when we use the geometric description of K-
homology below, that Theorem 5.21 holds also when f is a continuous map from a smooth manifold into a
smoothly stratified space. In this case we define [Dsign

f ∗X/W ] by

[C0(W, f ∗L2(X/Y,E)), φ̃ : C0( f ∗X)→ B(C0(W, f ∗L2(X/Y,E))), f ∗Dsign
X/Y ]

(so that only the continuity of f is required) and the proof above shows that for any α ∈ KK(C0(W ),C),

[Dsign
X/Y ]⊗ ( f∗(α)) = g∗([D

sign
f ∗X/W ]⊗α).

An immediate corollary, obtained by passing to analytic transfer classes, is base change.

Corollary 5.24. If p : X −→Y is a smooth oriented fiber bundle of stratified spaces, whose typical fiber Z is
a Witt pseudomanifold, W is another smoothly stratified space and f : W −→Y is a proper smooth stratified
map and q : f ∗X −→W is the induced fiber bundle over W, then

Σ(p)⊗ f∗α = g∗(Σ(q)⊗α), ∀α ∈ Kan
∗ (W )[1

2 ].

Equivalently,

p!( f∗(α)) = g∗(q!(α)) ∀α ∈ Kan
∗ (W )[1

2 ].
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6. ANALYTIC TRANSFER OF THE SIGNATURE ORIENTATION ALONG A NORMALLY NON-SINGULAR
INCLUSION

Definition 6.1. An inclusion of smoothly stratified spaces j : X −→ Y is said to be normally non-singular
(nns) if there exist

• an open neighborhood U⊆ Y of j(X),
• an oriented vector bundle π : NXY → X , and
• a stratified diffeomorphism ψ : NXY → U such that

NXY
ψ

≃
// U

X
?�

OO

j
≃ // j(X)

?�

OO

commutes, where the left hand vertical map is the zero section inclusion.
Here U has the stratification inherited from Y and NXY has the stratification pulled-back from X through π .

We shall denote by φ : U→ NXY the inverse of ψ .
Let us start by recalling the situation in the smooth setting. If j : M −→ M′ is an embedding of smooth

manifolds then, without any orientation assumptions, we will construct a ‘wrong-way map’ between the
K-theory of their tangent bundles,

K0(T M)−→ K0(T M′).

If M and M′ are K-oriented then this induces the Gysin map j! : K0(M)−→ K0(M′) (in fact it suffices for j
to be K-oriented).

To define the former, we start by noting that any embedding of smooth manifolds is normally non-singular
since the image j(M) has a tubular neighborhood U,

j(M)⊆ U⊆ M′,

which is diffeomorphic to the total space of the normal bundle N = NMM′ of j(M) in M′ through a diffeo-
morphism ϕ : U→ N. The normal bundle of T j(M) in T M′ is T N and this equals N ⊕N lifted to T j(M).
Since N ⊕N can be identified with N ⊗C we see that T N −→ T j(M) is a complex vector bundle so there is
a KK-class corresponding to the fiberwise Dolbeault operators

[∂ T N/T j(M)] ∈ KK(C0(T N),C0(T j(M)))

and multiplication by this class implements the Thom isomorphism so there is also a class

[∂ T N/T j(M)]
−1 ∈ KK(C0(T j(M)),C0(T N))

We can identify TU with T N through dϕ : TU→ T N. This induces by pull-back an algebra isomorphism Φ :
C0(T N)→C0(TU). As TU is an open subset of T M′, the natural extension by zero defines a homomorphism
of C∗-algebras C0(TU)−→C0(T M′). Precomposing with Φ we finally obtain a C∗-algebra homomorphism
j′ : C0(T N)−→C0(T M′). This defines a KK-class,

[ j′] ∈ KK(C0(T N),C0(T M′)).

Putting these together we obtain

K0(T M) = KK(C,C0(T M))

⊗[∂ T N/T j(M)]
−1 **

// KK(C,C0(T M′)) = K0(T M′)

KK(C,C0(T N))

⊗[ j′]

44

Remark 6.2. This construction produces the topological index of Atiyah-Singer in the case where M′ =Rn.
In that case K0(T M′) = K0(R2n) = K0(Cn) = Z and so we have produced a map K0(T M)−→ Z.



K-ORIENTATIONS AND GYSIN MAPS 63

If M is K-oriented, i.e., if there is a spin-c structure on its tangent bundle, then the fiberwise spin-c Dirac
operators ðT M/M determine a KK-class

[ðT M/M] ∈ KK(C0(T M),C(M))

and multiplication by this class implements the Thom isomorphism

K0(T M) = KK(C,C0(T M))−→ KK(C,C(M)) = K0(M).

Thus if both M and M′ are K-oriented we obtain the Gysin map

j! : K0(M)−→ K0(M′)

as anticipated.
For our purposes it is useful to note that the Gysin map can be defined without reference to the tangent

bundles assuming only that the inclusion j : M −→ M′ is K-oriented or, equivalently, that the normal bundle
NMM′ has a spin-c structure. In this case there is a Thom isomorphism

K0(NMM′) = KK(C,C0(NMM′))−→ KK(C,C0(M)) = K0(M)

resulting from the Kasparov product with the class of the fiberwise spin-c Dirac operators (see [Kas80, §5,
Theorem 8] [Bla86, §19.9.4]). Multiplying the inverse of this isomorphism with the class induced by the
C∗-homomorphism i : C0(NMM′)−→C0(M′) (obtained by identifying NMM′ with U as above) produces the
Gysin map

j! : K0(M)−→ K0(M′)

and exhibits it as Kasparov product with

j! := [ðNMM′/M]−1 ⊗ [i] ∈ KK(C0(M),C0(M′)).

We will refer to it as the spin-c Gysin map, to emphasize its origin and the assumption that j is K-oriented
(that is, the normal bundle has a spin-c structure). We shall give a similar construction in K-homology
using the signature operator and we shall see that such a construction also holds in the context of normally
non-singular inclusions of Witt spaces.

Let j : X −→Y be a nns inclusion of smoothly stratified spaces and recall that, by definition, NY X is oriented.
We have denoted the vector bundle projection by π : NY X −→ X . Then as a special case of the theory
developed in the previous sections, the family of signature operators on the fibers of NXY determines an
analytic transfer class,

Σ(π) = 2−⌊ℓ/2⌋[Dsign
NY X/X ] ∈ KKℓ(C0(NY X),C0(X))[1

2 ] , ℓ= dimY −dimX .

Lemma 6.3. (Hilsum, see [Hil89, Theoreme 3.10])
There exist a unique element ΣNY X ∈ KKℓ(C0(X),C0(NY X))[1

2 ] such that

ΣNY X ⊗Σ(π) = 1 ∈ KK0(C0(X),C0(X))[1
2 ],

Proof. (Throughout the proof we abbreviate ΣNY X as ΣN .) We follow closely Hilsum but use our Theorem
5.16 at a crucial point. Consider a vector bundle ν → X such that NXY ⊕ ν is the trivial bundle X ×Rm

(up to bundle isomorphisms), with m even. We obtain a fibration p : X ×Rm → NXY and thus a class
[Dsign

(X×Rm)/NXY ]∈ KKm−ℓ(C0(X ×Rm),C0(NXY )). Recall that Kasparov in [Kas80, Thereom 7.5] constructed

elements αm ∈ KKm(C0(Rm),C) and βm ∈ KKm(C,C0(Rm)) such that βm ⊗αm = IdC ∈ KK0(C,C). More-
over, as pointed out by Hilsum, [Dsign

Rm ] = 2mαm. Consider βm ∈ KKm(C,C0(Rm)) and denote by τX(βm)
the element in the group KKm(C0(X),C0(X)⊗C0(Rm)) ≡ KKm(C0(X),C0(X ×Rm)) obtained by external
Kasparov product of βm with the KK element corresponding to the identity homomorphism on C0(X):

τX(βm) := βm ⊗ IdC0(X) ∈ KKm(C0(X),C0(X)⊗C0(Rm)).

