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ABSTRACT. We consider transfer maps on ordinary homology, bordism of singular spaces
and homology with coefficients in Ranicki’s symmetric L-spectrum, associated to block bun-
dles with closed oriented PL manifold fiber and compact polyhedral base. We prove that if the
base polyhedron is a Witt space, for example a pure-dimensional compact complex algebraic
variety, then the symmetric L-homology orientation of the base, constructed by Laures, Mc-
Clure and the author, transfers to the L-homology orientation of the total space. We deduce
from this that the Cheeger-Goresky-MacPherson L-class of the base transfers to the product
of the L-class of the total space with the cohomological L-class of the stable vertical normal
microbundle.
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1. INTRODUCTION

To a fiber bundle p : X→ B whose structure group is a compact Lie group acting smoothly
on the compact smooth d-dimensional manifold fiber F , and whose base space B is a fi-
nite complex, Becker and Gottlieb associate in [7] a transfer homomorphism p! : Hn(B)→
Hn+d(X). Boardman discusses this transfer and several closely related constructions such as
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the Umkehr map and pullback transfers in [8]. Let L∗(α) denote the cohomological Hirze-
bruch L-class of a vector bundle α , and for a smooth closed oriented manifold M with tangent
bundle T M, let L∗(M) ∈ H∗(M;Q) denote the Poincaré dual of L∗(T M). Suppose that F is
oriented and the structure group of p acts in an orientation preserving manner. If the base B
of the fiber bundle is a smooth closed oriented manifold M, then

(1) p!L∗(M) = L∗(Tp)
−1∩L∗(X),

where Tp is the vertical tangent bundle of p. This is a straightforward consequence of the
bundle isomorphism T X ∼= p∗T M⊕Tp, naturality and the Whitney sum formula for the co-
homological L-class, multiplicative properties of the transfer, and the fact that p! maps the
fundamental class of the base to the fundamental class of the total space.

If the base B is a singular pseudomanifold, then the above argument does not apply. On
the other hand, intersection homology methods still allow for the construction of a homolog-
ical L-class L∗(B) ∈ H∗(B;Q) for many types of compact pseudomanifolds B: In the case
where B allows for a stratification with only even-codimensional strata, for example a pure-
dimensional compact complex algebraic variety, L∗(B) has been defined by Goresky and
MacPherson in [20]. This construction has been extended by Siegel [39] to Witt spaces, i.e.
oriented polyhedral pseudomanifolds that may have strata of odd codimension such that the
middle-dimensional middle-perversity rational intersection homology of the corresponding
links vanishes. In [1], [2], the author has yet more generally defined L∗(B) for topologically
stratified spaces B that allow for Lagrangian structures along strata of odd codimension. A
local definition of L-classes for triangulated pseudomanifolds with piecewise flat metric was
given by Cheeger [14] in terms of η-invariants of links. As for manifolds, the L-class of sin-
gular spaces plays an important role in the topological classification of such spaces, as shown
by Cappell and Weinberger in [12] and by Weinberger in [43].

Let F be a closed oriented d-dimensional PL manifold, B a compact polyhedron and ξ an
oriented PL F-block bundle over B (Casson [13]). Oriented PL F-fiber bundles p : X → B
are a special case. Block bundles, and hence the results of this paper, do not require a locally
trivial projection map p. Then ξ still admits a transfer homomorphism

ξ
! : Hn(B)→ Hn+d(X),

see Ebert and Randal-Williams [17], and Section 5 of this paper. Furthermore, ξ possesses a
stable vertical normal PL microbundle νξ , see Hebestreit, Land, Lück, Randal-Williams [23]
and Section 2 of this paper. In the present paper we develop methods that yield, among other
results, formula (1) for F-block bundles over Witt spaces B (Theorem 8.1):

Theorem. Let B be a closed Witt space (e.g. a pure-dimensional compact complex algebraic
variety) and let F be a closed oriented PL manifold. Let ξ be an oriented PL F-block bundle
over B with total space X and oriented stable vertical normal microbundle νξ over X. Then
X is a Witt space and the associated block bundle transfer ξ ! sends the Cheeger-Goresky-
MacPherson-Siegel L-class of B to the product

(2) ξ
!L∗(B) = L∗(νξ )∩L∗(X).

Note that since the cohomological class L∗(νξ ) is invertible, this formula yields a method
for computing the Cheeger-Goresky-MacPherson L-class of the total space.

Our method of proof rests on the geometric description of PL cobordism provided by
Buoncristiano, Rourke and Sanderson in [11] in terms of mock bundles. We construct a
transfer ξ ! : En(B)→ En+d(X) for any module spectrum E over the Thom spectrum MSPL of
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oriented PL-bundle theory. In addition to the transfer on ordinary homology, this yields trans-
fer homomorphisms on Ranicki’s homology with coefficients in the symmetric L•-spectrum
and on Witt bordism theory, ΩWitt

∗ . We describe the latter transfer geometrically as a pullback
transfer and use this together with mock bundle theory to show that the Witt bordism transfer
sends the fundamental class [B]Witt ∈ ΩWitt

∗ (B) to the fundamental class [X ]Witt ∈ ΩWitt
∗ (X)

(Proposition 6.8). Using the work of Laures, McClure and the author ([6]), which provides a
map of ring spectra MWITT→ L•(Q), where MWITT represents Witt-bordism, as well as a
fundamental class [B]L ∈ L•(Q)∗(B), we then show (Theorem 7.1):

Theorem. Let B be a closed Witt space of dimension n and let F be a closed oriented PL
manifold of dimension d. Let ξ be an oriented PL F-block bundle over B with total space X.
Then the L•-homology block bundle transfer

ξ
! : L•(Q)n(B)−→ L•(Q)n+d(X)

maps the L•(Q)-homology fundamental class of B to the L•(Q)-homology fundamental class
of X,

ξ
![B]L = [X ]L.

The result on Cheeger-Goresky-MacPherson L-classes is then deduced from an explicit
formula for the transfer by tensoring with the rationals. For a PL F-fiber bundle p : X → B
over a PL manifold base B, the formula

p![B]L = [X ]L ∈ L•(Z)n+d(X)

was stated by Lück and Ranicki in [28]. The behavior of the L-class for singular spaces
under transfers associated to finite degree covering projections has already been clarified
in [4], where we showed that for a closed oriented Whitney stratified pseudomanifold B
admitting Lagrangian structures along strata of odd codimension (e.g. B Witt) and p : X → B
an orientation preserving covering map of finite degree, the L-class of B transfers to the L-
class of the cover, i.e.

p!L∗(B) = L∗(X).

For the Witt case, this is from the perspective of the present paper a special case of (2).
An inclusion g : Y ↪→ X of stratified spaces is called normally nonsingular if Y possesses

a tubular neighborhood in X that can be equipped with the structure of a real vector bundle;
see e.g. [19], [5]. An oriented normally nonsingular inclusion g of real codimension c has a
Gysin map

g! : H∗(X ;Q)−→ H∗−c(Y ;Q)

on ordinary homology,
g! : L•(Q)∗(X)−→ L•∗−c(Q)(Y )

on L•(Q)-homology, and
g! : Ω

Witt
∗ (X)−→Ω

Witt
∗−c(Y )

on Witt bordism. In [5], we showed that if g is a normally nonsingular inclusion of closed ori-
ented even-dimensional piecewise-linear Witt pseudomanifolds, for example pure-dimensional
compact complex algebraic varieties, then

(3) g!L∗(X) = L∗(νg)∩L∗(Y ),

g![X ]L = [Y ]L, g![X ]Witt = [Y ]Witt

where νg is the normal bundle of g. These formulae have been applied in [5] to compute the
Cheeger-Goresky-MacPherson L-class of certain singular Schubert varieties. No previous
computations of such classes seem to be available in the literature. Together with the bundle
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transfer formula (2), this makes it possible to compute the transfer of the Cheeger-Goresky-
MacPherson L-class associated to a normally nonsingular map, i.e. a map which can be
factored as a composition of a normally nonsingular inclusion, followed by the projection of
an oriented PL F-fiber bundle ξ with closed PL manifold fiber F , see Section 9.

For complex algebraic, possibly singular, varieties X , Brasselet, Schürmann and Yokura
introduced in [10] Hodge-theoretic intersection Hirzebruch characteristic classes ITy,∗(X),
which agree with L∗(X) for y = 1 and X nonsingular or, more generally, a rational homology
manifold [9]. Using results of Schürmann [38] and Maxim and Schürmann [30], we estab-
lished an algebraic version of (3) for IT1,∗ in a context of appropriately normally nonsingular
regular algebraic embeddings [5, Theorem 6.30]. Similarly, we expect IT1∗ to satisfy a rela-
tion analogous to (2) for smooth algebraic morphisms p : X → B, where νp would now be
inverse to the algebraic relative tangent bundle TX/B. Such a relation together with the re-
sults of the present paper then enable further comparison between the Hodge-theoretic class
IT1∗ and the topological class L∗. The aforementioned normally nonsingular maps form a
topological parallel to the algebraic concept of a local complete intersection morphism, i.e.
a morphism of varieties that can be factored into a closed regular embedding and a smooth
morphism. Hence the results of the present paper impact the behavior of topological charac-
teristic classes under transfers associated to local complete intersection morphisms.

2. STABLE VERTICAL NORMAL BLOCK BUNDLES

Block bundles with manifold fiber over compact polyhedra admit stable vertical normal
closed disc block bundles, see e.g. [17], [23], as well as [11, p. 83] for the more general
mock bundle situation. We will use the vertical normal block bundle later in the description
of the Umkehr map and thus recall the construction in the form we need it for our purposes.

Let F be a closed oriented PL manifold of dimension d and let K be a finite ball complex
with associated polyhedron B = |K|. (The polyhedron B is not required to be a manifold.)
Let ξ be an oriented PL F-block bundle over K (Casson [13]) with total space X = E(ξ ). Let
b denote the dimension of B so that dimX = d + b. The block of ξ over a cell σ ∈ K will
be denoted by ξ (σ). For every σ , there is a block-preserving PL homeomorphism ξ (σ) ∼=
F×σ . Thus the blocks of ξ are compact PL manifolds with boundary

ξ (∂σ) :=
⋃

τ∈∂σ

ξ (τ).

Over the interiors
◦
σ of cells, we set ξ (

◦
σ) := ξ (σ)−ξ (∂σ).

In order to construct a stable vertical normal PL block bundle (and hence a stable PL
microbundle, since BSPL' BS̃PL) for ξ , choose a block preserving PL embedding

θ : X ↪→ Rs×B

for sufficiently large s > 2d +b+1, i.e. a PL embedding such that

θ(ξ (
◦
σ))⊂ Rs×

◦
σ

and
θ | : (ξ (σ),ξ (∂σ))−→ (Rs×σ ,Rs×∂σ)

is a locally flat PL embedding of manifolds for every simplex σ ⊂K. One way to obtain such
an embedding is to choose first a PL embedding e : X ↪→ Rs. By Casson [13, Lemma 6, p.
43], ξ can be equipped with a choice of block fibration p : X→ B. This is a PL map such that
ξ (σ) = p−1(σ) for every cell σ ∈ K. Then θ := (e, p) : X ↪→ Rs×B is a block preserving
PL embedding. (The local flatness is ensured by requiring the codimension to be at least 3.)
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Another method to construct a block preserving embedding θ is by induction over the cells
σ ∈ K, starting with the 0-cells σ0 and embeddings θ : ξ (σ0) ∼= F ⊂ Rs×σ0 ∼= Rs. These
are then extended to proper embeddings of manifolds-with-boundary θ : ξ (σ1) ⊂ Rs×σ1

for every 1-cell σ1 in K, etc. As in [36], an embedding j : M→ Q of manifolds is proper if
j−1(∂Q) = ∂M.

Recall that one says that a PL embedding j : A→ P of polyhedra possesses a normal PL
closed disc block bundle if there exists a regular neighborhood N of j(A) in P such that N
is the total space of a PL closed disc block bundle over j(A) whose zero section embedding
agrees with the inclusion j(A)⊂ N.

Proposition 2.1. Let ξ be an F-block bundle over a finite cell complex K with polyhedron
B = |K|, where F is a closed PL manifold. A block preserving PL embedding θ : X →Rs×B
of the total space X of ξ possesses a normal PL closed (s− d)-disc block bundle νθ over
θ(X). If ξ is oriented, then νθ is canonically oriented.

