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These are notes from a course given at Tsinghua University during the
fall of 2004. The aim of the course was to explain how to construct p-adic L-
functions using the theory of (p,I')-modules of Fontaine. This construction
is an adaptation of an idea of Perrin-Riou. The content of the course is
well reflected in the table of contents which is almost the only thing that I
modified from the notes taken and typed by the students Wang Shanwen,
Chen Miaofen, Hu Yongquan, Yin Gang, Li Yan and Hu Yong, under the
supervision of Ouyang Yi, all of whom I thank heartily. The course runs in
parallel to a course given by Fontaine in which the theory of (¢, I')-modules
was explained as well as some topics from p-adic Hodge theory which are used
freely in these notes, which means that they are not entirely self-contained.
Also, as time runs short at the end, the last chapter is more a survey than a
course. For a bibliography and further reading, the reader is referred to my
Bourbaki talk of June 2003 published in Astérisque 294.



1



Contents

I Classical p-adic L-functions: zeta functions and
modular forms

1 The p-adic zeta function of Kubota-Leopoldt

1.1 The Riemann zeta function at negative integers . . . . . . ..
1.2 p-adic Banach spaces . . . . . . .. .. ... ... ... .. ..
1.3 Continuous functionson Z,, . . . .. . .. .. ... ... ...
1.3.1 Mahler’s coefficients . . . . . . ... ...
1.3.2 Locally constant functions. . . . . . . .. .. ... ...
1.4 Measureson Z, . . . . .. ... ... o
1.4.1  The Amice transform . . . . . . .. ... ... ... ..
1.4.2  examples of measures on Z, and of operations on mea-

1.5 The p-adic zeta function . . . . . ... ... . ... ... ...
1.5.1 Kummer’s congruences. . . . . . . . ... ... ...
1.5.2 Restriction to Z,. . . . ... ... 0oL
1.5.3 Leopoldt’s I'-transform. . . . . .. ... ... .....

1.6 CFfunctions . . . . . . . ... ...
1.6.1 Definition. . . . . . ... ...
1.6.2 Mabhler’s coefficients of C"-functions. . . . . . . . .. ..

1.7 locally analytic functions . . . . . . . . ... ... ... ....
1.7.1  Analytic functions on a closed disk. . . . . . ... . ..
1.7.2  Locally analytic functionson Z,. . . . ... ... ...

1.8 Distributionson Z,, . . . . . ... ...
1.8.1 The Amice transform of a distribution. . . . . . .. ..
1.8.2 Examples of distributions. . . . . . . .. ... ... ..
1.8.3 Residue at s =1 of the p-adic zeta function. . . . . . .

1.9 Tempered distributions . . . . . . . . ... ... ...

111



v

3

CONTENTS

1.9.1 Analytic functions inside C" functions . . . . . . . . .. 31
1.9.2 Distributions of order . . . . . . . ... ... 33
1.10 Summary . . . . ... 36
Modular forms 39
2.1 Generalities . . . .. ... 39
2.1.1 The upper half-plane . . . . . ... ... ... .. ... 39
2.1.2  Definition of modular forms . . . . .. ... ... ... 40
2.1.3 g-expansion of modular forms. . . . . .. .. ... 40
214 Cuspforms. . . . .. ... 41
22 Thecase '=SLo(Z) . . . . . ... o o 42
2.2.1 The generators S and T of SLo(Z). . . . . ... .. .. 42
2.2.2 Eisenstein series . . . . . . . ... ... ... ... 43
2.2.3 The fundamental domain for SLy(Z) . . . . ... . .. 44
2.2.4 The % formula. . . . ... ... L 46
2.2.5  Dimension of spaces of modular forms. . . . . .. ... A7
2.2.6 Rationality results. . . . . . ... ... ... ... 48
2.3 The algebra of all modular forms. . . . . . .. ... ... ... 50
2.4 Hecke operators . . . . . . .. ..o 53
2.4.1 Preliminary. . . . . . . . ..o o 53
2.4.2 Definition of Hecke operators: R,, T,,,n>1.. . . . .. 54
2.4.3 Action of Hecke operators on modular forms. . . . . . . 56
2.5 Petersson scalar product. . . . ... ..o 58
2.6 Primitive forms . . . . ... ... o 60
p-adic L-functions of modular forms 63
3.1 L-functions of modular forms. . . . . . . ... ... ... ... 63
3.1.1 Estimates for the fourier coefficients . . . . . . . . . .. 63
3.1.2 Dirichlet series and Mellin transform . . . . .. .. .. 65
3.1.3 Modular forms and L-functions . . . . ... ... ... 66
3.1.4 Euler products . . . ... ... ... ... ... .. .. 68
3.2 Higher level modular forms . . . . . . ... ... .. ... ... 69
3.2.1 Summary of theresults . . . . . . ... ... ... ... 69
3.2.2  Taniyama-Weil Conjecture . . . . . . .. ... .. ... 71
3.3 Algebraicity of special values of L-functions . ... ... ... 71
3.3.1 Modular symbols. . . . . ... ..o 71
3.32 Theresults . ... ... .. ... ... ......... 73

3.3.3 Rankin’s method . . . . . . . .. ... ... ... 74



CONTENTS v

3.4 p-adic L-functions of modular forms . . . . . .. ... ... .. 7

II Fontaine’s rings and Iwasawa theory 83
4 Preliminaries 85
4.1 Some of Fontaine’s rings . . . . . .. ... .. ... .. .. .. 85
4.1.1 Rings of characteristicp . . . . . . ... ... .. ... 85

4.1.2 Rings of characteristic0 . . . . . . ... .. ... ... 87

4.2 (p,I')-modules and Galois representations. . . . . . . . . ... 89

5 (¢,I')-modules and Galois cohomology 91
5.1 Galois Cohomology . . . . . .. . .. ... ... ... ... 91
5.2 The complex C, (K, V) . .. ... ... ... ... ...... 92
5.3 Tate’s Euler-Poincaré formula. . . . . . .. ... .. ... ... 95
5.3.1 Theoperator . . . . . .. ... 95

532 DY land D/(—1) . .. 08

5.3.3 The I-module D¥=°. . . . .. ... ... .. .. ..., 100

5.3.4  Computation of Galois chomology groups . . . . . . . . 103

5.3.5 The Euler-Poincaré formula. . . . . . .. ... .. ... 104

5.4 Tate’s duality and residues . . . . . .. .. ... ... ... .. 105

6 (p,I')-modules and Iwasawa theory 109
6.1 TIwasawa modules H{ (K, V) . . .. ... ... ... ...... 109
6.1.1 Projective limits of cohomology groups . . . . . . . .. 109

6.1.2 Reinterpretation in terms of measures . . . . . . . . .. 110

6.1.3 Twist by a character (a la Soulé) . . . ... ... ... 111

6.2 Description of H{_ in termsof D(V) . ... ... ... .. .. 112
6.3 Structure of HL (K, V) . . . . . .. .. .. 115

7 Z,(1) and Kubota-Leopoldt zeta function 117
7.1 The module D(Z,(1))¥= . . . . . .. ... 117
7.2 Kummer theory . . . . . .. ... oo 118
7.3 Coleman’s power series . . . . . . . .. .. ... 119
7.4 An explicit reciprocity law . . . . . .. ... 122
7.5 Proof of the explicit reciprocity law . . . . . . . . . ... ... 123
7.5.1 Strategy of proof of Theorem 7.4.1 . . . . . .. .. .. 123

7.5.2  Explicit formulas for cocyles . . . . . ... ... 125



vi

8

CONTENTS

7.5.3 Tate’s normalized trace maps . . . . . .. . ... ... 127
7.5.4 Applications to Galois cohomology . . . . . .. .. .. 130
755 No2miinCpl . ... ... ... ... 0. 131
(p,T)-modules and p-adic L-functions 133
8.1 Tate-Sen’s conditions . . . . . . . ... .. ... ... 133
8.1.1 The conditions (TS1), (T'S2) and (TS3) . . . . ... .. 133
8.1.2 Example : the field C, . . .. ... ... ... ... . 134
8.2 Sen’smethod . . ... ... ... oL 136
8.2.1 Almost étale descent . . . . . . ... ... ... ... 136
8.2.2 Decompletion . . . . ... ... ... L. 138
8.2.3 Applications to p-adic representations . . . . . . . . .. 140
8.3 Overconvergent (p,I')-modules. . . . . .. ... ... .. ... 141
8.3.1 Overconvergent elements . . . . . ... ... .. .... 141
8.3.2 Overconvergent representations . . . .. .. ... ... 145
8.3.3 p-adic Hodge theory and (p,I')-modules . . . . .. .. 147
8.3.4 A map of the land of the rings . . . . . . .. ... ... 148
8.4 Explicit reciprocity laws and p-adic L-functions . . . . . . .. 149
8.4.1 Galois cohomology of Bgg . . . . . . . . .. ... ... 149
8.4.2 Bloch-Kato’s dual exponential maps. . . . . . . . . .. 150
8.4.3 The explicit reciprocity law . . . . . . .. . ... ... 152
8.4.4 Cyclotomic elements and Coates-Wiles morphisms. . . 154

8.4.5 Kato’s elements and p-adic L-functions of modular forms.155



Part 1

Classical p-adic L-functions:
zeta functions and modular
forms






Chapter 1

The p-adic zeta function of
Kubota-Leopoldt

1.1 The Riemann zeta function at negative
integers

We first recall the definitions of Riemann zeta function and the classical
Gamma function:

((s) = > n=JJ0=p)" ifRe(s) > 1.

p

oo —t sdt :
['(s) = e 't e if Re (s) > 0.
0

The T'-function has the following properties:

(i) ['(s+1) = sI'(s), which implies that I" has a meromorphic continuation
to C with simple poles at negative integers and 0.

(ii) T(n) = (n — 1)V if n > 1.
(iii) D(s)['(1 — s) = Sinzr—m),
morphic) function on C with simple zeros at —n for n € N.

(iv) T'(3) = v/7.

which implies that ﬁ is an entire(or holo-
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Then we have the following formulas:

—S 1 e —nt sdt
t )
t

1 oo 2o gt 11t
(o) = m/o Z _@/0 et—lt?'

Lemma 1.1.1. If f : Ry — C s a C*®-function on R, rapidly decreasing
(i.e., t" f(t) — 0 when t — +oo for all n € N), then

1 [t t

F0r Y, Re(s) >0

has an analytic continuation to C, and

L(f,—n) = (=1)"f"(0).

Proof. Choose a C*-function ¢ on R, such that ¢(t) =1 for t € [0, 1] and
o(t) =0 for t > 2.

Let f = f1 + fo, where f; = ¢f, fo = (1 — ¢)f. Then fooo f2(t)t8% is
holomorphic on C, hence L(fs,s) is also holomorphic and L(f, —n) =0 =
£57m(0). Since, for Re (s) > 0,

s +oc0
SO - [ R0 g

L(th)_ ( )

= —L(fi(t),s + 1) = (=1)"L(f™, s + n),

we get analytic continuation for f; and hence for f, moreover,

L(f,—n) = L(f1,—n) = (=1)" 'L/, 1)

B / AT dt = (=1)" f7(0) = (=1)" £ (0).
[]

We now apply the above lemma to the function f(t) = -*5. Note that

00 o
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where B,, € Q is the n-th Bernoulli number with value:

1 1 1
By=1,Bi=——-B,=-.B3=0B,=———,B-=0---
0 y 1 27 2 67 3 y P4 307 5
Since f(t) — f(—t) = —t, we have Bogy1 = 0if £ > 1. Now :
1 [t dt 1
=— st = = ——L(f,s—1
)=y | SOF G = gD,

so we obtain the following result.

Theorem 1.1.2. (i) ¢ has a meromorphic continuation to C. It is holomor-
phic except for a simple pole at s = 1 with residue L(f,0) = By = 1.
(ii) If n € N, then

1 (=n"

_ - 1) = & 7/ p(ntl)
(n) = —L(fi—n—1) = {0 (0)
o . an+l
= (=1 n—+1 €Q
(= i)

Theorem 1.1.3 (Kummer). If p does not divide the numerators of ((—3),
¢(=5), - ,C(2 —p), then the class number of Q(uy,) is prime to p.

Remark. This theorem and a lot of extra work implies Fermat’s Last The-
orem for these regular primes. We will not prove it in these notes, but we
will focus on the following result, also discovered by Kummer, which plays
an important role in the proof.

Theorem 1.1.4 (Kummer’s congruences). Let a > 2 be prime to p. Let
k> 1. If ni,ny > k such that ny = ny mod (p — 1)p*~!, then

(1—a"™™)¢(=n) = (1 = a'™)¢(—nz) mod p".

1.2 p-adic Banach spaces

Definition 1.2.1. A p-adic Banach space B is a Q,-vector space with a
lattice B(Z,-module) separated and complete for the p-adic topology, i.e.,
0 o1 0/,n RO
B ~lim B”/p"B".

neN
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For all € B, there exists n € Z, such that x € p"B°. Define
vg(z) = sup {n:z¢€p"B°.
neNU{+oo}

It satisfies the following properties:

vp(r +y) > min(vp(x), v(y)),
vp(Az) = v,(A) +vp(z), it A € Q,.

Then || z ||p= p~"#® defines a norm on B, such that B is complete for ||||5
and B is the unit ball.

Example 1.2.2. (i) B=C, = Q,, B = Oc,, vp(z) = [v,()] € Z;

(i) The space B = C%Z,,Q,) of continuous functions on Z,. BY =
C°(Z,,7Z,) is a lattice, and vp(f) = irelgvp(f(x)) # —oo because Z,, is com-
pact.

(iii) Let B = C°(Z,,C,), B® = C*(Z,,Oc,); vp(f) = irelf[vp(f(x))]

Z
Definition 1.2.3. A Banach basis of a p-adic Banach space B is a family
(€;)ier of elements of B, satisfying the following conditions:

(i) For every x € B, v = > z6;, x; € Q, in a unique way with z; — 0

i€l

when i — oo; equivalently for any C, the set {i|v,(x;) < C} is a finite set.

(i) vn(r) = inf v, ).

1€

Theorem 1.2.4. A family (e;);e; of elements of B is a Banach basis if and

only if
(i) e; € BY for all i;
(i) the set (€i)icr form a basis of B°/pB° as a F,-vector space.

Proof. We leave the proof of the theorem as an exercise. O

Let B and B’ be two p-adic Banach spaces with Banach basis (e;);c; and
(fj)jes respectively, then BQB' is a p-adic Banach space with Banach basis
(62‘ ® fj)(@j)ejx‘]. Thus for all z € B®B/,

ro= Y zyei®f; (1, €Qpuzi;— 0as (i,j) — o)
1,
= Zyj@)fj (yj € B,y; — 0 as j — 00)
J

= Zei@)zi (2 € B',z; — 0 as i — 00).

i
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Exercise. C°(Z,,C,) = C,,@CO(Z,,,Q,,).

1.3 Continuous functions on Z,

1.3.1 Mahler’s coefficients

We have the binomial function:

T 1, ifn=0,
(n)_ z(z—1)--(x—n+1) > 1.

n! ’

Lemma 1.3.1. veo((%)) = 0.

Proof. Since (") =1, veo((%)) < 0.

If x € N, then (;’“;) € N implies vp((z)) > 0. Hence for all x € Z,,
up((%)) = 0 because N is dense in Z,. O

For all f € C%(Z,,Q,), we write
=g ) = 1) - M)
and write the Mahler’s coefficient
an(f) = f1(0).