Then
τX(βm)⊗ [Dsign

(X×Rm)/NXY ] ∈ KK2m−ℓ(C0(X),C0(NXY ))
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Let us prove that

(τX(βm)⊗ [Dsign
(X×Rm)/NXY ])⊗ [Dsign

NY X/X ] = 2m IdC0(X) ∈ KK0(C0(X),C0(X)) .

We consider the projection of the trivial bundle X ×Rm → X and we denote it by q. Then, clearly, q = π ◦ p
and thus

(6.1) [Dsign
(X×Rm)/X ] = [Dsign

(X×Rm)/NXY ]⊗ [Dsign
NY X/X ]

by our Theorem 5.16. But it is also true that [Dsign
(X×Rm)/X ] = τX(αm) and so

τX(βm)⊗ [Dsign
(X×Rm)/X ] = 2mIdC0(X) .

Thus multiplying (6.1) on the left by τX(βm) and using associativity we obtain

2mIdC0(X) = (τX(βm)⊗ [Dsign
(X×Rm)/NXY ])⊗ [Dsign

NY X/X ] in KK0(C0(X),C0(X)) .

which is what we wanted to establish.
If we rewrite this in terms of the analytic transfer forms, using the notation j = dimX , k = dimY (so

ℓ= k− j), it becomes

2mIdC0(X) = (τX(βm)⊗2⌊(m−k)/2⌋
Σ(π))⊗2⌊(k− j)/2⌋

Σ(p) in KK0(C0(X),C0(X))[1
2 ] .

We set
ΣN := 2−m+⌊(m−k)/2⌋+⌊(k− j)/2⌋

τX(βm)⊗Σ(π)

and we notice that this is indeed an element in KKℓ(C0(X),C0(NY X))[1
2 ] and by construction it satisfies the

equation ΣN ⊗Σ(π) = 1 ∈ KK0(C0(X),C0(X))[1
2 ].

□

We denote the element ΣNY X as Σ(π)−1.

The above result is in fact valid in greater generality. Let V π−→ B be an orientable real vector bundle of rank
ℓ on a (possibly non-compact) Witt space B. We know that there exists a well-defined element [Dsign

V/B] ∈
KKℓ(C0(V ),C0(B)) , ℓ= rank V , a corresponding analytic transfer class

Σ(π) = 2−⌊ℓ/2⌋[Dsign
V/B] ∈ KKℓ(C0(V ),C0(B))[1

2 ]

and that this element induces a Gysin map by left Kasparov product

π
! : KK j(C0(B),C)[1

2 ]→ KK j+ℓ(C0(V ),C)[1
2 ].

Moreover π !signK(B) = signK(V ) ∈ KKdimB+ℓ(C0(V ),C)[1
2 ].

Proceeding as above we understand that there exists ΣV ∈ KKℓ(C0(B),C0(V ))[1
2 ] such that ΣV ⊗Σ(π) = 1 ∈

KK0(C0(B),C0(B))[1
2 ]. We denote the element ΣV by Σ(π)−1. Thus if j : B ↪→ V is the zero embedding,

then there exists a homomorphism

j! : KKi(C0(V ),C)[1
2 ]−→ KKi+ℓ(C0(B),C)[1

2 ]

given by
j!(−) := Σ(π)−1 ⊗−.

which is the inverse of π !. Morover it is clear from the equality π !signK(B) = signK(V ) that j!signK(V ) =
signK(B) in KKdimB(C0(B),C)[1

2 ] or, equivalently,

(6.2) Σ(π)−1 ⊗ signK(V ) = signK(B) in KKdimB(C0(B),C)[1
2 ] .

We go back to our normally non-singular inclusion of Witt spaces X ↪→ Y . We have seen that there
is then an orientable normal bundle π : NY X → X , an open neighborhood U ⊂ Y of X , and a stratified
diffeomorphism ϕ : U −→ X . We proceed in parallel to Brodzki, Mathai, Rosenberg, Szabo [BMRS09,
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Example 3.3]. From the above discussion, see (6.2), we record that for the normal bundle NY X π−→ X it holds
that

(6.3) Σ(π)−1 ⊗ signK(NY X) = signK(X); in KKdimX(C0(X),C)[1
2 ] .

The open inclusion i : U⊂ Y defines an element

i! ∈ KKm(C0(U),C0(Y )), ∀m ∈ N,
corresponding to the homomorphism of C0(U) in C0(Y ) obtained by extension by zero. (This works for
any open subset U of a locally compact space Y .) This defines by Kasparov multiplication on the left
a restriction homomorphism KKℓ(C0(Y ),C) → KKℓ(C0(U),C), ∀ℓ ∈ N. Note that U is a Witt space and
hence there exists a signature class [Dsign

U ] ∈ KKdimY (C0(U),C) and a corresponding analytic orientation
class

signK(U) = 2−⌊dimY/2⌋[Dsign
U ] ∈ KKdimY (C0(U),C)[1

2 ].

Lemma 6.4. Restriction to open subsets preserves KK-classes of signature operators of Witt spaces, i.e.

i!⊗ [Dsign
Y ] = [Dsign

U ] ∈ KKdimY (C0(U),C).
Hence we also have

i!⊗ signK(Y ) = signK(U) ∈ KKdimY (C0(U),C)[1
2 ].

Proof. This is discussed in [Hil89, Rem. 2.17, p. 419] (take N = point there). □

Next, the stratified diffeomorphism ϕ : U−→ NY X gives an invertible element

[ϕ] ∈ KK0(C0(NY X),C0(U))

which induces an isomorphism KK j(C0(U),C)→ KK j(C0(NY X),C) by left Kasparov product. By Propo-
sition 4.1 (stratified diffeomorphism invariance of the signature class on a Witt space) we have

Lemma 6.5. It holds that
[ϕ]⊗ [Dsign

U ] = [Dsign
NY X ].

We are in the position to define the Gysin restriction homomorphism j! associated to the normally non-
singular inclusion j : X ↪→ Y of our Witt spaces.

Definition 6.6. Let j : X ↪→Y be a normally non-singular inclusion of Witt spaces. Let ℓ be the codimension
of the inclusion. Then Kasparov multiplication

KKℓ(C0(X),C0(NY X))[1
2 ]⊗KK0(C0(NY X),C0(U))[

1
2 ]⊗KK0(C0(U),C0(Y ))[1

2 ]

−→ KKℓ(C0(X),C0(Y ))[1
2 ]

defines an element

(6.4) Σ( j) := Σ(π)−1 ⊗ [ϕ]⊗ i! ∈ KKℓ(C0(X),C0(Y ))[1
2 ],

which we refer to as the analytic transfer map of the nns inclusion j. Kasparov multiplication with this
element on the left defines the analytic Gysin restriction

j! : KKm+ℓ(C0(Y ),C)[1
2 ]−→ KKm(C(X),C)[1

2 ],

j!(−) := Σ( j)⊗−.

