RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Mathematisches Institut

Vorlesung Differentialgeometrie II
Heidelberg, 14.11.2014

Exercise sheet 4

Curvature of submanifolds

To hand in until Friday, November 21, 2014, 12:00

Exercise 1. (20 points)
Let (M, g) be a Riemannian manifold and P, Q curvature-like tensors such that $K_{P}(v, w)=$ $K_{Q}(v, w)$ for all $v, w \in T_{p} M$, where $K_{P}(v, w)=\frac{P(v, w, w, v)}{\|v\|^{2}\|w\|^{2}-g(v, w)^{2}}$.
Show that $P=Q$.
Hint: Compute the second derivative

$$
\frac{\partial^{2}}{\partial \alpha \partial \beta}(P(X+\alpha Z, Y+\beta W, Y+\beta W, X+\alpha Z)-P(X+\alpha W, Y+\beta Z, Y+\beta Z, X+\alpha W))
$$

for $\alpha=\beta=0$.
Exercise 2. (40 points)
Let M be an oriented parameterised surface in \mathbb{R}^{3} and $q=\left(q_{1}, q_{2}, q_{3}\right) \in M$ such that there is an open neighbourhood $U \subset M$ of p and a C^{2}-function $f: W \subset \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that $\left(q_{1}, q_{2}\right)$ is a critical point ${ }^{1}$ of f and U is the graph of f. Then the Gaussian curvature $K(q)$ of M at q is the determinant of the Hessian matrix of f at q. As this matrix is symmetric, we can diagonalise it to obtain two directions which are called the principal directions. The second derivative restricted to these directions are the eigenvalues and are called the principal curvatures. The Gaussian curvature then is the product of these derivatives.
Let $\langle\cdot, \cdot\rangle$ be the standard scalar product in \mathbb{R}^{3} and $h: V \subset \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ a regular local parameterisation. Let $\left(x_{1}, x_{2}\right)$ be the corresponding local coordinates of $M=h(V)$. The first fundamental form b with $b_{p}: T_{p} V \times T_{p} V \longrightarrow \mathbb{R}$ is defined as $b_{p}(v, w)=h^{*}\langle v, w\rangle=\langle d h(v), d h(w)\rangle$. Let ν be a normal field to M of norm 1, which is unique up to a sign. The second fundamental form l with $l_{p}: T_{p} V \times T_{p} V \longrightarrow \mathbb{R}$ is given by $l_{p}(v, w)=-\left\langle\nabla_{d h(v)} \nu, d h(w)\right\rangle$.
(a) Show that in local coordinates we have $b_{i j}:=b\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\left\langle\frac{\partial h}{\partial x_{i}}, \frac{\partial h}{\partial x_{j}}\right\rangle$ and $l_{i j}:=l\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\left\langle\nu, \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}\right\rangle$ and therefore, with the appropiate choice of the sign of ν,

$$
l_{i j}=\operatorname{det}\left(\frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}, \frac{\partial h}{\partial x_{1}}, \frac{\partial h}{\partial x_{2}}\right) \cdot{\sqrt{\operatorname{det}\left(b_{k l}\right)}}^{-1}
$$

(b) Show that the Gaussian curvature can be expressed by $K(p)=\frac{\operatorname{det}\left(l_{i j}\right)}{\operatorname{det}\left(b_{i j}\right)}(p)$.
(c) Determine the Gaussian curvature of a parabola rotated around the z-axis.
(d) Let M be the surface parameterized by $h: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3},(x, y)^{t} \mapsto(x, y, x y)^{t}$. Compute the Gaussian curvature of M at each point and compute also the principal curvature at the origin and draw a sketch of it.
(e) Let M be the surface parameterized by $h: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3},(x, y)^{t} \mapsto\left(x+y, x-y, x^{2}\right)^{t}$. Compute the Gaussian curvature of M at each point and compute also the principal curvature at the origin and draw a sketch of it.

[^0]
[^0]: ${ }^{1}$ It turns out that by a suitable choice of f every point of M can be made to a critical point of f.

