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ABSTRACT. Given two domains of functions with values in a field, the canonical map from
the algebraic tensor product of the vector spaces of functions on the two domains to the vec-
tor space of functions on the product of the two domains is well-known to be injective, but
not generally surjective. By constructing explicit examples, we show that the corresponding
map for semimodules of semiring-valued functions is in general not even injective anymore.
This impacts the formulation of topological quantum field theories over semirings. We also
confirm the failure of surjectivity for functions with values in complete, additively idempotent
semirings by describing a large family of functions that do not lie in the image.

1. INTRODUCTION

The question whether a product decomposition D = A× B of some domain D implies
some kind of decomposition of spaces of functions on D is a classical and important one in
functional analysis. More precisely, one frequently wants to know whether a function on D
can be approximated by finite sums of products of functions on A and functions on B. For
instance, in solving a partial differential equation one may first seek separable solutions and
then approximate the general solution by sums of separable solutions. The notion of a tensor
product is central to this issue, for the following reason: Given a set X and a field K, let KX

denote the K-vector space of functions X→ K. The map β : KA×KB→ KA×B = KD sending
( f ,g) to (a,b) 7→ f (a)g(b) is bilinear and hence induces a linear map µ : KA⊗KB→ KA×B,
where ⊗ denotes the algebraic tensor product of K-vector spaces. If A and B are finite sets,
then µ is an isomorphism and the above question is answered. In the case of actual interest
where A and B are infinite, µ is generally not surjective anymore. This is the reason why
the functional analyst completes the tensor product ⊗ using various topologies available,
arriving at products ⊗̂. For example, for compact Hausdorff spaces A and B, let C(A),C(B)
denote the Banach spaces of all complex-valued continuous functions on A,B, respectively,
endowed with the supremum-norm, yielding the topology of uniform convergence. Then
the image of µ : C(A)⊗C(B)→ C(A×B), while not all of C(A×B), is however dense in
C(A×B) by the Stone-Weierstraß theorem. After completion, µ induces an isomorphism
C(A)⊗̂εC(B)∼=C(A×B) of Banach spaces, where ⊗̂ε denotes the so-called ε-tensor product
or injective tensor product of two locally convex topological vector spaces. For n-dimensional
Euclidean space Rn, let L2(Rn) denote the Hilbert space of square integrable functions on
Rn. Then µ induces an isomorphism L2(Rn)⊗̂L2(Rm) ∼= L2(Rn+m) = L2(Rn×Rm), where
⊗̂ denotes the Hilbert space tensor product, a completion of the algebraic tensor product ⊗
of two Hilbert spaces. For more information on topological tensor products see [Sch50],
[Gro55], [Tre67].
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What underlies all of the above results implicitly is of course the fact that even when A
and B are infinite, the map µ still remains injective. We recall the argument for injectivity in
the proof of Proposition 3.3. The purpose of the present paper is to observe that, in marked
contrast to the situation over fields, the canonical map µ ceases to be injective in general
when one studies functions with values in a (commutative) semiring S. Given two infinite sets
A and B, we construct explicitly a commutative, additively idempotent semiring S = S(A,B)
such that µ : SA⊗SB→ SA×B is not injective (Theorem 3.10). Here,⊗ denotes the (algebraic)
tensor product of S-semimodules satisfying the standard universal property expected of such a
product. This tensor product was constructed by Y. Katsov in [Kat97]. The infinite cardinality
of A,B has to be used in an essential way to obtain the noninjectivity result, since µ for
semirings is certainly injective (in fact an isomorphism) when A and B are finite. Our purely
algebraic result has the immediate consequence that in performing functional analysis over
a semiring which is not a field, one cannot identify the function (a,b) 7→ f (a)g(b) on A×B
with f ⊗g for f ∈ SA, g ∈ SB.

The failure of surjectivity for µ over a semiring which is not a ring, though expected,
cannot logically be deduced from the corresponding failure over rings. Our other main result,
Theorem 3.1, shows that even over the smallest complete (in particular zerosumfree) and
additively idempotent semiring, namely the Boolean semiring B, and for the smallest infinite
cardinal ℵ0, modeled by a countably infinite set A, there is a bilinear map φ : BA×BA→ B
which permits two different linear maps ψ1,ψ2 : BA×A→ B such that ψ1β = φ = ψ2β . This
implies in particular that µ is not surjective, but it actually yields a large class of functions
that are not in the image of µ , namely all functions in BA×A which are distinguished by ψ1
and ψ2.