Proof. We begin by constructing a particular regular neighborhood N of θ(X) in Rs×B such
that N is compatible with the blocks θ(ξ (σ)) and Rs×σ for all cells σ ∈ K. There exists a
locally finite simplicial complex L with subcomplexes T,Lσ ⊂ L (σ ∈ K) such that the fol-
lowing properties hold:

(i) |L|= Rs×B,

(ii) θ(X) = |T |,

(iii) for every cell σ in K, Rs×σ = |Lσ |, and

(iv) each simplex of L meets T in a single face or not at all.

It follows from (ii) and θ(ξ (σ)) ⊂ Rs × σ that the compact manifold Mσ := θ(ξ (σ)) is
triangulated by Lσ ∩T . The boundary of Mσ is triangulated by the subcomplex L∂σ ∩T of L,
where L∂σ is the subcomplex of L given by

L∂σ =
⋃

τ∈∂σ

Lτ .

Furthermore, (iv) implies that each simplex of Lσ meets Lσ ∩ T in a single face or not at
all. Let f : L→ [0,1] = ∆1 be the unique simplicial map such that f−1(0) = |T |. Then the
preimage

N := f−1[0,1/2]⊂ Rs×B

is a regular neighborhood of θ(X) in Rs × B. The intersection Qσ := N ∩ (Rs × σ) is a
regular neighborhood of the manifold Mσ in the manifold Rs×σ . This regular neighborhood
meets the boundary Rs× ∂σ transversely, i.e. N ∩ (Rs× ∂σ) is a regular neighborhood of
θ(ξ (σ))∩ (Rs× ∂σ) = θ(ξ (∂σ)) in Rs× ∂σ . The boundary of the compact manifold Qσ

is described by

(4) ∂Qσ = ( f−1(1/2)∩ (Rs×σ))∪
⋃

τ∈∂σ

Qτ

and Mσ is a proper submanifold of Qσ .
We will construct a PL closed disc block bundle νθ over θ(X) by induction on the cells σ

of K. The total space E(νθ ) of νθ is given by E(νθ ) := N. Given a nonnegative integer n, we
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set
Ln :=

⋃
σ

Lσ ,

where the union is taken over all cells σ ∈ K of dimension at most n. The corresponding
polyhedron is |Ln|= Rs×Bn, where Bn denotes the n-skeleton of B. Set

Qn :=
⋃
σ

Qσ ⊂ Rs×Bn,

where the union is taken over all cells σ ∈ K of dimension at most n, so that

Qn = N∩ (Rs×Bn).

For n = b = dimB, Bn = B and thus Qb = N.
Let σ be a 0-cell of K. By [36, Thm. 4.3, p. 16], there is a disc block bundle νσ over

the complex Lσ ∩ T with total space E(νσ ) = Qσ . Then the collection of blocks νσ (β ),
β ∈ Lσ ∩T, of the bundles νσ endow Q0 with the structure of a disc block bundle ν0 over
L0∩T . Assume inductively that a block bundle νn−1 over Ln−1∩T with total space

E(νn−1) = Qn−1

has been constructed such that for all cells σ ∈ K with dimσ < n, the restriction νσ of νn−1
to the subcomplex Lσ ∩T ⊂ Ln−1 ∩T has total space E(νσ ) = Qσ . Let σ ∈ K be an n-cell.
The pair (Mσ ,∂Mσ ) is triangulated by (Lσ ∩T,L∂σ ∩T ). Using the description (4) of ∂Qσ ,
we have

E(νn−1|L∂σ∩T ) =
⋃

τ∈∂σ

E(νn−1|Lτ∩T ) =
⋃
τ

Qτ ⊂ ∂Qσ .

Since Qσ is a regular neighborhood of the compact manifold Mσ , there exists, again by [36,
Thm. 4.3], a disc block bundle νσ over Lσ ∩T with total space E(νσ ) = Qσ such that

νσ |L∂σ∩T = νn−1|L∂σ∩T .

Then the collection of blocks νσ (β ), β ∈ Lσ ∩T, dimσ ≤ n, of the bundles νσ endow Qn =⋃
dimσ≤n Qσ with the structure of a disc block bundle νn over Ln∩T . By construction,

E(νn|Lσ∩T ) = E(νσ ) = Qσ

for all σ ∈ K, dimσ ≤ n. This concludes the inductive step. For n = b, νθ := νb is a PL
closed disc block bundle over Lb∩T = T with total space E(ν) = N.

If P is an oriented codimension 0 submanifold of the boundary ∂M of an oriented manifold
M, then the incidence number ε(P,M) is defined to be +1 if the orientation on P induced by
the orientation of M agrees with the given orientation of P, and −1 otherwise. Suppose that
ξ is oriented as an F-block bundle. Then K is an oriented cell complex and each block ξ (σ)
is oriented (as a manifold) such that ε(ξ (τ),ξ (σ)) = ε(τ,σ) whenever τ is a codimension 1
face of a cell σ ∈K. Requiring θ to be orientation preserving, we obtain orientations of all Mσ

such that ε(Mτ ,Mσ ) = ε(τ,σ). Give every Rs×σ the product orientation determined by the
orientation of the cell σ and the standard orientation of Rs. Then the inclusion embeddings
of oriented manifolds Mσ ⊂ Rs×σ induce unique orientations of the normal bundles νσ .
The above incidence number relation implies that these orientations fit together to give an
orientation of νθ . �

Using the PL homeomorphism θ : X → θ(X), we may think of νθ as a bundle over X .

Proposition 2.2. For s sufficiently large (compared to the dimension of X), the equivalence
class of the disc block bundle νθ as constructed in Proposition 2.1 is independent of the
choice of blockwise embedding θ : X ↪→Rs×B and thus only depends on the F-block bundle
ξ .
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Proof. Let θ ,θ ′ : X ↪→ Rs×B be ξ -block preserving PL embeddings, giving rise to vertical
normal disc block bundles νθ and νθ ′ . The idea is to construct a (ξ × I)-block preserving
concordance θ : X × I ↪→ Rs×B× I between θ and θ ′ and then apply Proposition 2.1 to
endow inductively a suitable regular neighborhood of the image of the concordance with the
structure of a disc block bundle, extending the disc block bundles νθ and νθ ′ . This implies
that νθ and νθ ′ are equivalent.

We begin by observing that the equivalence class of the block bundle νθ does not change
under passage to a simplicial subdivision L0 of the complex L used in the proof of Proposition
2.1. This is a consequence of Cohen’s uniqueness theorem for regular neighborhoods in
general polyhedra, [15, Thm. (3.1), p. 196] and Rourke-Sanderson’s uniqueness theorem for
disc block bundle structures, [36, Thm. 4.4, p. 16].

The cylinder B = B× I is the polyhedron of the product cell complex K = K× I, where
I carries the minimal cell structure. Let X = X × I. The product block bundle ξ := ξ × I
is an F-block bundle over the cell complex K with total space E(ξ × I) = X and blocks
(ξ × I)(σ × τ) = ξ (σ)× τ , where σ is a cell in K and τ a cell of I. For sufficiently large s,
by induction over the finitely many cells σ in K, there exists a PL embedding

θ : X −→ Rs×B = (Rs×B)× I

such that θ 0 = θ ×0, θ 1 = θ ′×1, θ(ξ (
◦
σ))⊂ Rs×

◦
σ and

θ | : (ξ (σ),ξ (∂σ))−→ (Rs×σ ,Rs×∂σ)

is a locally flat PL embedding of manifolds for every cell σ ⊂K. Thus θ is a block preserving
concordance between θ and θ ′ satisfying

θ(X× I)∩ (Rs×B×0) = θ(X)×0, θ(X× I)∩ (Rs×B×1) = θ
′(X)×1.

There exists a locally finite simplicial complex L with subcomplexes T ,Lσ ⊂ L (σ ∈ K) such
that the following properties hold:

(i) |L|= Rs×B,

(ii) the complexes L×0 and L′×1 used in constructing νθ and νθ ′ are both subcomplexes of
L such that

|L|= Rs×B×0, |L′|= Rs×B×1,

(iii) θ(X) = |T |,

(iv) for every cell σ in K,
Rs×σ = |Lσ |, and

(v) each simplex of L meets T in a single face or not at all.

(To achieve the fullness property (v), it may be necessary to subdivide L×0 and L′×1, but
we have observed earlier that this does not change the equivalence class of νθ ,νθ ′ . Thus we
may call the subdivisions L×0 and L′×1 again.) Let f : L→ [0,1] be the unique simplicial
map such that f−1(0) = |T |= θ(X). The disc block bundle νθ over T has total space

E(νθ ) = N = f−1[0,1/2]⊂ Rs×B,

a regular neighborhood of θ(X) in Rs×B. Let f ′ : L′→ [0,1] be the unique simplicial map
such that f ′−1(0) = |T ′|= θ ′(X). The disc block bundle νθ ′ over T ′ has total space

E(νθ ′) = N′ = f ′−1[0,1/2]⊂ Rs×B,
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a regular neighborhood of θ ′(X) in Rs×B. Let f : L→ [0,1] be the unique simplicial map
such that f−1

(0)= |T |= θ(X×I). By Proposition 2.1 and its proof, the regular neighborhood

N := f−1
[0,1/2]⊂ Rs×B× I

of θ(X× I) is the total space E(ν
θ
) = N of a PL disc block bundle ν

θ
over T such that

ν
θ
|L×0 = νθ , ν

θ
|L′×1 = νθ ′ .

Thus, pulling back ν
θ

to X × I along θ , we obtain a PL disc block bundle over X × I whose
restriction to X ×0 is νθ and whose restriction to X ×1 is νθ ′ . This implies that νθ and νθ ′

are equivalent as disc block bundles. �

The oriented normal block bundle νθ provided by Theorem 2.1 is classified by a map

X −→ BS̃PLs−d .

If s is sufficiently large, then by Proposition 2.2, the homotopy class of this map does not
depend on the choice of blockwise embedding θ . We denote the resulting disc block bundle
equivalence class by νξ and refer to it as the stable vertical normal block bundle of ξ . The
restriction s > b+2d+1 ensures that the block bundle νξ is in the stable range, there exists a
unique (up to equivalence) oriented PL microbundle µ over X whose underlying block bundle
is νξ , and this microbundle is also in the stable range: Since dimX = d+b < (s−d)−1, the
natural map

[X ,BSPLs−d ]∼= [X ,BS̃PLs−d ]

is a bijection. We will refer to µ as the stable vertical normal microbundle of ξ .

Example 2.3. For the trivial F-block bundle ξ with total space X = F×B, we may choose a
PL embedding θF : F ↪→ Rs, s large, and take θ : X ↪→ Rs×B to be θ = θF × idB : F×B ↪→
Rs×B, which is ξ -block preserving. Let νF be the (stable) normal disc block bundle of θF
and µF its unique lift to a PL microbundle. Then the stable vertical normal block bundle νξ is
represented by νθ = pr∗1 νF and the stable vertical normal microbundle is µ = pr∗1 µF , where
pr1 : F×B→ F is the factor projection.

Example 2.4. If F is a point, then X = B and we may take θ : X = B ↪→ Rs × B to be
θ(x) = (0,x). The stable vertical normal block bundle νξ and the stable vertical normal
microbundle µ are both trivial.

3. THE PL UMKEHR MAP

Given an oriented F-block bundle ξ with nonsingular fiber F over a compact polyhedron
and a module spectrum E over the Thom spectrum MSPL, we will construct a transfer homo-
morphism ξ ! : En(B)−→ En+d(X). This will be done in Section 5 by composing suspension,
the PL Umkehr map T (ξ ) and the Thom homomorphism Φ. The Umkehr map will be con-
structed in the present section, and the Thom homomorphism in the next.

As in the previous section, let F be a closed oriented PL manifold of dimension d and
let K be a finite ball complex with associated polyhedron B = |K|. Let ξ be an oriented PL
F-block bundle over K with total space X = E(ξ ). Fix a block preserving PL embedding
θ : X ↪→ Rs×B for sufficiently large s and let us briefly write ν for the vertical normal disc
block bundle νθ given by Proposition 2.1. As discussed in the previous section, there is a
unique PL microbundle µ whose underlying block bundle is ν . The total space E(ν) = N is
a ξ -block preserving regular neighborhood of θ(X) in B×Rs. Let ν̇ denote the sphere block
bundle of ν and write ∂N for the total space of ν̇ . Let

Th(ν) := N∪∂N cone(∂N)
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be the Thom space of ν . The cone point in Th(ν) will be denoted by ∞. Thom spaces of
PL microbundles have been constructed by Williamson in [42]. By his construction, we may
take Th(µ) = Th(ν), since the underlying block bundle of µ is ν and the homotopy type of
the Thom space depends only on the underlying block bundle (in fact only on the underlying
spherical fibration).