Hence:

) = S0 (3 -,

i) = L0 (1) -0,

Theorem 1.3.2 (Mabhler). If f € C%(Z,,Q,), then
(i) nh—>Igo vp(an(f)) = +o0,
(ii) For all x € Zy, f(z) = 3" an(f) (%),

n=0

(ili) veo(f) = infwv,(an(f))-
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Proof. Let £o = {a = (an)nen : an € Q, bounded}, vy (a) = inf,enyv,(ay).
Then

o /— a(f) = (an(f))nen is a continuous map from C°(Z,, Q,) to l«.
and v (a(f)) = veo(f).

e The space (2, = {(an)nen : @, — 0, as n — oo} is a closed subspace of
lw and B = {f : a(f) € (%} is a close subspace of C*(Z,,Q,).

e Forall a € (2,
+o00

=Y u(l) ez,

n=0

because the series converges uniformly. Moreover, veo(f,) > wve (a)

and as (711) = (,5,) = (2):
400 T
=S a()

Hence we have: a(f) = f*(0) = a, which implies a(f,) = a.

e f i+ a(f) is injective. Since a(f) = 0 implies f(n) = 0 for all n € N,
Hence f = 0 by the density of N in Z,,.

Now for f € B,a(f) € €2, implies f — fu5) = 0 because a(f — fa(p))

a(f) —a(f) = 0 and a is injective. So f € B implies that f satisfies (ii).
Moreover, since

Ve (a(f)) 2 veo(f) = veo(fa(p) = vew (alf)),
(iii) is also true. It remains to show that:
Claim: B =C%(Z,,Q,). O
(a) First proof. We have a lemma:

Lemma 1.3.3. If f € C°(Z,,Q,), then there exists k € N such that

veo (') > weo(f) + 1.



1.3. CONTINUOUS FUNCTIONS ON Zp 9

Proof. We have

P) = St = 1)+ S0 () o =i+ (0 (1))

i=1

Now vp((p:)) >1,if1 <i < pF—1etwv,(1+(=1)"") > 1. Since Z, is compact,
f is uniformly continuous. For every ¢, there exists N, when v,(z —y) > N,
we have v,(f(z) — f(y)) > c. It gives the result for k = N. O

First proof of the Claim. Repeat the lemma: for every ¢ = veo(f) + k, there
exists an IV, such that veo (fIN) > ¢. Hence, for alln > N, vy(a,(f)) >c. O

1.3.2 Locally constant functions.

Choose a z € C,, such that v,(z — 1) > 0. Then

f(z) = :Z: (2) (z = 1)" € C°(Z,, C,).

Note k € N, f.(k) = 2*. So we write, f.(z) = 2® and we have 2% = 272V,

+o0
Example 1.3.4. (i) 22 = . (%)(z — 1)z =1 2-1=1 the series

n=0

converges in R to %, and converges in Q7 to —%.

(ii) If z is a primitive p"-th root of 1, then
(1) L o
vz —1) = —m8 —— .
’ (p—1)pn!

Note that 2**P" = 2 for all x, then 2® is locally constant( constant mod p"Z,).
The characteristic function of ¢ + p"Z, is given by

1 —1 T
Lisprz, (z) = I? Z z 'z

2P =1
since
— 0 if not.
2P =1
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Lemma 1.3.5. The set of locally constant functions LC(Z,,Q,) C B.

Proof. By compactness of Z,, a locally constant function is a linear combi-
nation of 1j;pnzs2%, 2 € My, thus a linear combination of 2*. But a,(z%) =
(z — 1) goes to 0, when n goes to 0o, hence 2% € B. ]

Lemma 1.3.6. LC(Z,,Q,) is dense in C°(Z,,Q,).
Proof. For every f € C°(Z,,Q,), let
pF-1
Ji = Z f(i)1i+pkzp-
i=0
Then f, — f in C° because f is uniformly continuous.

Second proof of the Claim. By the above two lemmas, LC(Z,,Q,) C B
C°(Z,,Q,), B is closed and LC(Z,,Q,) is dense in C°(Z,,Q,), hence B

C*(Zp, Qy)-

onn 0O

1.4 Measures on Z,

1.4.1 The Amice transform

Definition 1.4.1. A measure p on Z, with values in a p-adic Banach space
B is a continuous linear map f +— fzp flo)p = pr f(@)u(z) from C*(Z,, Q,)
to B.

Remark. (i) If L C C, is a closed subfield and B is an L-vector space, then
v extends by continuity and L-linearity to C%(Z,, L) = LQC°(Z,, Q,).

(ii) We denote Dy(Z,, B) the set of the measure on Z, with values in B,
then Dy(Z,, B) = Do(Z,, Q,)QB.

Definition 1.4.2. The Amice transform of a measure p is defined to be the
map:
+00 T
w40 = [ @ ryu =1 [ (n>u
Zp n=0 ZP

Lemma 1.4.3. Ifv,(z —1) >0, A,(2—1) = pr 2" u(x).
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+o0

Proof. Since z* = Y (z—1)"(?) with normal convergence in C°(Z,, Q,), one
n=0

can exchange Y and |. O

Definition 1.4.4. The valuation on Dy is

v = inf (v,( — veo(
Do 740 P/flj“ C

Theorem 1.4.5. The map p — A, is an isometry from Dy(Z,, Q,) to the
+00 +00
set {> b,T™, b, bounded, and b, € Q,} with the valuation v()_ b,T") =

) n=0 n=0
inf,en vy (by)-

+o00

Proof. On one hand, for all i1 € Dy(Z,, Q,), write A,(T) = > b, ()T, then
n=0

bn(p) = pr (%) . Since veo((%)) = 0 by Lemma 1.3.1,

0y (0a(1) 2 o, 1) + 1)) 2 v 0

for all n, hence v(A,) > vp, ().
+oo

On the other hand, if (b,)nen is bounded, f +— anan(f)(by Mabhler’s
n=0
theorem, a,(f) — 0) gives a measure p;, whose Amice transform is

T)=>T / (n>’“’ =37 (Zbiai((n))) => b7
n=0 Zp n=0 i=0 n=0
x 1 ifi=mn,
an((l)) B {0 otherwise.

Up(z bpan(f)) = mgn(vp(bn) + vp(an(f)))

n=0

since

Hence

> mgn(vp(bn)) + ngn(an(f))
= ()b T") + veo(f)

= v(A,) + veo(f).
Thus vp, () > v(A,). Then we have v(A4,) = vp, (1) O
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By Lemma 1.3.6, we know that locally constant functions are dense in

C%(Z,,Q,). Explicitly, for all f € C°(Z,,Q,), the locally constant functions
pr—1
fo= 22 f(i)ligpnz, — f in C°
i=0
Now if u € Dy(Z,, Q,), set p(i + p"Z,) = pr Lispnz,pv. Then pr fuis

given by the following “Riemann sums”

pr—1

| fu= lim > fui+p"2,) (1.1)
P =0

Note that v,(u(i + p"Z,)) > vp, ().

Theorem 1.4.6. If i is an additive bounded function on compact open sub-
sets of Z, (by compactness of Z, is a finite disjoint union of i + p"Z, for
some n), then p extends uniquely as a measure on Z, via (1.1).

Proof. Since v is an additive function on compact open subsets, p is linear
on locally constant functions. And p is bounded, hence p is continuous for
veo. As the locally constant functions are dense in C%(Z,,Q,), we have p as
a measure on Zj,. O

1.4.2 examples of measures on 7Z, and of operations on
measures.

Example 1.4.7. Haar measure: j(Z,) = 1 and y is invariant by translation.

We must have p(i + p"Z,) = 1% which is not bounded. Hence, there exists

no Haar measure on Z,,.

Example 1.4.8. Dirac measure: For a € Z,, we define 6, by fzp f(x)d, =
f(a). The Amice transform of 4, is A, (T) = (1 + T)“.

Example 1.4.9. Multiplication of a measure by a continuous function. For
i € Dy, f €C° we define the measure fu by

/Zg~fu= : f(@)g(z)p

for all g € C°.
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(i) Let f(z) = =, since

(D) = wmnen () =0, 1) +a(2),

the Amice transform is

+oo
n i
o= 2 ()
n=0 P

— :izT” (n+1)/Zp (nil)wrn/zp (i)lﬁ]

d
= (1+7) 774,

(ii) Let f(x) = 2%, v,(z — 1) > 0. For any y, v,(y — 1) > 0, then

/Zpyw(zwu):/z (=) = Ay(yz — 1)

P

which implies that
Apepy(T)=A,((1+T)z—1).
(iii) The restriction to a compact open set X of Z,: it is nothing but the
multiplication by 1x. If X = i+ p"Z,, then 1z () = p™™ > 2727,

zp" =1
hence

ARespp w(T) =p" > 27 A (14 T)z = 1).
2P =1
Example 1.4.10. Actions of ¢ and v. For u € Dy, we define the action of
@ on pi by

; f@)p(p) = [ flpx)p.

Zp
Hence

Ay (T) = fT [ (%)= A1+ 77 = ) = ol4,(1)

n

where ¢ : T+ (1 4+T)P — 1 (compare this formula with (¢, I')-modules). We
define the action of ¢ by

RIOECE pr(%)u-
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Then Ay = ¥(A,) where

F) (L + TP —1) = 219 S F((14+T)z - 1),

The actions ¢ and v satisfy the following properties:
(i) Y op=1d;
(ii) ¥(p) = 0 < p has a support in Zy;
(i) Resz;(p) = (1 — ov)p.
The map @ is very important in the theory of (¢, T')-modules.

Example 1.4.11. Action of T'. Let I' = Gal(Qp(pp=)/Q,). Let x : T = Z7
be the cyclotomic character. For v € I' and p € Dy, we let yu be given by

; f(x)yp = j Fix()z)p.

One can verify that A, (T) = A, ((1 + T)X" — 1) = y(AL(T)) for 4(T) =
(14 T)X") — 1. (Compare this formula with (o, I')-modules.)
For all v € I', v commutes with ¢ and .

Example 1.4.12. Convolution A % u. Let A\, u be two measures, their con-
volution A * y is defined by

[ fann= / ([ 1+ ).

Here we have to verify y — pr f(z + y)u(x) € C° which is a direct conse-
quence of the fact f is uniformly continuous.
Let f(x) = 2%, vy(z — 1) > 0, then

/Z Sae = /Z () /Z ),

P

thus AA*H = A)\A'u.
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1.5 The p-adic zeta function

1.5.1 Kummer’s congruences.

Lemma 1.5.1. For a € Zy, there exists a measure A\, € Dy such that

1 a
. /Zp( MR T S

Proof. This follows from Theorem 1.4.5 and the fact

a B a 1 1 ez
(I+Ty =1 X2, ()T T 1+ e ')t T
since a1 (%) € Z,. Moreover, we have vp,(\,) = 0. O
Proposition 1.5.2. For everyn €N, [, "X, = (=1)"(1 — a'*")¢(—n)

Proof. For a € R%, for T' = e’ — 1, let

1 a
et —1  eat —1’

fa(t) = A (T) =

then f, is in C* on R™ and rapidly decreasing. Hence

L) = [ B0 = (1 =a )
F2(0) = (<1 Llfa, —n) = (=1)"(1 — ") (~n)

The identity f™(0) = (—1)"(1 — a'*"){(—n) is algebric, so is true for all a,
hence even on Zj. Thus

d d

[ o= Gr [ emnlis = (G an e = Dl = £0(0)

Corollary 1.5.3. Fora € Z,, k > 1 (k >2ifp=2), ny,ny >k, ng =
nomod (p — 1)p*~1, then

(L= a™™)¢(=m1) = (L= a""2)¢(=n2)) > k.
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Proof. The left hand side LHS = v,((1 —a'™){(—ny) — (1 — a'*t"2)((—n2))
is

Up(/ (xnl - xm))\a) 2 UDO()‘II) + Uco (xm - xm)'
Z

From the proof of Lemma 1.5.1, vp,(\,) = 0, thus LHS > veo(x™ — 2"2). It
suffices to show veo (2" — 2"2) > k. There are two cases:

If x € pZ,, then vp(x™) > k and v,(2"?) > k since ny,ny > k.

Ifx € Z, vy(a™ —a™) > k because (Z/p*7Z)* has order (p — 1)p*~! and
ny — ngy is lelSlble by (p—1)pk O

Remark. The statement is not clean because of z € pZ,.

1.5.2 Restriction to Z;;.

Lemma 1.5.4. ¢(7) = 7.
Proof. Let F(T) = (%), then

F(A+T) —1) ! Z ﬁ

ZZ (1+T)z

zP=1 n=0

1
=Y A+ = ————
N e

Proposition 1.5.5. 1()\,) = A,.
Proof. We only need to show the same thing on the Amice transform, but

1 a 1 1

AAG(T)Zf—WZT—G'%(T)

where v, € T is the inverse of a by x : I' = Zj, i.e., X(7a) = a. Since ¢ and

Y, commutes and ¥(7) = 7, we have
1 1
w(AAa) = f - a’/ya(f) = A)\a’
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Corollary 1.5.6. (i) Resz:(Aa) = (1 — ¢)Aa = (1 — @) A,
(i) [z, 2" Aa = J5, 2" (1 = )Aa = (=1)"(1 = @™ ) (1 = p")¢(=n).

Remark. The factor (1 — p”) is the Euler factor of the zeta function at p.

Theorem 1.5.7. Fori € Z/(p — 1)Z (ori € Z)2Z if p = 2), there exists a
unique function (,;, analytic on Z, if i # 1, and (s — 1)(,1(s) is analytic on
Ly, such that (,;(—n) = (1 —p")((—n) if n = —imodp — 1 and n € N.

Remark. (i) If i = O0mod 2, then (,; = 0 since ((—n) = 0 for n even and
e

(ii) To get p-adic continuity, one has to modify ¢ by some “Euler factor
at p”.

(iii) Uniqueness is trivial because N is infinite and Z, is compact.

(iv) The existence is kind of a miracle. Its proof relies on Leopoldt’s

[-transform.

1.5.3 Leopoldt’s I'-transform.

Lemma 1.5.8. (i) Bvery v € Z; can be written uniquely as v = w(x)(z),
with
{£1} ifp=2,
prp pr 7é 2
(i) w(ry) = w(@)w(y), (ry) = (2)(y).
Proof. 1f p = 2, it is obvious.

If p#£2, w(x) = lim 2" = [z]. O

n—oo

w(z) € p(Q,) = { and (x) € 1+ 2pZ,.

Remark. (i) w is the so-called Teichmiiller character;

(i) (z) = exp(log(x));

(iii) 2™ = w(x)™(x)", here (x)" is the restriction to N of (x)® which is
continuous in s, w(x)™ is periodic of period p — 1, which is not p-adically
continuous.

*
p}

measure Ff\i) on Z, (Leopoldt’s transform) such that

[ e @@ = [ o) = A -1,

Zp

Proposition 1.5.9. If X is a measure on 7., u = 1+ 2p, then there exists a

*
P
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Proof. We have

[ @ 0a@ = 5wl [, 0@

D 56#(@1?)

= X w(g)if1+2pzp<x5>576*1'/\<m>’

eepn(Qp)

where . € T is such that x(7.) = . We have a isomorphism

a:l+2p7, ~ 7,
_ log()
-~ log(u)

r =y

Then
f@as(r—A) = / Fla(x))yem A
Zp 14-2pZy

Now (z)* = exp(slogz) = exp(sloguy) = u*¥ and hence

> owle [ @ae = Y el [ uvade ),

eepn(Qp) 142y eepn(Qp) Zp
we just set TV = 30 w(e)ian (o1 - A). O
een(Qp)

Definition 1.5.10.