In the boundedly complete idempotent setting, Litvinov, Maslov and Shpiz have con-
structed in [LMS99] a tensor product, let us here write it as ⊗̂, which for bounded functions
does not exhibit the above deficiencies of the algebraic tensor product. Any idempotent semir-
ing S is a partially ordered set with respect to the order relation s≤ t if and only if s+ t = t;
s, t ∈ S. Then the addition has the interpretation of a least upper bound, s+ t = sup{s, t}. The
semiring S is called boundedly complete (b-complete) if every subset of S which is bounded
above has a supremum. (The supremum of a subset, if it exists, is unique.) The above
semiring S(A,B) is b-complete. Given a b-complete commutative idempotent semiring S and
b-complete idempotent semimodules V,W over S, Litvinov, Maslov and Shpiz define a tensor
product V ⊗̂W , which is again idempotent and b-complete. The fundamental difference to the
algebraic tensor product lies in allowing infinite sums of elementary tensors. A linear map
f : V →W is called b-linear if f (supV0) = sup f (V0) for every bounded subset V0 ⊂V . The
canonical map π : V ×W → V ⊗̂W is b-bilinear. For each b-bilinear map f : V ×W → U
there exists a unique b-linear map f⊗̂ : V ⊗̂W →U such that f = f⊗̂π . Given any set A, let
B(A,S) denote the set of bounded functions A→ S. Then B(A,S) is a b-complete idempotent
S-semimodule. According to [LMS99, Prop. 5], B(A,S)⊗̂B(B,S) and B(A×B,S) are iso-
morphic for arbitrary sets A and B. The functions constructed in our Theorem 3.10 are indeed
unbounded.

In writing the present paper, we were chiefly motivated by the problem of developing a
correct formulation of topological quantum field theories over semirings, which has recently
become necessary in certain constructions and intended applications. Over rings, such the-
ories have been axiomatized by Atiyah in [Ati88]. Tensor products play a central role in
these axioms and in constructions of such theories. For instance, the state module of a dis-
joint union of two manifolds should be the tensor product of the state modules of the two
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manifolds. As the results of this paper show, Atiyah’s axioms cannot be transplanted indis-
criminately to yield a correct foundation for TQFTs over semirings.

Acknowledgment. We would like to thank Yefim Katsov for a brief communication con-
cerning the injectivity problem treated in this paper.

2. MONOIDS, SEMIRINGS, AND SEMIMODULES

We recall some fundamental material on monoids, semirings and semimodules over semir-
ings. Such structures seem to have appeared first in Dedekind’s study of ideals in a commuta-
tive ring: one can add and multiply two ideals, but one cannot subtract them. The theory has
been further developed by H. S. Vandiver, S. Eilenberg, A. Salomaa, J. H. Conway and others.
Roughly, a semiring is a ring without general additive inverses. More precisely, a semiring
is a set S together with two binary operations + and · and two elements 0,1 ∈ S such that
(S,+,0) is a commutative monoid, (S, ·,1) is a monoid, the multiplication · distributes over
the addition from either side, and 0 is absorbing, i.e. 0 · s = 0 = s · 0 for every s ∈ S. If
the monoid (S, ·,1) is commutative, the semiring S is called commutative. The addition on
the Boolean monoid (B,+,0), B = {0,1}, is the unique operation such that 0 is the neutral
element and 1+ 1 = 1. The Boolean monoid becomes a commutative semiring by defining
1 ·1 = 1. (Actually, the multiplication on B is completely forced by the axioms.)

Let S be a semiring. A (left) S-semimodule is a commutative monoid (M,+,0M) together
with a scalar multiplication S×M→M, (s,m) 7→ sm, such that for all r,s ∈ S, m,n ∈M, we
have (rs)m = r(sm), r(m+n) = rm+ rn, (r+ s)m = rm+ sm, 1m = m, and r0M = 0M = 0m.
Right semimodules are defined similarly using scalar multiplications M× S→M, (m,s) 7→
ms. Every semimodule M over a commutative semiring S can and will be assumed to be
both a left and right semimodule with sm = ms. In fact, M is then a bisemimodule, as for all
r,s ∈ S, m ∈M,

(rm)s = s(rm) = (sr)m = (rs)m = r(sm) = r(ms).