We shall construct a PL map

T (ξ ) : SsB+ = Th(Rs×B)−→ Th(ν),

called the Umkehr map following the terminology of [7]. Points in N ⊂ SsB+ are to be
mapped by the identity to points in N ⊂ Th(ν). By M. Cohen’s [15, Theorem 5.3], ∂N is
collared in the closure of (Rs×B)−N. Thus there exists a polyhedral neighborhood V of
∂N in the closure of (Rs×B)−N and a PL homeomorphism h : (∂N)× [0,1]∼=V such that
h(x,0) = x, x ∈ ∂N. Now let T (ξ ) map those points of V that lie in h((∂N)×{1}) to ∞. Map
all points in SsB+− (N∪V ) to ∞. Finally, map the points in V , using the collar coordinate in
[0,1], correspondingly along cone lines in cone(∂N)⊂Th(ν). This concludes the description
of the Umkehr map T (ξ ) : SsB+→ Th(ν). Since it sends ∞ to ∞, this is a pointed map.

Example 3.1. We continue Example 2.3 on the trivial F-block bundle ξ . Let T (F) : Ss →
Th(νF) = Th(µF) be the standard Pontrjagin-Thom collapse over a point, associated to the
embedding θF : F ↪→ Rs. The Umkehr map for ξ is given by

T (ξ ) : Ss∧B+ T (F)∧idB+−→ Th(νF)∧B+ = Th(νθ ).

If E is any spectrum, then on reduced E-homology the Umkehr map induces a homomor-
phism

T (ξ )∗ : Ẽn+s(SsB+)−→ Ẽn+s(Th(ν)).
The suspension isomorphism provides an identification

σ : En(B) = Ẽn(B+)∼= Ẽn+s(SsB+).

The composition yields a map

T (ξ )∗ ◦σ : En(B)−→ Ẽn+s(Th(ν)) = Ẽn+s(Th(µ)).

Example 3.2. We continue Example 3.1 on the trivial F-block bundle ξ . Let E be a com-
mutative ring spectrum and let [Ss]E ∈ Ẽs(Ss) denote the image of the unit 1 ∈ π0(E) under
σ : Ẽ0(S0)

∼=−→ Ẽs(Ss). Then the above map T (ξ )∗ ◦σ has the description

T (ξ )∗σ(a) = (T (F)∧ idB+)∗σ(a) = (T (F)∧ idB+)∗([Ss]E ∧a)

= (T (F)∗[Ss]E)∧a,

where a ∈ En(B). Setting [Th µF ]E = T (F)∗[Ss]E , we thus arrive at

T (ξ )∗σ(a) = [Th µF ]E ∧a.

4. THE THOM HOMOMORPHISM, MOCK BUNDLES AND WITT SPACES

We recall the Thom homomorphism Φ associated to an oriented PL microbundle µ . This
homomorphism will later be used in the definition of the F-block bundle transfer ξ ! with µ

the stable vertical normal PL microbundle of ξ . The Thom map is given by cap product with
the Thom class of µ . Therefore, we will recall the homotopy-theoretic description uSPL(µ)
of this class, as well as its geometric description uBRS(µPLB) in terms of mock bundles as
given by Buoncristiano, Rourke and Sanderson in [11], where µPLB denotes the underlying
PL closed disc block bundle of µ . In particular, we take the opportunity to provide a brief
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review of mock bundle theory. Mock bundles over Witt spaces will play an important role
later on. One key fact in the subsequent development is that the total space of a mock bundle
over a Witt space is again a Witt space.

Let MSPL be the Thom spectrum associated to PL microbundles (or PL (Rm,0)-bundles,
Kuiper-Lashof [26]). This is a ring spectrum whose homotopy groups can be identified with
the bordism groups of oriented PL manifolds via the Pontrjagin-Thom isomorphism. Let
γSPL

m denote the universal oriented rank m PL-bundle over the classifying space BSPLm. An
oriented PL microbundle µ of rank m over a compact polyhedron X is classified by a map
X→BSPLm, which is covered by a bundle map µ→ γSPL

m . The induced map on Thom spaces
yields a homotopy class

uSPL(µ) ∈ [Σ∞ Th(µ),Σm MSPL] = M̃SPL
m
(Th(µ)).

This class uSPL(µ) is the Thom class of µ in oriented PL cobordism. It is in fact an MSPL-
orientation of µ in Dold’s sense. Indeed, every HZ-orientable PL-bundle is MSPL-orientable
(Hsiang-Wall [24, Lemma 5, p. 357], Switzer [40, p. 308]).

Buoncristiano, Rourke and Sanderson give a geometric description of MSPL-cobordism
in [11] and use it to obtain in particular a geometric description of the Thom class uSPL(µ).
The geometric cocycles are given by oriented mock bundles, whose definition we recall here.

Definition 4.1. Let K be a finite ball complex and q an integer (possibly negative). A q-
mock bundle ηq/K with base K and total space E(η) consists of a PL map p : E(η)→ |K|
such that, for each σ ∈ K, p−1(σ) is a compact PL manifold of dimension q+dim(σ), with
boundary p−1(∂σ). The preimage η(σ) := p−1(σ) is called the block of η over σ .

The empty set is regarded as a manifold of any dimension; thus η(σ) may be empty for
some cells σ ∈ K. Note that if σ0 is a 0-dimensional cell of K, then ∂σ0 = ∅ and thus
p−1(∂σ) =∅. Hence the blocks over 0-dimensional cells are closed manifolds. Mock bun-
dles over the same complex are isomorphic if there exists a block-preserving PL homeomor-
phism of total spaces. (The homeomorphism is not required to preserve the projections.) For
our purposes, we need oriented mock bundles, which are defined using incidence numbers
of cells and blocks: Suppose that (Mn,∂M) is an oriented PL manifold and (Nn−1,∂N) is an
oriented PL manifold with N ⊂ ∂M. Then an incidence number ε(N,M) =±1 is defined by
comparing the orientation of N with that induced on N from M; ε(N,M) = +1 if these orien-
tations agree and −1 if they disagree. An oriented cell complex K is a cell complex in which
each cell is oriented. We then have the incidence number ε(τ,σ) defined for codimension 1
faces τ < σ ∈ K.

Definition 4.2. An oriented mock bundle is a mock bundle η/K over an oriented (finite) ball
complex K in which every block is oriented (i.e. is an oriented PL manifold) such that for
each codimension 1 face τ of σ ∈ K, ε(η(τ),η(σ)) = ε(τ,σ).

Using intersection homology, Witt spaces have been introduced by P. Siegel in [39] as a
geometric cycle reservoir representing KO-homology at odd primes. Sources on intersection
homology include [20], [21], [25], [18], [3].

Definition 4.3. A Witt space is an oriented PL pseudomanifold such that the links L2k of odd
codimensional PL intrinsic strata have vanishing middle-perversity degree k rational inter-
section homology, IHm̄

k (L;Q) = 0.

For example, pure-dimensional complex algebraic varieties are Witt spaces, since they
are oriented pseudomanifolds and possess a Whitney stratification whose strata all have even



BUNDLE TRANSFER OF L-ORIENTATIONS FOR SINGULAR SPACES 11

codimension. The vanishing condition on the intersection homology of links L2k is equiv-
alent to requiring the canonical morphism from lower middle to upper middle perversity
intersection chain sheaves to be an isomorphism in the derived category of sheaf complexes.
Consequently, these middle perversity intersection chain sheaves are Verdier self-dual, and
this induces global Poincaré duality for the middle perversity intersection homology groups
of a Witt space. In particular, Witt spaces X have a well-defined bordism invariant signature
and L-classes L∗(X)∈H∗(X ;Q) which agree with the Poincaré duals of Hirzebruch’s tangen-
tial L-classes when X is smooth. The notion of Witt spaces with boundary can be introduced
as pairs (X ,∂X), where X is a PL space and ∂X a stratum preservingly collared PL subspace
of X such that X−∂X and ∂X are both compatibly oriented Witt spaces. The following result
is [5, Lemma 3.11], which is itself an analog of [11, Lemma 1.2, p. 21]).

Lemma 4.4. Let (K,L) be a finite ball complex pair such that the polyhedron |K| is an n-
dimensional compact Witt space with (possibly empty) boundary ∂ |K|= |L|. Orient K in such
a way that the sum of oriented n-balls is a cycle rel boundary. (This is possible since |K|,
being a Witt space, is an oriented pseudomanifold with boundary.) Let η/K be an oriented
q-mock bundle over K with projection p. Then the total space E(η) is an (n+q)-dimensional
compact Witt space with boundary p−1(∂ |K|).

Let (K,L) be any finite ball complex pair. Oriented mock bundles η0 and η1 over K, both
empty over L, are cobordant, if there is an oriented mock bundle η over K× I, empty over
L× I, such that η |K×0 ∼= η0, η |K×1 ∼= η1. This is an equivalence relation and we set

Ω
q
SPL(K,L) := {[ηq/K] : η |L =∅},

where [ηq/K] denotes the cobordism class of the oriented q-mock bundle ηq/K over K. Then
by the duality theorem [11, Thm. II.3.3] of Buoncristiano, Rourke and Sanderson, Spanier-
Whitehead duality, together with the Pontrjagin-Thom isomorphism, provides an isomor-
phism

(5) β : Ω
−q
SPL(K,L)∼= MSPLq(|K|, |L|)

for compact |K|, |L|, which is natural with respect to inclusions (K′,L′)⊂ (K,L); see also [11,
Remark 3, top of p. 32]. This is the geometric description of oriented PL cobordism that we
will use throughout the paper. The functor Ω∗SPL(−) gives rise to a functor on the category of
compact polyhedral pairs and homotopy classes of continuous maps, which will be denoted
by the same symbol ([11, Thm. II.1.1]).

Let α : |K| → BS̃PLm be an oriented PL closed disc block bundle of rank m over a finite
complex K. Let N denote the total space of α and ∂N the total space of the sphere block
bundle of α . Then α has a Thom class (cf. [11, p. 26])

(6) uBRS(α) ∈Ω
−m
SPL(N,∂N),

which we shall call the BRS-Thom class of α , given as follows: Let i : K → N be the zero
section of α . Endow N with the ball complex structure given by taking the blocks α(σ) of
the bundle α as balls, together with the balls of a suitable ball complex structure on the total
space ∂N of the sphere block bundle of α . Then i : K → N is the projection of an oriented
(−m)-mock bundle η , and thus determines an element

uBRS(α) = [η ] ∈Ω
−m
SPL(N,∂N).

The block of η over a ball α(σ) of N is σ ∈ K. The following lemma is Lemma 3.14 in [5].
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Lemma 4.5. Let α : |K| → BSPLm be an oriented PL (Rm,0)-bundle, |K| compact. Under
the isomorphism β in (5), the BRS-Thom class uBRS(αPLB) of the underlying oriented PL
block bundle αPLB of α gets mapped to the Thom class uSPL(α) .

Let E be an MSPL-module spectrum. Then there is a cap product

∩ : MSPLp(X ,A)⊗Eq(X ,A)−→ Eq−p(X).

The reduced cobordism group of the Thom space can be expressed as a relative group,

M̃SPL
p
(Th(µ))∼= MSPLp(N,∂N),

where N, as in Section 3, is the total space of the underlying oriented PL closed disc block
bundle of µ . Let

ρ∗ : E∗(N)
∼=−→ E∗(X)

be the inverse of the isomorphism induced on E-homology by the inclusion X ↪→ N of the
zero section. Using the cap product

∩ : MSPLm(N,∂N)⊗Eq(N,∂N)−→ Eq−m(N)
ρ∗∼= Eq−m(X),

we obtain the Thom homomorphism

Φ := ρ∗(uSPL(µ)∩−) : Ẽq(Th(µ))∼= Eq(N,∂N)−→ Eq−m(X).