We have, finally, the following result:

Theorem 6.7. Let X ,Y be Witt spaces and let j : X ↪→Y be a normally non-singular inclusion of codimension
ℓ. Then Gysin restriction on analytic K-homology

j! : KK∗+ℓ(C0(Y ),C)[1
2 ]−→ KK∗(C0(X),C)[1

2 ],

sends the analytic signature orientation class of Y to the analytic signature orientation class of X, i.e.

(6.5) j!signK(Y ) = signK(X).
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Proof. Using 6.3 and Lemmas 6.4, 6.5, we have

j!signK(Y ) = Σ(π)−1 ⊗ [ϕ]⊗ i!⊗ signK(Y )

= Σ(π)−1 ⊗ [ϕ]⊗ signK(U)

= Σ(π)−1 ⊗ signK(NY X)

= signK(X).

□

Remark 6.8. Notice that even assuming the normal bundle NY X to be spin-c, we would not be able to use
the spin-c Gysin map in order to obtain the analogue of (6.5) for the spin-c Dirac operator; indeed, we do
not know, in general, that the spin-c Dirac operator defines a K-homology class in the stratified setting.

Functoriality in this case is simple to establish (see [Hil89, §4.1]).

Theorem 6.9. If X , Y, and Z are Witt spaces and

X
i

↪−→ Y
j

↪−→ Z

are nns inclusions, then

Σ( j ◦ i) = Σ(i)⊗Σ( j) ∈ KK(C0(X),C0(Z))[1
2 ]

Similarly, we can deduce base change from work we have already carried out.

Proposition 6.10. (Base Change for Gysin Restriction to Zero-Sections) Let Y be a smoothly stratified
compact Witt space and p : X → Y an oriented real vector bundle of rank r over Y . Suppose that W is a
compact smoothly stratified space and f : W →Y a smooth stratified map. Consider the Cartesian diagram

XW

pW

��

g // X

p
��

W
f
// Y.

Then the base change formula

f∗ ◦ j!
W = j! ◦g∗

holds for the Gysin restrictions

j! : KKn(C0(X),C)[1
2 ]→ KKn−r(C(Y ),C)[1

2 ], j!
W : KKn(C0(XW ),C)[1

2 ]→ KKn−r(C(W ),C)[1
2 ]

associated to the zero-section inclusions j : Y ↪→ X and jW : W ↪→ XW .

Proof. According to Theorem 5.21, p! f∗ = g∗p!
W . Recall that for vector bundles, j! and p! are mutually

inverse (Thom-) isomorphisms. An application of j! from the left on both sides yields

f∗ = j! p! f∗ = j!g∗p!
W .

Applying j!
W from the right on both sides, we obtain

f∗ j!
W = j!g∗p!

W j!
W = j!g∗.

□
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7. COMPATIBILITY OF ANALYTIC AND TOPOLOGICAL ORIENTATIONS

7.1. Prelude: The Four-Sphere. We illustrate the orientation classes considered in this work for the case
of a 4-sphere, where these classes are determined by their Chern characters. Let ν be the trivial real 4-plane
bundle over a point. Thus the total space of ν is R4 and its Thom space is Th(ν) = S4, the 4-sphere. We
shall describe the (real) Sullivan orientation

∆(ν) ∈ K̃O
4
(Th(ν))[1

2 ] = K̃O
4
(S4)[1

2 ]

of the bundle ν , the Sullivan orientation

∆(S4) ∈ KO4(S4)[1
2 ]

of the manifold S4, and its relation to the K-homology class of the signature operator on S4. Let

β = [H]− [1] ∈ K̃
0
(S2) = K̃

−2
(S0) = π2(K)

be the Bott generator. The complex line bundle H on S2 = CP1 is holomorphic and dual to the Hopf
line bundle whose fiber over a point in CP1 is the complex line in C2 represented by the point. Let u :=
c1(H) ∈ H2(S2;Z) be the canonical generator given by the first Chern class of H. The Chern character is an
isomorphism

ch : K̃
0
(S2)

≃−→ H2(S2;Z)∼= Z

given by ch(β ) = u. We shall use the external products

∧ : H̃∗(X)⊗ H̃∗(Y )−→ H̃∗(X ∧Y ), ∧ : K̃(X)⊗ K̃(Y )−→ K̃(X ∧Y ).

Note that for X = S2, Y = S2, we have S2 ∧S2 = S4. The map

H̃∗(S2;Z) −∧u−−−→ H̃∗(S4;Z)

is an isomorphism, and by Bott periodicity, the Bott map

PerC : K̃(S2)
−∧β−−−−→ K̃(S4)

is an isomorphism as well. As the diagram

K̃(S2)

ch
��

−∧β // K̃(S4)

ch
��

H̃∗(S2;Z) −∧u // H̃∗(S4;Z)

commutes (Husemoller [Hus94, p. 308]), we have ch(β 2) = ch(β ∧β ) = u∧ u = u2. Let c : KO → K be
complexification as a morphism of ring spectra, inducing homomorphisms

c∗ : KO∗(X)→ K∗(X), c∗ : KO∗(X)→ K∗(X).

The Pontrjagin character ph = ch◦c∗ localizes to ph[1
2 ] given by the composition

K̃O
0
(S4)[1

2 ]

ph[12 ]

≃

&&

c∗[
1
2 ]

≃
// K̃

0
(S4)[1

2 ]

ch[12 ]
≃
��

H4(S4;Z)[1
2 ].
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Here we have used suspension isomorphisms to identify

K̃O
0
(S4)

c∗
��

∼ K̃O
−4
(S0) KO−4(pt) π4(KO)

c∗

��
K̃

0
(S4)

∼ K̃
−4
(S0) K−4(pt) π4(K).

(Note that c∗ commutes with suspension isomorphisms, since it is induced by a morphism of spectra.) On
π4, complexification induces multiplication by two, c∗ = 2 : π4(KO) = Z→ Z= π4(K). Let

a ∈ π4(KO)[1
2 ] = K̃O

−4
(S0)[1

2 ] = K̃O
0
(S4)[1

2 ] = Z[1
2 ]

be the unique element with
c∗(a) = β

2.

This is the generator used in [Ban25] and by Oscar Randal-Williams in [RW24]. Its Pontrjagin character sat-
isfies ph[1

2 ](a) = ch[1
2 ](β

2) = u2. The generator u2 ∈H4(S4;Z) agrees with the Thom class u(ν)∈H4(S4;Z)
of the trivial rank 4-bundle ν over a point. By construction of the Sullivan orientation (see also [Ban25, p.
13, Lemma 3.8]),

ph[1
2 ](∆(ν)) = L−1(ν)∪u(ν) = u(ν) = u2 = ph[1

2 ](a).

Since ph[1
2 ] is an isomorphism,

∆(ν) = a.

