

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 07.11.2014

EXERCISE SHEET 3

Coverings and spaces of non-positive curvature

To hand in until Friday, November 14, 2014, 14:00

Exercise 1. (30 points)

The aim of this exercise is to prove the following proposition:

Proposition. Let B and C be manifolds and B be connected. Let $p: C \longrightarrow B$ be a local homeomorphism with the property of lifting paths¹. Then p is a covering map.

Let B, C be as in the proposition and $p: C \longrightarrow B$ a local homeomorphism with the property of lifting paths. Show the following statements.

- (a) Squares can be lifted. That is, if $\varphi: [0,1] \times [0,1] \longrightarrow B$ continuous with $b:=\varphi(0,0)$ and $c \in p^{-1}(b)$ is given, then there is a unique $\widetilde{\varphi}: [0,1] \times [0,1] \longrightarrow C$ such that $\widetilde{\varphi}(0,0) = c$ and $p \circ \widetilde{\varphi} = \varphi.$
- (b) Let $\gamma_1, \gamma_2: [0,1] \longrightarrow B$ be two paths of B with $\gamma_1(0) = \gamma_2(0) =: b$ and $\gamma_1(1) = \gamma_2(1) =: q$. Choose $c \in C$ such that p(c) = b. Let γ_1 and γ_2 be homotopic. Then also their lifts $\tilde{\gamma}_1$ and $\widetilde{\gamma}_2$ with origin *c* are homotopic.
- (c) Let X be a simply connected manifold and $f: X \longrightarrow B$ continuous. Then f can be lifted to some $f: X \longrightarrow C$.
- (d) Let C be path connected and B simply connected. Then p is a homeomorphism.
- (e) Prove the proposition above.

Exercise 2. (15 points)

Let B and C be connected manifolds and $p: C \longrightarrow B$ a proper local homeomorphism. Show that p is a finite covering.

Hint: Use the proposition of exercise 1. To show that p has the path lifting property, show that the subset of [0, 1], where the lift is defined, is [0, 1].

Exercise 3. (15 points)

k

The aim of this exercise is to compute the sectional curvature of \mathbb{M}_k^n for $k \neq 0$.

(a) Show that a geodesic through the point x with speed $v \in T_x \mathbb{M}_k^n = \operatorname{span}(x)^{\perp}$ is given by

$$\begin{aligned} k &> 0: \quad \gamma(t) = x \cos(t\sqrt{k} \|v\|) + \frac{v}{\sqrt{k} \|v\|} \sin(t\sqrt{k} \|v\|) \\ k &< 0: \quad \gamma(t) = x \cosh(t\sqrt{-k} \|v\|) + \frac{v}{\sqrt{-k} \|v\|} \sinh(t\sqrt{-k} \|v\|). \end{aligned}$$

(b) For $u, w \in T_x \mathbb{M}^n_k$ with ||u|| = ||w|| = 1 and g(u, w) = 0, a 1-parameter family of geodesics is given by $\gamma_{v(s)}(t) = \exp_x(t v(s))$ with $v(s) = u \cos(s) + w \sin(s)$. Use Jacobi fields to compute the curvature of \mathbb{M}_k^n for both k > 0 and k < 0.

¹**Definition** A continuous map $p: C \longrightarrow B$ is said to have the property of lifting paths when every path of B may be lifted. That is for every path $\gamma: [0,1] \longrightarrow B$ and for all $c \in p^{-1}(\gamma(0))$ there is a path $\widetilde{\gamma}: [0,1] \longrightarrow C$ with $\widetilde{\gamma}(0) = c$ and $p \circ \widetilde{\gamma} = \gamma$.