Under suitable conditions this map is an isomorphism, for example if X is connected, E is a
ring spectrum and uSPL(µ) determines an E-orientation of µ ([40, p. 309, Thm. 14.6]; recall
that our X is a finite complex).

5. BLOCK BUNDLE TRANSFER

Let E be a module spectrum over the Thom spectrum MSPL of oriented PL-bundle theory.
As in Section 2, F denotes a closed oriented PL manifold of dimension d and K a finite ball
complex with associated polyhedron B= |K| of dimension b. Let ξ be an oriented PL F-block
bundle over K with total space X = E(ξ ). Following Boardman [8] and Becker-Gottlieb [7],
we shall construct a transfer homomorphism

(7) ξ
! : En(B)−→ En+d(X).

Let µ denote the stable oriented vertical normal PL microbundle of ξ whose underlying disc
block bundle is νθ , the oriented vertical normal disc block bundle of the F-block bundle ξ ,
associated to a block preserving embedding θ for ξ . The rank of µ and νθ is m = s− d,
d = dimF, s large. The block bundle transfer is defined to be the composition

En(B)
T (ξ )∗σ−→ Ẽn+s(Th(µ)) Φ−→ En+d(X),

where σ is the suspension isomorphism, T (ξ ) is the Umkehr map of Section 3, and Φ is the
Thom homomorphism of µ as described in Section 4. In the present paper, we are mainly
interested in the case where E is ordinary homology, Ranicki’s symmetric L•-spectrum, or
Witt bordism. Let us discuss each of these cases in turn.
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5.1. Block Transfer on Ordinary Homology. Let HZ denote the Eilenberg-MacLane spec-
trum of the ring Z. The stable universal Thom class in H0(MSPL) yields a map α : MSPL→
HZ, and this map is a ring map. Thus α makes the ring spectrum HZ into an MSPL-module
by taking the action map to be

MSPL∧HZ α∧id−→ HZ∧HZ µH−→ HZ,

where µH is the product on HZ. The induced map

α∗ : Ω
SPL
n (Z)∼= MSPLn(Z)−→ Hn(Z;Z)

is the Steenrod-Thom homomorphism that sends the bordism class of a singular PL manifold
[ f : Mn→ Z] ∈ΩSPL

n (Z) to f∗[M] ∈ Hn(Z;Z). We recall the following standard fact.

Proposition 5.1. (Rudyak [37, Prop. V.1.6].) Let τ : D→ E be a ring morphism of ring
spectra. Let γ be an (Sn,∗)-fibration equipped with a D-orientation uD ∈ D̃n(Thγ). Then the
image τ(uD) ∈ Ẽn(Thγ) is an E-orientation of γ .

We apply this Proposition to the ring morphism α : MSPL→ HZ and to our microbundle
µ , which we had already equipped with the MSPL-orientation uSPL(µ). By the Proposition,
the homomorphism

α : M̃SPL
s−d

(Th(µ))−→ H̃s−d(Th(µ);Z)
sends uSPL(µ) to an HZ-orientation

(8) uZ(µ) := α(uSPL(µ)) ∈ H̃s−d(Th(µ);Z).

(This is the Thom class of µ in ordinary cohomology.) Another standard fact from stable
homotopy theory is:

Lemma 5.2. Let D,E be ring spectra and τ : D→ E a ring morphism. We consider E as a
D-module via the action map

D∧E τ∧id−→ E ∧E
µE−→ E.

This module structure yields a cap product ∩D,E : D∗(X)⊗E∗(X)→ E∗(X). The ring struc-
ture on E yields a cap product ∩E : E∗(X)⊗E∗(X)→ E∗(X). Then the diagram

D∗(X)⊗E∗(X)
∩D,E //

τ⊗id
��

E∗(X)

E∗(X)⊗E∗(X) ∩E
// E∗(X)

commutes.

By this lemma and (8), the transfer on ordinary homology is given by

ξ
!(−) = ρ∗(uSPL(µ)∩MSPL,HZ T (ξ )∗σ(−))

= ρ∗(α(uSPL(µ))∩HZ T (ξ )∗σ(−))
= ρ∗(uZ(µ)∩HZ T (ξ )∗σ(−)).

We summarize: The block bundle transfer (7) on ordinary homology E = HZ is given by

ξ
! = ρ∗(uZ(µ)∩T (ξ )∗σ(−)) : Hn(B;Z)−→ Hn+d(X ;Z).
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5.2. Block Transfer on Witt Bordism. Let ΩWitt
∗ (−) denote Witt bordism theory as de-

fined by Siegel in [39]. Elements of ΩWitt
n (Z) are Witt bordism classes of continuous maps

f : W n → Z defined on an n-dimensional closed Witt space W . Let MWITT be the Quinn
spectrum associated to the ad-theory of Witt spaces, representing Witt bordism via a natural
equivalence

(9) MWITT∗(−)∼= Ω
Witt
∗ (−),

see Banagl-Laures-McClure [6]. A weakly equivalent spectrum had been considered first
by Curran in [16]. He verified that this spectrum is an MSO-module ([16, Thm. 3.6, p.
117]). The product of two Witt spaces is again a Witt space. This implies essentially that
MWITT is a ring spectrum; for more details see [6]. (There, we focused on the spectrum MIP
representing bordism of integral intersection homology Poincaré spaces studied by Goresky
and Siegel in [22] and by Pardon in [31], but everything works in an analogous, indeed
simpler, manner for Q-Witt spaces.) Every oriented PL manifold is a Witt space. Hence there
is a map

φW : MSPL−→MWITT,
which, using the methods of ad-theories and Quinn spectra employed in [6], can be con-
structed to be multiplicative. Using this ring map, the spectrum MWITT becomes an MSPL-
module with action map

MSPL∧MWITT−→MWITT
given by the composition

MSPL∧MWITT
φW∧id−→ MWITT∧MWITT−→MWITT .

(The product of a Witt space and an oriented PL manifold is again a Witt space.) In particular,
there is a cap product

(10) ∩ : MSPL j(Z,Y )⊗MWITTn(Z,Y )−→MWITTn− j(Z)

and a transfer
ξ

! : MWITTn(B)−→MWITTn+d(X),

where ξ is our F-block bundle over B, d = dimF .
Let C be any finite ball complex with subcomplex D⊂C and suppose that Z = |C|,Y = |D|.

By Buoncristiano-Rourke-Sanderson [11], a geometric description of the above cap product
(10) is given as follows: One uses the canonical identifications to think of the cap product as
a product

∩ : Ω
− j
SPL(C,D)⊗Ω

Witt
n (|C|, |D|)−→Ω

Witt
n− j(|C|).

Let us first discuss the absolute case D = ∅, and then return to the relative one. If C is
simplicial, f : W → C is a simplicial map from an n-dimensional triangulated closed Witt
space W to C, and ηq is a q-mock bundle over C (with q =− j), then one has (cf. [11, p. 29])

[ηq/C]∩ [ f : W → |C|] = [g : E( f ∗η)→ |C|] ∈Ω
Witt
n− j(|C|),

where g is the diagonal arrow in the cartesian diagram

E( f ∗η) //

��

g

$$

E(η)

p

��
W

f // C.

Here, one uses the fact ([11, II.2, p. 23f]) that mock bundles over simplicial complexes
admit pullbacks under simplicial maps. By Lemma 4.4, E( f ∗η) is a closed Witt space.
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For the relative case, we observe that if (W,∂W ) is a compact Witt space with boundary,
f : (W,∂W )→ (|C|, |D|) maps the boundary into |D|, and η |D = ∅, then f ∗η |∂W = ∅ and
so ∂E( f ∗η) =∅, i.e. the Witt space E( f ∗η) is closed. Hence it defines an absolute bordism
class.

In Section 6, we provide a more direct geometric description of the Witt bordism transfer
ξ ! : MWITTn(B)→MWITTn+d(X) as a pullback transfer ξ !

PB : ΩWitt
n (B)→ΩWitt

n+d(X).

5.3. Block Transfer on L•-Homology. We write L• = L•(Z) = L•〈0〉(Z) for Ranicki’s
connected symmetric algebraic L-spectrum with homotopy groups πn(L•) = Ln(Z), the sym-
metric L-groups of the ring of integers; see e.g. [32]. Technically, we shall use the con-
struction of L• as the Quinn spectrum of a suitable ad-theory, see Banagl-Laures-McClure
[6]. That construction is weakly equivalent to Ranicki’s. Localization Z→Q induces a map
εQ : L•(Z)→ L•(Q), and πn(L•(Q)) = Ln(Q) with

Ln(Q)∼=

{
Z⊕ (Z/2)

∞⊕ (Z/4)
∞, n≡ 0(4)

0, n 6≡ 0(4).

The spectra L•(Z) and L•(Q) are ring spectra. Let MSTOP be the Thom spectrum associated
to oriented topological (Rn,0)-bundles. There is a canonical forget map

φF : MSPL−→MSTOP .

Ranicki constructed a map
σ
∗ : MSTOP−→ L•,

see [34, p. 290], and in [6], we constructed a map

τ : MWITT−→ L•(Q).

(Actually, we even constructed an integral map MIP→ L•, where MIP represents bordism of
integral intersection homology Poincaré spaces, but everything works in the same manner for
Witt theory, if one uses the L•-spectrum with rational coefficients.) This map is multiplica-
tive, i.e. a ring map, as shown in [6, Section 12], and the diagram

(11) MSTOP σ∗ // L•(Z)

εQ

��

MSPL

φF

99

φW %%
MWITT

τ
// L•(Q)

homotopy commutes, since it comes from a commutative diagram of ad-theories under ap-
plying the symmetric spectrum functor M of Laures and McClure [27]. Using the ring map
τφW : MSPL→ L•(Q), the spectrum L•(Q) becomes an MSPL-module with action map

MSPL∧L•(Q)−→ L•(Q)

given by the composition

MSPL∧L•(Q)
(τφW )∧id−→ L•(Q)∧L•(Q)−→ L•(Q).

The associated transfer is

ξ
! : L•(Q)n(B)−→ L•(Q)n+d(X),
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with ξ our F-block bundle over B, d = dimF .

We shall show that the block bundle transfer ξ ! commutes with the passage, under τ∗,
from Witt bordism theory to L•(Q)-homology. The homotopy commutative diagram

MSPL∧MWITT id∧τ //

φW∧id
��

MSPL∧L•(Q)

(τφW )∧id
��

MWITT∧MWITT τ∧τ //

��

L•(Q)∧L•(Q)

��
MWITT τ // L•(Q)

shows that τ : MWITT→ L•(Q) is an MSPL-module morphism. In the proof of Lemma 5.4
below, we shall use the following standard fact:

Lemma 5.3. If E is a ring spectrum, F,F ′ module spectra over E and φ : F → F ′ an E-
module morphism, then the diagram

Em(X ,A)⊗Fn(X ,A) ∩ //

id⊗φ∗
��

Fn−m(X)

φ∗
��

Em(X ,A)⊗F ′n(X ,A) ∩ // F ′n−m(X)

commutes: if u ∈ Em(X ,A), and a ∈ Fn(X ,A), then

φ∗(u∩a) = u∩φ∗(a).

Lemma 5.4. The Thom homomorphisms Φ of an oriented PL microbundle µ of rank m over
a compact polyhedron X commute with the passage from Witt bordism to L•(Q)-homology,
that is, the diagram

M̃WITTn(Th(µ)) Φ //

τ∗
��

MWITTn−m(X)

τ∗

��
L̃•(Q)n(Th(µ)) Φ // L•(Q)n−m(X)

commutes.

Proof. As τ∗ is a natural transformation of homology theories, it commutes with the isomor-
phism ρ∗. Since τ is an MSPL-module morphism, Lemma 5.3 applies to give

τ∗Φ = τ∗ρ∗(u∩−) = ρ∗τ∗(u∩−)
= ρ∗(u∩ τ∗(−)) = Φτ∗,

where u = uSPL(µ). �

Proposition 5.5. Let F be a closed oriented d-dimensional PL manifold and let ξ be an
oriented F-block bundle with total space X over the compact polyhedral base B. Then the
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diagram

MWITTn(B)
ξ !
//

τ∗
��

MWITTn+d(X)

τ∗
��

L•(Q)n(B)
ξ !
// L•(Q)n+d(X)

commutes.