—1 —i —s
Goils) = T @ @ M)

*
P

Proof of Theorem 1.5.7. If n = —imodp — 1, then

Gilon) = T L @ @ A
1 "(x)" N (e
T 1—w(a) (et /Z;w(x) ()" Aa()

= (1—p")C(=n).

The function ¢,; is analytic if w(a)'™* # 1, which can be achieved if i # 1.
If = 1, there is a pole at s = 1. n
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Remark. (i) A theorem of Mazur and Wiles (originally the Main conjecture
of Iwasawa theory) describes the zeros of (,;(s) in terms of ideal class groups

of Qp(ptyn),n € N.

(ii) Main open question: For ¢ = 1mod2, can (,;(k) = 0, if £ > 1 and
ke N?

The case k = 1 is known. In this case, (,;(1) is a linear combination
with coefficients in Q* of log of algebraic numbers, hence by transcendental
number theory (Baker’s theorem), ¢,;(1) # 0.

1.6 CF functions

1.6.1 Definition.
Let f:Z, — Q, be a given function. We define
@) = )
f{z}<$’ h17 e 7h’L)
1 ) )
- E(f{z_l}($ + hi7 hlv T >hi—1) - f{z_l}(xv hly e ;hi—l»

2

1 i—|I
= X DM+ o)

Ic{1,- i} jeI

One notes that f{#} is the analogue of the usual derivation in C(R,C). In
fact, if f: R — Cis in C*¥ and i < k, define f{# by the above formula, then

f{i}(% hi, -+, hi) = f(i)(:L‘ +tihy 4 -+ tihy)dty - - - dt,

[0,1]°
hence f{ is continuous and f{}(x,0,---,0) = f@(x).

Definition 1.6.1. A function f : Z, — Q,(or C,) is in C* if f{¥} can be
extended as a continuous function on Z;“ for all ¢ < k.

Remark. If f € C° and hy,--- , h; # 0, then we have:

(£ @b, b)) = veo () = D (k).
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Example 1.6.2. The definition of C* here is different than the usual case.

—+o0
Here is an example. Forallz in Z,, = > p"a,(z) with a,(z) € {0,1,--- ,p—

n=0

1}. Let f(z) = Ji)p%an(x), then v,(f(x) — f(y)) = 2v,(r — y). Hence

f'(x) =0 for all z € Z,, thus f is in C* in the usual sense. But f is not C?
in our case. In fact, let (z,hq, he) = (0,p™, p") and ((p — 1)p", p",p"), here
p # 2, we have:
FEH0,p",p") = 0;
FE =" p"p") =p—p".
We define a valuation on C* functions by:
vék(f) = min inf v, (fY (@, k- hy)).

0<i<k (2,h1, hi)€Z5H

Let L(n, k) = max{)_ v,(n;),i <k, > n;=n,n; > 1}
=1

J

Theorem 1.6.3 (Barsky). p“(*) (x) is a Banach basis of CF.
n

Exercise. there exists a (Y, such that for all n > 1,

1 1
2" 0 < Lin,k) < k22l
log p log p
Corollary 1.6.4. The following three conditions are equivalent:
+o00
(i) > an(fL) e Ck,
n=0
.. . logn
(ii) nginoo vp(an) — kigs? = 400,

(iii) lim n*la,| = 0.

n—+

Definition 1.6.5. If r >0, f : Z, — Q, is in C" if

and
n"|a,(f)| — 0 when n — +o0.

C" becomes a Banach space with the valuation:

. log(1 + n)
e () = int {vlan) ~ B0 L

}.
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1.6.2 Mahler’s coefficients of C"-functions.

We need Mahler’s Theorem in several variables to prove Barsky’s theorem.
Let g(xg,x1, -+, ;) be a function defined on Z;“. We define the action

agk] on g by the following formula:

04”9(550, ) = g(xo, a1, 1) — g(x, -, @),

ag-k] a[ ] [ loiiio a[ } k times .

We set
g (9) = g™ -+ g (0, 0).
Recall that
CO(Z;H’ Q) = CO(Z;m Qp)@ T ®CO(ZP7 Qyp)-

Theorem 1.6.6 (Mahler). If g is continuous on Z;“, then ag,.... 1;,(g) — 0

when (ko, -+ , k;) — 0o and we have the following identity:
T €T;

g(xo, - m) = Y g k(g )(;) . (k:) (1.2)
ko, ,k; EN 0 v

Conversely, if ay,.... r, — 0, then the function g via equation (1.2) is contin-
wous on L, ag.... k,(9) = g, i, and

veo(g) = inf vy (akg.... k;)-
Proof of Theorem 1.6.3. Let gr(x) = (1 + T)", then we have:

1
g1 (@ e i) = (30 (1) Mgr(e+ 3o h)

boIc{1,- i} jeI

- <1+T>IH<1+iij_l

Jj=1

n n—1

Let P, = (z) Since %(x) = %(‘”71) and g{ }(a:, hy,-+ ,h;) = i Pgi}(m, hy,---
n=0

we have the following formulas:

. 1 T hi—1 h; —1
{i} cee B = 0 1 R
Pn (x(),hly ahz) - Z ny---N; (no) (TLl — ].> (nz - 1)

no+ni+--+n;=n,
ny,,ni2>1

7h’i)Tn7
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Let

Qni(To, - ,2;) = Pii}(ﬁoaxl—Fl,"' i+ 1)

Z 1 (370) ( T ) ( z;
no+ni+--+n;=n, My e i \o nm —1 n;

-1

Ny, ,m; >1
+o0o
For all f € C°(Z,,Q,), we have f(z) = Y a,(f)(%). We denote
n=0
+0o0o
gi('r07 e 7:62') - Z an(f)Qn,i(:Lb) T axi)
n=0

if x; +1#0,5 > 1. We have:

+0o0
ano,nl—l,w ,ni—l(gi) = Z an(f)ano,nl—l,w ,ni—l<Qn,i)
n=0

where

0 if n # inj,
=0

Angny—1,- ,n;—1 (Qn,z) =

i
1 .
= ifn=3"n;
=0
If fisin C*, i <k, then g; is continuous on ZjH, thus

Ano+ng+--4n; (f)
nl « .. nl

— 0.

no+ni—+--+n; (f)
nl e nZ

R e () (20 [ 1 i

n=0 no+ni+-+n;=n

Conversely, if ¢ — 0, then

)

defines a continuous functions G; on Z™. But G; = g; on N**', hence

Gi=gi, x; +1#0, for all j > 1,hence f is in C*.

]
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1.7 locally analytic functions

1.7.1 Analytic functions on a closed disk.
Lemma 1.7.1. Let (a,)nen with a, in C, be a sequence such that v,(a,) — 0o
when n — oo, let f = Jio a, T". Then:
(i) If xo € Oc,, th(;L:[}(’“) (x) converges for all k and
(k)

Jim v, (= (20)) = oo

(ii) If zo, 1 are in Oc,, then

£2 40 (5,
Py = 30 (e

n!
and | 09 (20) |
k) = )
(iii) rlzrellf\l vp(an) = xinip vp(f(2)) and v,(f(x)) = i%f vp(an) almost every-

where (i.e.,outside a finite number of x; + mc, ).

+o00o

Proof. (i) % =3 A ("T)T™. Let T = g; since v,(("1")) > 0, v,(27) >
n=0
0, we get (1) and also
AN : F(0)
> = .
o) 2 nfelan) = Mnf ()
(i)
+oo +o0 +oo n
Fe) = St = a3 (o - et
n=0 n=0 k=0
+00 400 +oo
n\ n- f™ (o) n
= S0 et = S I
k=0 n=0 n=0
So we can exchange the the roles of 0 and x( to get
(n)
inf vp(f (%)) = inf vy(ay,).

neN n! neN
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(iii) That inf v,(a,) < inf v,(f(x)) is clear. As wv,(a,) goes to +oo,
neN zEO@p
vp(ay,) reaches its infimum at some ny € N. So we can divide everything by

an, and we may assume that in£I vp(a,) = 0. Let f(T) = f(T)modme, €
ne
F,[T]. If 2 € Oc, doesn’t reducemodme, to a root of f, then f(x) # 0,

equivalently, v,(f(x)) = 0. O
—+o00 oo oo

Corollary 1.7.2. Let f = ZanT”, g = anT”, then fg = chT”,
n=0 n=0 n=0

where ¢, = i a;b,—;. Suppose that v,(a,) and v,(b,) go to infinity when n
goes to inﬁngjj, then vy,(c,) goes to infinity and i%f vp(cn) = i%f(an) —I—ir&f(b,).
Definition 1.7.3. For zy € C,, r € R, we define

D(zg,7) = {x € C,,v,(x — z9) > r}.

Definition 1.7.4. A function f : D(x,r) — C, is analytic if it is sum of its
Taylor expansion at xy or equivalently, if

™) (5,
lim (vp(f (o)

n——+00 n!

)+ nr) = 4o0.

We define vl (f) = infn(vp(f(n)(mo)) + nr).

n!

Proposition 1.7.5. If the function f : D(x,r) — C, is analytic, then
(i) For all k € N, f%® is analytic on D(xg,7),

r f(k) (‘TO) r
U:}EO}(T) +kr >0l (f)
and goes to +o0o if k goes to +o0.

(i) f is the sum of its Taylor expansion at any x € D(xq,r).

(iii) v (f) = inf  w,(f(x)).

z€D(xo,r)
(iv) v (Fg) = ol () + ol (g).

Proof. If r € Q, one can choose o € C,, such that v,(«) = r. Let F(z) =
f(xg + ax),x € Oc,. Apply the previous lemma, we can get the result.

If r ¢ Q, choose r,, decreasing with the limit r, r, € Q. Use D(zg,7) =
UnD(xg,r,) and the case r € Q, we get the result. O
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1.7.2 Locally analytic functions on Z,.

Definition 1.7.6. Let h € N be given. The space LA, (Z,, Q,) is the space of

f whose restriction to zo+p"Z, is the restriction of an analytic function f,, on

D(xg, h), for all zy € Z,. The valuation of the space is vy 4, = infs vig}(fwo),
o€

S be any set of representations of Z,/p"Z,. (Use above proposition to prove
that this does not depend on S.)
Lemma 1.7.7. LA, is a Banach space. Moreover, let
TH1,,
en = Lizpg, (——)"""
p
then e,’s are a Banach basis of LAy,.

Theorem 1.7.8 (Amice). The functions [ﬁ]’(z),n € N are a Banach basis
Of LAh .

Proof. The idea is to try to relate the g, = [ﬁ]'(i) to the e,.
(i) First step: For 1 < j < p", we denote

an:mph_ivmzla]-gigpha

n—1
n, 1

Gn() = gn(—j + plr) = [ﬁ]!— [I(=i—k+p").

If v,(j + k) < h, then v,(—j — k + p"z) = v,(j + k), for all z in Oc,. If
v,(j + k) > h, then v,(—j — k + p"x) > h with equality if 7 ¢ F, C F,. So,
we get

n—1 o)

06 (gng) = qu]%]!)—vpmwzinf(vp<j+k>, h)=3 #ik:u(k) > i1 <k<n).

n +o00o

vp(k) = >_[2%], we have

1 =1

Since v,(n!) =
k

n

h
vy(nl) — vp([]%]!) - Z #kv(k) 2 i 1< k<n} =Y inf(u,(k),h).

k=1
Thus,

n

v (gng) = Y [inf(v,(j + k — 1), h) — inf(v,(k), h)]
k=1

S L A g A B 0

— p p p
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As [z +y] > [z] + [y], we have v{ }(gn]) >0, for all 1 < j < p". So, we have
ULAh (gn) Z 0

(ii) Second step: we need a lemma
Lemma 1.7.9. Let n = mp" — i, gn; € Fp[x], then:

(1) gny =0, if j > 1,

(ii) degGn,; =m—1, if j =1,

(ii) deggn; <m — 1 if j < i.

The lemma implies the theorem: ¢, can be written in terms of the €,,

multiplying by an invertible upper triangular matrix. Now use the fact that
z,, is a Banach basis if and only if 7, is a basis of LAY /pLAY over F,,. m

Proof of Lemma 1.7.9. (i) If j > i, then 7 — 1 > i. Since

n+j—1
o

J-1 B e m—(m—1)=
ph]_[_]_ ( 1) 17

[

=1
we have v{ }(gn]) > 1, then g, ; = 0.
(i) and (iii):If j < ¢, write

n

Gnj(x) = Zakxk, ay € Zy.

k=0

The zeros of g, ; are the jihk,O <k<n-—1and
’ p

. . n+j—1 Jg—1
#{zeros in Z,} = #{k:v,(j + k) > h} =] o ]_[ph ]=m-—-1
Let {o; : 1 <i < m—1} be the set of the roots with v, -+, ay,—1 in Z, and
Oy, * -+, 0y 1Ot in Z,,. Then
m—1 n
Gnj =C H (r — oy H 1 —a;'z),(cis a constant ).
=1 l=m

Since v,(a; ') > 0 when [ > m, then v,(a, 1) = v,(c) = v({)o} (gnj). It implies

¢ € Zyp. Hence

m—1

Gnj =C H T —ap).

=1
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It remains to prove v{ }(gnz) = 0. Since

h mp 1 7; 1, mph—i
ik - — -
() I+ )
and —[=*] = [=1] 4 1, we get the result. 0

Let LA = {locally analytic functions on Z,}. Because Z, is compact,
LA =ULA, and is an inductive limit of Banach spaces. So

(i) A function ¢ : LA — B is continuous if and only if |4, : LA, — B
is continuous for all h.

(ii) A sequence f,, — f converges in LA if and only if there exists h, such
that for all n, f, € LA, and f,, — f in LA,.

Since %vp([#]!) ~ m, we have the following theorem:

+oo
Theorem 1.7.10. The function f = Z G, <$) is in LA if and only if there
n
n=0

exists r > 0, such that v,(a,) — rn — +00 when n — +o0.

1.8 Distributions on 7,

1.8.1 The Amice transform of a distribution.

Definition 1.8.1. A distribution ;1 on Z, with values in B is a continuous
linear map f +— pr fu from LA to B. We denote the set of distributions

from LA to B by D(Z,, B).

Remark. (i) u|pa, is continuous for all h € N. Set

vpa, (p) = inf (vp( [ fu) —vra,(f))

fELA, 7,
Then vy 4, is a valuation on D(Z,, B) for all h, and D(Z,, B) is complete for
the Fréchet topology defined by vr4,,h € N which means that p, goes to u
if and only if vpa, (ftn — p) — 400 for all h.

(ii) D(Z,, B) = D(Z,,Q,)QB. From now on, we will denote D(Z,,Q,)
by D.
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Let R™ be the ring of analytic functions defined on D(0,0%) = {z €
+o00
C,, vp(z) > 0}. A function f € R™ can be written as f = > a,T", a, € Q,

n=0

for all n € N.
Let vy, = m = v,(e — 1), where ¢ is a primitive p"** root of 1.

+oo
If F(T) =Y b,T" € R*, we define v (F) to be

n=0

v (F) = v[{)vh}(F) = inf v,(by,) + nop.

neN
Then, for F,G € R",
v (FG) = vW(F) + o™(G).
We put on R+ the Fréchet topology defined by the v, h € N.
Definition 1.8.2. The Amice transform of a distribution p is the function:
+00 : . )
A0 =37 / (n)“:/zp“*T) .