This is Lemma 3.9 in [Ban25] for the case of a 4-plane bundle. Since ∆(S4) ∈ KO4(S4)[1
2 ] is an orientation,

we have

(7.1) ∆(S4) = σ∗(1),

σ∗ : K̃O0(S0)[1
2 ]

≃−→ K̃O4(S4)[1
2 ] is the suspension isomorphism and 1 ∈ π0(KO[1

2 ]) = K̃O0(S0)[1
2 ] the unit

of the ring π∗(KO[1
2 ]). Another way to see this is as follows: The map ∆SO : MSO → KO[1

2 ] has been
constructed in [Ban25] as a morphism of ring spectra. In particular, the diagram

M̃SO4(S4)
∆∗ // K̃O4(S4)[1

2 ]

M̃SO0(S0)

σ∗ ≃

OO

∆∗ // K̃O0(S0)[1
2 ]

σ∗≃

OO

commutes and ∆∗(1) = 1 ∈ K̃O0(S0)[1
2 ]. The reduced bordism groups M̃SOn(X) are given by the kernel

of MSOn(X) → MSOn(pt)), so that [ f : Mn → X ] ∈ MSOn(X) is an element of M̃SOn(X) if and only if
[M] = 0 ∈ MSOn. Since [S4] = 0 ∈ MSO4, it follows that [idS4 ] ∈ M̃SO4(S4). The MSO-orientation of a
smooth oriented closed manifold Mn is given by the identity map [idM] ∈ MSOn(M) and [idS4 ] = σ∗(1) ∈
M̃SO4(S4). By definition, ∆(S4) = ∆∗[idS4 ]. It follows that indeed ∆(S4) = ∆∗σ∗(1) = σ∗∆∗(1) = σ∗(1). Let
Ψ2 : KO[1

2 ]→ KO[1
2 ] be the stable Adams operation, constructed as a morphism of E∞-ring spectra. Thus

the diagram

K̃O4(S4)[1
2 ]

Ψ2

≃
// K̃O4(S4)[1

2 ]

K̃O0(S0)[1
2 ]

σ∗ ≃

OO

Ψ2

≃
// K̃O0(S0)[1

2 ]

σ∗≃

OO

commutes and Ψ2(1) = 1 ∈ K̃O0(S0)[1
2 ]. Using (7.1), we deduce that

(7.2) Ψ
2
∆(S4) = Ψ

2
σ∗(1) = σ∗Ψ

2(1) = σ∗(1) = ∆(S4).
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Remark 7.1. The 4-fold periodicity of KO[1
2 ] does not commute with the stable Adams operation Ψ2. Indeed,

Sullivan’s periodicity map
PerR : KO0(X)[1

2 ]
−∧a−−−→ KO0(X ∧S4)[1

2 ]

is given by multiplication with a = ∆(ν), see Sullivan [Sul71, p. 202]. The stable Adams operation Ψ2 :
π4k(KO[1

2 ])→ π4k(KO[1
2 ]) acts on the preferred generator by Ψ2(ak) = 4k ·ak. Hence Ψ2PerR(1) = Ψ2(a) =

4a, which does not equal PerRΨ2(1) = PerR(1) = a.

The 4-sphere is not an almost complex manifold, but since it is oriented and w2(S4) = 0, it is a spin
manifold. The spin structures on S4 are in one-to-one correspondence with elements of H1(S4;Z/2) =
0. Thus S4 has a unique spin structure, which determines in particular a canonical Spinc-structure on S4.
Therefore, S4 has an integral Atiyah-Bott-Shapiro orientation

[S4]ABS ∈ K4(S4).

Since c∗, being induced by a morphism c of ring spectra, is a natural transformation of homology theories,
the diagram

K̃O4(S4)[1
2 ]

c∗ // K̃4(S4)[1
2 ]

K̃O0(S0)[1
2 ]

σ∗ ≃

OO

c∗ // K̃0(S0)[1
2 ]

σ∗≃

OO

commutes and c∗(1) = 1 ∈ K̃0(S0)[1
2 ]. Since [S4]ABS is an orientation, the equation

[S4]ABS = σ∗(1)

holds; see Atiyah-Bott-Shapiro [ABS64, p. 30] for the cohomological case. Using (7.2), we compute

c∗(Ψ2)−1
∆(S4) = c∗∆(S4) = c∗σ∗(1) = σ∗c∗(1) = σ∗(1),

which implies

(7.3) c∗(Ψ2)−1
∆(S4) = [S4]ABS.

Now let Dsign = d +d∗ denote the signature operator with respect to some Riemannian metric on S4 and
let

[Dsign] ∈ Kan
4 (S4)

be the associated class in analytic K-homology. (This class exists integrally, not just away from 2.) The
Atiyah-Singer L-classes were introduced in [AS68, p. 577]. The unstable cohomological Atiyah-Singer
class L∗

u is associated to the power series

xcoth(x/2) = 2+
1
6

x2 − 1
360

x4 +
1

15120
x6 − 1

604800
x8 ± . . . .

(The stable Atiyah-Singer class L∗
s is associated to (x/2)coth(x/2), but will not be used here. The Hirze-

bruch L-class is associated to xcothx. In [Sto68, p. 200], Stong denotes L∗
u by δ .) For a 4-dimensional

manifold M4, L∗
u(M

4) = 4+ 1
3 p1(T M). Since the 4-sphere is stably parallelizable, L∗

u(S
4) = 4. The ho-

mological unstable Atiyah-Singer class Lu
∗ is the Poincaré dual Lu

∗ = L∗
u ∩ [M]H , where [M]H ∈ Hn(M;Z)

denotes the fundamental class in ordinary integral homology of a closed, HZ-oriented n-dimensional mani-
fold M. Thus

Lu
∗(S

4) = 4[S4]H .

In fact, for an even-dimensional smooth manifold, the unstable Atiyah-Singer L-class is given by

Lu
∗(M) = ∑

j
2 jL2 j(M) ∈ H∗(M;Q),

where the classes L2 j(M) ∈ H2 j(M;Q) are the components of the Poincaré dual L∗(M) = L∗(T M)∩ [M]H
of the Hirzebruch L-class L∗(T M), see also Moscovici-Wu [MW97, p. 14]. Under the Chern character, the
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K-class of the signature operator is a refinement of the unstable Atiyah-Singer class. This follows from the
Atiyah-Singer index theorem, see also Rosenberg-Weinberger [RW06, p. 48]. Thus ch[Dsign] = Lu

∗(S
4) and

it follows that
ch[Dsign] = 4[S4]H .

Note that since the signature of S4 vanishes, [Dsign] is actually a class in reduced K-homology, [Dsign] ∈
K̃4(S4). Under the standard isomorphism

ϕ : Kgeo
∗ (X)

≃−→ Ktop
∗ (X), ϕ[M,E, f ] = f∗([E]∩ [M]ABS),

the topological homological Chern character ch : Ktop
∗ (X)→H∗(X ;Q) corresponds to the homological Chern

character ch : Kgeo
∗ (X)→ H∗(X ;Q) given by

ch[M,E, f ] = f∗(ch(E)∪ td(T M)∩ [M]H),

see e.g. Jakob [Jak98, p. 77, 4.2]. Here one uses the interesting fact that the Todd class td(−), a priori
only defined for complex bundles, actually survives to Spinc-vector bundles T , such as the tangent bundle
T M. Indeed, Spinc vector bundles have a first Chern class c1(T ) (the integral class reducing to w2(T )
which is defined by the Spinc-structure) and one then defines td(T ) = ec1(T )/2Â(T ) in rational cohomology
(Baum-Douglas [BD82, p. 136]), where Â(T ) is the Â-polynomial in the Pontrjagin classes of T . For S4,
c1(T S4) = 0 ∈ H2(S4) = 0 and Â(T S4) = 1− 1

24 p1(T S4) = 1. Thus td(T S4) = 1 and the fundamental class
[S4,E = 1, f = id] ∈ Kgeo

4 (S4) has Chern character

ch[S4,1, id] = id∗(ch(1)∪ td(T S4)∩ [S4]H) = [S4]H .