Proof. Let µ be the stable vertical normal microbundle of ξ . The right hand square of the
diagram

MWITTn(B)
∼=
σ
//

τ∗

��

M̃WITTn+s(SsB+)

τ∗
��

T (ξ )∗ // M̃WITTn+s(Th(µ))

τ∗
��

L•(Q)n(B)
∼=
σ

// L̃•(Q)n+s(SsB+)
T (ξ )∗ // L̃•(Q)n+s(Th(µ))

commutes, as τ∗ is a natural transformation of homology theories. The left hand square,
involving the suspension isomorphism σ , commutes for the same reason. The statement now
follows from Lemma 5.4. �

An oriented topological (Rm,0)-bundle α over a CW complex Z, classified by a map
Z→ BSTOPm, possesses a Thom class

uSTOP(α) ∈ M̃STOP
m
(Th(α))

in oriented topological cobordism. The next auxiliary result on compatibility of Thom classes
is standard and e.g. recorded as Lemma 3.7 in [5].

Lemma 5.6. Let α be an oriented PL (Rm,0)-bundle. On cobordism groups, the homomor-
phism

φF : M̃SPL
m
(Th(α))−→ M̃STOP

m
(Th(αTOP))

induced by the canonical map φF : MSPL→MSTOP sends the Thom class of α to the Thom
class of the underlying oriented topological (Rm,0)-bundle αSTOP,

φF(uSPL(α)) = uSTOP(αSTOP).

Following [34, pp. 290, 291], an oriented topological (Rm,0)-bundle α has a canonical
L•-cohomology orientation

uL(α) ∈ L̃•
m
(Th(α)),

which we shall also refer to as the L•-cohomology Thom class of α , defined by

(12) uL(α) := σ
∗(uSTOP(α)).

The morphism of spectra εQ : L•(Z)→ L•(Q) coming from localization induces a homo-
morphism

L̃•
m
(Th(α))−→ L̃•(Q)m(Th(α)).

We denote the image of uL(α) under this map again by uL(α) ∈ L̃•(Q)m(Th(α)).

Lemma 5.7. Let α be an oriented PL (Rm,0)-bundle. The homomorphism

τφW : M̃SPL
m
(Th(α))−→ L•(Q)m(Th(α))
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induced by the ring morphism τφW : MSPL→ L•(Q) sends the MSPL-cohomology Thom
class of α to the L•-cohomology Thom class of (the underlying topological bundle of) α ,

τφW (uSPL(α)) = uL(α).

Proof. By Lemma 5.6, Ranicki’s definition (12), and the homotopy commutativity of diagram
(11),

τφW (uSPL(α)) = εQσ
∗
φF(uSPL(α)) = εQσ

∗(uSTOP(αSTOP))

= uL(αSTOP).

�

Lemma 5.7, together with Lemma 5.2, implies that the F-block bundle transfer on L•(Q)-
homology is given by

ξ
! = ρ∗(uL(µ)∩T (ξ )∗σ(−)) : L•(Q)n(B)−→ L•(Q)n+d(X).

Example 5.8. We continue Example 3.2 and compute the transfer for the trivial F-block bun-
dle ξ with total space X = F×B. Let E be a commutative ring spectrum and φ : MSPL→ E a
morphism of ring spectra, equipping E with the structure of an MSPL-module. Recall that we
had chosen a PL embedding θF : F ↪→ Rs with s large enough so that θF has a tubular neigh-
borhood given by a PL microbundle µF which represents the stable normal PL microbundle
of F . The stable vertical normal bundle of ξ is then given by µ = pr∗1 µF . Its Thom class

uSPL(µ) ∈ M̃SPL
s−d

(Th(µ)) = M̃SPL
s−d

(Th(µF)∧B+) is uSPL(µ) = uSPL(µF)∧ 1, since
the bundle map µ→ γSPL

s−d factors as µ→ µF→ γSPL
s−d , where the first map covers the projection

pr1 : F×B→ F and the second map the classifying map for µF . The element φ(uSPL(µF)) is
an E-orientation of µF ([37, Prop. V.1.6]) and thus [F ]E := ρF∗(φ(uSPL(µF))∩ [Th µF ]E) ∈
Ed(F), with ρF∗ : Ed(NF)∼=Ed(F), is an E-homology orientation for the PL manifold F ([37,
Prop. V.2.8], [40, p. 333, Lemma 14.40]). The transfer ξ ! : En(B)→ En+d(F ×B) is then
given on a ∈ En(B) by

(13) ξ
!(a) = [F ]E ×a,

as follows from the calculation

ξ
!(a) = ΦT (ξ )∗σ(a)

= Φ([Th µF ]E ∧a)

= ρ∗(φ(uSPL(µ))∩ ([Th µF ]E ∧a))

= ρ∗(φ(uSPL(µF)∧1)∩ ([Th µF ]E ∧a))

= ρ∗((φ(uSPL(µF))∧1)∩ ([Th µF ]E ∧a))

= ρ∗((φ(uSPL(µF))∩ [Th µF ]E)× (1∩a))

= ρF∗(φ(uSPL(µF))∩ [Th µF ]E)×a

= [F ]E ×a.

6. GEOMETRIC PULLBACK TRANSFER ON BORDISM

As in previous sections, F is a closed d-dimensional oriented PL manifold and ξ is an
oriented PL F-block bundle with total space X over a finite ball complex K, B = |K|. We
shall geometrically construct a pullback transfer

ξ
!
PB : Ω

Witt
n (B)−→Ω

Witt
n+d(X)
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on Witt bordism. Let f : W → B be a continuous map representing an element [ f ] of ΩWitt
n (B).

Choose a PL map g : W → B homotopic to f . We follow Casson’s method for pulling back
F-block bundles, [13]. (Note that the pullback of block and mock bundles is not generally
defined through cartesian diagrams.) There is a compact polyhedron V and a factorization

W �
� j //

g
""

B×V

pr1
��

B

of g into a PL embedding j followed by a standard projection. Let L be a cell complex with
|L| = V . The F-block bundle pullback pr∗1 ξ is by definition ξ ×L, an F-block bundle over
the cell complex K× L with total space E(pr∗1 ξ ) = X ×V. Thus the first factor projection
X×V → X defines a PL map

pr1 : E(pr∗1 ξ )−→ X .

Let C be the product cell complex C := K×L and put η := pr∗1 ξ . Let C′ be a subdivision
of C such that the subpolyhedron j(W ) ⊂ V ×B is given by j(W ) = |D′| for a subcomplex
D′ of C′. Block bundles can be subdivided and this does not change the total space, [13, p.
37]. Let η ′ over C′ be a subdivision of η , E(η ′) = E(η). Block bundles can be restricted
to subcomplexes. The total space of the restriction is given by the union of the blocks over
the cells of the subcomplex. Thus we can restrict η ′ to the subcomplex D′ of C′ and obtain
an F-block bundle η ′|D′ whose total space is a PL subspace E(η ′|D′) ↪→ E(η ′) = E(η). The
composition

E(η ′|D′) ↪→ E(η)−→ X
gives a map

(14) g : E(η ′|D′)−→ X .

Let j∗η be the F-block bundle over W that corresponds to η ′|D′ under the PL homeomor-
phism j : W ∼= j(W ). The pullback F-block bundle g∗ξ is then defined to be

g∗ξ = j∗η = j∗(pr∗1 ξ ).

The map (14) is thus a map
g : E(g∗ξ )−→ X .

Note that E(g∗ξ ) is a compact polyhedron. In the above construction of pullbacks and g,
it was not important that the Witt domain W has empty boundary; everything applies to
compact W with boundary as well. Indeed, Casson’s pullback applies of course to PL maps
with general polyhedral domain. Let ξ ,ξ ′ be F-block bundles over cell complexes K,K′

such that |K| = B = |K′|. Recall that ξ and ξ ′ are called equivalent if for some common
subdivision K′′ of K and K′, the subdivision of ξ over K′′ is isomorphic to the subdivision of
ξ ′ over K′′. (An isomorphism of F-block bundles over the same complex is a block preserving
homeomorphism of total spaces.) An equivalence φ : ξ ∼= ξ ′ of F-block bundles over B
induces an equivalence

g∗φ : g∗ξ ∼= g∗ξ ′

such that

E(g∗ξ )

g∗φ ∼=
��

g // E(ξ ) = X

φ∼=
��

E(g∗ξ ′)
g′ // E(ξ ′) = X ′
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commutes.

Lemma 6.1. Let g : W → B be a PL map defined on a compact Witt space with possibly
nonempty boundary ∂W. Then the total space E(g∗ξ ) is a closed Witt space with boundary
E((g∗ξ )|∂W ).

Proof. An F-block bundle is in particular a mock bundle. Thus g∗ξ is a mock bundle over
the Witt space W and the result follows from Lemma 4.4. �

By Lemma 6.1, the map g : E(g∗ξ )→ X represents an element [g] ∈ΩWitt
n+d(X).

For future reference and additional clarity in subsequent arguments, let us record explic-
itly:

Lemma 6.2. Let W,W ′ be closed n-dimensional Witt spaces. If f ' f ′ :W→X are homotopic
maps, then [ f ] = [ f ′] ∈ΩWitt

n (X). If φ : W
∼=−→W ′ is a PL homeomorphism, and f : W → X ,

f ′ : W ′→ X maps such that f ′ ◦φ = f , then [ f ] = [ f ′] ∈ΩWitt
n (X).

Proof. The first statement, asserting homotopy invariance, is part of the fact that Witt bordism
constitutes a homology theory and is proven by considering a homotopy as a Witt bordism,
noting that the cylinder on a closed Witt space is a Witt space with boundary. The bordism
required by the second statement is given by taking a cylinder on the domain of the PL
homeomorphism and a cylinder on the target of the PL homeomorphism, and then gluing the
two cylinders using the homeomorphism. �

Lemma 6.3. The class
[g : E(g∗ξ )→ X ] ∈Ω

Witt
n+d(X)

depends only on the Witt class [g] ∈ΩWitt
n (B).

Proof. Let g0 : W0 → B and g1 : W1 → B be PL maps such that [g0] = [g1] ∈ ΩWitt
n (B). Let

G : W → B be a Witt bordism between g0 and g1; we may assume G to be PL. Let i j : Wj ↪→W
denote the boundary inclusions, j = 0,1. Since g j = G ◦ i j, there is an equivalence g∗jξ ∼=
i∗jG
∗ξ such that

E(g∗jξ )

∼=
��

g j

%%
E(i∗jG

∗ξ )
Gi j

// E(ξ ) = X

commutes. Thus g j and Gi j are Witt bordant, j = 0,1, by Lemma 6.2. According to Lemma
6.1, E(G∗ξ ) is a compact Witt space with boundary E(i∗0G∗ξ )tE(i∗1G∗ξ ). The diagram

E(i∗jG
∗ξ )
� _

��

Gi j

&&
E(G∗ξ )

G
// E(ξ ) = X

commutes, j = 0,1. Hence, G is a Witt bordism between Gi0 and Gi1. �

We define the geometric transfer (or pullback transfer)

ξ
!
PB : Ω

Witt
n (B)−→Ω

Witt
n+d(X)
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by
ξ

!
PB[g : W → B] = [g : E(g∗ξ )→ X ],

where g is a PL representative of the bordism class. Let

ξ
!
BRS : Ω

Witt
n (B)−→Ω

Witt
n+d(X)

be the map
ξ

!
BRS[g] := ρ∗(uBRS(ν)∩T (ξ )∗σ [g]),

where ν = νξ : X → BS̃PLs−d represents the stable vertical normal PL disc block bundle of
ξ . This is a technical intermediary; in terms of their respective definitions, the difference
between ξ !

BRS and ξ ! is that the former uses the Thom class uBRS(ν), while the latter uses
the Thom class uSPL(µ). We will eventually see that ξ !

PB = ξ !
BRS = ξ ! on Witt bordism.

Towards that goal, let us first investigate the behavior of both the pullback transfer and the
BRS-transfer under standard factor projections.

Proposition 6.4. Let B and D be compact polyhedra. Let ξ ×D denote the F-block bundle
over B×D obtained by pulling back ξ under the projection pr1 : B×D → B. Then the
diagrams

(15) ΩWitt
n (B)

ξ !
PB // ΩWitt

n+d(X)

ΩWitt
n (B×D)

pr1∗

OO

(ξ×D)!
PB // ΩWitt

n+d(X×D)

pr1∗

OO

and

(16) ΩWitt
n (B)

ξ !
BRS // ΩWitt

n+d(X)

ΩWitt
n (B×D)

pr1∗

OO

(ξ×D)!
BRS // ΩWitt

n+d(X×D)

pr1∗

OO

commute.

