RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Mathematisches Institut

Vorlesung Differentialgeometrie II
Heidelberg, 05.12.2014

ExERCISE SHEET 7

Lengths in a Riemannian Manifold and Triangles in Model Spaces

To hand in by Friday, December 12, 2014, 12:00

Exercise 1. (15 points)
For a metric space (X, d) the length of a smooth curve $\gamma:[0,1] \longrightarrow X$ was defined by

$$
L_{d}[\gamma]=\sup _{n \in \mathbb{N}} \sup _{0=t_{0}<\ldots<t_{n}=1} \sum_{i=1}^{n} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right) .
$$

On a Riemannian manifold (M, g) we additionally can define the (Riemannian) length $L_{g}[\gamma]$ of such a curve γ by the metric g :

$$
L_{g}[\gamma]=\int_{\gamma(0)}^{\gamma(1)} \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))} d t
$$

Show that on a Riemannian manifold these lengths coincide, that is, $L_{d}[\gamma]=L_{g}[\gamma]$ for some smooth curve $\gamma:[0,1] \longrightarrow M$.

Hint: One inequality is clear. For the other one, show for $t \in(0,1)$ and $\delta>0$ the inequality

$$
\frac{1}{\delta} d(\gamma(t), \gamma(t+\delta)) \leq \frac{1}{\delta} L_{d}\left[\left.\gamma\right|_{[t, t+\delta]}\right] \leq \frac{1}{\delta} \int_{t}^{t+\delta} \sqrt{g(\dot{\gamma}(s), \dot{\gamma}(s))} d s
$$

Then show by using the exponential map that both sides converge to $\sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))}$ as $\delta \longrightarrow 0$ and finally use the fundamental theorem of calculus.

Exercise 2. (15 points)
Show that every geodesic triangle in \mathbb{M}_{κ}^{n} lies in a 2-dimensional totally geodesic submanifold isometric to \mathbb{M}_{κ}^{2}.

Exercise 3. (15 points)
Let $\Delta, \Delta^{\prime} \subset \mathbb{M}_{\kappa}^{2}$ be two comparable triangles without antipodale vertices. Show that there is an isometry $\in \operatorname{Isom}\left(\mathbb{M}_{\kappa}^{2}\right)$ that sends Δ to Δ^{\prime}.

Exercise 4. (15points)

Let $\kappa \in \mathbb{R}$ be a real number and consider three non-negative real numbers $a, b, c, \in \mathbb{R}_{\geq 0}$ with $a+b+c \leq 2 D_{\kappa}$ and $a \leq b+c, b \leq a+c$ and $c \leq a+b$. Show that there is a triangle in \mathbb{M}_{κ}^{2} with side-lengths equal to a, b and c.