Note that the last identity in the above definition is only a formal identity
here. However, we have

Lemma 1.8.3. Ifv,(z) >0, then / (14+2)"n=A.2)
Zp

Proof. Choose h such that v, < v,(z). Then

n

Pl

vp( ) — +0o0,

bS]

+oo
therefore - 2"(?) converges to (1 + 2)” in LA,. O
n=0

Theorem 1.8.4. The map p — A, is an isomorphism of Fréchet spaces
from D to R*. moreover,

U(h)(Au) = vpa, (1) 2 'U(hH)(AM) —L
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+oo
Proof. Let A, (T) = Y b,T". Since b, = [, (¥)p and v,(n!) < -3, then we
n=0 P

have:
) = w060 = vun( (1)) v (2))
> o)+ o () = a0 - (5

ph

"

n = ULA, (:U“) — NUp.

> vrpa,(p) — =1

Hence A, € RT and v (A,,) > vpa, (1).
+o00
Conversely, for F' € R, F = > b,T", then for all h,

n=0
n n
v, ([—1'b,) = v,(b,) + ——— — 0.
(51000) = 4lb) +
So f — Z bna,(f) is a continuous map on LA;. Denote the left hand side

by fz f 1, thls defines a distribution pu € D. Moreover,

n n
v () = b ([ 5110n) = inf v ([ ]10n)
n (h+1)
> — ) 1= 1.
- %Ielff\l(vp(b )+ <p _ 1)ph+1) 1 ULAh (AM) 1

1.8.2 Examples of distributions.

(i) Measures are distributions and Dy C D.
(ii) One can multiply a distribution p € D by g € LA, and one gets

o A, =0A,,0=(1 +T)diT
o Aue(T) = A,((1+T)z - 1)

o Apes, iz (L) =p™" >3 274 ((1+T)z—1)

an -1
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(iii) one gets actions ¢, 1, I with the same formulas than on measures.
(iv) Convolution of distributions: If f € LA, and for all y € yo + p"Z,,

100 nh (n)x+
o = ST o @
n=0 )

(W)

— goes to 400, when n — +o00. Hence

and vpa,

[ s mmtonin = [ ra

is well defined, Ay, = A)\A,.

(v) The derived distribution: p +— dp given by fzp fdp = pr f'u. Easy to
check Ay, (T') = log(1+T")A,(T). pcan’t be integrated because log(1+7) = 0
T =ec—1¢€ py=.

(vi) Division by x, the Amice transform A,-1, of 7'y is a primitive(or
called antiderivative) of (1 +T)"'A,, so A,-1, is defined up to ady, @ € Q,
(we have zdy = 0).

1.8.3 Residue at s =1 of the p-adic zeta function.

The Kubota-Leopoldt distribution puxy, given by A, (T) = M Then

" = | = e == A e —1
/Z UKL (dt)tzo( Z) NKL) dt o #KL( )

= (%)n (%1) = (—1)"n{(1 —n), for all n € N.

¢
t=0 €

Since ) )
@/J(f) =T and p(log(1 + 7)) = plog(1+1T),

we get Y(ukr) = ]l,ﬂKL and

/ = (- ) / ks = (—1)"n(1 = p" )¢ = n);

P

Cpils) = - /*w<x>1i<x>lsﬂKL-

s—1

The integral is analytic in s by the same argument as for measures.
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Proposition 1.8.5. lim,_;(s — 1)(p1(s) = [,. pxr = 1 — Il?, ( compare with
limg (s — 1)¢(s) =1).
Proof. Tt follows from the following lemma. ]

Lemma 1.8.6. fa+pn2p prr =p ", for alln, for all a € Z, (almost a Haar
measure but pix 6q 7 1)

Proof.
-n —a -n IOgZ
/ prL =P Z A, (=) =p" (1 + Z z—1>7
at+p"Zp 2P =1 2P =1,2#£1
and 82 =0, if 27" = 1,2 # L. O

1.9 Tempered distributions

1.9.1 Analytic functions inside C" functions

Theorem 1.9.1. For all r > 0, LA C C". Moreover there exists a constant
C(r) depending on r, such that for all h € N and for all f in LAy,

ver () = vea, (f) —rh = C(r).
Proof. Since vy, (f) = i%f(vp(an(f)) — vp([55]!)), we have

log(1 s
_r%> > vLAh<f>+iaf<vp<[£“>—r%

o
We have a formula for every a:

ver(f) = inf(vy (an () )

a a a log(1+ a)
v a':_++_+2 — .
pal) = (544 [ o2 2 -
Write n = pta +b, 0 < b < p" — 1, then we have
n log(1+ n)

() = vea () 2 int(ay([510 - B )
B Tlog(aph +b+1)

= inf (vy(al) )
ogég\’lbq log p
a log(a + 1)
> — — 1)——= —rh.
p—1 (r+1) log p "
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The function —-%5 + (r + 1)% of a is bounded above, we just let C(r)

be its maximum. OJ

Observe that the function log is well defined on Z;. First if v,(z —1) > 0,
let
S

log:vzz (x —1)™;
n

n=1

in general, if z = w(x)(x), let logx = log(x). If = p, let logp = 0. By the
formula log zy = logz +log y, log is well defined in Q, — {0}. This log is the
so-called Iwasawa’s log, or log.

However, we can define the value at p arbitrarily. For £ € Q,, define
log,p = L, then log, x = log, x + Lv,(z).

Theorem 1.9.2. Choose a L in C,. Then there exists a unique log, : C; —
C, satisfying:

Y
(i) log,z = Z (x —1)", here vy(x — 1) > 0,
n
n=1

(i) log, vy = log, x + log, v,
(iii) log, = L.

Proposition 1.9.3. Ifr >0, j > r, then 27 log, z € C".

Proof. We have

400 p—1

2/ log, x = Z Z 1pna+pn+1zpmj log, x.

n=0 a=1

Let fna = Lyng +pn+1szj log, x. We have to prove the sum converges in C".
On p"a + p"™'Z,, we have

o’logex = (z—pa+p"a) log.(p"a+ (v —p"a))

i r—pa,; n r—p'a
= pY(a+p P ) (log . p a+10go(1+17pnTa))-

So fua € LAni1, via,.,(fne) = nj. Use the previous theorem, we get
ver(fna) > nj —r(n+1) — C(r) and it goes to +oc. O
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1.9.2 Distributions of order r

Definition 1.9.4. Let » > 0 and B be a Banach space. A distribution
u € D(Z,, B) is a distribution of order r if f pr fu is a continuous
map from C"(Z,,Q,) to B. We denote the set of distributions of order r by
D,(Z,, B). We define a valuation on D,(Z,, B) by

(1) = juf (ol | )= v ()

Remark. (i) Under the above valuation, D, (Z,, B) is a p-adic Banach space

and D, (Z,, B) = Dy(Z,,Q,)®B. We denote D, (Z,,Q,) by D,.

(ii) Diemp = UD,=set of tempered distributions.

(iii) Since LA, C C", and for f € LA, ver(f) > vpa, (f) —rh —C(r), we
get, for p € D, C LA;j,

) = int || v (1) 2 () = — ).
Theorem 1.9.5. p € D, the following are equivalent: (i) p € D, i.e. p can
be extended by continuity to C".

.. . x log(1+n

(ii) There ezists a constant C, such that Up(fzp (Bp) > C - r%, for
all n.

(iii) There ezists a constant C, such that Up(faﬂ;% (x—a)ip) > C+h(j—
r), foralla € Z,,5 € N;h € N.

(iv) There ezists a constant C, such that vpa, (1) > C —rh, for all h € N,

Remark. It follows that

a€ly
JEN,neN

R T CEUIETIR)

is equivalent to vy, .

Proof. (i) < (i1) is just the definition of v, . (44) < (iv) is true by the
definition of LA (with some C). Remains to prove (ii) < (iv). We have
oM (A,) > vpa, (1) > v+ (A,) — 1, hence the proof is reduce to the follow-
ing lemma with ' = A,,. [
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+00
Lemma 1.9.6. Suppose F' € R*, F = > b,T", the following are equivalent:
n=0

(i) there exists C, such that v (F) > C —rh, for all h € N,
(i) there exists C", such that v,(b,) > C" — o8t por all n.

log p
Proof. Let
_ (h) _ . n
Co = mf(v™(F) +rh) = inf(inf (v, (b,) + =1 ph) +rh),
. log(1 4+ n)
Cr = }llgg(vp(bn) + Tw)'
Let h = [logl(H")], then
ogp
log(1+n
Up(bn)ZOO_Th_WZCO_ gl(ogp )— s

which implies C > Cy — 2.

Now, if h is fixed, then C} — rlogh();n) + Gty is minimal for (14 n) =

(p — 1)pr. Hence,

log(1 1 —1
Cl—rOg( +n)—|— n 5 ZCl—Th——Og<p >T.
log p (p—1)p log p
Thus, Cy > C; — plosp=Lr O

logp

For N > 0, let LPIM be the set of the locally polynomial functions of
degree no more than N on Z,,.

Theorem 1.9.7. Supposer >0, N >r—1. If f — pr fu is linear function
from LP%“N! to ¢ Banach space B , such that there exists C,

W[ @iz OG-

foralla € Z, and n,j € N, then p extends uniquely to an element of D,.

Remark. (i) Let r = 0, N = 0, we recover the construction of measures as
bounded additive functions on open compact sets.
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(ii) We define a new valuation on D,

o= it [ @ —nG )

a€Zpn€eN,jeEN

then Up(fzp f1) = vpa, (f) + vp, (1) — rn for all f € LPON N LA,
(iii) The open mapping theorem in Banach spaces implies that vp,  is
equivalent to vp, .

Proposition 1.9.8. If f € LA, r >0, N >r —1, put

oy IO Nk [0,N]
Jn = Z 1i+p"Zp(Z o (x —1)%) € LP®H,
1=0 k=0

then f, — f in C". Hence LPIN is dense in C".

Proof. There exists h, such that f € LA,. We assume n > h, then

®) (;
vea (f = fu) = _inf - inf o, (p" ).

f € LA, implies vp(phkf:)(i)) > vpa, (f). Hence

vea(f = fn) Z vra, (f) + (N + 1)(n = h).
Then
ver(f = f) 2 vnan(f = fu) —rn = C(r)
> wpa,(f) = C(r) = (N + 1Dh+ (N +1—7)n — +oo,
because N +1—1r > 0. [

Proof of Theorem 1.9.7. The proposition implies the uniqueness in the
theorem. We only need to prove the existence.
We show that if f € LA}, then lim,, pr [t exists:

Up(/Z (fn—i—l - fn)ﬂ) > ULAn+1(fn - fn+1) + Up, y (M) - T(” + 1)
> inf(ULAn+1 (f - fn)v VLAp41 (f - fn+1>> + UD, n (/“L) - r(n + 1)
> vp, (1) +vpa, (f) —r(h =1) + (n = h)(N +1 —r) — +o0.



36CHAPTER 1. THE P-ADIC ZETA FUNCTION OF KUBOTA-LEOPOLDT
Set pr fro=1lim, o pr fnpt, then

ol [ ) = it [ fan ot [ (s = f0)

This implies that u € D,.

1.10 Summary

To summarize what we established:
(i) We have the inclusions:

C'>C" > LAD LA,

Dy C D, CDC LA;.

Now, if f is a function on Z, and p is a linear form on polynomials, then we

o ﬁa%mzﬁquﬁym—o

o= bn(p) = /Z (i)u

e f e CYifonly if vy(a,(f)) — +oo and

ven(f) = inf v,(f(x)) = inf v, (au(£)).

€Ly

(ii) For f a function,

o f e ifonlyif v,(a,(f)) — 7’% — +o00 and

log(1 +n)
”

ver () = inf wy(an () =75

).

e f € LA if only if there exists > 0 such that v,(a,(f)) —rn — +o0.
LA is not a Banach space; it is a compact inductive limit of Banach
spaces.
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o f € LA if and only if vy(an(f)) — vy([;7]!) — +oo and

kh £(k) (o n
vea (1) = inf ok ("L (o, (0, (1) — ([0,

z€Zy kEN p

(iii) For p a distribution,

e 11 € Dy if and only if vp, (1) = inf v, (b, (1)) > —oc.

e 1€ D, if and only if vf, (1) = i%f V(b (1)) + T% > —00.

e 1 € D if and only if for all » > 0, i%f Up(bn (1)) + rn > —oo.

—+o00

() £ = 3 an(£)G) and [, f= 5= an(F)bu(i)

n=0
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Chapter 2

Modular forms

2.1 Generalities

2.1.1 The upper half-plane

By SL; we mean the group of 2 x 2 matrices with determinant 1. We write
SLy(A) for those elements of SLy with entries in a ring A. In practice, the
ring A will be Z, Q, R.

Let v = (2%) in SLy(R), 2 in C — {—2}, let vz = 2L then

cz+d’
(ad — bc) Imz
Im(7z) = lcz + d|? m{z) = lcz +d|*

We denote H = {z,Imz > 0} the upper half plane. It is stable under z — 7z
and one can verify (7172)z = v1(722).

Proposition 2.1.1. The transform action z — vz defines a group action of
SLy(R) on H.

Proposition 2.1.2. dmyAQdy is invariant under SLy(R).

hint : do A dy = idz A dzZ and z — 7z is holomorphic.
2

Definition 2.1.3. Let f : H +— C be a meromorphic function and v =
(¢%) be in SLy(R). If k in Z, we define the weight k action of SLy(R) by

(fli7)(2) = (ez + d) 7" f(v2).

Exercise. (f|x71)|kv2 = fley172-

39
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2.1.2 Definition of modular forms

Definition 2.1.4. Let I' be a subgroup of SLs(Z) of finite index, y is a
finite order character of I' (i.e. x(I') C pn). f:H — Cis a modular form of
weight k, character y for I, if:

(i) f is holomorphic on H;

(i) fley =x(f ify e Ty

(iii) f is slowly increasing at infinity, i.e. for all v € T'\SLy(Z), there
exists C(v) and r(7) such that | flxy(2) <y, if y > C(v).

Definition 2.1.5. I is a congruence subgroup if I' D T'(N) = Ker (SLy(Z) —
SLy(Z/NZ)) for some N in N.

Example 2.1.6.
To(N) = {(z Z) € SLy(Z) : ¢ = 0mod N} > I'(N).

Any character x : (Z/NZ)* — C* extends to a congruence character

a
Cc

G =€ (4 D) =@,

Let My (T, x) be the set of modular forms of weight k, character y for T'.
Then M (T, x) is a C-vector space.
Remark. (i) If (' %) =—I €T and x(—1) # (—1)¥, then My(T,x) = 0;
(ii) f € Mi(T,x), g € SLo(Z), flrg € Mi(97'T'g, xy) Where x,4(v) =
x(g797h)-

2.1.3 g-expansion of modular forms.

Lemma 2.1.7. If ' is a subgroup of finite index of SLy(Z) and x : I' — C*
is of finite order, then there exists M in N — {0}, such that (§ %) € T and

x((64)) = 1.

Proof. We can replace I' by Ker y and assume y = 1. There exists n; # nao,
such that (§") and (§ ™) have the same image in I'\SLy(Z), then M =]|
ny — ng | satisfy the condition. O

27miz
M

For M € N—{0}, let gas(2) = e™a . Then z — gqp(2) gives a holomorphic
bijection MZ\H ~ D* = {0 <| qr |< 1}
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Corollary 2.1.8. If f € My(T',x), then there exists M # 0, M € N, such
that f(z + M) = f(z). Thus there exists f holomorphic on D*, such that
f(z) = flam).

Now f has a Laurent expansion f(qu) = > anqyy; with
nez

for all y. If n < 0, when y — o0, the right hand side goes to 0, so a,, = 0.
Hence we get the following result.