Proof. We will first establish the commutativity of diagram (15) involving the pullback trans-
fers. Recall that the F-block bundle ξ is given over a cell complex K with |K|= B. Let J be
a cell complex with polyhedron |J|= D. Then ξ ×D is an F-block bundle over the cell com-
plex K× J. Let [g] ∈ΩWitt

n (B×D) be any element, represented by a PL map g : W → B×D.
Choose a compact polyhedron V and a factorization of g as

(17) W �
� j //

g
((

(B×D)×V

prB×D

��
B×D

Let L be a cell complex with |L| = V . We will compute ξ !
PB pr1∗[g]. The element pr1∗[g] is

represented by pr1 ◦g with factorization

W �
� j //

pr1 ◦g
((

B×D×V

prB
��

B.
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The pullback pr∗B ξ = ξ ×J×L has total space E(pr∗B ξ ) = X×D×V which projects to X via

prX : E(pr∗B ξ ) = X×D×V −→ X = E(ξ ).

Let C be the cell complex C = K× J×L and let C′ be a subdivision of C such that j(W ) is
given by j(W ) = |D′| for some subcomplex D′ of C′. Let (pr∗B ξ )′ be the block bundle over
C′ obtained by subdivision of pr∗B ξ . Then (pr∗B ξ )′ can be restricted to D′, and the total space
of this restriction (pr∗B ξ )′|D′ is a subspace of E((pr∗B ξ )′) = E(pr∗B ξ ). The composition of the
subspace inclusion with prX yields a map

pr1 ◦g : E((pr∗B ξ )′|D′)⊂ E(pr∗B ξ ) = X×D×V
prX−→ X

such that
ξ

!
PB[pr1 ◦g] = [pr1 ◦g].

Let us compute (ξ ×D)!
PB[g]. The relevant factorization is (17); the pullback

pr∗B×D(ξ ×D) = (ξ ×D)×L = ξ × J×L = pr∗B ξ

has total space E(pr∗B×D(ξ ×D)) = X×D×V which projects to X×D via

prX×D : E(pr∗B×D(ξ ×D)) = (X×D)×V −→ X×D = E(ξ ×D).

Let (pr∗B×D(ξ ×D))′ be the block bundle over C′ obtained by subdivision of pr∗B×D(ξ ×D).
Then (pr∗B×D(ξ ×D))′ = (pr∗B ξ )′ and thus

(pr∗B×D(ξ ×D))′|D′ = (pr∗B ξ )′|D′ .
Consider the commutative diagram

E((pr∗B×D(ξ ×D))′|D′)
� � // E(pr∗B×D(ξ ×D))

prX×D // X×D

pr1

��
E((pr∗B ξ )′|D′)

� � // E(pr∗B ξ )
prX // X .

The upper horizontal composition is a map g such that

(ξ ×D)!
PB[g] = [g],

and the lower horizontal composition is pr1 ◦g. Therefore,

pr1∗(ξ ×D)!
PB[g] = [pr1 ◦g] = [pr1 ◦g]

= ξ
!
PB[pr1 ◦g] = ξ

!
PB pr1∗[g].

Thus, (15) commutes as claimed.
It remains to establish the commutativitiy of diagram (16). Let νξ = νθ denote the stable

vertical normal PL disc block bundle associated to a particular choice of blockwise embed-
ding θ : X = E(ξ ) ↪→ Rs×B by Proposition 2.1. The PL embedding

E(ξ ×D) = X×D
θ×idD
↪→ (Rs×B)×D = Rs× (B×D)

is block preserving over B×D with respect to the F-blocks (ξ ×D)(σ × τ) = ξ (σ)× τ of
ξ ×D, σ ∈ K, τ ∈ J, as

(θ × idD)(ξ (σ)× τ) = θ(ξ (σ))× τ ⊂ (Rs×σ)× τ = Rs× (σ × τ).

Thus the stable vertical normal disc-block bundle of ξ ×D can be computed from the embed-
ding θ × idD, which yields

νξ×D = νθ×idD = νθ ×D = νξ ×D,
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a disc block bundle over X×D. Recall that the Thom space of the block bundle νξ is

Th(νξ ) = N∪∂N cone(∂N)

with N = E(νξ ). Thus, with N′ := E(νξ×D) = N×D, we have

Th(νξ×D) = N′∪∂N′ cone(∂N′).

Here, ∂N′ denotes the total space of the sphere bundle of ξ ×D, ∂N′ = (∂N)×D. The
projection pr1 : N′ = N×D→ N induces a map

Th(pr1) : (N×D)∪(∂N)×D cone((∂N)×D)−→ N∪∂N cone(∂N),

i.e. a map

Th(pr1) : Th(νξ×D)−→ Th(νξ ).

The suspension of the projection pr1 : B×D→ B is a map Ss pr1 : Ss(B×D)+→ SsB+. The
F-block bundle ξ ×D has its Umkehr map

T (ξ ×D) : Ss(B×D)+ −→ Th(νξ×D)

such that the diagram

SsB+
T (ξ ) // Th(νξ )

Ss(B×D)+

Ss pr1

OO

T (ξ×D) // Th(νξ×D)

Th(pr1)

OO

commutes up to homotopy. The induced diagram

Ω̃Witt
n+s(S

sB+)
T (ξ )∗ // Ω̃Witt

n+s(Thνξ )

Ω̃Witt
n+s(S

s(B×D)+)

(Ss pr1)∗

OO

T (ξ×D)∗ // Ω̃Witt
n+s(Thνξ×D)

Th(pr1)∗

OO

on reduced Witt bordism commutes. The diagram

ΩWitt
n (B) σ

∼=
// Ω̃Witt

n+s(S
sB+)

ΩWitt
n (B×D)

pr1∗

OO

σ

∼=
// Ω̃Witt

n+s(S
s(B×D)+)

(Ss pr1)∗

OO

commutes by the naturality of the suspension isomorphism σ .
It remains to show that

(18) Ω̃Witt
n+s(Thνξ )

uBRS(νξ )∩− // ΩWitt
n+d(Eνξ )

ρ∗
∼=

// ΩWitt
n+d(X)

Ω̃Witt
n+s(Thνξ×D)

Th(pr1)∗

OO

uBRS(νξ×D)∩− // ΩWitt
n+d(Eνξ×D)

pr1∗

OO

ρ∗
∼=

// ΩWitt
n+d(X×D)

pr1∗

OO
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commutes. The right hand side commutes, since the zero section embedding X ×D ↪→
Eνξ×D = N×D of νξ×D is given by i× idD, where i is the zero section embedding i : X ↪→
Eνξ = N of νξ , so that

N = Eνξ Xioo

N×D = Eνξ×D

pr1

OO

X×D
i×idD

oo

pr1

OO

commutes. We will prove that the left hand side commutes as well. The map

Th(pr1) : Th(νξ×D)−→ Th(νξ )

induces a homomorphism

Th(pr1)
∗ : Ω

d−s
SPL(Eνξ , Ėνξ )−→Ω

d−s
SPL(Eνξ×D, Ėνξ×D),

which agrees with the homomorphism

pr∗1 : Ω
d−s
SPL(N,∂N)−→Ω

d−s
SPL((N,∂N)×D)

induced by the map of pairs pr1 : (N,∂N)×D→ (N,∂N). By the naturality of the BRS-
Thom class ([11, top of p. 27]), this homomorphism maps the BRS-Thom class of νξ to the
BRS-Thom class of pr∗1 νξ = νξ×D,

pr∗1(uBRS(νξ )) = uBRS(νξ×D).

Given any element
[g] ∈ Ω̃

Witt
n+s(Thνξ×D) = Ω

Witt
n+s((N,∂N)×D),

the computation

uBRS(νξ )∩pr1∗[g] = pr1∗(pr∗1 uBRS(νξ )∩ [g])
= pr1∗(uBRS(νξ×D)∩ [g])

shows that the left hand side of diagram (18) commutes. �

The pullback transfer ξ !
PB on Witt bordism agrees with the transfer ξ !

BRS:

Proposition 6.5. The diagram

Ω̃Witt
n+s(S

sB+)
T (ξ )∗ // Ω̃Witt

n+s(Th(ν))
uBRS(ν)∩− // ΩWitt

n+d(E(ν))

ρ∗∼=
��

ΩWitt
n (B)

σ ∼=

OO

ξ !
PB // ΩWitt

n+d(X)

commutes, that is, ξ !
PB = ξ !

BRS.

Proof. Let h : W n→ B be a continuous map from a closed n-dimensional Witt space W to B,
representing an element [h] ∈ΩWitt

n (B). By simplicial approximation, we may assume that h
is PL. We begin by observing that by Proposition 6.4, it suffices to prove the statement for
the case where h : W → B is a PL embedding: For given any PL map h : W → B, consider the
graph embedding

(h, idW ) : W −→ B×W
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which factors h as

W �
� (h,idW ) //

h
''

B×W

pr1
��

B.

Let ξ ×W denote the F-block bundle over B×W obtained by pulling back ξ under the
projection pr1 : B×W → B. If the statement is known for embeddings, then

(ξ ×W )!
PB[(h, idW )] = (ξ ×W )!

BRS[(h, idW )].

Hence by Proposition 6.4 with D =W ,

ξ
!
PB[h] = ξ

!
PB[pr1 ◦(h, idW )] = ξ

!
PB pr1∗[(h, idW )]

= pr1∗(ξ ×W )!
PB[(h, idW )] = pr1∗(ξ ×W )!

BRS[(h, idW )]

= ξ
!
BRS pr1∗[(h, idW )] = ξ

!
BRS[h].

Consequently, it remains to prove the equality ξ !
PB = ξ !

BRS on Witt bordism classes that are
represented by PL embeddings.

As in the construction of the Umkehr map T (ξ ) in Section 3, let N denote the total space
E(ν) of the stable vertical normal closed disc block bundle ν = νθ of ξ associated to a
choice of block preserving embedding θ : X ↪→ Rs×B, where X is the total space of the
given F-block bundle ξ . Thus N is a ξ -block preserving regular neighborhood of θ(X) in
Rs×B. Recall that ∂N denotes the total space of the sphere block bundle of ν . Let Ds ⊂ Rs

be a closed PL ball about the origin which is large enough so that (Ds− ∂Ds)×B contains
N ∪V ⊂ Rs×B, where V is the outside collar to ∂N used in the construction of the Umkehr
map; such a ball exists by compactness of X .

Let h : W ↪→ B be a PL embedding of a closed Witt space into B. Recall that K is a cell
complex with polyhedron |K|= B and ξ is given over K. By subdivision of K and ξ , we may
assume that h(W ) = |KW | for a subcomplex KW of K. Let LS be a finite simplicial complex
such that

(1) |LS|= SsB+,
(2) there is a subcomplex L of LS such that |L|= Ds×B,
(3) for every simplex σ ∈ K, there is a subcomplex Lσ of L such that

|Lσ |= Ds×σ ,

(4) there exists a subcomplex Lθ of L such that |Lθ |= θ(X),
(5) the stable vertical normal bundle ν is a (disc-) block bundle over the complex Lθ

such that
E(ν)∩ (Ds×σ) =

⋃
τ∈Lσ∩Lθ

ν(τ),

where ν(τ) is the disc-block of ν over the simplex τ .

Property (3) implies that Lτ is a subcomplex of Lσ for every face τ of σ ∈ K. Furthermore,

Ds×h(W ) = Ds×|KW |=
⋃

σ∈KW

Ds×σ =
⋃

σ∈KW

|Lσ |= |
⋃

σ∈KW

Lσ |

so that
LW :=

⋃
σ∈KW

Lσ
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is a simplicial subcomplex of L with Ds×h(W ) = |LW |. Since the embedding θ : X ↪→Rs×B
is block preserving with respect to the F-blocks of ξ , we have θ(ξ (σ)) = (Ds×σ)∩θ(X)
for all σ ∈ K. Hence by property (4),

θ(ξ (σ)) = |Lσ |∩ |Lθ |= |Lσ ∩Lθ |.

