

Horofunction Compactification of \mathbb{R}^n

with Polyhedral Norms

Anna-Sofie Schilling (Heidelberg)

Introduction

I work on the horofunction compactification of symmetric spaces of non-compact type. Instead of compactifying a symmetric space X directly, it is often easier to compactify the flats lying in X and then use a group action on them. Flats are totally geodesic immersions of Euclidean space into X, therefore I will present here the horofunction compactification of a finite-dimensional normed space with polyhedral norm.

Theoretical Background

Unit and Dual Unit Balls

To every norm $\|\cdot\|$ there is a unit ball $B_{\|\cdot\|}$ associated to it:

 $B_{\|\cdot\|} = \{x \in \mathbb{R}^n \mid \|x\| \le 1\}.$

Denote by $\langle \cdot | \cdot \rangle$ the dual pairing of \mathbb{R}^n and its dual space $(\mathbb{R}^n)^*$. Then the **dual unit ball** B° of B is defined as

 $B^{\circ} = \left\{ y \in (\mathbb{R}^n)^* \mid \langle y | x \rangle \ge -1 \; \forall x \in B \right\}.$

If *B* is polyhedral, then so is B° . In this case, to every face *F* of *B* there is exactly one face $E = F^{\circ}$ of B° , called the **dual face of** *F*, satisfying

$$\dim(F) + \dim(F^{\circ}) = n - 1.$$

$$y \longrightarrow \mathbb{R}^{2} \qquad y \longrightarrow \mathbb{R}^{2} \qquad y \longrightarrow \mathbb{R}^{2} \qquad \mathbb{R$$

Horofunction Compactification

General setting

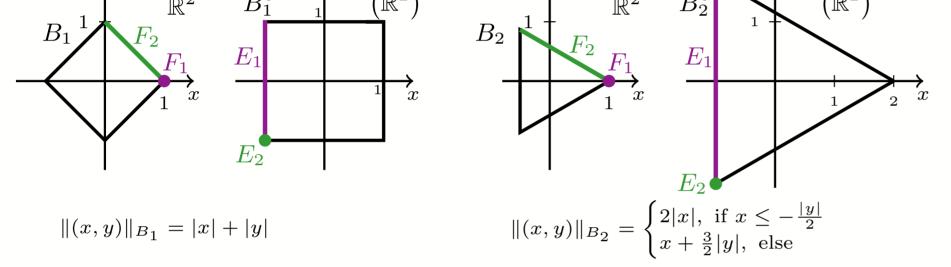
Let (X, d) be a nice¹ metric space allowing the metric to be non-symmetric (i.e. $d(x, y) \neq d(y, x)$ possible). The basic construction is to embed X via $\psi : z \mapsto \psi_z$ into the space $\widetilde{C}(X)$ of continuous real valued functions vanishing at a basepoint p_0 in the following way:

$$\psi_z(x) = d(x, z) - d(p_0, z)$$

The closure of the image $\overline{\psi(X)}$ is compact and called the **horofunction compactification of** *X*. We identify the space *X* with its image in $\widetilde{C}(X)$ and call the elements in the boundary $\partial_{hor}(X)$ **horofunctions**.

Polyhedral normed spaces

For a finite-dimensional normed space with polyhedral norm $\|\cdot\|_B$, Walsh [1] determines all horofunctions explicitly. Using his results we obtain [2] the following



Examples of unit balls and their duals. The colors indicate dual faces.

characterization of horofunctions:

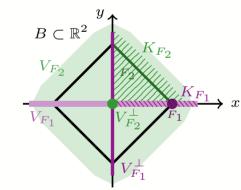
 $\partial_{hor}(X) = \{h_{E,p} \mid E \subset B^{\circ} \text{ is a proper face and } p \in \mathbb{R}^{\dim(E)}\},\$

where the functions $h_{E,p} : X \longrightarrow \mathbb{R}$ can be calculated explicitly. In other words, to each face $E \subset B^{\circ}$ and a point $p \in \mathbb{R}^{\dim(E)}$ there is exactly one horofunction associated to it.

¹ "nice" here means that X is geodesic, d is symmetric with respect to convergence and that the symmetrized distance $d_{sym}(x, y) = d(x, y) + d(y, x)$ is proper.

Convergence of Sequences

To reveal more structure of the compactification, we examine the behavior of sequences at infinity. From now on let $X = \mathbb{R}^n$ and let $F \subset B$ be a face and $E = F^\circ \subset B^\circ$ be its dual face. First we fix some notation:



 K_F Cone over face F

 V_F Subspace over face F

 V_F^{\perp} Orthogonal complement of V_F (dim $(V_F^{\perp}) = \dim(F^{\circ})$)

Then an unbounded sequence $(z_n)_{n \in \mathbb{N}} \subset \mathbb{R}^n$ (i.e. sequence $(\psi_{z_n}) \subset \widetilde{C}(X)$) converges to a horofunction $h_{E,p} \in \partial_{hor}(\mathbb{R}^n)$ if and only if the following conditions are satisfied:

- $\operatorname{proj}_{V_F}(z_n) \in K_F$ for all $n \gg 0$ (projected sequence lies in cone K_F),
- $d(\partial_{rel}K_F, \operatorname{proj}_{V_F}(z_n)) \to \infty$ (infinite distance to the relative boundary of K_F),
- $\|\operatorname{proj}_{V_{E}^{\perp}}(z_{n}) p\|_{B} \to 0$ (orthogonal part of sequence converges to *p*)

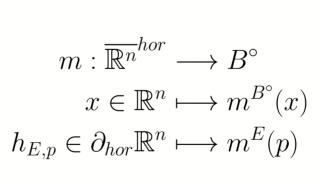
Roughly speaking, a sequence in the direction of a face F of B converges to a horofunction associated to the dual face $E = F^{\circ} \subset B^{\circ}$ and $p \in \mathbb{R}^{\dim(E)}$.

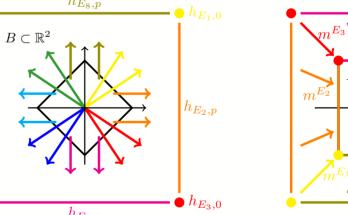
$$B \subset \mathbb{R}^2 \qquad \overset{g}{1} \qquad \overset{y_n}{1} \qquad \qquad B^{\circ} \subset (\mathbb{R}^2)$$

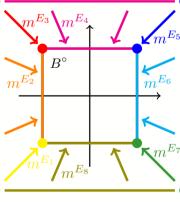
Homeomorphism between Compactification and B°

This behavior of convergence leads to a homeomorphism m between the compactification $\overline{\mathbb{R}^n}^{hor}$ and the dual unit ball B° .

For each face $E \subset B^{\circ}$ we construct a homeomorphism $m^{E} : \mathbb{R}^{\dim(E)} \to \operatorname{int}(E)$ to the interior of E, which is compatible with the convergence of sequences. Putting all these maps $m^{E_{i}}$ together, we obtain a **homeomorphism** m between the horofunction compactification $\overline{\mathbb{R}^{n}}^{hor}$ and the dual unit ball B° :



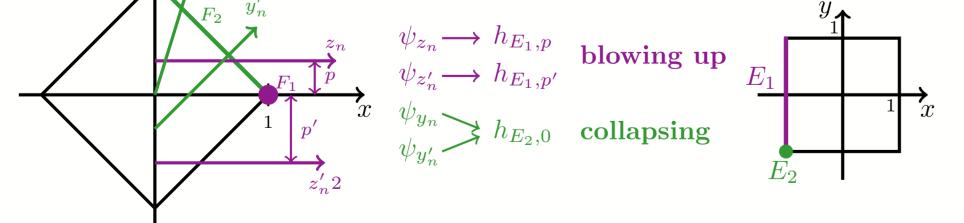




Connection between the horofunctions as limits of sequences (left) and the maps m^{E_i} (right).

Further Work

Based on the results for polyhedral norms, I am working on different projects:
I try to generalize the results to norms that are not polyhedral, for example



Blowing up and collapsing behavior of converging sequences.

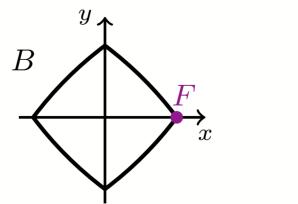
We observe the following behavior:

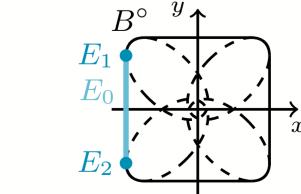
- sequences in a singular direction (i.e. $\dim(F) < (n-1)$) converge to different horofunctions $h_{E,p}$, $h_{E,p'}$ associated to the same face E but with different parameters p, p'. We call this behavior blowing up.
- sequences in a regular direction (i.e. dim(F) = (n 1)) all converge to the same horofunction $h_{E,0}$. We call this behavior collapsing.

Selected References

- [1] Cormac Walsh, The horofunction boundary of finite-dimensional normed spaces, Math. Proc. Cambridge Philos. Soc., 142(3):497–507, 2007.
- [2] Lizhen Ji, Anna-Sofie Schilling, *Polyhedral Horofunction Compactification as Polyhedral Ball, ArXiv e-prints* arXiv:1607.00564v2, Aug. 2016.
 [3] T.Haettel, A.Schilling, C.Walsh, A.Wienhard, *Horofunction Compactifications of Symmetric Spaces, ArXiv e-prints* arXiv:1705.05026v2, Sept. 2018.

to a blown up L^1 -norm. There is no 1-1 correspondence between the faces of B and those of B° anymore as shown in the picture. Therefore the behavior of sequences at infinity changes. Additionally we now have uncountably many faces of B and B° , which makes it difficult to define the maps m^C for the homeomorphism m.





There is more than one dual face to F if B and B° are not polyhedral.

• There are many well-known compactifications of symmetric spaces apart from the horofunction compactification. Some of them can also be determined by compactifying the flats, which gives us a nice way to compare compactifications. We have already shown [3] that any (generalized) Satake compactification can be realized as a special horofunction compactification. I want to continue in this direction and **compare** the horofunction compactification **with other known compactifications of** *X*.