Let S be a commutative semiring. Regarding the tensor product of two S-semimodules M
and N, one has to exercise caution because two nonisomorphic tensor products, both called
the tensor product of M and N and both written M⊗S N, exist in the literature. For us, a
tensor product of M and N is an S-semimodule M⊗S N satisfying the following (standard)
universal property: M⊗S N comes equipped with an S-bilinear map M×N →M⊗S N such
that given any S-semimodule A and S-bilinear map M×N→ A, there exists a unique S-linear
map M⊗S N→ A such that

M×N //

��

A

M⊗S N

;;

commutes. The existence of such a tensor product is shown for example in [Kat97], [Kat04].
To construct it, take M⊗S N to be the quotient monoid F/∼, where F is the free commutative
monoid generated by the set M×N and ∼ is the congruence relation on F generated by all
pairs of the form

((m+m′,n),(m,n)+(m′,n)), ((m,n+n′),(m,n)+(m,n′)), ((sm,n),(m,sn)),

m,m′ ∈ M, n,n′ ∈ N, s ∈ S. The commutative monoid M⊗S N is an S-semimodule with
s(m⊗n) = (sm)⊗n = m⊗ (sn). If S is understood, we shall also write M⊗N for M⊗S N.
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The tensor product of [Tak82] and [Gol99] — let us here write it as ⊗′S — satisfies a
different universal property and is thus different from ⊗S. A semimodule C is called can-
cellative if a+ c = b+ c implies a = b for all a,b,c ∈C. A monoid (M,+,0) is idempotent
if m + m = m for all elements m ∈ M. For example, the Boolean monoid B is idempo-
tent. A semiring is called additively idempotent if 1+ 1 = 1. Note that this implies that
the additive monoid of the semiring is idempotent. A semimodule is called idempotent if
its additive monoid is idempotent. A nontrivial idempotent semimodule is never cancella-
tive. Given arbitrary S-semimodules M,N, the product M⊗′S N is always cancellative. If
one of the two semimodules, say N, is idempotent, then M⊗′S N is idempotent as well, since
m⊗′ n+m⊗′ n = m⊗′ (n+ n) = m⊗′ n. Thus if one of M,N is idempotent, then M⊗′S N
is trivial, being both idempotent and cancellative. We want to be able to apply the tensor
product nontrivially also to idempotent semimodules and so will not use the product ⊗′S in
this paper.

3. FUNCTION SEMIMODULES AND THEIR TENSOR PRODUCTS

Let S be a commutative semiring. Given a set A, let SA = { f : A→ S} be the set of
all S-valued functions on A. Elements of SA are sometimes referred to as S-subsets in the
literature, for example in [Eil74]. Using pointwise addition and multiplication of function
values by elements of S, SA inherits the structure of an S-semimodule from the operations of
S. In fact, SA is a commutative S-semialgebra, but the semialgebra multiplication will play
no role in the present paper.

Let B be another set. Then, regarding SA and SB as S-semimodules, the tensor product
SA⊗S SB is defined. It is an S-semimodule satisfying the universal property recalled in Section
2: Given any S-semimodule M and S-bilinear map φ : SA× SB → M, there exists a unique
S-linear map ψ : SA⊗S SB→M such that

SA×SB
φ

//

��

M

SA⊗S SB

ψ

;;xxxxxxxxx

commutes. The S-semimodule SA×B comes naturally equipped with an S-bilinear map

β : SA×SB −→ SA×B,

namely
β ( f ,g) = ((a,b) 7→ f (a) ·g(b)).

Note that the commutativity of S is crucial for the property β ( f ,sg) = sβ ( f ,g), s∈ S. Taking
M = SA×B in the universal property, there exists thus a unique S-linear map µ : SA⊗S SB→
SA×B such that

(1) SA×SB
β

//

��

SA×B

SA⊗S SB

µ

::uuuuuuuuu

commutes. If A and B are finite, µ is an isomorphism, as in this case SA, SB and SA×B are
finitely generated free S-semimodules. A basis of SA is given by the characteristic functions
χa of the elements a ∈ A, similarly for SB. Then the elements χa ⊗ χb form a basis for
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SA⊗ SB which µ sends to the functions (a′,b′) 7→ χa(a′)χb(b′). But these are precisely the
characteristic functions χ(a,b) of the elements (a,b) ∈ A×B, and thus form a basis of SA×B.
The unique solution µ ′ of the universal problem

SA×SB
φ

//

β

��

M

SA×B

µ ′

<<

is given by
µ
′(F) = ∑

(a,b)∈A×B
F(a,b)φ(χa,χb), F ∈ SA×B.

For M = SA⊗SB and φ the canonical bilinear map, µ ′ is inverse to µ and µ ′(χ(a,b)) = χa⊗χb.
Consequently, the emphasis is to be placed on infinite sets.

