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Self-Dual Perverse Sheaves on General Pseudomanifolds

I X : oriented n-dimensional topological pseudomanifold with a
locally cone-like topological stratification.

I Define category SD(X ): full subcategory of derived category
Db
c (X ) satisfying axioms: top stratum normalization, lower

bound, n̄-stalk vanishing condition, self-duality.

I SD(X ) may or may not be empty.

I Def. X is an L-space, if SD(X ) 6= ∅.

I For S• ∈ SD(X ), there exist morphisms

IC•m̄(X ) // S•

DIC•n̄(X )[n]

∼=

OO

// DS•[n]

∼=

OO



Postnikov system of Lagrangian Structures

Def. A Lagrangian structure for a complex S• ∈ SD(Uk) along a
stratum Uk+1 − Uk = Xn−k − Xn−k−1 of odd codimension k is a
monomorphism

L −→ Hn̄(k)−n(Rik∗S
•), ik : Uk ⊂ Uk+1,

which is stalkwise a Lagrangian subspace.

Thm.(B.) There is an equivalence of categories (say, for n even)

SD(X ) ' Lag(X1 − X0) o Lag(X3 − X2) o . . .

o Lag(Xn−3 − Xn−4) o Coeff(X − Σ).

(Similarly for n odd.)



Examples

I If X is a Witt space (e.g. a complex algebraic variety), then
Ob(SD(X )) = {IC•m̄(X ) ∼= IC•n̄(X )}.

I X 6 = S1 × Susp(CP2): SD(X 6) = ∅.

I X 4 = S1 × Susp(T 2): SD(X 4) 6= ∅.

I Primary obstruction: Signature of the link,
Secondary obstruction: Monodromy.

I Thm.(B., Kulkarni) Let X be the reductive Borel-Serre
compactification of a Hilbert modular surface X . Then X an
L-space, though it is not a Witt space.



Analytic Approach: Cheeger Structures

Joint work with Albin, Leichtnam, Mazzeo, Piazza.

I X : oriented smoothly Thom-Mather-stratified
pseudomanifold.

I Radial Blow-up X̃ : manifold with corners (Melrose).

I S ⊂ X stratum, x ∈ C∞(X ) a boundary defining function
(S = x−1(0), |dx | bounded away from 0). An incomplete edge
metric takes near S the form

dx2 + x2gLink + π∗gS , π : ∂tube→ S .

(iterate inductively.)

I Fact: (Iterated) incomplete edge metrics exist.

I ieT ∗X̃ : sections are 1-forms whose restrictions on boundary
hypersurfaces vanish on vertical vector fields.



I C∞c (Xreg ; Λj(ieT ∗X̃ )) ⊂ L2(X̃ ; Λj(ieT ∗X̃ )) dense, so exterior
derivative

d : C∞c (Xreg ; Λj(ieT ∗X̃ )) −→ C∞c (Xreg ; Λj+1(ieT ∗X̃ ))

has 2 canonical extensions to a closed operator on L2:
min/max extension with domains

Dmin(d),Dmax(d) ⊂ L2(X̃ ; Λ∗(ieT ∗X̃ )).

I X Witt ⇒ Dmin(d) = Dmax(d).

I Every closed extension (d ,D(d)) satisfies

Dmin(d) ⊂ D(d) ⊂ Dmax(d).

I δ formal adjoint of d .

I ωδ = orthog. proj. of ω ∈ Dmax(d) off of ker(δ,Dmin(δ)).

I Asymptotic Expansion at boundary: Leading term
α(ωδ) + dx ∧ β(ωδ).



I A flat subbundle L of the vertical cohomology bundle defines a
domain

DL(d) = {ω ∈ Dmax(d) | α(ωδ) is a section of L}.

(“Cheeger ideal boundary conditions” imposed by L).

I (d ,DL(d)) is a closed operator.

I Def. X is a Cheeger space, if it admits a self-dual subbundle
L, i.e. ∗vertL = L⊥.