Since ch◦ϕ = ch, we get

ch[S4]ABS = ch(id∗(1∩ [S4]ABS)) = chϕ[S4,1, id] = ch[S4,1, id],

and thus ch[S4]ABS = [S4]H . Using the standard isomorphism µ : Kgeo
∗ (X)→Kan

∗ (X) (Baum-Douglas [BD82]),
we consider the diagram

Ktop
4 (S4)⊗Z[1

2 ]� _

loc
��

Kgeo
4 (S4)⊗Z[1

2 ]
ϕ

≃
oo

� _

loc
��

µ

≃
// Kan

4 (S4)⊗Z[1
2 ]� _

loc
��

Ktop
4 (S4)⊗Q

chQ

≃

((

Kgeo
4 (S4)⊗Q

ϕQ

≃
oo

chQ≃
��

µQ

≃
// Kan

4 (S4)⊗Q

chQ

≃

vv
H2∗(S4;Q).

The vertical arrows are localization maps induced by tensoring with Z[1
2 ] ↪→ Q. These maps are injective,

since there is no torsion in the K-homology of S4. The left-hand part of the diagram commutes by Jakob
[Jak98, p. 77, 4.2] and the right hand part commutes according to Baum-Douglas [BD82, p. 154]. For the
Chern characters on the rational groups we have

chQ loc(µϕ
−1)[S4]ABS = chQ loc[S4]ABS = ch[S4]ABS = [S4]H

= ch(1
4 [D

sign]) = chQ loc(1
4 [D

sign]).

Since chQ is an isomorphism, it follows that loc(µϕ−1)[S4]ABS = loc(1
4 [D

sign]). As loc is injective,

µϕ
−1[S4]ABS = 1

4 [D
sign].

By (7.3),
µϕ

−1c∗(Ψ2)−1
∆(S4) = µϕ

−1[S4]ABS = 1
4 [D

sign],

a relation that we will first generalize to arbitrary oriented smooth manifolds in Theorem 7.2, and then
further to singular (Witt) spaces in Theorem 7.6.
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7.2. The Manifold Case. For finite CW pairs (X ,A), we identify topological and analytic complex K-
homology via a natural isomorphism

(7.4) Ktop
∗ (X ,A)∼= Kan

∗ (X ,A)

of homology theories as in [LNS23] and [RW06]. Let

Ψ
2 : KO[1

2 ]−→ KO[1
2 ]

be the stable Adams operation, constructed as a morphism of E∞-ring spectra. This is an equivalence, let
(Ψ2)−1 denote an inverse. Let

c : KO −→ K

denote complexification as a morphism of ring spectra.

Theorem 7.2. Let M be an n-dimensional closed oriented Riemannian manifold and

∆SO(M) ∈ KOtop
n (M)[1

2 ]

its Sullivan orientation, [Sul71]. Under the above identification (7.4), the element

c(Ψ2)−1
∆SO(M) ∈ Ktop

n (M)[1
2 ]

corresponds to the signature-operator orientation

signK(M) = 2−⌊n/2⌋[Dsign
M ] ∈ Kan

n (M)[1
2 ].

Proof. Let KO denote the 8-periodic ring spectrum representing real K-theory and K the 2-periodic ring
spectrum representing complex K-theory. The homotopy ring of K is π∗(K) = Z[β±1], where β is the
complex Bott element in degree 2, i.e. β is represented by the reduced canonical complex line bundle
H − 1 ∈ K̃

0
(S2). On π4, the complexification c : KO → K induces multiplication by 2, c∗ = 2 : π4(KO) =

Z → Z = π4(K). Thus there does not exist an element in π4(KO) that maps to β 2. But after inverting 2,
such an element exists. Let a ∈ π4(KO)[1

2 ] be the unique element with

(7.5) c∗(a) = β
2.

The localization KO[1
2 ] is a 4-periodic ring spectrum with homotopy ring π∗(KO)[1

2 ] = Z[1
2 ][a

±1]. Its con-
nective cover ko[1

2 ] has homotopy ring π∗(ko)[1
2 ] = Z[1

2 ][a]. Let L(R) denote the (projective) symmetric
algebraic L-theory spectrum of a commutative unital ring R with involution, introduced first by Ranicki. Let

κ : KO[1
2 ]

≃−→ L(R)[1
2 ]

be the equivalence of E∞-ring spectra constructed by the first named author in [Ban25, Prop. 2.1]. It induces
the ring isomorphism

Z[1
2 ][a

±1]−→ Z[1
2 ][x

±1], a 7→ x,

on homotopy rings, where x denotes the signature 1 generator. Let MSPL be the Thom spectrum associated
to the bordism theory of oriented PL manifolds. In [Ran, p. 385, Prop. 15.8], Ranicki constructed a
morphism of ring spectra

σ
∗ : MSPL −→ L(Z)

such that the resulting L(Z)-homology fundamental class [M]L := σ∗[idM]∈L(Z)n(M) of an n-dimensional
closed oriented PL manifold M hits the Mishchenko-Ranicki symmetric signature

σ
∗(M) = A[M]L ∈ Ln(Z[π1M])

under the assembly map A : L(Z)n(M)→ Ln(Z[π1M]). (Ranicki extended σ∗ to a morphism of ring spectra
MSTOP → L(Z) in [Ran79, p. 290], but we shall not require this extension for the purposes of the present
paper.) Technically, we will work with σ∗ as constructed by Laures and McClure in [LM14] using ad-
theories. Their incarnation of σ∗ is an E∞-ring map ([LM14, 1.4]). The localization morphism L(Z) →
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L(Z)[1
2 ] is a morphism of ring spectra. Thus its composition with σ∗ is a morphism of ring spectra MSPL →

L(Z)[1
2 ], which we shall also denote by σ∗. By [Ran80, p. 243], σ∗ induces on homotopy groups the map

σ
∗
pt : Ω

SPL
4k (pt) = MSPL4k(pt)−→ L(Z)[1

2 ]4k = Z[1
2 ]⟨x

k⟩
given by

(7.6) σ
∗
pt[M

4k] = σ(M) · xk,

where σ(M) ∈ Z denotes the signature of M. Let

∆
◦
SPL : MSPL −→ KO[1

2 ]

denote the composition

MSPL σ∗
−→ L[1

2 ]
κ−1

−→ KO[1
2 ].

The first named author showed in [Ban25, Prop. 3.3] that ∆◦
SPL is homotopic to Sullivan’s orientation ∆SPL.

As pointed out in [Ban25, Cor. 3.4], this implies in particular that the Sullivan orientation is homotopic to a
morphism of homotopy ring spectra. Under the canonical morphism MSO → MSPL, which is a morphism
of homotopy ring spectra, ∆◦

SPL restricts to a morphism of homotopy ring spectra

∆
◦
SO : MSO −→ KO[1

2 ]

that is homotopic to Sullivan’s ∆SO. As MSO is connective, ∆◦
SO lifts, uniquely up to homotopy, to the

connective cover ko[1
2 ]. The lift MSO → ko[1

2 ] will again be denoted by ∆◦
SO and is a morphism of homotopy

ring spectra ([Rud98, p. 93, Thm. 4.28.(ii)]). Let LAS : MSO −→ ko[1
2 ] be the map of E∞-rings constructed

by Land, Nikolaus and Schlichting in [LNS23, Theorem 8.5]. Within maps of E∞-rings, LAS is characterized
uniquely by the homomorphism it induces on homotopy rings, which is given by

[M4k] 7→ 2−2k
σ(M)ak.

We claim that Ψ2 ◦LAS is homotopic to ∆◦
SO. In order to see this, we verify first that both induce the same

homomorphism on homotopy groups: It is well-known that the Sullivan orientation on homotopy groups is
given by the signature. More precisely, ∆SO∗[M4k] = σ(M) ·ak. The stable Adams operation acts on powers
of a by

(7.7) Ψ
2(ak) = 4k ·ak.

