RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Mathematisches Institut

Vorlesung Differentialgeometrie II
Heidelberg, 21.11.2014

Exercise sheet 5

Curvature of submanifolds II and the Theorema Egregium

To hand in until Friday, November 28, 2014, 12:00

Exercise 1. (20 points)
Let (M, g) be an m-dimensional Riemannian manifold and $N \subset M$ a submanifold of dimension n with induced Riemannian metric, also denoted by g. For each $p \in N$ we can write the tangent space pointwise as $T_{p} M=T_{p} N \oplus T_{p} N^{\perp}$ where $T_{p} N^{\perp}=\left\{\xi \in T_{p} M \mid g_{p}(\xi, \eta)=0 \forall \eta \in T_{p} N\right\}$ denotes the normal space. Similarly with the normal bundle $T N^{\perp}$ we obtain the decomosition $T M=T N \oplus T N^{\perp}$. That is for all $X \in T M$ there is a unique way to write it as $X=X^{\top}+X^{\perp}$ where X^{\top} denotes the component tangent to N. Let ∇^{M} be the Levi-Civita connection on M. Show that the Levi-Civita connection ∇^{N} on (N, g) is given by

$$
\nabla_{X}^{N} Y=\left(\nabla \frac{M}{X} \bar{Y}\right)^{\top}
$$

for all $X, Y \in \Gamma(T N)$ with local extensions $\bar{X}, \bar{Y} \in \Gamma(T M)$.
Exercise 2. (20 points)
Let the notations be as in Exercise 1, $N \subset M$ a hypersurface. On the last exercise sheet we introduced the first and second fundamental form for a surface in \mathbb{R}^{3}. On this sheet we will see a more general definition of the second fundamental. The vector valued second fundamental form on N is defined as $I I(X, Y)=\left(\nabla \frac{M}{X} \bar{Y}\right)^{\perp}$ for all $X, Y \in \Gamma(T N)$ with local extensions \bar{X}, \bar{Y} respectively. Let ν be a local normal unit field on N which is unique up to a sign. Then the real valued second fundamental form l of N is defined ${ }^{1}$ as $l_{p}(u, v)=-g\left(\nabla_{u}^{M} \nu, v\right)$ for $u, v \in T_{p} N$.
(a) Show that $I I_{p}(u, v)=l_{p}(u, v) \nu_{p}$ for all $u, v \in T_{p} N$.
(b) Show that N is totally geodesic if and only if the second fundamental form at every point of N vanishes.

Exercise 3. (20 points)
Let the notations be as in Exercise 1 and 2 and $N \subset M$ a Riemannian hypersurface. Let R^{M}, κ^{M} (resp. R^{N}, κ^{N}) be the curvature tensor and the sectional curvature of M (resp. N). For a 2 dimensional subspace of $T N$ generated by X and Y the Gaussian curvature of N is defined as

$$
K(X, Y)=\frac{l(X, X) l(Y, Y)-l(X, Y)^{2}}{g(X, X) g(Y, Y)-g(X, Y)^{2}} .
$$

(a) Show that for $X, Y, Z, W \in \Gamma(T N)$ and the notations above we have

$$
R^{N}(X, Y, Z, W)=R^{M}(X, Y, Z, W)-l(X, Z) l(Y, W)+l(X, W) l(Y, Z)
$$

and

$$
\kappa^{N}(X, Y)=\kappa^{M}(X, Y)+K(X, Y) .
$$

Hint: Show that $g\left(\nabla_{X}^{M} \nabla_{Y}^{M} Z, W\right)=g\left(\nabla_{X}^{N} \nabla_{Y}^{N} Z, W\right)-l(Y, Z) l(X, W)$.
(b) What does this mean for the sectional and the Gaussian curvature of a surface in \mathbb{R}^{3} ?

Remark The equations shown in (a) are called the Gauss equations. The result in (b) is also known as the Theorema Egregium of Gauss.

[^0]
[^0]: ${ }^{1} l$ is well defined up to the sign of ν.