I Set

L2
LΩ• = Sheaf(U 7→ {ω ∈ DL(d) | supp(ω) ⊂ U ∩ Xreg}).

I Thm.(B., Albin, Leichtnam, Mazzeo, Piazza.) If X is a
Cheeger space with self-dual Cheeger condition L, then
L2
LΩ• ∈ SD(X ), in particular

DL2
LΩ•[n] ∼= L2

LΩ•.

I Cor. Every Cheeger space is an L-space (but not conversely).



The L-class of Singular Spaces.

I Let X be a compact L-space without boundary.

I Given S• ∈ SD(X ), self-duality  signature σ(S•) ∈ Z,
bordism invariant.

I Thom-Pontrjagin construction  

L∗(S
•) ∈ H∗(X ;Q).

I Thm. (B.) L∗(S
•) is independent of the choice of

S• ∈ SD(X ).

I Idea of proof: Construct concordance between different
choices by stratifying cylinder with cuts at 1

2 to disentangle
Langrangian structures. Note that cut has even codimension,
so does not create problems.

I Thus L-spaces have a well-defined L-class L∗(X ) := L∗(S
•).



Special Cases.

I If X = M is a smooth manifold, get Poincaré dual of
Hirzebruch’s L-class

L∗(X ) = L∗(TM) ∩ [M].

I If X has only even codimensional strata (e.g. a complex
algebraic variety), then L∗(X ) is the Goresky-MacPherson
L-class.

I If X is a Witt space, then L∗(X ) is Siegel’s L-class.



Relevance in Classification Problems.
I M a closed, smooth, simply connected manifold of even

dimension n ≥ 5.

I Manifold structure set S(M) = {[N h.e.−→ M]}/Diffeo.
I The map

S(M)⊗Q L
↪→

⊕
H4j(M;Q),

[h : N ' M] 7→ (h∗)−1L∗(TN)− L∗(TM),

is injective.
I In other words: M is determined, up to finite ambiguity, by its

homotopy type and its L-classes.
I X an even dim. stratified pseudomanifold that has no strata

of odd dimension. All strata S have dim ≥ 5, all strata and all
links simply connected.

I Cappell-Weinberger: Difference of L-classes gives an injection

S(X )⊗Q ↪→
⊕
S⊂X

⊕
j

Hj(S ;Q),

where S ranges over the strata of X .



I Even in the manifold case, many mysteries remain concerning
L∗ (Novikov conj., effective computation, local formulae,...).

I Novikov, 1966: “In those cases in which the preceding
question (homotopy invariance of higher signatures) has been
answered affirmatively, there arises the problem of computing
the classes L∗ in terms of homotopy invariants. This problem
has not been solved (...).”

I Much less is known about L∗ in the singular situation.
Effective computation? Perhaps for algebraic varieties?

I Here, will discuss transformational properties of L∗,
adopting the following point of view: Frequently, laws are
easier to discern for fundamental classes on bordism, rather
than directly for L∗.



Intersection Homology Poincaré Spaces

I To implement this philosophy, need morphism of spectra

(singular bordism spectra) −→ L•,

L• = L•〈0〉(Z) Ranicki’s symmetric L-spectrum,
πn(L•) = Ln(Z).

I joint work with Gerd Laures, Jim McClure.

I Can even work integrally, not just rationally.

Def. (Goresky, Siegel) An n-dimensional Intersection homology
Poincaré (IP-) space is an n-dimensional PL pseudomanifold X
such that:

1. IHm̄
k (L2k ;Z) = 0 for links L2k and

2. IHm̄
k (L2k+1;Z) is torsion free for links L2k+1.



I Thm. (Goresky-Siegel.) If (X n, ∂X ) is an oriented compact
IP-space, then

IC•m̄(X − ∂X ;Z) ∼= RHom•(IC•m̄(X − ∂X ;Z),D•X−∂X )[n]

(Verdier self-duality over Z in the derived category of sheaf
complexes) and intersection of cycles induces a nonsingular
pairing

IHi (X , ∂X ;Z)/Tors×IHn−i (X ;Z)/Tors −→ Z.