Already when S is a field, µ is generally not surjective if A and B are infinite. This is a
well-known phenomenon in classical functional analysis and, as discussed in the introduc-
tion, leads to various forms of completed tensor products ⊗̂, using a topology on the function
space. For semirings that are not rings, such as zerosumfree semirings, in particular complete
or additively idempotent semirings, the failure of surjectivity can of course not be logically
deduced from the corresponding failure over fields. The following theorem implies that sur-
jectivity fails also for complete and idempotent semirings. In fact, the semiring used in the
theorem is the Boolean semiring B, which satisfies both of these properties. The theorem
actually describes a large class of functions that are not in the image of µ .

Theorem 3.1. Given any countably infinite set A, there is a B-bilinear map φ :BA×BA−→B
and two different B-linear maps ψ1,ψ2 : BA×A→ B such that

(2) BA×BA
φ

//

β

��

B

BA×A

ψi

;;xxxxxxxxx

commutes for i = 1,2. In particular, BA×A is not a tensor square of BA and any element of
the nonempty set

{h ∈ BA×A | ψ1(h) 6= ψ2(h)}
is not in the image of the map

µ : BA⊗BA −→ BA×A.

Proof. We may take the natural numbers N as our model for the countably infinite set A.
Then SA = BA is the set {(sn)n∈N} of B-valued sequences (sn). We define a map

φ : SA×SA −→ B

by

φ((sn),(tn)) =


1, if sn = 1 for infinitely many n and

tn = 1 for infinitely many n,
0, otherwise.

Clearly φ is symmetric. It is also B-bilinear: We have

φ(0 · (sn),(tn)) = φ((0),(tn)) = 0 = 0 ·φ((sn),(tn)),
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as the zero sequence (0) has not a single 1, let alone infinitely many. Furthermore,

φ(1 · (sn),(tn)) = φ((sn),(tn)) = 1 ·φ((sn),(tn)).

The following table establishes biadditivity, where we write “∞1” for the assumption that a
sequence have infinitely many 1-entries and “f1” for the assumption that a sequence have
only finitely many 1-entries.

s t t ′ t + t ′ φ(s, t + t ′) φ(s, t) φ(s, t ′) φ(s, t)+φ(s, t ′)
∞1 ∞1 ∞1 ∞1 1 1 1 1
∞1 ∞1 f 1 ∞1 1 1 0 1
∞1 f 1 ∞1 ∞1 1 0 1 1
∞1 f 1 f 1 f 1 0 0 0 0
f 1 ∞1 ∞1 ∞1 0 0 0 0
f 1 ∞1 f 1 ∞1 0 0 0 0
f 1 f 1 ∞1 ∞1 0 0 0 0
f 1 f 1 f 1 f 1 0 0 0 0

We shall now construct distinct ψ1,ψ2 : SA×A→ B such that (2) commutes for i = 1,2. The
set SA×A is the set of infinite matrices

SA×A = {(hn,m)(n,m)∈N×N | hn,m ∈ B}.

Call a row of h = (hn,m) long if it contains infinitely many 1-entries, otherwise call it short;
similarly for columns. Call h row-expansive if it has infinitely many long rows and column-
expansive if it has infinitely many long columns. Set

ψ1(h) =

{
1, if h is row- or column-expansive,
0, otherwise.

We claim that ψ1 : SA×A → B is linear. To see this, let h,h′ ∈ SA×A and consider the case
where one of h,h′, say h, is row-expansive. Let n1,n2, . . . be the indices of an infinite set of
long rows of h. Adding h′ to h can only increase the number of 1-entries in each of these
rows, so each of the rows of h+h′ corresponding to the indices n1,n2, . . . is still long. Thus
h+h′ is row-expansive and

ψ1(h)+ψ1(h′) = 1+ψ1(h′) = 1 = ψ1(h+h′).

If one of h,h′, say h, is column-expansive, then by an analogous argument h+h′ is column-
expansive and again ψ1(h)+ψ1(h′) = 1 = ψ1(h+h′). The last case to consider is that both h
and h′ are neither row- nor column-expansive, in which case ψ1(h)+ψ1(h′) = 0+0 = 0. So
we must show that h+h′ is neither row- nor column-expansive. We do this by contradiction
— suppose that h + h′ were row-expansive and let n1,n2, . . . be an infinite set of indices
indexing long rows of h+h′. Since the sum of two short rows is short, not both of (hn1,m)m,
(h′n1,m)m can be short. Color n1 white if (hn1,m)m is long and color it black otherwise. So if
n1 is black, then (h′n1,m)m is long. Carrying out this coloring for n2,n3, . . ., yields a partition
of the infinite set n1,n2, . . . into two subsets, the white and the black indices. As one cannot
partition an infinite set into two finite subsets, one of these two subsets must be infinite. If
the white subset is infinite, then h has an infinite set of long rows, a contradiction to the
assumption that h is not row-expansive. Thus the black subset is infinite. But then h′ would
be row-expansive, again a contradiction. Therefore, h+h′ is not row-expansive. A transposed
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argument for the columns shows that h+h′ is not column-expansive. Consequently, ψ1(h+
h′) = 0 as was to be shown. Furthermore, ψ1(0 ·h) = ψ1(0) = 0 = 0 ·ψ1(h) and ψ1(1 ·h) =
ψ1(h) = 1 ·ψ1(h). This proves the claimed linearity of ψ1. Let us verify that (2) commutes
for ψ1, i.e. that the equation