Therefore,

(Ψ2LAS)∗[M4k] = Ψ
2
∗(2

−2k
σ(M)ak) = 2−2k

σ(M)Ψ2
∗(a

k)

= 2−2k
σ(M)4kak = σ(M)ak = ∆SO∗[M4k] = ∆

◦
SO∗[M

4k].

According to [LNS23, Theorem 8.5], the map

π0 MapHoRing
Sp (MSO,ko[1

2 ])
π∗−→ HomRing(MSO∗,ko[1

2 ]∗),

where π0 MapHoRing
Sp denotes the connected components of the space of maps of spectra that are homotopy

ring maps, is injective. Both Ψ2 ◦LAS and ∆◦
SO are homotopy ring maps and we have seen that π∗(Ψ

2 ◦
LAS) = π∗(∆

◦
SO). Thus by injectivity of π∗, Ψ2 ◦LAS is homotopic to ∆◦

SO, establishing the claim.
Thm. 8.5 of loc cit also states that the composition

MSO∗(X)
LAS−→ ko[1

2 ]∗(X)
c−→ k[1

2 ]∗(X)

sends [ f : Mn → X ] to 2−⌊n/2⌋ f∗[D
sign
M ]. Since LAS ≃ (Ψ2)−1 ◦∆◦

SO ≃ (Ψ2)−1 ◦∆SO, and thus

c◦LAS ≃ c◦ (Ψ2)−1 ◦∆SO,

it follows that

2−⌊n/2⌋[Dsign
M ] = (c◦LAS)[idM] = (c◦ (Ψ2)−1 ◦∆SO)[idM] = (c◦ (Ψ2)−1)(∆SO(M)).



K-ORIENTATIONS AND GYSIN MAPS 73

□

7.3. The Case of Singular Witt Spaces. Our goal now is to extend the above arguments to the case of Witt
pseudomanifolds, which includes all pure-dimensional complex algebraic varieties.

Let Z = Z[1
2 ] denote the ring of integers localized at odd primes. The Laurent polynomial ring R :=

Z[t, t−1] is a Z-graded ring with deg(t) = 4. There is a canonical subring inclusion Z[t]⊂ R, t 7→ t. Let CP2

be complex projective space of complex dimension 2. Denote Witt bordism away from 2 by

W∗(X) := Ω
Witt
∗ (X)⊗Z Z.

(Recall that by Proposition 4.5, we may assume that representatives of ΩWitt
∗ (X) are smoothly stratified and

thus possess a well-defined signature operator.) This is a Z-graded homology theory with coefficients

W∗(pt) = Z[c], c := [CP2 → pt]⊗1 ∈W4(pt).

(After inverting 2, only the signature survives as an invariant; the 2- and 4-torsion is removed.) The Z-graded
abelian group W∗(X) is a right module over the ring W∗(pt) as usual. The ring isomorphism Z[t]→W∗(pt)
induced by t 7→ c⊗1∈W4(pt) makes W∗(X) into a right Z[t]-module. Thus t acts on [ f : V → X ]⊗r ∈Wn(X)
by

([ f ]⊗ r) · t = [V ×CP2 pr1−→V
f−→ X ]⊗ r.

We may then form the tensor product

W ∗(X) :=W∗(X)⊗Z[t] R,

which is Z-graded by deg(x⊗Z[t] rtk) = n+ 4k, x ∈ Wn(X), r ∈ Z. It is shown in [Ban25] that W ∗(−) is a
homology theory. It is naturally a right R-module and right multiplication with t is an isomorphism with
inverse given by right multiplication with t−1. This shows that W ∗(−) is 4-periodic and we refer to it as
periodic Witt-bordism at odd primes. The inclusion Z[t]⊂ R induces a natural map

i∗ : W∗(X) =W∗(X)⊗Z[t] Z[t]−→W ∗(X).

As noted above, the homotopy ring of the ring spectrum K is π∗(K) = Z[β±1], where β is the complex Bott
element in degree 2. Away from 2, π∗(K[1

2 ]) = Z[β±1]. As K[1
2 ] is a ring spectrum, the groups (K[1

2 ])∗(X) =

Ktop
∗ (X)[1

2 ] come with a canonical right (K[1
2 ])∗(pt)-module structure. Via the ring homomorphism

R = Z[t, t−1]−→ Z[β ,β−1], t 7→ 1
4 β

2,

we make (K[1
2 ])∗(X) into a right R-module ((K[1

2 ])∗(X),+,•). Thus t ∈ R acts on y ∈ (K[1
2 ])∗(X) by

y• t := y · 1
4 β

2.

Let MWITT denote the (Quinn-type) ring spectrum associated to the multiplicative ad-theory of Witt
spaces, representing Witt bordism (see Banagl-Laures-McClure [BLM19]), and let

∆ : MWITT −→ KO[1
2 ]

denote the second author’s ring-spectrum level Siegel-Sullivan orientation, [Ban25]. It restricts to the Sul-
livan orientation ∆ : MSPL → KO[1

2 ] under the canonical map MSPL → MWITT. By [Ban25, Prop. 5.7],
the induced natural transformation ∆∗ : ΩWitt

∗ (−)→ KO∗(−)[1
2 ] of homology theories agrees with Siegel’s

transformation µWitt as described in [Sie83]. On homotopy groups, ∆ induces the homomorphism

∆∗ : Ω
Witt
4k = MWITT4k −→ KO[1

2 ]4k = Z⟨ak⟩
given by

(7.8) ∆∗[V 4k → pt] = σ(V ) ·ak,
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where σ(V ) ∈ Z is the signature of the intersection form on the intersection homology groups IH2k(V ;Q)
of V . The Siegel-Sullivan orientation class of a compact n-dimensional Witt space (V,∂V ) is given by the
image

∆(V ) := ∆∗[idV ] ∈ KOn(V,∂V )[1
2 ]

of the Witt bordism class of the identity on V . Let

γ : W∗(X)−→ (K[1
2 ])∗(X) = Ktop

∗ (X)[1
2 ]

be the natural transformation of homology theories given by

γ([ f : V → X ]⊗ r) := r · c(Ψ2)−1 f∗∆(V ) = r · c(Ψ2)−1
∆∗[ f ], r ∈ Z.

Lemma 7.3. The homomorphism γ : W∗(X)−→ Ktop
∗ (X)[1

2 ] is Z[t]-linear.

Proof. Let [ f : V n → X ] be any element of Wn(X). As ∆ : MWITT → KO[1
2 ] is a morphism of ring spectra,

the diagram

ΩWitt
∗ (X)⊗ΩWitt

∗ (pt)

∆∗⊗∆∗
��

mult // ΩWitt
∗ (X)

∆∗
��

(KO[1
2 ])∗(X)⊗ (KO[1

2 ])∗(pt)
mult
// (KO[1

2 ])∗(X)

commutes and hence

∆∗([ f ] · t) = ∆∗([ f ] · [CP2 → pt]) = ∆∗[ f ] ·∆∗[CP2 → pt]

= ∆∗[ f ] ·σ(CP2)a = ∆∗[ f ] ·a.

In view of (7.5) and (7.7), we find that

c(Ψ2)−1(a) = c(1
4 a) = 1

4 β
2.