I W. Pardon: IP-bordism ΩIP
∗ (−), is a gen. homology theory,

ΩIP
n (pt) =


Z, n ≡ 0(4),

Z/2, n ≥ 5, n ≡ 1(4),

0 otherwise.

Note: very close to Ln(Z).



Ad Theories (Quinn; Buoncristiano-Rourke-Sanderson;
Laures-McClure).

Target categories A of an ad-theory:
Z-graded categories A (no morphisms that decrease dimension),
with involution (will suppress). (Have inclusions of cells τ ⊂ σ only
when dim τ ≤ dimσ.)

Def. An ad-theory ad with target category A is an assignment

k ∈ Z, ball complex pairs (K , L) 7→ adk(K , L),

adk(K , L) ⊂ {functors F : K − L→ A | F decr. dim. by k}

satisfying axioms regulating reindexing of ball pairs, gluing of
subdivisions, extension to cylinders.

F ∈ adk(K , L) is called a (K , L)-ad.



Ad Theories: Bordism and Quinn Spectra

I A morphism of ad theories is a functor of target categories
which takes ads to ads.

I F ,F ′ ∈ adk(pt) are bordant, if exists I -ad G :
G |0 = F , G |1 = F ′. (Is an equivalence relation by axioms
reindexing, gluing, cylinder.)

I bordism groups Ωk := bordism classes in ad−k(pt).

I Geometric realization Qk := |Qk | of semisimplicial sets Qk

with n-simplices adk(∆n) gives associated Quinn spectrum Q.

I π∗(Q) = Ω∗
I Morphism ad1 → ad2  Q1 → Q2.



IP-ads and L-ads.

I Target category AIP :

I Objects: pairs (X , ξ)
I (X , ∂X ) compact, oriented IP-space,
I ξ ∈ IS 0̄

n (X ;Z) representative for [X ] ∈ IH 0̄
n (X , ∂X ;Z).

(Singular intersection chains, H. King)
I Morphisms: orientation-preserving PL-homeomorphisms and

stratum preserving PL-embeddings ↪→ boundary, respecting ξ.

I adIP,k(K ): all functors F : K → AIP, decr. dim. by k , s.t. for
all cells σ ∈ K :

colim
τ∈∂σ

F (τ)
∼=−→ ∂(F (σ)), ∂ξF (σ) =

∑
τ∈∂σ

±ξF (τ).

I Prop. adIP is an ad theory.

I Get spectrum MIP = QIP with π∗(QIP) = ΩIP
∗ (pt).

I Ad theory adL; get Quinn spectrum QL ' L•.



I n̄ upper middle perversity.

I On X × X , for strata S ,T ⊂ X , let

p̄(S × T ) =

{
n̄(S) + n̄(T ) + 2, codimS , codimT > 0

n̄(S) + n̄(T ), otherwise

I Diagonal d : X → X × X induces

d∗ : IS 0̄
∗ (X ) −→ IS p̄

∗ (X × X ).

I Have cross product

β : IS n̄
∗ (X )⊗ IS n̄

∗ (X )
'−→ IS p̄

∗ (X × X ).

(D. Cohen, M. Goresky, Lizhen Ji, G. Friedman)



I Functor Sig : AIP → AL:

(X , ξ) 7→ (C ,D, β, ϕ)

I C := IS n̄
∗ (X ;Z),

I D := IS p̄
∗ (X × X ;Z),

I β := cross product,
I ϕ := d∗(ξ).

A morphism (X , ξ)→ (X ′, ξ′) induces maps on intersection
chains.

I Prop. If F ∈ adIP(K ), then Sig ◦F ∈ adL(K ).

I Get morphism Sig : adIP → adL.

I On Quinn spectra Sig : QIP → QL.



I In the stable category, get

Sig : MIP = QIP −→ QL ' L•.