(3) φ((sn),(tn)) = ψ1((sn · tm))

holds. If both (sn) and (tn) contain infinitely many 1-entries, then h = (sn · tm) is row- and
column-expansive. Hence φ((sn),(tn)) = 1 = ψ1((sn · tm)). Suppose that at least one of
(sn), (tn) has only finitely many 1-entries. Then the product h = (sn · tm) is neither row- nor
column-expansive. Thus in this case φ((sn),(tn)) = 0 = ψ1((sn · tm)). This shows that ψ1
solves (3).

We say that h = (hn,m) contains a large block of zeros if there exist numbers N and M such
that hn,m = 0 for n≥ N and m≥M. Set

ψ2(h) =

{
0, if h contains a large block of zeros,
1, otherwise.

We claim that ψ2 : SA×A → B is linear. To see this, let h,h′ ∈ SA×A and consider the case
where both h and h′ contain a large block of zeros. Then there are N,M,N′,M′ such that
hn,m = 0 for n≥ N and m≥M, and h′n,m = 0 for n≥ N′ and m≥M′. Let N+ = max(N,N′),
M+ = max(M,M′). Then, as hn,m+h′n,m = 0+0 = 0 for n≥ N+ and m≥M+, the sum h+h′

contains a large block of zeros. Consequently,

ψ2(h)+ψ2(h′) = 0+0 = 0 = ψ2(h+h′).

Now assume that at least one of h,h′, say h, does not contain a large block of zeros. This
means that for every k = 1,2, . . . there are nk,mk ≥ k with hnk,mk = 1. But then hnk,mk +
h′nk,mk

= 1 for all k and thus h+h′ does not contain a large block of zeros. We conclude that

ψ2(h)+ψ2(h′) = 1+ψ2(h′) = 1 = ψ2(h+h′).

Furthermore, ψ2(0 ·h) =ψ2(0) = 0= 0 ·ψ2(h) and ψ2(1 ·h) =ψ2(h) = 1 ·ψ2(h). This proves
that ψ2 is linear. We shall next check that the equation

(4) φ((sn),(tn)) = ψ2((sn · tm))

holds. If both (sn) and (tn) contain infinitely many 1-entries, then h = (sntm) does not contain
a large block of zeros: Given N,M, let n ≥ N be an index with sn = 1 and m ≥M an index
with tm = 1. Then sn · tm = 1 for this n≥ N and this m≥M. Thus,

φ((sn),(tn)) = 1 = ψ2((sntm)).

Suppose that at least one of (sn), (tn), say (sn), has only finitely many 1-entries. Let N be
such that sn = 0 whenever n≥ N. Then hn,m = sntm = 0 for n≥ N and m≥ 1. This is a large
block of zeros for h, whence

φ((sn),(tn)) = 0 = ψ2((sntm)).

We have shown that ψ2 solves (4).
Now consider the identity matrix h = (hn,m) with hn,n = 1 and hn,m = 0 for n 6= m. Since

it contains neither a single long row nor a single long column, h is neither row- nor column-
expansive, which implies ψ1(h) = 0. However, the identity matrix does not contain a large
block of zeros, so ψ2(h) = 1. This shows that (2) has two distinct solutions ψ1 and ψ2.
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From this it follows easily that µ is not surjective. Indeed, let h ∈ BA×A be any element
such that ψ1(h) 6= ψ2(h), for instance the identity matrix. If µ were surjective, then

h = µ(∑
i

si⊗ t i) = ∑
i

β (si, t i)

and hence
ψ1(h) = ∑ψ1β (si, t i) = ∑φ(si, t i) = ∑ψ2β (si, t i) = ψ2(h),

a contradiction. We conclude that µ is not surjective. (In particular, the identity matrix is not
in the image of µ .) �

Remark 3.2. The above proof shows that the identity matrix is not in the image of µ , which
is of course easy to verify directly and suffices to establish the failure of surjectivity. But
the proof yields much more: It defines the notions row-expansive, column-expansive and the
property of possessing a large block of zeros. Using these, we can now describe a large family
of functions that does not intersect the image of µ: Any h ∈ BA×A which is neither row- nor
column-expansive but does not contain a large block of zeros is not in the image of µ . On the
other hand, any row- or column-expansive h cannot have a large block of zeros.

