MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 12.12.2014

EXERCISE SHEET 8

Miscellaneous about Curvature

To hand in by Friday, December 19, 2014, 12:00

Exercise 1. (20 points)

Let (M, g) be a complete connected Riemannian manifold, $p \in M$ a point and D > 0 a real number. Assume that for all $q \in M$ and for all tangent vectors $v, w \in T_q M$ we have for the sectional curvature: K(v, w) > 0. Assume additionally that if $d(p, q) \ge D$ then

$$K(v,w) \ge \frac{\pi^2}{d(p,q)^2}$$

for all $v, w \in T_q M$. Show that M is compact.

Exercise 2. (20 points)

Let $\mathbb{C}^{1,n}$ be the vector space \mathbb{C}^{n+1} endowed with the following Hermitian form h of signature (1, n):

$$h(x,y) = -x_0\overline{y_0} + \sum_{j=1}^n x_j\overline{y_j}.$$

Denote by U(1,n) the group of matrices preserving the form h and by $\pi : \mathbb{C}^{1,n} \setminus \{0\} \longrightarrow \mathbb{CP}^n$ the usual projection into the projective space. Then the complex hyperbolic *n*-space \mathbb{CH}^n is defined as:

$$\mathbb{C}\mathbb{H}^n=\left\{x\in\mathbb{C}\mathbb{P}^n\ |x=\pi(v) \text{ with } h(v,v)<0\right\}.$$

- (a) Show that if h(v,v) < 0, then $d\pi_v$ identifies the tangent space at $x = \pi(v)$ with the orthogonal space at v with respect of h.
- (b) Define a Riemannian metric on \mathbb{CH}^n by using the real part of the restriction of h to these orthogonal subspaces.
- (c) Show that every element of U(1, n) induces an isometry of this metric. *Remark:* Note that $\text{Isom}(\mathbb{CH}^n)$ contains more isometries than these, there is also one induced by complex conjugation on \mathbb{C}^{n+1} .
- (d) Show that \mathbb{CH}^n is homogeneous.
- (e) Show that \mathbb{CH}^n has pinched curvature.

Exercise 3. (20 points)

Let $M(n,\mathbb{R})$ be the algebra of $n \times n$ -matrices over \mathbb{R} and $S(n,\mathbb{R})$ the subspace of symmetric matrices. Denote by $P(n,\mathbb{R}) \subseteq S(n,\mathbb{R})$ the open cone of symmetric and positive-definite matrices.

(a) Show that $P(n, \mathbb{R})$ is a Riemannian manifold where the scalar product on the tangent space $T_p P(n, \mathbb{R})$ is given by

$$(X,Y)_p = \operatorname{tr}(p^{-1}Xp^{-1}Y)$$

where tr denotes the trace of a matrix.

- $GL(n,\mathbb{R})$ acts on $M(n,\mathbb{R})$ by $g.A = gAg^t$ (where g^t is the transpose of g).
 - (b) Show that this action leaves $S(n, \mathbb{R})$ and $P(n, \mathbb{R})$ invariant and is transitive on $P(n, \mathbb{R})$.
 - (c) Show that the action is by Riemannian isometries.
 - (d) Determine the Stabilizer of the identity matrix.