I Induces
ΩIP
∗ (X ) −→ L•∗(X ) .

I Thm.(B., Laures, McClure
The map ΩIP

n (pt)→ L•n(pt) = Ln(Z) is an isomorphism for all
n 6= 1. (ΩIP

1 (pt) = 0, L1(Z) = Z/2.)

I This was conjectured by W. Pardon in 1990.

I For a closed IP-space [X ]IP := [X
id−→ X ] ∈ ΩIP

n (X ).

I Def.
ΩIP
n (X ) −→ L•n(X )
[X ]IP 7→ [X ]L.



Thm. (B., Laures, McClure)
For an n-dimensional compact oriented IP-space X there is a
fundamental class [X ]L ∈ L•n(X ) with the following properties:

1. [X ]L is an oriented PL homeomorphism invariant,

2. The image of [X ]L under assembly is the symmetric signature:

L•n(X ) −→ Ln(Zπ1(X ))
[X ]L 7→ σ∗IP(X )

3. If X is a PL manifold, then [X ]L is the fundamental class
constructed by Ranicki.

4. Rationally, [X ]L agrees with the L-class of X .

Rem. Similar statements hold over Q for Witt spaces.



Applications: Cartesian Products (as warm up).

I The morphism
MWitt −→ L•(Q)

is a morphism of symmetric ring spectra.

I So get multiplicative map

ΩWitt
∗ (X ) −→ (L•(Q))∗(X ).

I Now [idX×Y ] = [idX ]× [idY ] ∈ ΩWitt
∗ (X × Y ), so:

I Thm. (J. Woolf w/ different methods.) For Witt spaces
X ,Y ,

L∗(X × Y ) = L∗(X )× L∗(Y ).



Application: Homotopy Invariance of Higher Signatures

I G = π1(X ), r : X → BG a classifying map for the universal
cover of X .

I r∗ : H∗(X ;Q) −→ H∗(BG ;Q).

I The higher signatures of X are the rational numbers

〈a, r∗L(X )〉, a ∈ H∗(BG ;Q).

I Thm. (B., Laures, McClure) Let X be an n-dimensional
oriented closed IP-space such that the assembly map

α : L•n(BG ) −→ Ln(Z[G ])

is rationally injective. Then the higher signatures of X are
(orient. pres.) stratified homotopy invariants.



Proof.
I f : X ′ → X an orient. pres. stratified homotopy equivalence.
I r : X → BG , r ′ = r ◦ f : X ′ → BG .
I

L•n(X ) //

r∗ ��

Ln(Z[G ])

L•n(BG )
α

66

I αr∗[X ]L = σ∗IP(X ) = σ∗IP(r) = σ∗IP(rf ) = σ∗IP(X ′) = αr ′∗[X
′]L.

I Injectivity assumption ⇒ r∗[X ]L = r ′∗[X
′]L ∈ L•n(BG )⊗Q.

I

L•n(X )⊗Q r∗ //

SX ∼=��

L•n(BG )⊗Q
SBG∼= ��⊕

j Hn−4j(X ;Q)
r∗ //

⊕
j Hn−4j(BG ;Q)

I

r∗L∗(X ) = r∗SX [X ]L = SBG r∗[X ]L

= SBG r
′
∗[X
′]L = r ′∗SX ′ [X

′]L = r ′∗L∗(X
′).



Complex Algebraic Geometry.

I Different Method: Decomposition Theorem (Beilinson,
Bernstein, Gabber, Deligne; M. Saito; de Cataldo, Migliorini)

I If f : Y → X is a proper algebraic morphism of algebraic
varieties, then

Rf∗IC
•
m̄(Y ) ∼=

⊕
i

j∗IC
•
m̄(Zi ;S i )[ni ],

Zi is a nonsingular, irreducible, locally closed subvariety of X ,
S i a locally constant sheaf over Zi , ni ∈ Z.