We turn to the injectivity of µ : SA⊗SB→ SA×B. Over vector spaces, the injectivity of µ is
well-known to functional analysts and is used implicitly throughout the subject, cf. [Tre67].
Let us recall the simple proof of this fact.

Proposition 3.3. Let K be a field and A,B sets. Then the map µ : KA ⊗KB → KA×B is
injective.

Proof. Let h ∈ KA⊗KB be a nonzero element. Then h can be written as

h =
n

∑
i=1

ei⊗ fi, ei ∈ KA, fi ∈ KB,

with e1, . . . ,en linearly independent. Since h 6= 0, there is an i0 with fi0 6= 0. Thus fi0(b0) 6= 0
for some b0 ∈ B. By the linear independence of the ei, the linear combination ∑ fi(b0)ei ∈KA

cannot be zero. So there is an a0 ∈ A with ∑ei(a0) fi(b0) 6= 0. This shows that µ(h) =
∑ µ(ei⊗ fi) = ∑β (ei, fi) = ∑ei(−) fi(−) is not zero in KA×B. �

By contrast, for semirings S that are not fields, the canonical map µ is generally not in-
jective, as we shall now explain. Let A,B be two infinite sets.To each element a ∈ A, we
associate an indeterminate fa and to each element b ∈ B an indeterminate gb. Let x be an
additional independent indeterminate. Let S = S(A,B) be the set of all finite formal linear
combinations

ω +ξ x+ ∑
a∈A

αa fa + ∑
b∈B

βbgb,

where ω,ξ ,αa,βb ∈ B are elements of the Boolean semiring and only finitely many αa,βb
are nonzero. Two such linear combinations are added by adding the coefficients in B. The
product of any two indeterminates is to vanish, that is, the indeterminates are multiplied
according to the rules

fagb = fa fa′ = gbgb′ = fax = gbx = x2 = 0,

together with commutativity. Using the distributive law and the multiplication in B, this
determines a multiplication · on S so that (S,+, ·,0,1) is a commutative semiring. (The zero-
element has ω = ξ = αa = βb = 0 and the one-element has ω = 1, ξ = αa = βb = 0.) An
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explicit formula for the product of two elements s,s′ ∈ S is

s · s′ = ωω
′+(ωξ

′+ω
′
ξ )x+∑

a
(ωα

′
a +ω

′
αa) fa +∑

b
(ωβ

′
b +ω

′
βb)gb.

As B is additively idempotent, the semiring S is additively idempotent as well.

Definition 3.4. Let R be any semiring and let r,r0 be elements in R. We say that r0 is a
summand of r if r = r0 + s for some s ∈ R.

Every element is a summand of itself, and every element has 0 as a summand. If R happens
to be a ring, then every r0 is a summand of any r as r = r0+(r−r0). Recall that an idempotent
semiring has a canonical partial order given by r0 ≤ r if and only if r0 + r = r. If R is
idempotent, then r0 is a summand of r precisely when r0 ≤ r, as can be seen from

r0 + r = r0 +(r0 + s) = r0 + s = r.

In [LMS99], an idempotent semiring R is called a-complete, if every subset of R has a supre-
mum and an infimum. Furthermore, R is b-complete if every subset which is bounded above
has a supremum.

Proposition 3.5. The commutative idempotent semiring S(A,B) is b-complete, but not a-
complete.

Proof. The infinite subset { fa | a ∈ A} ⊂ S has no upper bound: If s were an upper bound,
then fa + s = s for all a ∈ A, i.e. fa would be a summand of s for all a ∈ A. But in

s = ω +ξ x+ ∑
a∈A

αa fa + ∑
b∈B

βbgb,

only finitely many αa can be 1. Thus S is not a-complete.

Suppose T ⊂ S is a subset which is bounded above, that is, there is an s ∈ S such that t ≤ s
for all t ∈ T . Set

A(T ) = {a ∈ A | ∃t ∈ T : fa ≤ t}, B(T ) = {b ∈ B | ∃t ∈ T : gb ≤ t}.