Thus the embedded F-blocks θ(ξ (σ)) are triangulated by the subcomplex Lσ ∩Lθ of L.
The image σ [h] under the suspension isomorphism

σ : Ω
Witt
n (B)

∼=−→ Ω̃
Witt
n+s(S

sB+) = Ω
Witt
n+s((D

s,∂Ds)×B)

is represented by the closed product PL embedding

id×h : (Ds×W,∂ (Ds×W )) ↪→ (Ds×B,(∂Ds)×B).

The Umkehr map is a PL map

T (ξ ) : SsB+ = Th(Rs×B) =
Ds×B

(∂Ds)×B
−→ Th(ν)

which is the identity near θ(X). Composing with it, we obtain a PL map

f = T (ξ )◦ (id×h) : (Ds×W,∂ (Ds×W ))−→ (Th(ν),∞).

Let A be the ball complex with |A| = N = E(ν) whose balls include the blocks of ν . The
rest of the balls come from the sphere block bundle of ν . The BRS Thom class uBRS(ν) ∈
Ω
−(s−d)
SPL (N,∂N) is represented by the mock bundle η with projection given by the zero sec-

tion i : θ(X)→ A. Thus the total space of η is E(η) = θ(X). The mock bundle η is an
embedded mock bundle in the sense of Buoncristiano-Rourke-Sanderson [11, p. 34]: The
restriction i| : η(σ)→ σ for a ball σ = ν(τ) ∈ A is the inclusion τ ↪→ ν(τ), which is lo-
cally flat by definition of a disc block bundle. Furthermore, i| : η(σ)→ σ is proper, i.e.
i|−1(∂σ) = ∂η(σ). We wish to compute the cap product

uBRS(ν)∩ [ f : (Ds,∂Ds)×W → (Th(ν),∞)] ∈Ω
Witt
n+d(E(ν)).

The base complex of η is only known to be a ball complex, not a simplicial complex as
required for pulling back a mock bundle via a cartesian square. Thus we need to subdivide
simplicially. Let L′ be a simplicial subdivision of L and let A′ be a simplicial subdivision of
A such that A′ is a subcomplex of L′. Thus,

|A′|= E(ν), |L′|= Ds×B.

The complex L′ contains a (simplicial) subcomplex L′W given by

L′W = {τ ∈ L′ | τ ⊂ σ for some σ ∈ LW}.

This is a subdivision of LW ⊂ L, and

|L′W |= |LW |= Ds×h(W ).

So the inclusion
|L′W |= Ds×h(W ) ↪→ Ds×B = |L′|

is a simplicial map
L′W ↪→ L′.

By [11, Thm. 2.1, p. 23] (see also [35, Subdivision theorem, p. 128]) mock bundles can
be subdivided: If α is a mock bundle over a ball complex D with total space E(α) and
projection p : E(α)→ D, and D′ is a subdivision of D, then there exists a mock bundle α ′



BUNDLE TRANSFER OF L-ORIENTATIONS FOR SINGULAR SPACES 27

over D′ together with a PL homeomorphism φ : E(α)
∼=−→ E(α ′) which preserves α-blocks

over D, and a homotopy

F : E(α)× I −→ |D|= |D′|, F0 = p, F1 = p′φ ,

which respects the α-blocks over D. (Here, p′ : E(α ′)→ |D′| is the projection of α ′.) More-
over, if α is an embedded mock bundle, then the subdivision theorem yields again an em-
bedded mock bundle and the homotopy can be taken to be an isotopy which is covered by
an ambient isotopy. We apply this to the zero section mock bundle η over A: Since A′ is a
(simplicial) subdivision of A, there thus exists a correspondingly subdivided mock bundle η ′

over A′. Since η is an embedded mock bundle i : θ(X) = E(η) ↪→ E(ν), so is η ′. Thus the
projection map i′ of η ′ may be taken to be a PL embedding i′ : E(η ′) ↪→ E(ν). As the zero
section i does not touch the sphere bundle of ν (i.e. η has empty blocks over ∂N), the same
is true for the perturbation i′. There exists a PL homeomorphism φ : θ(X) = E(η)

∼=−→ E(η ′)
which preserves η-blocks over the ball complex A. The maps i and i′φ are isotopic via an
isotopy

F : θ(X)× I −→ E(ν)× I, F0 = i, F1 = i′φ .

This isotopy is covered by an ambient isotopy

H : E(ν)× I −→ E(ν)× I, H0 = id,

so that

θ(X)× I

F %%

F0×id=i×id // E(ν)× I

Hyy
E(ν)× I

commutes. This implies

(19) H1 ◦ i = F1 = i′ ◦φ .

By an induction on the cells σ ∈ K, starting with the 0-dimensional cells, F and H can be
constructed to preserve blocks over K. More precisely: Let νσ denote the restriction of
ν to the embedded F-block θ(ξ (σ)) = θ(X)∩ (Ds× σ). Since ν is a block bundle over
the complex Lθ and θ(ξ (σ)) is triangulated by Lσ ∩ Lθ , the total space of νσ is given by
E(νσ ) =

⋃
τ ν(τ), where τ ranges over all simplices of Lσ ∩Lθ . Thus by property (5) above,

(20) E(νσ ) = E(ν)∩ (Ds×σ).

Then H can be inductively arranged to satisfy

(21) Ht(E(νσ )) = E(νσ )

for all σ ∈ K and all t ∈ [0,1], as follows: Recall that Buoncristiano, Rourke and Sanderson’s
construction of H in their proof of the mock bundle subdivision theorem proceeds inductively
over cells of the base, starting with the 0-cells. In the present context, one organizes their
induction as follows: Start with the 0-skeleton A0 of A. For every 0-cell σ0 of K, subdivide η

over A0∩Ds×σ0 within the manifold E(ν)∩Ds×σ0. Extend this subdivision for every 1-
cell σ1 of K to a subdivision over A0∩Ds×σ1 within the manifold E(ν)∩Ds×σ1. Continue
in this way with 2-cells σ2, etc., until all cells of K have been used. Then move on to the
1-skeleton A1 of A: For every 0-cell σ0 of K, extend the subdivision to a subdivision over
A1 ∩Ds×σ0 within the manifold E(ν)∩Ds×σ0. Extend this subdivision for every 1-cell
σ1 of K to a subdivision over A1∩Ds×σ1 within the manifold E(ν)∩Ds×σ1, and so on.
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The mock bundle η ′ is defined over the simplicial complex A′ with polyhedron |A′| =
E(ν), but using the canonical inclusions E(ν) ⊂ Ds×B and E(ν) ⊂ Th(ν), we may regard
η ′ as a mock bundle over Ds×B, and as a mock bundle over Th(ν). In more detail, the
composition

E(η ′)
i′
↪→ E(ν) = |A′| ↪→ Ds×B = |L′|

is the projection of a mock bundle over the complex L′, whose blocks over simplices in A′

are the blocks of η ′ and blocks over simplices not in A′ are taken to be empty. (Here, we are
using that η ′ has empty blocks over the sphere bundle ∂N.) Similarly, after extending the
triangulation A′ to a triangulation T ′ of Th(ν) by coning off simplices of A′ that are in ∂N
(and adding the cone point ∞ as a 0-simplex), the composition

E(η ′)
i′
↪→ E(ν) = |A′| ↪→ Th(ν) = |T ′|

is the projection of a mock bundle over the complex T ′, whose blocks over simplices in A′

are the blocks of η ′ and blocks over simplices not in A′ are again taken to be empty. In view
of the commutative diagram

E(η ′)� _

i′

��
E(ν)� _

��

� r

$$
Ds×B

T (ξ )
// Th(ν)

the pullback T (ξ )∗(η ′/T ′) under the Umkehr map is precisely η ′/L′ . Therefore, the mock
bundle pullback f ∗(η ′) is given by

f ∗(η ′) = (id×h)∗T (ξ )∗(η ′/T ′) = (id×h)∗(η ′/L′).

The mock bundle η ′ (contrary to η , possibly) is defined over a simplicial complex L′ and, as
pointed out above, the inclusion Ds×h(W ) ↪→ Ds×B = |L′| is a simplicial map

L′W ↪→ L′.

Therefore, the mock bundle pullback f ∗(η ′) = (id×h)∗(η ′) is given by the cartesian diagram

E((id×h)∗η ′) //

��

g

((

E(η ′)� _

i′

��
Ds×h(W ) = |L′W |

� � // Ds×B = |L′|.

It follows that the cap product of the BRS Thom class with [ f ] is given by the diagonal arrow

uBRS(ν)∩ [ f ] = [g] ∈Ω
Witt
n+d(E(ν)),

the total space of the pullback is given by

E((id×h)∗η ′) = (Ds×h(W ))∩ i′E(η ′)

and g is the subspace inclusion

g : (Ds×h(W ))∩ i′E(η ′)⊂ i′E(η ′)⊂ E(ν).



BUNDLE TRANSFER OF L-ORIENTATIONS FOR SINGULAR SPACES 29

We shall show next that the final stage H1 : E(ν)→ E(ν) of the ambient isotopy H induces a
homeomorphism

(22) H1 : E(ξ |KW )
∼=−→ (Ds×h(W ))∩ i′E(η ′),

where we use θ to identify X = E(ξ ) and θ(X), and to identify E(ξ |KW ) and θ(X)∩ (Ds×
|KW |). The homeomorphism H1 restricts to a homeomorphism

H1| : θ(X)∩ (Ds×|KW |)
∼=−→ H1(θ(X)∩ (Ds×|KW |)),

whose target we shall now compute:

H1(θ(X)∩ (Ds×|KW |)) = H1(θ(X)∩E(ν)∩ (Ds×|KW |))
= H1(θ(X))∩H1(E(ν)∩Ds×|KW |)

= H1(θ(X))∩H1

(
E(ν)∩

⋃
σ∈KW

Ds×σ

)

= H1(θ(X))∩H1

( ⋃
σ∈KW

E(ν)∩ (Ds×σ)

)
= H1(θ(X))∩

⋃
σ∈KW

H1(E(ν)∩ (Ds×σ))

= H1(θ(X))∩
⋃

σ∈KW

(E(ν)∩ (Ds×σ)) (by (20) and (21))

= H1(θ(X))∩E(ν)∩
⋃

σ∈KW

(Ds×σ)

= H1(θ(X))∩
⋃

σ∈KW

(Ds×σ)

= H1iE(η)∩
⋃

σ∈KW

|Lσ |

= i′φE(η)∩|LW | (by (19))

= i′E(η ′)∩ (Ds×h(W )).

Thus we obtain the homeomorphism (22). In the diagram

E(ξ |KW )

H1| ∼=
��

� � // E(ξ ) = θ(X)
� � i // E(ν)

H1∼=
��

i′E(η ′)∩ (Ds×h(W )) �
� g // E(ν),

all the horizontal arrows are subspace inclusions and thus the diagramm commutes. By
Lemma 6.2 applied to the PL homeomorphism H1|,

[g] = [g◦H1|] ∈Ω
Witt
n+d(E(ν)).

By commutativity of the diagram,

[g◦H1|] = [E(ξ |KW )⊂ θ(X)
H1i−→ E(ν)]

= [E(ξ |KW )⊂ θ(X)
i′φ−→ E(ν)]
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By restriction, the isotopy F gives rise to an isotopy

F̂ : E(ξ |KW )× I ⊂ θ(X)× I F−→ E(ν)

from
F̂0 = E(ξ |KW )⊂ θ(X)

F0=i−→ E(ν)
to

F̂1 = E(ξ |KW )⊂ θ(X)
F1=i′φ−→ E(ν).

By Lemma 6.2,
[F̂0] = [F̂1] ∈Ω

Witt
n+d(E(ν)).

Therefore,
[g] = [g◦H1|] = [F̂1] = [F̂0] ∈Ω

Witt
n+d(E(ν)).

Now the geometric pullback transfer of [h : W ↪→ B] is given by

ξ
!
PB[h : W ↪→ B] = [E(ξ |KW )⊂ E(ξ ) = θ(X)].

Hence
i∗ξ !

PB[h : W ↪→ B] = [F̂0].

Finally, since i∗ and ρ∗ are inverses of each other,

ξ
!
PB[h : W ↪→ B] = ρ∗[F̂0] = ρ∗[g] = ρ∗(uBRS(ν)∩ [ f ])

= ρ∗(uBRS(ν)∩ [T (ξ )◦ (id×h)])

= ρ∗(uBRS(ν)∩T (ξ )∗σ [h])

= ξ
!
BRS[h],

as was to be shown. �

We will refer to the map ρ∗(uBRS(ν)∩−) as the geometric Thom homomorphism.