Proposition 2.1.9. If f is in M(T,x), there exists M € N — {0}, and
elements a,(f) for each n € ﬁN, such that

F=3 auf)", where g(z) = €,
nEﬁN

which is called the q expansion of modular forms.

2.1.4 Cusp forms.

Definition 2.1.10. (i) voo(f) = inf{n € Q,a,(f) # 0} > 0 and we say
that f has a zero of order v (f) at co. We say that f has a zero at oo if

Voo (f) > 0.
(ii)) A modular form f is a cusp form if f|,y has a zero at oo for all ~

in I'\SLy(Z). We denote S, the set of cusp form of weight k. Si(I',x) C

Remark. If f is a cusp form, then f is rapidly decreasing at oo since

[ (Fhn)(2) = Oemr=thm).
Theorem 2.1.11. Si(T',x) and M(T',x) are finite dimensional C-vector
spaces with explicit formulas for the dimensions( if k > 2).
Remark. &, My(T',x) = M(I') is an algebra.

The study of My(T",x) for congruence subgroup and congruence charac-
ters (Ker x congruence subgroup ) can be reduced to the study of M (I'o(V), x)
for a simple group theoretic reason. From now on, we write

Mk(N7X) :Mk(FO(N>aX)7 Sk(N7X) :Sk(FO(N)7X)
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2.2 The case [' = Sl (Z)

2.2.1 The generators S and T of SLy(Z).
Let My(1) = My(SLo(Z), 1), Se(1) = Se(SLa(Z), 1). Let

s=(19) 7=(1)

" = (1 ?) for any n € Z.

It is easy to verify

So Sz:—i, Tz =z +n.

Proposition 2.2.1. (i) If (a,b) = 1, then there exists n = n(a,b), (ag,by) =
(1,0), (a1,b1) = (0,1), - (an, b,) = (a,b), such that

(Zl ZZH) € SLy(Z)  for any .
VA
(i) SLo(Z) = (S,T) .

Proof. (i) We prove it by induction on |a| + [b].
If |a| 4 |b| = 1, one can do it by hand:

(10 (0 -1 , (=1 0 s (0 1
=) -0 ) =) =)

If |a| 4 |b] > 2, there exists p, v € Z, such that by —av = 1, and |v| < |b,
which implies [p| < |a]. Then we have (4 §)€ SLy(Z) and |u|+|v| < |a|+b].
Therefore the conclusion is obtained by the inductive assumption.

(i) Let v =(2%)€ SLa(Z), there exists n = n(a,b), (ag,by) = (1,0),
(a1,b1) = (0,1),-- - (an, bn) = (a,b), such that

M= (al alH) € SLy(Z) for any I.
bi by

As vy =Tand
_ ng 1 n
’YZJrll/yl = ( ll 0) = 2 ZS37

then v = H(”yljrllfyl)_l e(T,S). O
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Corollary 2.2.2. Let [ = Z anq", where ¢ = e*™* then f € My(1) if and
only zf the following two condztwns hold:

(i) Z a,q" converges if |q| < 1.
(i) f(—;) = 2" f(2).

2.2.2 Eisenstein series
Proposition 2.2.3. If k > 3, then Gy € M(1), where

1F( 1

Gil(z) = 2 (—2mi)k o mz—l—n)

€ Mx(1),

and "' means the summation runs over all pairs of integers (m,n) distinct

from (0,0).

Proof. As |mz 4+ n| > min(y,y/|z|) sup(|m/|, |n|), the series converges uni-
formly on compact subsets of H and is bounded at oc.
Let v = (9%) € SLy(Z), since

1 1

d —k ! — !
(cz+d) ; (==L 4 ) ; ((am + cn)z + (bm + dn))F’
and
(m,n) — (am + cn,bm + dn)
is a bijection of Z% — {(0,0)}, it follows that G|y = Gy. O
J 9 9 7

Proposition 2.2.4.

Gi() =y () + X ()™

where o5(n) = >, d°, and k is even (if k is odd, My(1) = 0, since —1 €
dn, d>1

SLa(Z)).

Proof.

Gi(z) = F(k) C(k)+ (_I‘ég)k ZAk(mz),
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where

Ak(z)zz z—l—n Z(b

nel lEZ

for the last identity given by the Poisson summation formula of Fourier trans-
forms, and (by residue computation)

gZB(l)/+oo e 2milz dp — 07 leSO,
) @) IO > 0.

It follows that

+oo +o00
[k

Gil=) = 5 (k) + > > 1 ”mz

m=1 [=1

+Zak 1

[]

Remark. (i) Ga(z) = F;im (2)+ 3212 01(n)q™ is not a modular form, but
it is almost one. Let

S

1 1 12 1 y
() =@ == 1 !
G:(2) 2(2) + 8ry  2(—2mi)? s%; (mz+n)? |mz+n|>’

G% is not holomorphic but G3|oy = G35, for any v € SLy(Z).

(ii) Let Ey = (G , so that ag(Ey) = 1.

2.2.3 The fundamental domain for SLy(Z)

Theorem 2.2.5. Let D denotes the shadows in Figure 1.1. Then it is a
fundamental domain for PSLy(Z). Moreover, the stabilizer of z € D 1is

- {I} ZfZ;éZ,p,
- AL, S} if z=14;

- AL TS, (TS)*} if z = p.
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Figure 2.1: The Fundamental Domain.
Proof. Let zg € H,

Since Im (yz9) = T+ tends to zero, as (c, d) tends to infinity, there exists

|czo +d
7o such that Im (y9z0) is maximal. There exists a unique n such that:

1
—5 < Re (’}/02’0) +n<

l\DI»—t

Let 74 = Ty, then

Im (7120)

Im (7120) = Im (7020) > Im (S7120) = AP
120

which implies |y129| > 1. Therefore D contains a fundamental domain.
If 21,29 € D, and there exists 7 € SLo(Z), such that z; = vz, we
want to show z; = z. By symmetry, we may assume Im (z5) > Im(2z;). If

v=(2%), Im(22) > ‘IZSFZ;')Q implies |czo +d|? < 1. As Im (23) > \/73, we have

¢ <1,d < 1. It remains only finite number of cases to check.
If c =0, then d = +1, and +y is the translation by +b. Since

1 1
—— <R R < —
2 6(21)7 6(22) —_ 27
this implies b = 0, and v = £ L.
If ¢ = 1, the fact |29 + d| < 1 implies d = 0 except if z, = p, in which
case we can have d = 0, —1. The case d = 0 gives |z2| < 1, hence |z9| = 1; on
the other hand, v € SLy(Z) implies b = —1, hence z; = yz9 =a — 1/23 € D,
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Figure 2.2: The Route C(M,¢) of Integration.

which implies a = 0, and z; = 2z, = i. The case z5 = p, and d = —1 gives
a+b+1=0and z :7,22:@—/)%1:@—#,061?, which implies @ = 0 and
21 = 2y = pP.

If ¢ = —1, we have similar argument as ¢ = 1.

This completes the proof of the Theorem. n

2.2.4 The % formula.

The following proposition is usually called “the % formula”.

Proposition 2.2.6. Let f € My —{0}, then

0f) + 20 + 20,(f) + dowlh) ==

2 3 ,
zeD—{i,p}

Proof. Apply Cauchy residue formula to dlog f over the path showed in
Figure 1.2. As M — +o0o, and € — 0, we have:

1
o dlog f= Y v(f),
C(M.e) zeD—{i,p}
1i ! dlog f lim ! dlo Za (f)z" Voo (f)
im — ogf = —— n = —Vo([),
M—+o0 271 Coo (M) & M—+oco 271 |z|=e—2mM &

1 1
i o [ dlogf =~ u (1)
Clire) 2

e—0 271
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1 1 1 1
lim—,/ dlogf:—gvp(f) :—avpz(f) = lim — dlog f
C(pe)

e—0 271 e—0 271 C(p2.€)

il dlom s + [ dtom )= 7 | (dlox s —dlog (—2))

b (dlog f — dlog 2" f(2))

B 271 p2
ko [tdz k k
=—— | £ =——""(logi—logp?) = —.
o ), T amost T losr) = g
Putting all these equations together, we get the required formula. ]

Corollary 2.2.7. G4 has its only zero on D at z = p, Gg has its only zero
onD at z =1.
Gy Gg 1
A = % N3 2
((CL()(G4) ) CLO(GG) ) )3(161(G4) - QGEI(GG)

does not vanish on D (vs(A) =1).

+00
Remark. One can prove A = ¢ [] (1 — ¢")*.

n=1

2.2.5 Dimension of spaces of modular forms.

Theorem 2.2.8. (i) My (1) =0, if k is odd or k = 2.

(i) dimMg(1) = 1, if k = 0 or k is even and 2 < k < 10. In this case
My(1) = C- Gy (We have Gy =1).

(iii) Myt12(1) = C - Gryr2 ® A - My(1).

Proof. It f € Mg412, then

ao(f)
= —= =Gt Ay,
/ ao(Gry12) b2 9
where g € My (1), because A does not vanish on H, vs(A) = 1 and v (f —
ao(f)
ao(ékHQ)GkJrlz) > 1. -
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(5], k =2mod 12,
5]+ 1, if not.

Sl Sl

Corollary 2.2.9. If k is even, dimc My(1) = {

Remark. Finite dimensionality of spaces of modular forms has many com-
binatorical applications. For example, let

0(z) =3 q% =3 emin,

nez nez
g ={y€SLy(Z),y=1or~vy=S8 mod2},

1 ify=1

Ty — {1} =
Xo 1o { } X9(7) {_1 ify=5

One can check that dim My(Tg, xs) < 1, 6% € My(Tg, xs), and 4G5(22) —
G5(5) € My(I'g, x9), so we have

g) _ 3((2)F(2)047

4G5(22) — G5( (—2mi)?

hence
{(a,bc.d) €Z*:a® + 0>+ +d> =n}| =8 > d,

d|n,44d

from which we can deduce that any positive integer can be written as a sum
of 4 squares.

2.2.6 Rationality results.
As Mg(1) and Myo(1) are of dimension 1, we have

CLU(Gg)Gi = CL()(G4)2G8, (Lo(Glo)G4G6 = CL()(G4)CL0(G6)G10. (*)

Let

Substituting

Gi=a+q+9¢°+-, Gs=0+q+129¢ +---
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in (), compare the coefficients of ¢ and ¢*, we have the following equations:

200 = «
B(1+ 18a) = 1292

The solution is: o = ;5 40, 6= In partlcular a, ﬁ € QQ, which implies G4

-
and Gg have rational g-expansions, and C ) e Q, ¥ = ) e Q.

Exercise. ay(Gg) = which 1mphes ) € Q.

- 504 )
Let A be a subring of C, let

Mi(T', A) = {f € Mi(I), a,(f) € A, for all n},
then M(I', A) = >, My(I', A) is an A-algebra.
Theorem 2.2.10. (i) M(SLy(Z),Q) = Q[X,Y], where X = G4, Y = Gg.
(ii) M(SLy(Z),C) = C ® M(SL2(Z), Q).

Proof. If >, fr = 0, where f;, € My(SLy(Z),C), then for any z, for any
(25) € SLy(Z), we have Y (cz + d)* f(z) = 0. Therefore Y (Xz+Y)* fi.(z)
k k

is identically zero because it (as a polynomial in X and Y') has too many
zeros. Hence fi(z) = 0, which implies that

M(SLy(Z EB My (SLs(Z), C).

Now if k = 12n, G3", GZ("_D A, -+ A" is a basis of My(1); if k = 12n+2,
Gi(n_l)HGG,Gi(n_QHQGG A, -, G2Ge A" is a basis of M(1), and so on,
A = aG3 +0GE a,b € Q. As G4, Gs € M(SLy(Z),Q), this proves both
results. ]

Corollary 2.2.11. Let f € M(1), 0 € Aut(C), then f7 = > a,(f)7¢" €

My (1). Moreover, (_Cg(:z)k € Q if k is even and k > 4.

Proof. The first assertion is a direct consequence of Theorem 2.2.10 (ii). For
any o € Aut(C), we have

GZ -G = CLO(Gk)a — CLO(Gk) € Mk(l)

This implies ao(Gr)? = ao(Gy) for any o € Aut(C), therefore ao(Gy) €
Q. O
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Remark. When k = 2, we can use
z
1G5(22) ~ G3(3) € Ma(T, Q)

to deduce 2 ¢ Q.

Remark. ( ) The zeta function ( is a special case of L-functions, and (k)
are special values of L-functions (i.e. values of L-functions at integers).
Siegel used the above method to prove rationality of special values of
L-functions for totally real fields.
(ii) With a lot of extra work, we can prove integrality results. As

__T(®) S n
Gk(z) - (—27TZ>kC<k) + ; O-kfl(n)q )
and ox_1(n) = f (3" 64), we have all a,(G}) are given by measures on

din
Z,, therefore ag(Gy) is also given by measures. From which we can deduce
other constructions of Kubota-Leopoldt zeta functions (the work of Serre,
Deligne, Ribet).

2.3 The algebra of all modular forms.

Let A be a subring of C, let

M) = | M(T,4) = {Zanq € My(T,C), a, € A, neN}

[SL2(Z):T']<+o00

Let M(A) = @My (A), then it is an A-algebra. Let

MERE(A) = U M(T, A).

I" congruence subgroup

Theorem 2.3.1. ( ) If f € M(C), and o € Aut(C), then f7 € M(C).
(if) M(C) = C g M(Q) = C @ M(Q). B
(iii) Let llg = Aut( (Q)/M(SLy(Z),Q)), Gg = Gal(Q/Q), then we

have an exact sequence:
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where G* = lim (G/T), and Gg — g is induced by the action on Fourier
%

[G:T<o0
I' normal
coefficients.

(iv) Mem9(QP) is stable by g, and
Aut(M™(Q™)/ M(SLa(Z), Q)) = GLy(Z).

Moreover, we have the following commutative diagram:

LT

1 —= SLy(2)" Mg Go 1

.

1 — SLy(Z) — GLy(Z) — 7+ — 1

where Gg — Z* is the cyclotomic character, GLQ(Z) — 7* is the determinant
map, and 2* — GLy(Z) maps u to (§9).

Remark. (i) SLy(Z)" is much bigger than SLy(Z).

(i) We can get an action of Gg on SLo(Z)" by inner conjugation in
[Ig. This is a powerful way to study Gg (Grothendieck, “esquisse d'un pro-
gramme” ).

(iii) There are p-adic representations of G attached to modular forms
(by Deligne) for congruence subgroups. They come from the actions of Gg
on H'(SLy(Z)", W), where W = Sym" ™V, @z, Z,[SLy(Z)/T], V,, is Q2 with
actions of Ily through GLy(Z,) and are cut out using Hecke operators on
these spaces.

Proof of Theorem 2.3.1 (1). Let N(I', A) denote the set of holomorphic func-
tions f : H — C satisfying the following conditions:

(a) for any v € T, f(vz) = f(2),

(b) for any v € I'\SLy(Z), foy= > a,q", and a, € A for any n.
n2ng(v,f)
neﬁZ

As A € S15(SLa(Z), Q) does not vanish on H, Az € S;(SLy(Z), x, Q), where
X 1 SLo(Z) — pu1a. Let Tg = Kerx. If f € My(T, A), A1 f € N(T N Ty, A).
If f € NT,A), A*f € My (T, A), where k + ng(7y, f) > 0 for any v €
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'\ SL2(Z). Therefore knowing N(I', A) is equivalent to knowing M(I", A). So
it suffices to prove if

f=> an" e N(C UNFC

n>ng

and o € Aut C, then f7 € N(C).
Let j = otz = 4+ -+ € N(SLy(Z), Q).