For every a ∈ A(T ), we have the bound fa ≤ s. If A(T ) were infinite, then fa would be a
summand of s for infinitely many distinct fa, which is impossible. Consequently, A(T ) is
finite and similarly B(T ) is finite. This implies that T is finite, since T is contained in the
finite set

{ω +ξ x+ ∑
a∈A(T )

αa fa + ∑
b∈B(T )

βbgb}.

Then s0 = ∑t∈T t ∈ S is the supremum of T : Clearly, t ≤ s0 for all t ∈ T , and if s is any upper
bound for T , then t + s = s for all t ∈ T implies s0 + s = ∑ t + s = s, so s0 ≤ s. We conclude
that S is b-complete. �

Definition 3.6. A function F ∈ SA is called f -exhaustive (or briefly exhaustive), if for in-
finitely many a ∈ A, the value F(a) has fa as a summand. Similarly, a function G ∈ SB is
called g-exhaustive (or just exhaustive), if for infinitely many b ∈ B, the value G(b) has gb as
a summand.

For example the function F(a) = fa is exhaustive. No function with finite support is
exhaustive. Exhaustive functions are necessarily unbounded, because if there were an s ∈ S
with F(a) ≤ s, all a ∈ A, for an exhaustive function F : A→ S, then for infinitely many a,
fa ≤ F(a)≤ s, so s would contain infinitely many fa as summands, which is impossible.
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Lemma 3.7. Let F,F ′ ∈ SA be two functions. If at least one of F,F ′ is f -exhaustive, then
F +F ′ is f -exhaustive. If neither F nor F ′ is f -exhaustive, then F +F ′ is not f -exhaustive.

Proof. Suppose that F is exhaustive. Thus for infinitely many a ∈ A, the value F(a) has the
form F(a) = fa + sa. For these a,

(F +F ′)(a) = F(a)+F ′(a) = fa +(sa +F ′(a)).

Hence there are infinitely many a ∈ A such that (F +F ′)(a) contains fa as a summand. This
shows that F +F ′ is exhaustive. Suppose that neither F nor F ′ is exhaustive. Then there is a
finite set AF ⊂ A such that for all a ∈ A−AF ,

F(a) = ωa +ξax+ ∑
a′ 6=a

αa′a fa′ +∑
b

βbagb.

Similarly, there is a finite set AF ′ ⊂ A such that for all a ∈ A−AF ′ ,

F ′(a) = ω
′
a +ξ

′
ax+ ∑

a′ 6=a
α
′
a′a fa′ +∑

b
β
′
bagb.

The union A0 = AF ∪AF ′ is a finite set such that for all a ∈ A−A0,

(F +F ′)(a) = (ωa +ω
′
a)+(ξa +ξ

′
a)x+ ∑

a′ 6=a
(αa′a +α

′
a′a) fa′ +∑

b
(βba +β

′
ba)gb,

which does not contain fa as a summand. So (F +F ′)(a) can contain fa as a summand for at
most finitely many a, which implies that F +F ′ is not exhaustive. �

Lemma 3.8. Let s ∈ S be any element that does not contain 1 as a summand. Then for any
function F ∈ SA, the product sF is not exhaustive.

Proof. As s does not have 1 as a summand, it can be written as

s = ξ x+ ∑
a′∈A′

fa′ +∑
b

βbgb,

where A′ ⊂ A is finite and only finitely many βb are nonzero. Note that xs = fas = gbs = 0
for all a,b. Given an a ∈ A−A′, we write

F(a) = ω +ξ
′x+ ∑

a∈A
α
′
a fa + ∑

b∈B
β
′
bgb

and calculate

sF(a) = ωs+ξ
′(xs)+ ∑

a∈A
α
′
a( fas)+ ∑

b∈B
β
′
b(gbs)

= ωs

= (ωξ )x+ ∑
a′∈A′

ω fa′ +∑
b
(ωβb)gb.

This last expression shows that sF(a) does not contain fa as a summand whenever a∈ A−A′.
Thus sF(a) can contain fa as a summand for at most finitely many a ∈ A and we conclude
that sF is not exhaustive. �

Lemma 3.9. Let s ∈ S be any element that contains 1 as a summand. If F ∈ SA is not
exhaustive, then the product sF is not exhaustive.

Proof. As F is not exhaustive, there exists a finite set A′ ⊂ A such that for all a ∈ A−A′,

F(a) = ωa +ξax+ ∑
a′ 6=a

αa′a fa′ +∑
b

βbagb.
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Since s contains 1 as a summand, we can write s = 1+ t with

t = ξ x+ ∑
a′′∈A′′

fa′′ +∑
b

β
′
bgb

for some finite set A′′ ⊂ A. Then the union A0 = A′∪A′′ is finite and for a ∈ A−A0,

sF(a) = (1+ t)F(a) = F(a)+ωat

= F(a)+(ωaξ )x+ ∑
a′′∈A′′

ωa fa′′ +∑
b
(ωaβ

′
b)gb.