Proposition 6.6. The homotopy-theoretic Thom homomorphism Φ agrees with the geometric
Thom homomorphism, that is, the diagram

M̃WITTn+s(Th(µ)) Φ //

∼=
��

MWITTn+d(X)

∼=
��

Ω̃Witt
n+s(Th(ν))

ρ∗(uBRS(ν)∩−) // ΩWitt
n+d(X)

commutes.

Proof. Recall that Φ is given by Φ = ρ∗(uSPL(µ)∩−). The result follows from Lemma 4.5
applied to µ with underlying oriented block bundle µPLB = ν , together with the geometric
description of the cap product given in [11]. �

Proposition 6.7. Manifold-block bundle transfer on MWITT-homology and geometric pull-
back transfer on Witt bordism agree, that is, the diagram

MWITTn(B)
ξ !
//

∼=
��

MWITTn+d(X)

∼=
��

ΩWitt
n (B)

ξ !
PB // ΩWitt

n+d(X)

commutes.
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Proof. We must show that the outer square of the diagram

MWITTn(B)
ξ !

//

T (ξ )∗σ

((

∼=

��

MWITTn+d(X)

∼=

��

M̃WITTn+s(Th(µ))

∼=
��

Φ

66

Ω̃Witt
n+s(Th(ν))

ρ∗(uBRS(ν)∩−)

((
ΩWitt

n (B)
ξ !

PB //

T (ξ )∗σ
77

ΩWitt
n+d(X)

commutes. The upper part commutes by definition of the F-block bundle transfer ξ !. The
left hand part commutes as the vertical arrows are given by a natural isomorphism of homol-
ogy theories, while the right hand part commutes by Proposition 6.6. The lower part of the
diagram, involving the pullback transfer ξ !

PB, commutes according to Proposition 6.5. �

A closed n-dimensional Witt space W has a fundamental class

[W ]Witt ∈Ω
Witt
n (W )

in Witt bordism represented by the identity map, [W ]Witt = [id : W →W ]. Under the natural
identification (9), this class corresponds to a unique class [W ]Witt ∈MWITTn(W ).

Proposition 6.8. Suppose B is a closed Witt space of dimension n. Then the total space X
of the oriented F-block bundle ξ over B is a closed Witt space and the geometric pullback
transfer

ξ
!
PB : Ω

Witt
n (B)−→Ω

Witt
n+d(X)

maps the Witt fundamental class of B to the Witt fundamental class of X,

ξ
!
PB[B]Witt = [X ]Witt.

Proof. If the base B is Witt, then the total space X is Witt by Lemma 6.1. The Witt funda-
mental class [B]Witt is represented by the identity map g = idB : B→ B (which is PL). Pulling
back under this identity map, the map g : E(id∗ ξ )→ X is the identity id : E(id∗ ξ ) = X → X .
Therefore,

ξ
!
PB[id : B→ B] = [g : E(id∗ ξ )→ X ] = [idX ] = [X ]Witt.

�

Example 6.9. We continue our previous examples on the trivial F-block bundle ξ with to-
tal space X = F × B, B any compact polyhedron. The geometric pullback transfer ξ !

PB :
ΩWitt

n (B)→ΩWitt
n+d(F×B) is then by construction ξ !

PB[g : W →B] = [idF×g : F×W →F×B].
The Witt bordism ×-product

× : Ω
Witt
d (F)×Ω

Witt
n (B)−→Ω

Witt
d+n(F×B), [h]× [g] = [h×g],

can be used to decompose the class [idF×g] as [F ]Witt× [g]. We thus find that

ξ
!
PB[g] = [F ]Witt× [g],
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which agrees with (13). If B = W is an n-dimensional closed Witt space and g the identity,
then ξ !

PB[B]Witt = [F ]Witt× [B]Witt = [F×B]Witt, in agreement with Proposition 6.8.

7. TRANSFER OF THE L•-HOMOLOGY FUNDAMENTAL CLASS

In [6], we constructed a canonical L•(Q)-homology fundamental class

[X ]L ∈ L•(Q)n(X)

for closed n-dimensional Witt spaces X using the morphism τ : MWITT→ L•(Q) of ring
spectra. This class is the image of the Witt theory fundamental class [X ]Witt under the map

τ∗ : Ω
Witt
n (X)∼= MWITTn(X)−→ L•(Q)n(X),

i.e. [X ]L = τ∗[X ]Witt.

Theorem 7.1. Suppose B is a closed Witt space of dimension n. Then the total space X of
the oriented F-block bundle ξ over B is a closed Witt space and the block bundle transfer

ξ
! : L•(Q)n(B)−→ L•(Q)n+d(X)

maps the L•(Q)-homology fundamental class of B to the L•(Q)-homology fundamental class
of X,

ξ
![B]L = [X ]L.

Proof. By Proposition 6.8, ξ !
PB[B]Witt = [X ]Witt for the pullback transfer. Thus, using Propo-

sition 6.7 on the compatibility of block bundle transfer and pullback transfer,

ξ
![B]Witt = ξ

!
PB[B]Witt = [X ]Witt.

Finally, by Proposition 5.5,

ξ
![B]L = ξ

!
τ∗[B]Witt = τ∗ξ

![B]Witt = τ∗[X ]Witt = [X ]L.

�

Example 7.2. We describe the L•(Q)-homology transfer and illustrate Theorem 7.1 for the
trivial F-block bundle ξ with total space X = F × B. We use the notation of the earlier
examples on this special case. By Lemma 5.7, uL(µF) = τφW (uSPL(µF)). Hence, using [33,
p. 552, Prop. 7.1.2],

[F ]L = ρF∗(τφW (uSPL(µF))∩ [Th µF ]L) ∈ L•(Q)d(F),

see also [32, p. 186, Prop. 16.16 (c)]. Consequently, Formula (13) applies to yield the
description

ξ
!(a) = [F ]L×a

for the transfer ξ ! : L•(Q)n(B)→ L•(Q)n+d(F×B). When B is a closed n-dimensional Witt
space, we obtain

ξ
![B]L = [F ]L× [B]L = [F×B]L

(where the second equality has been established in [6, Theorem 13.1]), in agreement with
Theorem 7.1.
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8. BEHAVIOR OF THE CHEEGER-GORESKY-MACPHERSON L-CLASS UNDER TRANSFER

Rationally, Theorem 7.1 leads to a formula that describes the behavior of the Cheeger-
Goresky-MacPherson L-class under block bundle transfer.

Theorem 8.1. Let B be a closed Witt space and let F be a closed oriented PL manifold.
Let ξ be an oriented PL F-block bundle over B with total space X and oriented stable ver-
tical normal microbundle µ over X. Then the associated block bundle transfer ξ ! sends the
Cheeger-Goresky-MacPherson L-class of B to the product

ξ
!L∗(B) = L∗(µ)∩L∗(X).

Proof. By Theorem 7.1, the L•-homology transfer ξ ! of ξ sends the L•(Q)-homology funda-
mental class of B to the L•(Q)-homology fundamental class of X : ξ ![B]L = [X ]L. It remains
to analyze what this equation means after we tensor with Q, i.e. after we apply the localiza-
tion morphism

L•(Q)−→ L•(Q)(0) =
∨

i

SiH(Li(Q)⊗Q) =
∨

j

S4 jHQ,

which is a ring morphism of ring spectra. By [6, Lemma 11.1],

[B]L⊗Q= L∗(B), [X ]L⊗Q= L∗(X).

Using Ranicki’s [32, Remark 16.2, p. 176],

uL(µ)⊗Q= ρ
∗L∗(µ)−1∪uQ(µ),

where uQ(µ) ∈ H̃s−d(Th(µ);Q) is the Thom class of µ in ordinary rational cohomology.
(Note that Ranicki omits cupping with uQ(µ) in his notation.) Thus

L∗(X) = [X ]L⊗Q= (ξ ![B]L)⊗Q
= ρ∗(uL(µ)∩T (ξ )∗σ [B]L)⊗Q
= ρ∗(uL(µ)⊗Q∩T (ξ )∗σ([B]L⊗Q))

= ρ∗((ρ
∗L∗(µ)−1∪uQ(µ))∩T (ξ )∗σL∗(B))

= ρ∗(ρ
∗L∗(µ)−1∩ (uQ(µ)∩T (ξ )∗σL∗(B)))

= L∗(µ)−1∩ρ∗(uQ(µ)∩T (ξ )∗σL∗(B))

= L∗(µ)−1∩ξ
!L∗(B).

�

If t is a stable inverse for µ , then t has the interpretation of a stable vertical tangent bundle
for ξ , and by Theorem 8.1, the formula

ξ
!L∗(B) = L∗(t)−1∩L∗(X)

holds.

Example 8.2. We discuss Theorem 8.1 vis-à-vis Formula (13) in the situation of a trivial
F-block bundle ξ over B, using the notation of earlier examples on this case. Let [F ]Q ∈
Hd(F ;Q) denote the fundamental class of the oriented PL manifold F in ordinary rational
homology. By (13),

ξ
!(a) = [F ]Q×a

for a ∈ Hn(B;Q). For a closed Witt space B, we obtain in particular

(23) ξ
!L∗(B) = [F ]Q×L∗(B).
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Let T F denote the tangent PL microbundle of the PL manifold F . Then µF⊕T F is the trivial
microbundle and hence L∗(µF)L∗(T F) = L∗(µF ⊕ T F) = 1. Furthermore, the Hirzebruch
signature theorem holds for PL manifolds and L∗(F) = L∗(T F)∩ [F ]Q (see Madsen-Milgram
[29, Chapter 4C] and Thom [41]). According to Theorem 8.1,

ξ
!L∗(B) = L∗(µ)∩L∗(X)

= (L∗(µF)×1)∩ (L∗(F)×L∗(B))

= (L∗(µF)∩L∗(F))× (1∩L∗(B))

= (L∗(µF)∩L∗(T F)∩ [F ]Q)×L∗(B)

= [F ]Q×L∗(B),

confirming (23). It is perhaps worthwhile to emphasize that transfer does not in general
commute with localization of spectra: If ξ !

Q denotes the transfer on ordinary rational homol-
ogy and ξ !

L the transfer on L•(Q)-homology, then generally ξ !
Q(−⊗Q) 6= ξ !

L(−)⊗Q. For
example,

ξ
!
Q([B]L⊗Q) = ξ

!
Q(L∗(B)) = [F ]Q×L∗(B),

which contains less information than

(ξ !
L[B]L)⊗Q= [F×B]L⊗Q= L∗(F×B) = L∗(F)×L∗(B).

9. NORMALLY NONSINGULAR MAPS

Let f : Y → X be a PL map of closed Witt spaces which is the composition

Y �
� g //

f ��

Z

p
��

X

of an oriented normally nonsingular inclusion g with normal bundle νg followed by the pro-
jection p of an oriented PL F-fiber bundle ξ with closed PL manifold fiber F and stable
vertical normal bundle νξ . Then f is a normally nonsingular map in the sense of [21, Def.
5.4.3]. Let c be the codimension of g and d the dimension of F . The bundle transfer ξ ! and
the Gysin restriction g! compose to give a transfer homomorphism

Hn(X ;Q)
ξ !

−→ Hn+d(Z;Q)
g!
−→ Hn+d−c(Y ;Q),

with c− d the relative dimension of f . Combining Theorem 8.1 of the present paper with
Theorem 3.18 of [5], we obtain

g!
ξ

!L∗(X) = g!(L∗(νξ )∩L∗(Z)) = g∗L∗(νξ )∩g!L∗(Z)

= g∗L∗(νξ )∩ (L∗(νg)∩L∗(Y ))

= L∗(g∗νξ ⊕νg)∩L∗(Y ),

at least when Y,Z have even dimensions.
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[41] R. Thom, Les classes caractéristiques de Pontrjagin des variétés triangulées, Comm. Math. Helv. 28 (1954),

17 – 86.
[42] R. E. Williamson, Jr., Cobordism of Combinatorial Manifolds, Annals of Math. 83 (1966), 1–33.
[43] S. Weinberger, The Topological Classification of Stratified Spaces, Chicago Lectures in Math., The Univer-

sity of Chicago Press, 1994.
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