Proposition 2.3.2. (i) N(SLy(Z),Q) = Q[j], N(SLy(Z),C) = C[j].
(ii) j : SLo(Z)\'H — C is bijective.

3 ifaeSLy(Z)p
ZfOé S SLQ(Z)Z,
otherwise.

\)

(iii) j(2) — j(@) has a zero at z = « of order e(a) =

—_

(iv) j(4),3(p) € Q.

Proof. (i) Note that G5, Gi(a_l) A,--- A% is a basis of Mj5,(SLa(Z), Q).
(ii) and (iii): For any 5 € C, f = (j — B) - A € My(SLa(Z), C), with
Voo (f) = 0. As D = SLy(Z)\'H, and

1 1
> N +pulh)+5(H =1,
zeD—{p,i}

we can deduce the required results.

(iv) Ga(p) =0, Gg(i) = 0. 0

Let f e N(I',C),

Pi(X)= ] (X —7r0d)eN(SL(Z),C)[X] C C((q))[X]

5€T\ SL2(Z)

Pp(X)= ] (X —=(f0d))eN(SLy(2),C)[X] C C((q))[X]
§€T\ SLa(2)
Denote Pr(X) = Zng Pro(X) = ngXl where g, € N(SLy(Z), C), and

g7 € N(SLy(Z), (C) thanks to the Corollary 2.2.11. We give the proof in two
steps.
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Step 1: Prove that f? is holomorphic on H, by the Proposition 2.3.2. We

have . .
=Y R(HX',  Pp(X)=> FHX
=0 =0

The roots of Py are the f o d’s, where 6 € I'\ SLy(Z). They are holomorphic
on ‘H. The roots of Ps- are multivalued holomorphic functions on H. In order
to prove that are single valued, it suffices to show there is no ramification.
Let a be an arbitrary element in H. we have, around «, n distinct formal
solutions

Zalk (4 — (o ))% (1<1<n)

of Pr(X)=0as (j— j(oz))m is a local parameter around « by Proposition
2.3.2. Let (B, € H satisfies j(B,) = j(a)?, then we have e(3,) = e(a).
Therefore

Zalk (G = §(B) T, (1<1<n)

are n distinct formal solutions around f,. It follows that there is no ramifi-
cation around (3, for any 3,. Hence the roots of P, are holomorphic on H.
In particular, f° is holomorphic on H.

Step 2: Prove that there exists [V C SLy(Z) of finite index, such that f7oy =
f7 for any v € I'. For any v € SLy(Z),

Pro(f Zgl 0oy)' = gl ov(f7 o) = Ppe(f7) oy =0
=0

So f7 o~y belongs to the finite set of roots of Ps-, which leads to the required
conclusion. H

2.4 Hecke operators

2.4.1 Preliminary.
Let I' C G be groups (for example, I' = SL»y(Z), G = GLy(Q)1), let z € G,

el ={ay:yvel}, Ta={yr:yel}.
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Let A be a ring, define A[I'\G/I'] to be the set of ¢ : G — A satistying the
following two conditions:

(i) ¢(yx) = Pp(ay) = ¢(x),for all z € G,y € T.

(ii) There exists a finite set I such that ¢ = > A\ilr,.

i€l

Remark. (i) We impose z; to be distinct in I'\G, in this situation, the
decomposition is unique, \;’s are unique.

(ii) For any v € T, 1py,(2) = 1pg, (@y™h). So ¢ = Y Nilrs, € A[L\G/T]

il
implies
Z Ailre(7) = Z Ailre, (2771) = ¢(ay ™) = ¢(x) = Z Ailra, (z)
iel iel iel

Therefore there exists a permutation: ¢ : [ — I, and for any ¢ € I, there
exists v; € I', such that A,y = Ai, Ty = 7o i)

Proposition 2.4.1. (i) If ¢ = > Nilry,, &' = > pjlry, € A[I\G/I], then

i€l jeJ

px¢ = Z Aiftjlre,y, € AID\G/TT,

(i,5)eIxJ

and it does not depend on the choices.
(i) (A[C\G/T],+,*) is an associative A-algebra with 1r as a unit.
(i) If M is a right G-module with G action m +— m % g, and ¢ =
S~ Nilrs, € A[D\G/T], then for any m € MY, mx ¢ = > \ym x x; does not
el
depend on the choices of x;. Moreover, mx¢p € MY, mx(d1x¢s) = (mx*d1)xpo,
mx (1 + ¢2) = (m*x 1) + (m * ¢o).

Proof. Exercise, using the previous remark. O]

Remark. If T' = 1, then A[I'\G/T'] = A[G] is commutative if and only if G

1s commutative.

2.4.2 Definition of Hecke operators: R,, T,, n > 1.
Let G = GLy(Q)*, T = SLy(Z).

Lemma 2.4.2. Let g € G N My(Z), then there exists a unique pair (a,d) €
N — {0}, and b € Z unique mod dZ, such that I'g = F(g Z)
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Proof. Let g = (3‘?), there exists u,v € Z, such that (u,v) = 1, and
pa + vy = 0. And there exists x,y € Z, such that zv — py = 1, Let
Yo=(pt)ifza+yy>0;7%=—(i?)if za+yy <0. Then g = (&%),
where a > 0. Thus completes the proof of existence.

If 1,7, € T satisfies

(. b1 [ G2 b2
Mg = 0 dl Y239 = 0 d2

then -
(719)(729) " = (“_02 3 ) € SLy(Z)
da
This implies a; = aq, di = ds, by — by divisible by d;. O

Lemma-definition 2.4.3. For any n > 1,

Rn=1r< ) GZ[F\G/F],

n 0
0n
T = 1yemy(z).det g=n} € Z[T\G/T'].

Proof. Left and right invariance come from det g¢’ = det g det ¢’. And Lemma, 2.4.2
implies T,, = > 1F<a ), SO get the finiteness needed. [
0d

ad=n,a>1
bmodd

Remark. If p is prime, Then T, = 1F(p o) by elementary divisors for prin-
01

ciple ideal domains.

Theorem 2.4.4. (i) For any n > 1 and | > 1, R,R, = R, = RR,,
R, T, =TR,.

(i) If (I,n) = 1, TyTy = T = T T3,

(iii) If p is prime and r > 1, TyT, = Tyrsr + pRyTpr-1.

(iv) Let Tz be the subalgebra of Z[I'\G/T'| generated by R,, andT,, (n > 1).
It is a commutative algebra.

Proof. (i) It is trivial.
(ii) We have

TnTl = Z Z 1F<aa' ab’+bd’)~

0 dd’
ad=n,a>1 o/d'=n,a’>1
bmodd b’ mod d’
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As (n,l) = 1, (a,d’) = 1, (a,d’) = 1. This implies {ad’ : a|n,d'|l} =
{a" : d"|nl}. Therefore in order to show T, T, = T,,, it suffices to verify
that {al' + bd'} is a set of representatives of Z/(dd')Z, where b is a set of
representatives of Z/dZ, V' is a set of representatives of Z/d'Z. Tt suffices to
show the injectivity under the mod dd'Z map. If

ab| + bid' = aby + byod',

then b] = b, mod d', so b} = b), which leads to the required conclusion.
(iii) We have

=3 ¥ ey Bt + X by

=0 bmod p* cmod p
Then
T T 'V' 7 T 7 T—1
DD IRH +1,,+ZZ 2 L(rstmriey
t=0 bmod p* =0 bmod p* cmod p
=T, + Ry( Z o> oL 1 s Z)) = Toir + pRyTr 1.
=0 bmod p* cmod p
(iv) Tt follows from (i), (ii),(iii). O

2.4.3 Action of Hecke operators on modular forms.
The following two propositions are exercises in group theory.

Proposition 2.4.5. Assume G D T are groups. Then

(i) If [I' : I"] < 400, then I contains some I'" which is normal in T, and
[T < +o0.

(ii) If I : I'y] < 400, [I': I'y] < 400, then [I': 'y NTy] < +00.

(i) If H' C H C G, [H: H'] <+o0, then [ HNT : H NT] < +00.

Proposition 2.4.6. (i) Suppose o € GLy(Q)*, and N € N such that Na,
Na™! € My(Z), then

a ' SLy(Z)a N SLy(Z) D T(N?) := SLo(Z) N (1 4+ N? My(Z)).
(i) If [SL2(Z) : T] < 400, a € GLy(Q) ™, then
[SLy(Z) : SLy(Z) N e 'Ta) < +oo.
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Proposition 2.4.7.

[SL2(Z):I'|<+00 [SL2(Z):T'|<+00
are stable under GLa(Q)™.
Proof. For any v € I', fjry = f. For a € GLy(Q)", we have

(fir) k(o™ ya) = firay,

S0 fika is invariant for the group o 'T'a N SLy(Z).
To verify that fra is slowly increasing at oo, write o = 7(8 3) for some
v € SLy(Z), then

(fra)(z) = (ad)*'d ™" (fu) (az;— b) ;

then we get the result. [
Let I' = SLQ(Z), G= GLQ(@)+7 Y = Z )\ilF% c Z[F\G/F], we define
iel
iel

The definition is independent of the choice of +;. From the general theory,
we have

(o)’ (2) = fir(o x ) (2).

If f e Mg(1) (resp.Sk(1)), then firp € My(1) (resp.Si(1)).
Facts: fR, =n*72f, and fiuT, =n*"1 Y dFf(e=).

ad=n,a>1
tmod d
Proposition 2.4.8. If f = Y an(f)q™, then an,(fiT,) = > a"tama(f).
m=0 a>1, @

al(m,n)
Proof. For fixed d|n, d > 1,

— az - = im 92
S dTFf(ERE) = dt Y Y am(f)ermm
bmod d b&oddm:()
— d—k Z am<f)627rinaz/d Z 627rz‘mb/d

m=0 bmod d
oo

— Ji-k Z am(f)GQﬂimaz/d

m=0
dlm

= d'F ZZ aa(f)q".
=0
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So

|kT —n Z dl kzadl 5

ad=n,a>1

summing the coefficients of ¢, this gives:

an(fTn) = 071 3 (nfa) Fanp(f)

a>1

Corollary 2.4.9. (i) Mk(F Z) and Mg (I",Q) are stable under T,, and R,,.
(i) ao(fixTn) = - a*tao(f) = or-1(n)ao(f)-

aln

(iii) a1(fixTn) = an(f), therefore f is determined by

T+— al(f|kT)

2.5 Petersson scalar product.

Lemma 2.5.1.

/ dzxdy / / oo dxdy 70
= - < Q.
SLo(Z)\H y? 1

Corollary 2.5.2. (i) If [SLy(Z) : I'| < 400, then

dxd
[ S =Tem.
N~ Y 3

where C(T) = [PSLy(Z) : T], T is the image of T' in PSLy(Z).
(i) If @ € GLy(Q)" such that o 'Ta C SLy(Z), then C(a'Ta) = C(T).

Proof. (i) Since d;j;ly is invariant under the action of I', the integral is well
defined. Put {7;} be a family of representatives of I'\ SLy(Z), then '\'H =
[17:(D) up to sets of measure 0 (maybe have overlap in SLy(Z)i U SLy(Z)p).

(ii) Since I'\H = a(a 'Ta\H), the two integrals are the same by the

invariance of dzgy ) O
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Let f,g € Si(C), choose I' C SLy(Z) of finite index such that f,g €
Si(I, C).

Proposition 2.5.3.

T3

I Jo

converges and is independent of the choice of T'.

Proof. For v € T', we have

f(vz) = (cz+d)*f(2), g(y2) = (cz + d)*g(2),

Im 2
I = —.
m (72) o 1 dP
so f(2)g(2)y* is invariant under I'. Now I'\'H = |J ;D with |I| = C(T"). So

el

if I also satisfy that f, g € Sg(I",C), then f,g € Sp(I'NI",C), and

1 STy dxdy 1 — dxdy
T TN = RTINS
B 1 dxd
= m/pw f(z)g(z)yk 2

Because f,y; and gy are exponentially decreasing as y — oo on D,
(f,g) converges. O

Remark. In fact, we can choose one modular form and one cusp form, and
the integral will still converge.

Proposition 2.5.4. For f € Si(1), we have (G, f) = 0.
Proof. By definition,

and

1
= @™ 2 oy

~ET o0\ SLa (Z)
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where ', denotes the subgroup of SLy(Z) consisting of all upper triangular

matrices. So we just compute ( Y m, f). We have
V€L \ SLa(Z)

< Z mv f> = fSLg(Z)\'H ( Z ék)f(z)ykdx—gy

YETa\ SLs(Z) YEDo\ SLy(Z) (¢#14) Y

= ISLQ(Z H > f(vz) Im (’YZ)kdxdy
'YEFOO\SLQ(Z)

— fr \Hf kd:rdy
= |7 fo +zy F2dxdy = 0,

where the last equality is because ag(f) = 0 and fol e?rntdy = 0 for n >
1. ]

Lemma 2.5.5. (i) For a € GLy(Q)™", we have

(fieer, grar) = (det a)*2(f, g).
(ii) Let o/ = (det)a™!, then (firar, g) = (f, guc’).
Proof. (i) Choose I such that f,g € Si(T') and o 'Ta C SLy(Z), then

k
) B - Yy dxdy
Cla "Ta){fxa, gra) = (deta)** 1)/& Ta\H flaz)g(az) lcz 4+ d|*k y?

— (deta)t-? / TG

= (deta)*2C(I)(f. 9).
(ii) Replace g by gja', then we get

(fr,g) = (deta)*>(f, gpa™)
= (det ) *(f, g (qra))
= <f7 |kOé>

2.6 Primitive forms

Theorem 2.6.1. (i) If n > 1, then R, and T, are hermitian.
(ii) The eigenvalues of T, are integers in a totally real field.
(iii) Sk(1) has a basis of common eigenvectors for all T,,, n > 1.
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Proof. (i) It is trivial for R,,. Since Ty, is generated by R, and T, for p prime,
it suffices to consider 7,.
Let a € My(Z), detaw = p, then there exist 71, 72 € SLy(Z) such that

a =7 (51)72, then

<f|k@79> = <f|k( 1(8(1) 2), 9)
= <f|k(’5(1)),g\k72
= (fix ’6(1)) 9)
= < g Ik( )

thus <f|k’Tp7 g> = (p + 1)<f|k(g (1))79> = <f7 g\kTp>'

(i) Sk(SL2(Z),7Z) is a lattice in Sy (1) stable under 7;,, so det(X1 —1T,,) €
Z[X], so the roots are algebraic integers, and real since T), is hermitian.

(iii) 7;,s are hermitian, hence they are semisimple. Since the 7T,, commute
to each other, by linear algebra, there exists a common basis of eigenvectors

for all T,,. O
+00

Theorem 2.6.2. Let [ = ) a,(f)q" € My(1) — {0}. If for all n, f3T, =
n=0

A f, then

(l) al(f) 7é 07‘

(ii) if f is normalized, i.e. ay(f) =1, then a,(f) = A\n, for all n, and
(@) amn(f) = am(f)an(f) when (m,n) = 1.
(0) ap(fay (f) = ap+1(f) +p*tay—1(f) for p prime and r > 1.

Proof. (i) Since ay(f) = a1(fieTh) = a1(Anf) = Anar(f), if a1(f) = 0, then
f=0.

(ii) The first assertion is obvious, and the other two follow by the same
formulae for the R,, T},. ]

Definition 2.6.3. f € Si(1) is called primitive if a,(f) = 1 and f is an
eigenform for all Hecke operators.

Theorem 2.6.4. (i) If f,g are primitive with the same set of eigenvalues,
then f = g. (called “Multiplicity 1 theorem”).
(ii) The primitive forms are a basis of Sg(1).