From this last expression we see that sF(a) does not contain fa as a summand whenever
a ∈ A−A0. Thus sF(a) can contain fa as a summand for at most finitely many a (namely the
ones in A0). This means that sF is not exhaustive. �

Theorem 3.10. Given any two infinite sets A,B, there exists a commutative, additively idem-
potent semiring S = S(A,B) such that the canonical map

µ : SA⊗SB −→ SA×B

F⊗G 7→ ((a,b) 7→ F(a)G(b))

is not injective.

Proof. Given F ∈ SA, G ∈ SB, we set φ(F,G) = x ∈ S if F is f -exhaustive and G is g-
exhaustive, and φ(F,G) = 0 ∈ S otherwise. This defines a map

φ : SA×SB −→ S.

(Note that φ is supported on unbounded functions.) We claim that φ is S-bilinear. In order to
show that φ is biadditive, we consider functions F,F ′ ∈ SA and G ∈ SB. Suppose that all three
are exhaustive. Then by Lemma 3.7, F +F ′ is exhaustive and

φ(F +F ′,G) = x = x+ x = φ(F,G)+φ(F ′,G).

If G and F are exhaustive but F ′ is not, then by Lemma 3.7, F +F ′ is still exhaustive and

φ(F +F ′,G) = x = x+0 = φ(F,G)+φ(F ′,G).

In the case where G is exhaustive but neither F nor F ′ is exhaustive, Lemma 3.7 asserts that
F +F ′ is not exhaustive and consequently

φ(F +F ′,G) = 0 = φ(F,G)+φ(F ′,G).

Lastly, when G is not exhaustive,

φ(F +F ′,G) = 0 = φ(F,G)+φ(F ′,G).

Similarly, one verifies φ(F,G+G′) = φ(F,G) + φ(F,G′), F ∈ SA, G,G′ ∈ SB. Thus φ is
biadditive.

Given s ∈ S, let us proceed to show that

(5) φ(sF,G) = sφ(F,G).

If G is not exhaustive, then indeed φ(sF,G) = 0 = s ·0 = sφ(F,G). Let us thus assume that G
is exhaustive. We break the demonstration of (5) into two cases: the element s contains 1 as
a summand and s does not contain 1 as a summand. Assume first that s = 1+ t, where t does
not contain 1 as a summand. This implies that tx = 0. If F is exhaustive, then for infinitely
many a ∈ A, F(a) = fa + sa and so

sF(a) = (1+ t)( fa + sa) = fa +(sa + tsa + t fa)
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for these a. Therefore, sF is also exhaustive and

φ(sF,G) = x = x+ tx = sx = sφ(F,G).

If F is not exhaustive, then by Lemma 3.9, sF is not exhaustive and

φ(sF,G) = 0 = s ·0 = sφ(F,G).

Now assume that s does not contain 1 as a summand. Since in this case sx = 0 and Lemma
3.8 implies that sF is not exhaustive, we have on one hand φ(sF,G) = 0 and on the other
hand sφ(F,G) = sx = 0 if F is exhaustive or sφ(F,G) = s ·0 = 0 if F is not exhaustive. Thus
equation (5) holds. A similar argument establishes φ(F,sG) = sφ(F,G). This concludes the
verification that φ is S-bilinear.

Define a function f ∈ SA and a function g ∈ SB by setting

f (a) = fa, g(b) = gb

for all a∈ A, b∈ B. Then f and g are exhaustive (in particular unbounded) and thus φ( f ,g) =
x. On the other hand,

f (a)g(b) = fagb = 0
for all a,b, which shows that µ( f ⊗ g) = 0 ∈ SA×B. By the universal property of the tensor
product, there exists a unique S-linear φ ′ : SA⊗SB→ S such that

SA×SB
φ

//

��

S

SA⊗SB
φ ′

<<

commutes. Its value on f ⊗g is φ ′( f ⊗g) = φ( f ,g) = x, whereas φ ′(0) = 0 by linearity. In
particular,

φ
′( f ⊗g) 6= φ

′(0)
which proves that

f ⊗g 6= 0 ∈ SA⊗SB.

But µ( f ⊗g) = 0 = µ(0) so that µ is not injective. �

Remark 3.11. The proof shows that µ is already not injective on elementary tensors f ⊗ g,
let alone on a general tensor element ∑ fi⊗gi.
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