I Since L∗(Rf∗S
•[− cod]) = f∗L∗(S

•),
L∗(S

•
1 ⊕ S•2) = L∗(S

•
1) + L∗(S

•
2), L∗(j∗S

•[cod]) = j∗L∗(S
•),

f∗L∗(Y ) =
∑
i

j∗L∗(Zi ;S i ).



Twisted L-Classes.

I Problems with decomposition: Determine Zi ,S i in practice,
compute L∗(Zi ;S i ). (But see Schürmann-Woolf on
W (Perv(X ).)

I Phenomenon: (Non)Multiplicativity of signature.
(W. Neumann, A. Némethi,...)

I Thm. (B.) X closed L-space, S/X − Σ Poincaré local system
constant on links. Then

L∗(X ;S) = c̃h[S]K ∩ L∗(X ).

I Proof: Uses Signature Homology Theory (Minatta,Kreck),
results of Sullivan, Siegel, families index theorem (Atiyah, W.
Meyer).

I Assumption on extendability cannot be eliminated because the
formula will fail: examples of 4-dimensional orbifolds with
isolated singularities.

I Special case: Witt spaces — B., Cappell, Shaneson.



Finite degree covers.

I p : X ′ → X cover of finite degree d , X ,X ′ singular L-spaces,
e.g. complex algebraic pseudomanifolds.

I Transfer
p! : H∗(X ;Q)→ H∗(X

′;Q)

such that p∗p! = d · id.

I Thm. (B.)
L∗(X

′) = p!L∗(X ).

I Cor. Multiplicativity of L-classes for finite covers:

p∗L∗(X
′) = d · L∗(X ),

where p∗ : H∗(X
′;Q)→ H∗(X ;Q) is induced by p.



Application: Hodge L-Class and the BSY-Conjecture.

I Let X be a complex algebraic variety.

I Looijenga, Bittner: K0(Var /X ) = {[Y alg−→ X ]}, modulo
scissor relation

[Y → X ] = [Z ↪→ Y → X ] + [Y − Z ↪→ Y → X ]

for Z ⊂ Y a closed algebraic subvariety of Y .

I Brasselet-Schürmann-Yokura: motivic Hirzebruch natural
transformation

Ty∗ : K0(Var /X ) −→ HBM
2∗ (X )⊗Q[y ],

I Hirzebruch class of X is

Ty∗(X ) := Ty∗([idX ]).

I y = 1: T1∗(X ) is called the Hodge L-class of X .



Application: Hodge L-Class and the BSY-Conjecture.

I If X is smooth and pure-dimensional:
Ty∗(X ) = T ∗y (TX ) ∩ [X ]. For y = 1, T ∗1 (TX ) = L∗(X ), so

T1∗(X ) = L∗(X ).

I Examples of singular curves show that generally
T1∗(X ) 6= L∗(X ).

I BSY conjecture: T1∗(X ) = L∗(X ) for compact complex
algebraic varieties that are rational homology manifolds.

I Cappell, Maxim, Schürmann, Shaneson: holds for X = Y /G ,
Y a projective G -manifold, G a finite group of algebraic
automorphisms. Also: certain complex hypersurfaces with
isolated singularities.

I In proj. case, holds in deg 0 by Saito’s intersection
cohomology Hodge index theorem.

I Maxim, Schürmann: for simplicial projective toric varieties.



Example: 3-Folds with Trivial Canonical Class

Thm. (B.) The Brasselet-Schürmann-Yokura conjecture holds for
normal, projective, complex 3-folds X with at worst canonical
singularities, trivial canonical divisor and dimH1(X ;OX ) > 0.
Proof.

I Have Albanese morphism X → Alb(X ).

I KX ≡ 0⇒ Kawamata splitting up to finite degree covering:

F × E //

p

��

E

pE
��

X // Alb(X ),

I Interesting case irreg. q(X ) = 1. Then F is a surface.

I Use above multiplicativity of L∗, and of T1∗ (→ CMSS).

I Use scissor relations and ADE theory on F .

I σ(F ) ∈ {−16,−15, . . . , 2, 3}.