Proof. (i) Apply (i) of the previous theorem to f — g, since a;(f —g) =0, so
f=g
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(ii) By (iii) of Theorem 2.6.1, there exists a basis of primitive forms. For
any two distinct such forms f and f’, then there exist n and A # X\’ such that

fuTu=Af, T =T,

then Mf, ') = (fTos /') = (. f'To) = N(f. '), 50 (f, f') = 0. Therefore

one has to take all the primitive forms to get a basis of Si(1). O
Remark. Since (Gy)ji T, = 0x—1(n)Gy, we get a basis of M (1) of eigenforms.
Example 2.6.5. Write
A=q]Ja—-g* =) r(n)g",
n=1 n=1
where 7(n) is Ramanujan’s 7-function. Then
T(mn) = 7(m)7(n), if (m,n) =1,
T(p)T(") = (™) +p" ("), if pis a prime, n > 1.

Proof. Since Si5(1) = C- A, and is stable by the 7T},, A is an eigenform of T},
with eigenvalue 7(n). O

Remark. In 1973, Deligne proved Ramanujan’s conjecture that
I7(p)| < 2p"2? (<= Re(s) =11/2, if1—7(p)p~* +p''"2 =0)

as a consequence of the proof of Riemann Hypothesis (Weil Conjecture) for
zeta functions of varieties over finite fields.



Chapter 3

p-adic L-functions of modular
forms

3.1 L-functions of modular forms.

3.1.1 Estimates for the fourier coefficients

Proposition 3.1.1. Let I' C SLy(Z) be a subgroup of finite index, let f =
> an(f)q" € Mp(T',C). Then

nEﬁN

(i)

Proof. We have that

1 M ‘
/ y2 f(x +iy)e ™ dx, Vy.

— 2Ty 7E_
an(f) = ey o i

Define

k
o(z) =yz sup |frd(2)].
5€T\ SLa(Z)

It is finite since [SLy(Z) : I'] < 400, and p(yz) = ¢(z) for v € SLy(Z).

63
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Let D be the fundamental domain of SLy(Z). For any § € I'\ SLy(Z),
there exists Cy such that, for all z € D,

| fird(2) — ao(fird)| < Cye™ 3t .

Let C =supCy, ¥(z) = sup then ¢(z) < C(2)*? + B for some
5

_ Yy

29
(cd)#(0,0) =T
B.

an(f) ey LM o 1 iy)da
ey =5 L [M(Cy(a +iy)*? + B)da.
If C' =0, take y = 51—, then we get (ii).

We now need to evaluate

M k
/0 U(x +iy)2.

Let y <1 (in application, y = ), then ¢(z + iy) < i Let j e N. If
Y(x +iy) > &y, there exists (¢, d) such that ¢®y® + (cx + y)? < 47y?, hence

there exist ¢, d € Z, such that

<
<

1<l|e| <2, [ex+d|l <2y
Now | |
Meas({z € [0, M] : 3d,s.t.|cx +d| < 2y}) < 21Ty M,
so Meas({z € [0, M] : ¢(x +iy) > ﬁ}) < 492y M, and
fo (z + iy)*dx

[—logs ]
< 3 Meas({x € [0.M]: - < (e +iy) < 5 ()M

4’“/2Meas({x €0, M]: Y(z+iy) <4})

[—log, y]
S M4 3T 42y M (g2 )M
]—1
—log, y]
:M4k/2(1+2 Z yl k/243(1— k/2))
7j=1
[—logsy]
When k > 3, let y = 1/Mn. As > 470-k/2) converges, we get a,(f) =
j=1
[—logy ¥]
O(n*=1). When k = 2, it is obvious. For k = 1, Y. yl=F/2400-k/2) <
7j=1
2 — y/? < 2, then we get the result. O
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Remark. (i) L(f,s) = > a,(f)n* converges for Re (s) > 0.
n#0
(ii) If " is a congruence subgroup, f € Si(I"), Deligne showed that

an(f) = On"D2*) Ve>0

in the same theorem mentioned above.
Question: What about the noncongruence subgroups?

3.1.2 Dirichlet series and Mellin transform

Definition 3.1.2. Let {a,},>1 be a sequence in C, the Dirichlet series of
(an) is D(s) = ) %=
n=1

Lemma 3.1.3. If D(sq) converges, then D(s) converges uniformly on com-
pact subsets of Re (s) > Re (sp).

Proof. One can assume sy = 0, then use Abel’s summation. O

Corollary 3.1.4. There ezists a maximal half plane of convergence (resp.
absolute convergence).

Remark. (i) if f(z) = > a,2", then the maximal open disc of convergence

of f is the maximal opeT;l disc of absolute converge, and also is the maximal
open disc of center 0 on which f can be extended analytically.

(ii) Let a, = (—1)"7!, then D(s) = (1 — 2'7%)((s), which converges for
Re (s) > 0, absolutely converges Re (s) > 1 and can be extended analytically
to C.

(iii) In general you can’t extend D(s) outside its half plane of absolute
convergence, but for D(s) coming from number theory, it seems that you can
always extend meromorphically to C (Langlands program).

We review some basic facts about Mellin transform:

Proposition 3.1.5. (i) Let ¢ : RY — C be in C", and suppose there exist
A > B satisfying, for 0 <1 <n,

; O(t*~%)  near 0
() — ,
p(t) = { O(tP~%)  near oo.
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Let

Mel(y, s) := / cp(t)tsﬂ.
0 t
Then it is holomorphic on —A < Re(s) < —B, and O(|s|™") on —A < a <
Re(s) <b< —B. '
(ii) If r > 2, p(z) = 5= CC_JT;O Mel(yp, s)x~*ds, for any C with —a < C' <
—-B.

Proof. (i) The first assertion is clear. For the second, use

1
s(s+1)---(s+r—1)

Mel(p, s) = (—=1)" Mel(o"), s 4 7).

(i) Mel(p,C + it) = Ye(t), where e(z) = @(e*)e®, and i is the
Fourier transform of ¢¢o. Then use Fourier inversion formula. O

3.1.3 Modular forms and L-functions

For f = 3 an(f)g" € Ma(1), define
n=0

['(s)
(27)°

i) =3 =0 age = Loy ),

ns
n=1

Example 3.1.6. Take f = Gq, we get

o0

L(Goy,s) = i 02’2—%(”) =3 (3 &Y (ad)

n=1 n=1 ad=n

= i a™®) (di:d%_l_s) = ((s)C(s — 2k + 1).

a=1
Theorem 3.1.7. (i) L(f,s) absolutely converges for Re (s) > 2k;

(ii) (a) A(f,s) has a meromorphic continuation to C;

(b) A(f,s) is holomorphic except for simple poles at s =0 of residue
ao(f) and 2k of residue (—1)*ag(f);

(€) A(f,2k = s) = (=1)A(f, 5);

(d) A(f,s) goes to zero at oo in each vertical strip.



3.1. L-FUNCTIONS OF MODULAR FORMS. 67

Proof. (i) The result follows from a,(f) = O(n?*1).
(ii) Let p(t) = f(it) — ao(f), then ¢ is C* on R, and ¢(t) = O(e~*™)
at 0o. f € My,(1) implies
p(t™h) = (=1 o(t) + (—1)"ao(f)t** — ao(f).
For Re (s) > 0, we have ["*e=2mtgsdt — TEL Then for Re(s) > k,

(2mn)s -~
= I'(s
Afs) = X Ny
- oioo 90(75)158? d
1 t) 2 +f t o

= r%(t)(tw( 1>kt2'f S)df wlfEL + 1), (4

S

since the first term is holomorphic for all s € C, this gives (a) and (b).
Replacing s by 2k — s in (%), we get (c). (d) follows from integration by

part. O

Theorem 3.1.8 (Hecke’s converse theorem). Let (¢;)nen be a sequence

in C such that L(s) = ) “ converges for Re(s) > A, and A(s) = (ggf))sL(s)
n=1

satisfy (ii)(a) — (d) of previous theorem, then

= chq” € My (1)
n=0

Proof. Since f(z) converges if |¢| < 1, it is holomorphic on H. Obviously
f(z+1) = f(2), we just have to verify

1
o) = F-1) ~f(:) =0 o
It suffices to prove that g(it) = 0 for ¢ > 0. Let
@(t) — = ch 27rnt
one can check that A(s) = Mel(p, s). Take ¢ > A, then

o(t) — SRt )

t2k .
= D A - (-1F [T M)
= L ([T A(s)t o ds — [T N2k — s)t*2ds)
_ 1 C-HOO —s 2k—c+ioco s
- ﬂ(fc 100 S ds — 2k—c—ioo A( ) dS)
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+00
1 R
TR
2k — ¢ R R Y&
f 0 2k
—R
l

—00

Consider the integral of the function A(s)t™* around the closed path ~.
Since A(s) — 0 on vertical strips, by Cauchy formula,

lim va A(s)t™*ds = fCHOO A(s)t*ds — 22kk:c+i°o A(s)t*ds

R—to00 c—100 c—100
= 27i(ress—o(A(s)t™*) + ress_ap(A(s)t77))
= 2mi(—co+ (—1)kcot=2F).

So
(="

Plt) = el = (=0 + (—1)ept ) =0,

by an easy computation, the left hand is just (;ngk(—g(it)), then we get
g(it) = 0, which completes the proof. ]

3.1.4 Euler products

Theorem 3.1.9. If f = > a,(f)q" € Max(1) is primitive, then
n=0

1
p°+p

2k—1-2s"

==

Proof. By Theorem 2.6.2, app(f) = an(f)am(f) whenever (n,m) =1, so
L(f.s) =TT (> aw(f)p™).
p r=0

Since,
Qpr+1 — Aplpr + kaflapr—l =0,
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r+1)s

multiplying by p~¢ , and summing over r from 1 to +o00, we get

%) %) oS
—rs —s —rs 2k—1—2s —rs __

E Qprp " — app E Qprp ~ +p E ayrp° = 0.

r=2 r=1 r=0

Using the fact that a; = 1, the result follows. ]

3.2 Higher level modular forms

3.2.1 Summary of the results

For N > 2, define

To(N) = { (‘C‘ Z) €SLy(Z): ¢=0 (mod N)}.

and write Si(I'g(N)) = Sk(N).

Exercise. If DM|N, f € Si.(M), let fp(z) = f(Dz), then fp € Sk(N). Such
a form is said to be old if M # N.

Definition 3.2.1. S(N) = {f € Si(N) : (f.g) = 0,Y g “old”}.
On Sg(N), we have the Hecke operators T,,, (n, N) = 1,

fuTw =t Sty (az; b) |

ad=n,a>1
bmodd

and for p | n, the operator
—1
1< z41
JeUp==) f ( ) ,
kY p D ; D
We also have a involution wy given by

o =125 ().

Definition 3.2.2. f € S,(N) is called primitive if f € S;™(N), a1(f) =1
and fixT,, = a,(f)f, whenever (n, N) = 1.
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Theorem 3.2.3. (i) The primitive forms are a basis of S (N).
(ii) If f is primitive, then Q({a,(f)},n € N) is a totally real number field,
a,(f) are integers, and f7 is primitive for all o € Aut(C).
(iii) If f is primitive, then
( ) anm( ) = an(f)am(f) of (n7m) =1, (nmv N) =1
(b) For pt N, apr+1 — ap(f)ap(p) + P ay—1(f) = 0.
(c) fuUp, = ap(f)f, and this implies a,-(f) = (a,(f))" for p|N;
(d) There exists ey = £1, such that fpwn = ¢eff.

Theorem 3.2.4. Suppose f = > a,q" € Sp(N) is primitive. Define
n=1

= ay, VN
R F(S)(Q—
1 n ™

Then
(1) L(f; S) = H 1_aip75 H l—appfsi-pkflf% 7.
pIN ptN

(ii) A(s) has an analytic continuation to C. And
A(f,s) =i e A(f.k — 5);

(iii) More generally, if (D,N) =1, x : (Z/DZ)* — C is a character of
conductor D. Then

(a) fOXx = Zl anX(n)q" € Sk(ND?, x?);
(b) L(f®X7S):H — lzz *SH — a *51 *757'
DN 1—x(p)app PV 1—x(p)app—*+x2(p)pF—1—2

(¢) AM(f ®x,s8) = F(s)(DQ\{TN)SL(f ® X, 8) has a analytic continuation
o AFexs) _ o AGOXs)
®@X,8) .y @X 8
_N)L DA e O, SR
e R T
where G(x) is the Gauss sum

G)= > xl@ed.

2€(Z/DZL)*

Theorem 3.2.5 (Weil’s Converse Theorem). Conversely, if (am)m>1
satisfy (b) and (c) of condition (iii) of the above theorem for all x of conductor

D, (D,N) =1, then Y anq™ € Sk(N) and is primitive.
m=1
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3.2.2 Taniyama-Weil Conjecture

Let A be a finitely generated Z-algebra. Define its Hasse-Weil zeta function
Ca(s) by '
we) = Il a0
@ prime in A (1 - ‘A/p‘ )
Conjecture 3.2.6 (Hasse-Weil). ¢, has a meromorphic continuation to
C.
Let B : y? = 23 + az? + bz + ¢, a,b,c € Q be an elliptic curve, Ap =
Zlx,y]/(y* — x® — ax? — bx — ¢) be its coordinate ring, which is a finitely
generated algebra over Z.

Theorem 3.2.7 (Wiles, Breuil-Conrad-Diamond-Taylor). There ezists
a unique Ng and fg € So(Ng) which is primitive, such that
-

L(fE7 S)

while ~ means up to multiplication by a finite numbers of Euler factors.

CAp

Remark. This proves Hasse-Weil conjecture in this case thanks to theorem
3.2.4.

Theorem 3.2.8 (Mordell-Weil). E(Q) U {oo} ~ Z"F)qfinite group.
Conjecture 3.2.9 (Birch,Swinnerton-Dyer). ord,—; L(fg, s) = r(E).

3.3 Algebraicity of special values of L-functions

3.3.1 Modular symbols.

Let N > 1, f € Sp(N), P € Alz]*~? (polynomials of degree < k — 2) with
A C C a subring. For r € Q, the integral [ f(2)P(z)dz converges because
f is exponentially small around 700 and r. These integrals are called modular
symbols.
For 0 < j <k — 2, define

1o : I'(j+1) .
Let Ly be the Z-module generated by r;(fxd), 1 < j < k-2 and 0 €
I'o(N)\SL2(Z). Then Ly is finitely generated.
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Theorem 3.3.1. If P € A[z]*=2 r € Q, then frwo f(2)P(z)dz € A-L; C C.

Proof. For v € SLy(Z),

Loy F@PRdz = )% f(32)P(y2)d(y2)
= [ fm( )Pa_xy(2)dz,

where Py_py(2) = (cz + d)F2P(£58) € Alz]*2. Take r = a/b, (a,b) =

ai—1

1, then there exists v, = <b - b) € SLy(Z) satistying (ag, b)) = (1,0),
-1 b
(Gn, by) = (a,b).

[ f(2)P(2)dz = Zf"“ P(2)dz
= lzl " ”°>f<z> P(z)dz

= Zf fin(2)P—xm(2)dz € A- Ly.

]

Exercise. For N =1, let L}’ (resp. Ly ) be the Z-module generated by r;(f)
for all odd (resp. even) j. For P € A[X]*~2 r € Q, ¢ = +, then

100 100

f(2)P(2)dz — ¢ f(z)P(=2)dz € A L5.

s —-Tr

Corollary 3.3.2. (i) Suppose f € Y an,q", ¢ : Z — Q is constant mod
n=1

MZ for some M. Then L(f,¢,s) = > ¢(n)%= has an analytic continuation
n=1

to C and
I'(j)

A(f, ¢7]) = (—27Ti)j

L<f>¢a]) E@'Lf7

ifl1<j<k-—1.