Since (Ψ2)−1 and c are ring maps as well, we conclude

γ([ f ] · t) = c(Ψ2)−1
∆∗([ f ] · t) = c(Ψ2)−1((∆∗[ f ]) ·a)

= (c(Ψ2)−1
∆∗[ f ]) · c(Ψ2)−1(a) = γ[ f ] · 1

4 β
2 = γ[ f ]• t.

□

Recall that in (4.3) of Section 4.2, we had defined a natural transformation

θ : Wn(X) = Ω
Witt
n (X)[1

2 ]
∼= Ω

Witt,∞
n (X)[1

2 ]→ Kan
n (X)[1

2 ]

of homology theories given by

θ([ f : W n → X ]⊗Z r) := r2−⌊n/2⌋ f∗[D
sign
W ] = r f∗(signK(W )).

Lemma 7.4. The homomorphism θ : W∗(X)−→ Kan
∗ (X)[1

2 ] is Z[t]-linear.

Proof. Let P2 = CP2 denote complex projective space and let const : P2 → pt be the constant map. The
image of the signature operator class [Dsign

P2 ] ∈ K4(P2)[1
2 ] under const∗ : K4(P2)[1

2 ]→ K4(pt)[1
2 ] is the index

(multiplied by the corresponding Bott generator)

const∗[D
sign
P2 ] = σ(P2) ·β 2 = β

2 ∈ K4(pt)[1
2 ].
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Let [ f : V n → X ] be any element of Wn(X). By Corollary 5.18, [Dsign
V×P2 ] = [Dsign

V ]⊠ [Dsign
P2 ]. (There is no

factor of 2 here, since the dimension of P2 is even.) Consequently,

θ([ f ] · t) = θ([ f × const : V ×P2 → X ×pt = X ])

= 2−⌊ n+4
2 ⌋( f × const)∗[D

sign
V×P2 ] = 2−⌊ n

2 ⌋ · 1
4( f × const)∗([D

sign
V ]⊠ [Dsign

P2 ])

= 2−⌊ n
2 ⌋ f∗[D

sign
V ] · 1

4 const∗[D
sign
P2 ] = 2−⌊ n

2 ⌋ f∗[D
sign
V ] · 1

4 β
2

= (θ [ f ])• t.

□

The following Proposition generalizes [Ban25, Prop. 5.6] from maps into (KO 1
2)∗(X) to maps into any

Z[t, t−1]-module M; see also [BCS03, Prop. 2, p. 597] of Cappell, Shaneson and the second named author.
The proof follows [Ban25], but we provide details for the reader’s convenience.

Proposition 7.5. Let X be a compact PL space and M a right Z[t, t−1]-module.
1. Given a Z[t]-linear map α : W∗(X)→ M there exists a unique extension of α to a homomorphism

α : W ∗(X)−→ M

of Z[t, t−1]-modules.
2. Let α,β : W∗(X) → M be Z[t]-linear maps. If α([g : N → X ]⊗ 1) = β ([g]⊗ 1) for every g on smooth
manifolds N, then α = β on W∗(X), and α∗ = β ∗ on W ∗(X).

Proof. We prove statement 1: We denote the scalar multiplication in M by •. Let A : W∗(X)×Z[t, t−1]−→M
be the map given by A(w, p) := α(w) • p. We regard Z[t, t−1] as a left module over Z[t]. For q ∈ Z[t], the
Z[t]-linearity of α implies that

A(wq, p) = α(wq)• p = (α(w)•q)• p

= α(w)• (qp) = A(w,qp).

Therefore, A is Z[t]-bilinear and hence, by the universal property of the tensor product ⊗Z[t], induces a
well-defined homomorphism

α : W∗(X)⊗Z[t] Z[t, t
−1]−→ M

of abelian groups such that α(w⊗Z[t] p) = A(w, p) = α(w) • p. Then α∗ is Z[t, t−1]-linear, as for p, p′ ∈
Z[t, t−1],

α((w⊗Z[t] p) · p′) = α((w⊗Z[t] (pp′)) = α(w)• (pp′)

= (α(w)• p)• p′ = α(w⊗Z[t] p)• p′,

and the diagram

(7.9) W∗(X)

α

##

i∗

��
W ∗(X)

α

// M

commutes.
We turn to the proof of uniqueness. Suppose that α ′ : W ∗(X)→ M is any Z[t, t−1]-linear extension of α , i.e.
α ′ ◦ i∗ = α . Then

α
′(w⊗Z[t] p) = α

′(w⊗Z[t] (1 · p)) = α
′((w⊗Z[t] 1) · p)

= α
′(w⊗Z[t] 1)• p = (α ′i∗(w))• p

= α(w)• p = α(w⊗Z[t] p).
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Hence α is unique.
We prove statement 2: Since α and β are Z[t]-linear, they induce uniquely Z[t, t−1]-linear transformations

α,β : (W∗(X)⊗Z[t] Z[t, t
−1]) j −→ M, j ∈ Z,

as explained in statement 1. For an integer j, let j̄ denote its residue class in Z/4. On the groups C j̄(X) :=⊕
k∈Z ΩSO

j+4k(X)[1
2 ], define an equivalence relation by

[P j+4k ×N4i proj−→ P
f−→ X ]∼ σ(N) · [P j+4k f−→ X ].

(See also [KL05, p. 193].) Let Q j̄(X ,Y ) := C j̄(X ,Y )/ ∼ denote the corresponding quotient. One can
show that Q∗(−) is a (Z/4-graded) homology theory on compact PL pairs, see [Ban25]. For any j ∈ Z, a
well-defined map

ω : Q j̄(X)⊗Z −→ (W∗(X)⊗Z[t] Z[t, t
−1]) j

is given by setting

ω([g : N j−4k → X ]⊗Z r) = [g]⊗Z[t] rtk ∈Wj−4k(X)⊗Z[t] Z⟨tk⟩, k ∈ Z, r ∈ Z,

where one views the closed oriented smooth manifold N as a Witt space via its canonical PL structure. This
map is an isomorphism on compact PL spaces X as was shown in [Ban25]. Therefore, Witt bordism classes
are representable by smooth manifolds away from 2.
Given an element

[ f : V j−4k → X ]⊗Z[t] rtk ∈ (W∗(X)⊗Z[t] Z[t, t
−1]) j =W j(X)

k ∈Z, r ∈ Z, there exists a (unique) element q∈Q j̄(X)⊗Z with ω(q) = [ f ]⊗Z[t] rtk, as ω is an isomorphism.
Such an element is represented in the quotient Q j̄(X)⊗Z by an element of the form

q =
m

∑
i=1

[gi : M j−4ki
i → X ]⊗ ri, [gi] ∈ Ω

SO
j−4ki

(X), ri ∈ Z, ki ∈ Z.

By the definition of ω, ω([gi]⊗Z ri)= [gi]⊗Z[t] ritki , so that [ f ]⊗Z[t] rtk =∑
m
i=1[gi]⊗Z[t] ritki and consequently,

α∗([ f ]⊗Z[t] rtk) =
m

∑
i=1

α∗([gi]⊗Z[t] ritki) =
m

∑
i=1

(α∗[gi]) · riaki

=
m

∑
i=1

(β∗[gi]) · riaki =
m

∑
i=1

β ∗([gi]⊗Z[t] ritki) = β ∗([ f ]⊗Z[t] rtk).

