

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 05.12.2014

EXERCISE SHEET 7

Lengths in a Riemannian Manifold and Triangles in Model Spaces

To hand in by Friday, December 12, 2014, 12:00

Exercise 1. (15 points)

For a metric space (X, d) the length of a smooth curve $\gamma : [0, 1] \longrightarrow X$ was defined by

$$L_d[\gamma] = \sup_{n \in \mathbb{N}} \sup_{0 = t_0 < \dots < t_n = 1} \sum_{i=1}^n d(\gamma(t_{i-1}), \gamma(t_i)).$$

On a Riemannian manifold (M, g) we additionally can define the (Riemannian) length $L_g[\gamma]$ of such a curve γ by the metric g:

$$L_g[\gamma] = \int_{\gamma(0)}^{\gamma(1)} \sqrt{g\left(\dot{\gamma}(t), \dot{\gamma}(t)\right)} dt.$$

Show that on a Riemannian manifold these lengths coincide, that is, $L_d[\gamma] = L_g[\gamma]$ for some smooth curve $\gamma: [0, 1] \longrightarrow M$.

Hint: One inequality is clear. For the other one, show for $t \in (0, 1)$ and $\delta > 0$ the inequality

$$\frac{1}{\delta}d(\gamma(t),\gamma(t+\delta)) \leq \frac{1}{\delta}L_d[\gamma|_{[t,t+\delta]}] \leq \frac{1}{\delta}\int_t^{t+\delta}\sqrt{g\left(\dot{\gamma}(s),\dot{\gamma}(s)\right)}ds.$$

Then show by using the exponential map that both sides converge to $\sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))}$ as $\delta \longrightarrow 0$ and finally use the fundamental theorem of calculus.

Exercise 2. (15 points)

Show that every geodesic triangle in \mathbb{M}^n_{κ} lies in a 2-dimensional totally geodesic submanifold isometric to \mathbb{M}^2_{κ} .

Exercise 3. (15 points) Let Δ , $\Delta' \subset \mathbb{M}^2_{\kappa}$ be two comparable triangles without antipodale vertices. Show that there is an isometry $\in \text{Isom}(\mathbb{M}^2_{\kappa})$ that sends Δ to Δ' .

Exercise 4. (15points)

Let $\kappa \in \mathbb{R}$ be a real number and consider three non-negative real numbers $a, b, c, \in \mathbb{R}_{\geq 0}$ with $a + b + c \leq 2D_{\kappa}$ and $a \leq b + c$, $b \leq a + c$ and $c \leq a + b$. Show that there is a triangle in \mathbb{M}_{κ}^2 with side-lengths equal to a, b and c.