This proves that the periodic versions agree on W ∗(X), α∗ = β ∗. Using the commutativity of (7.9) we
deduce α∗ = α∗ ◦ i∗ = β ∗ ◦ i∗ = β∗. □

Theorem 7.6. Let X be a closed Witt space and

∆(X) ∈ KOtop
n (X)[1

2 ]

its Siegel-Sullivan orientation, [Sie83], [Ban25]. Under the identification (7.4), the element

c(Ψ2)−1
∆(X) ∈ Ktop

n (X)[1
2 ]

of an n-dimensional closed smoothly stratified Witt space X corresponds to the signature-operator orienta-
tion

signK(X) = 2−⌊n/2⌋[Dsign
X ] ∈ Kan

n (X)[1
2 ].

Proof. The identification (7.4) is Z[t]-linear. Thus, under this identification, we have homomorphisms

γ,θ : W∗(X)−→ Ktop
∗ (X)[1

2 ],

which are both Z[t]-linear by Lemmas 7.3 and 7.4. The two homomorphisms agree on smooth manifolds
according to Theorem 7.2. Proposition 7.5 then implies that γ = θ on W∗(X) (where we have used the
standard identification of analytic and topological K-homology, (7.4)). □
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Basel, 2005. Geometry and algebra. 76
[KR23] Chris Kottke and Frédéric Rochon. Products of manifolds with fibered corners. Ann. Global Anal. Geom., 64(2):Paper

No. 9, 61, 2023. 13, 18, 28, 30, 38, 45, 46, 53
[Kuc97] Dan Kucerovsky. The KK-product of unbounded modules. K-Theory, 11(1):17–34, 1997. 53, 56
[KvS18] Jens Kaad and Walter D. van Suijlekom. Riemannian submersions and factorization of Dirac operators. J. Noncommut.

Geom., 12(3):1133–1159, 2018. 53, 56
[KvS20] Jens Kaad and Walter D. van Suijlekom. Factorization of Dirac operators on almost-regular fibrations of spinc mani-

folds. Doc. Math., 25:2049–2084, 2020. 56, 57
[Lan95] E. C. Lance. Hilbert C∗-modules, volume 210 of London Mathematical Society Lecture Note Series. Cambridge Uni-

versity Press, Cambridge, 1995. A toolkit for operator algebraists. 55
[LM14] Gerd Laures and James E. McClure. Multiplicative properties of Quinn spectra. Forum Math., 26(4):1117–1185, 2014.

71
[LNS23] Markus Land, Thomas Nikolaus, and Marco Schlichting. L-theory of C∗-algebras. Proc. Lond. Math. Soc. (3),

127(5):1451–1506, 2023. 71, 72
[Lur] Jacob Lurie. Higher algebra. http://www.math.harvard.edu/ lurie/. 13
[Mat12] John Mather. Notes on topological stability. Bull. Amer. Math. Soc. (N.S.), 49(4):475–506, 2012. 4, 11
[Maz91] Rafe Mazzeo. Elliptic theory of differential edge operators. I. Comm. Partial Differential Equations, 16(10):1615–1664,

1991. 6
[Mel93] Richard B. Melrose. The Atiyah-Patodi-Singer index theorem, volume 4 of Research Notes in Mathematics. A K Peters,

Ltd., Wellesley, MA, 1993. 30
[MP92] Richard B. Melrose and Paolo Piazza. Analytic K-theory on manifolds with corners. Adv. Math., 92(1):1–26, 1992. 34



K-ORIENTATIONS AND GYSIN MAPS 79

[MW97] Henri Moscovici and Fangbing Wu. Straight Chern character for Witt spaces. In Cyclic cohomology and noncom-
mutative geometry (Waterloo, ON, 1995), volume 17 of Fields Inst. Commun., pages 103–113. Amer. Math. Soc.,
Providence, RI, 1997. 3, 33, 69

[NV23] Guglielmo Nocera and Marco Volpe. Whitney stratifications are conically smooth. Selecta Math. (N.S.), 29(5):Paper
No. 68, 20, 2023. 28

[PRW95] Erik K. Pedersen, John Roe, and Shmuel Weinberger. On the homotopy invariance of the boundedly controlled analytic
signature of a manifold over an open cone. In Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach,
1993), volume 227 of London Math. Soc. Lecture Note Ser., pages 285–300. Cambridge Univ. Press, Cambridge, 1995.
34, 35, 36

[Pfl01] Markus J. Pflaum. Analytic and geometric study of stratified spaces, volume 1768 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2001. 14

[RW24] Oscar Randal-Williams. The Family Signature Theorem. Proc. of the Royal Society of Edinburgh (Ranicki memorial
issue) 154 (6), 2024 – 2067, 2024. 68

[Ran] Andrew Ranicki. The algebraic theory of surgery. (unpublished lecture notes, Princeton, 1978), https://www.maths.
ed.ac.uk/~v1ranick/papers/ats.pdf. 71

[Ran79] Andrew Ranicki. The total surgery obstruction. In Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus,
Aarhus, 1978), volume 763 of Lecture Notes in Math., pages 275–316. Springer, Berlin, 1979. 71

[Ran80] Andrew Ranicki. The algebraic theory of surgery. II. Applications to topology. Proc. London Math. Soc. (3), 40(2):193–
283, 1980. 72

[Rud98] Yuli B. Rudyak. On Thom spectra, orientability, and cobordism. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, 1998. With a foreword by Haynes Miller. 29, 72

[RW06] Jonathan Rosenberg and Shmuel Weinberger. The signature operator at 2. Topology, 45(1):47–63, 2006. 35, 36, 37, 52,
57, 70, 71

[Sie72] L. C. Siebenmann. Deformation of homeomorphisms on stratified sets. I, II. Comment. Math. Helv., 47:123–136; ibid.
47 (1972), 137–163, 1972. 14

[Sie83] P. H. Siegel. Witt spaces: a geometric cycle theory for KO-homology at odd primes. Amer. J. Math., 105(5):1067–1105,
1983. 2, 28, 29, 31, 37, 73, 76

[Sto68] Robert E. Stong. Notes on Cobordism Theory. Princeton University Press, 1968. 69
[Sul71] Dennis Sullivan. Geometric topology. Part I. Massachusetts Institute of Technology, Cambridge, MA, 1971. Localiza-

tion, periodicity, and Galois symmetry, Revised version. 2, 69, 71
[Teu81] Michael Teufel. Abstract prestratified sets are (b)-regular. J. Differential Geometry, 16(3):529–536, 1981. 4, 11
[Tho69] R. Thom. Ensembles et morphismes stratifiés. Bull. Amer. Math. Soc., 75:240–284, 1969. 25
[vdD22] Koen van den Dungen. The Kasparov product on submersions of open manifolds. J. Topol. Anal., 14(1):147–181, 2022.

53
[vdDM20] Koen van den Dungen and Bram Mesland. Homotopy equivalence in unbounded KK-theory. Ann. K-Theory, 5(3):501–

537, 2020. 32
[Ver84] Andrei Verona. Stratified mappings—structure and triangulability, volume 1102 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 1984. 4, 12, 25, 26, 27, 28
[vSV22] Walter D. van Suijlekom and Luuk S. Verhoeven. Immersions and the unbounded Kasparov product: embedding

spheres into Euclidean space. J. Noncommut. Geom., 16(2):489–511, 2022. 54
[Wah10] Charlotte Wahl. Product formula for Atiyah-Patodi-Singer index classes and higher signatures. J. K-Theory, 6(2):285–

337, 2010. 57
[Zen19] S. Zentarra. Bordism theories of piecewise-linear and smooth Witt pseudomanfiolds. master thesis, Universität Heidel-

berg, 2019. 37

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, USA
Email address: palbin@illinois.edu
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