(i) If N = 1 and ¢(—x) = e(=1Y¢(x), then A(f,¢,5) € Q- L5, if
1<j<k—1
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Proof. we may assume ¢(n) = e?™ir for some 0 < u < M — 1 because such
functions form a basis, then

BRI 00 = fy T aen ety

=

this proves the first assertion of (i) as f is exponentlally small around 700
and —%.
M

Ao, 3) = J F(3y + i) (i) 22
fzoof ) %)j_ldz
€ Q Ly.

For (ii), we may assume ¢(n) = 2™ + e(—1)7e 2% | and similarly,
Af.0.9) = fgo f(2)(z = 35) 1z + <( fwi f(z wyi-lg;
= fgo f(2)(z — L)Y ~tdz — 5f f —— M)] Ldz,

then one uses the exercise. O

3.3.2 The results
Theorem 3.3.3. If f is primitive, then there exist Q;f and ¥y € C, 4f

¢:7—Q (mod MZ), 1 <j<k—1, ¢(x) =e(-1)Y¢(~2),
then A(f,¢,j) € Q- Q5.

Proof. We prove the case N =1, ¢ = 1.
We shall prove that

Te_o(F)ri(f) € Q(f, f), for [ odd. (3.1)

This implies
g L D D
/ rr—2(f) L(f,k—1)
where ~ stands for equality up to multiplication by an algebraic number. The
method to show (3.1) is the Rankin’s method in the following section. O
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3.3.3 Rankin’s method

Assume k = [ + j for k,1,j7 € N. Suppose x1,x2 : (Z/NZ)* — C* are

multiplicative characters. Let

+oo +oo
f:Zanqn € Sk(N>X1_1)a g:anqn € MZ(N7X2)‘
n=1 n=0
So
fOyz) = xi (d)(cz + d)F f(2),  g(y2) = xa(d)(cz + d)'g().
Let
1 T(@) ' X1xa(n)y "
Ginaxas(2) 2 (=2mi) NZ: (mz +n)l | mz +n [26+1-6)
(N,n)=1
'(y) ‘ x1x2(d)
= L 2 1—-k))- e
(—27Ti)3 (XlXZy] + (S+ )) Z (CZ—l—d)]
7=(2b)erc\ro(v)
We have
Proposition 3.3.4.
=X a,b
D = L i+ 2 1—k e
(f.9,5) (X1X2,7 + 2(s + )); e

(47)® (=271 |
- 1_‘(5) 1"(]> ) <fa ng7X1X2,3> : [SLQ(Z) : FO(N)]

Proof. Using the Fourier expansion, then

+o00 Elnbn B F(S) 400 1 , @

S0 = G, [ IO e
~ T(s) N2 et dxdy
 T(s) () T () 5+ dxdy
=g oo 2, (02 ) 2

- (255))3 /FO(N)\H%(g(Z) Z el Tm (’YZ)SHJ{)Q

J
er ) (cz +d)

this implies the Proposition.

I (72)

p drdy
Y2

]

s+1—k
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Theorem 3.3.5. (i) D(f,g,s) admits a meromorphic continuation to C,
which is holomorphic outside a simple pole at s =k if l =k and xy1x2 =1

(ii) if f is primitive, g € My(N, x2,Q), then
D(f?.gak_l) € @'ﬂ-jJrkil(faf)'

Proof. As D(f,g,s) = (f,9Gs),
(i) we have to prove the same statement for G, which can be done by

computing its Fourier extension. The pole comes from the constant Fourier
coefficients.

(ii) For the case N = 1,x1 = x2 = 1 and j > 3, then G;,y,k-1 = G, we
are reduced to prove

<fagG]> € @(fv f>

Let fi, i € I be a basis of Si(1) of primitive forms, with f; = f. As
9G; € Mi(1,Q), we can write gG; = MGy + >, \ifi, with A; € Q. Since

(G, [) =0, (f,f;) =0,ifj#1,

Then (f, 9G;) = M(/[. f)-
O

Remark. The general case can be treated in the same way, once we prove
that

Gj7X1X27k—1 S Mj(N7 X1X27@) (ifj #20r Xi1X2 # 1)'

Proposition 3.3.6. If

=xa a 1

— = —) = —, a0, = xa(p)p" ™,
nt z[:]” plgu_%p (L= By "
Ry b 1
o= (> DI — w0, = e
il wena " i (L= 7p=*) (L =pp=s)” "7

then D(f,g,s) =

b
( Z ns ) plg (1= apypp™) (1 = Byypp~*) (1 — e0pp=*) (1 — Bpdpp~*)

nEZ[%]X
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Proof. Exercice, noting that

a;}—&-l _ ﬁ;—l—l ,y;—l-l _ 5;—&-1
a/pr = 5 bpr =
ap — B Yo — 0p
L]
We give one application here:
Corollary 3.3.7. The claim (3.1) holds, i.e.
re—o(F)ri(f) € Q(f, f), forl odd.
Proof. Let f € Si(1) be primitive, k given. For [ even, let g = G, then
DRI | G
2w~ o sa—py
hence D(f, Gy, s) = L(f,s)L(f,s — 1+ 1). Therefore
L(ka_ 1>L(f7k_l> S Q'ﬂ-j+k71<f7f>
which implies -
Tr—2(f)re-1-1(f) € Q(f, f)-
]

Remark. In the general case,
L(Gj, x1x2,k — 1,5) ~ ((s)L(xax2,s — L+ 1).

If fi, fo,- -+, fn are primitive forms € Si(1V;) for N; | N. Write

L(fi, s) :*H (i) :

(1 —a%p==)(1 - allp~s)

PIN
then
1
L(f @ ® fas)=+]] RO
av I (o) -ap) p)

J1.J2, ,dn€{1,2}
One has the following conjecture:

Conjecture 3.3.8 (Part of Langlands Program). L(f,® - ® f,, s) has a
meromorphic continuation to C, and is holomorphic if f; # f;, for all i # j.

Remark. Rankin’s method implies the above conjecture is OK for n = 2.
The case for n = 3 is due to Paul Garrett. The case for n > 4 is still open.
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3.4 p-adic L-functions of modular forms
In the following, we assume f € Sg(N) is primitive.
), ¢ (2) = 5(¢(z) — d(—2)).

—z)), ¢~
A(f7¢+7j) A(f7¢_7j> E@

Definition 3.4.1. ¢*(z) = %(qﬁ(q;) + ¢(
Then

]\ f7 ¢>] = J Jj+1
( ) Q;ﬁl) Qgcfl) +

if¢p:Z—-Qand1<j<k-—1.

Fix an embedding Q < @Q,. The function L(f,s) has an Euler product

L) = ] E;(S), Ey(s) € QI], deg Ey(s) < 2.

{ prime

Write E,(s) = (1 — ap™®)(1 — fp*) and assume « # 0. Then § = 0 if and
only if p | N. Set
fo(2) = f(2) = Bf(pz).

Lemma 3.4.2. f,|U, = af, in all cases.

Proof. 1t is clear if p | N as in the case = 0. If p{ N, then

at+f=a, af=pt

and f|,T, = (a+ B)f, thus

b
= — (0 +H)f(z) + KT, =0.

faldly = afo =23 f ( * ) — Bf(z+1) — af(2) + aBf(p2)
=0

]

If we write f, = 3.7 b,q", the above lemma implies that b,, = ab,, for

all n. Define b,, for n € Z [%] as

bn - Oéirbpr,nd r > 0
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Take ¢ € LC.(Q,, Q) a locally constant function with compact support and

let
L(f.¢,5)= Y_ ¢(n)

e}

Qn

ns’

If ¢ has support in p~"Z,, then ¢(z) = ¢o(p"z) for ¢o : Z — Q constant mod
p™Z for some m.Then

L(f,¢,s) = a”"p"L(f, ¢o, )

which implies

A(f,0,j) € Q C Q,, forall ¢ € LC.(Q,,Q).

Definition 3.4.3. Assume ¢ € LC.(Q,,Q) and ¢ is constant modulo p"Z.
The discrete Fourier transform of ¢ is

Sla)=p™™ D ly)e Y,

y mod p™

for m > n — v,(x), where zy € Q, — Q,/Z, — Q/Z. This definition does
not depend on the choice of m > n — v,(z).

Exercise. (i) gg is constant mod p™Z, if and only if ¢ has support in p™™"Z,,.

(i) &(x) = ¢(—2). i A
(iii) For a € Q,, let ¢,(z) = ¢(ax), then ¢,(z) = pr@¢ (Z).

Theorem 3.4.4. (i) There exists a unique fifq : L Pl0:k=2] (Zp,@p) — @p,
such that for all ¢ € LC(Z,,Q),

¢<m>xj_1:ufﬂl - A(fa; 9237.].)7 ]- S ] S k - 1
Zp

Moreover, Y(psa) = i“ﬁa; or equivalently

T 1
/ o (_) Hfa = — (bluf,a-
PZyp p a Zp

(i) if vp(o) < k — 1, then pyq extends uniquely as an element of D, (q)-
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Proof. (i) The existence of y;, : LP**=2(Z, Q,) — Q, is just the linearity
of  — ¢. The uniqueness is trivial. The second claim follows from

x 2\ 1 - 17 ,
/pngzs(g) (2) s = R o002, )

1+ A 1 .
oMb = [ 6 g

(ii) One needs to show there exists a constant C, such that
o[ @) = CH G-,
a+p"Zy

forall a € Z,, n € N, j <k — 2. Note that

—n —27i . _
N P e maxa if x Ep an’ o n
].a T — = a
+p Zp(x) {O, “f 1ot p " ba(p )
for
2mi 2L
e 1 € Ly,
Gal@) = {0, otherwise.
Then
. J ] y
[ o =300 () R et )
atp" L 1=0
J ] ~
—a S (1) R4 )
1=0
Since
R R R R R O Ll B AC R
0 -
we get

J . 100
> (-1 6) / (¢ —aYpra=a"p" [ fa(2)z/dz € a "Ly,
a+p"Zy

=0

We just pick C' = min(v,(7;( falrd))). O
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Remark. (i) If p | N, then § = 0, and a # 0 implies vy,) = % <k-1,
hence i, exists by the above Theorem.

(i) If pt N, then v,(a), v,(8) > 0. Since v,(a) + v,(8) = k — 1, at least
one of p1f, or pyz always exists.

In the case vy(a) = k—1, then a+ 3 = a,(f) is a unit. This case is called
the ordinary case. The conditions are not strong enough for the uniqueness
of fif.4, as we can add the (k — 1)-th derivative of any A € D,.

(iii) In the case o = 3 = 0, we do not understand what happens.

Definition 3.4.5. Let x : Z; — C; be a continuous character. Set

Lya(f @, 5) = / 2 (@)t

Zy

In particular, take y(z) = 22 ()"~ % where (z)! = exp(tlog ). Set

E_ ok
Laf9) = [ 287l g
Zp

Proposition 3.4.6. For 1 <j <k —1,

La(f&x0) = (1= 200 = DA

Proof. Follows from
(i) 1/\2,*, =1z, —p '1p1z,,
(H) A(fom 1Zp7j) = (1 - Z%A(faj))v

(i) Y(ppa) = ghsa-

Remark. (i) As A(f,s) = A(f,k —s) and af = p*~1if pt N, then

i—1
-1
e} prTI
Note E,(f,s) = (1 —ap~*)(1— Fp~*). Then the Euler factor of the p-adic L-
function is actually the product of one part of the Euler factor for L(f, s) and
one part of the Euler factor for L(f, k — s). This is a general phenomenon.
(i) Ifp | N, a # 0, the v,(a) = % It can happen that a = p%, which
means L, (f,%) = 0. In this case
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Congecture 3.4.7 (Mazur-Tate-Teitelbaum Congecture).

Lol ™) = Lo (DAG ).

2 2
Here the p-adic L-function is related to 2-dimensional (¢, N)-filtered modules
D with N # 0 and Fil°D = D, Fil' D # D. For the pair (\, ) as in
Fontaine’s course, where X\ is the eigenvalue of ¢ and « is the parameter
associated to the filtration, X\ is our o and o is our Lpopy..

The conjecture is proved by Kato-Kurihara-Tsuji, Perrin-Riou, and Stevens,
Orton, Emerton with other definitions of the L-invariant.

(iii) Mazur, Tate and Teitelbaum have also formulated a p-adic analog of
the BSD conjecture. For E/Q an elliptic curve, by Taniyama-Weil, it is
associated to a primitive form f € Sy(N). Set L, o(E,s) = L,o(f,s) if it
exists, which is the case if E has either good reduction (hence p { N) or
multiplicative reduction (hence p | N,p?t N) mod p.

Congecture 3.4.8 (p-adic BSD Conjecture).

rank F(Q), if pt N or a # 1;

Aoy Ly o(E, 5) =
ordsmt Lyl B, 5) {rankE(Q)+1, if p| N and o = 1.

Kato showed that

rank F(Q), if pt N ora # 1;

ords—y L, o(E,s) > { _
rank £(Q)+1, ifp|N and a = 1.

(iv) To prove Kato or Kato-Kurihara-Tsuji, we need another construction
of p-adic L-functions via Iwasawa theory and (p,I')-modules; this construc-
tion is the subject of the next part of the course and is based on ideas of
Perrin-Riou.
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Part 11

Fontaine’s rings and Iwasawa
theory

33






Chapter 4

Preliminaries

4.1 Some of Fontaine’s rings

This section is a review of notations and results from Fontaine’s course. For
details, see Fontaine’s notes.

4.1.1 Rings of characteristic p

(1) C, is the completion of Q, for the valuation v, with v,(p) = 1.
1

o ={zr€Cpupl(z) 2}

(2) E7 is the ring R in Fontaine’s course. By definition
Et = {z = (2p)nen | 20 € Cp/a, 2l | = x,,Vn}
is a ring of characteristic p with an action of G,. For z = (z,) € E+, for

every T, pick a lifting Z,, € Oc,, then

k

lim (&,44)" = 2™ € Oc,

k——+o0

is a canonical lifting of z,, such that
Et ={z = (2")pen | 2™ € Oc,, (2P = 2 wp)
with the addition and multiplication by
(z +y)™ = kETOO(x(nJrk) + y(wrlf))p’“7 (zy) ™ = My,

85
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E* is a valuation ring with valuation

and maximal ideal .
my = {z € E" vp(z) > 0}.

(3) Choose once for all
e=(1,eM,...)e Ef, W #£1.
Then €™ is a primitive p”-th root of 1 for all n. Set
T=ec—1€E"

We know that vp(7) = -2 > 0.
From now on, x : Gg, — Z,, will be the cyclotomic character. The action
of Gg, on ¢ is given by

oe) = o = 3 (xf))ﬁ@

k=0

(4) In the following, without further specification, K C Q, will be a finite
extension of Q,. Denote by k = kg its residue field. Set

K,=K(E™), Keo=|]JKn.
neN

Set

F C K= the maximal unramified extension of Q, inside K,

F'" C K= the maximal unramified extension of Q, inside K.

Set
G = Gal(@p/K), Hyi =Kery = Gral(@p/Koo)7

and
Tk = Gg/Hy = Gal(Ko/K) & L7,

(5) For every K, let
Ef ={x=(z,) € BT, 2, € Og_/a, ¥n} = (EY) % (by Ax-Sen-Tate’s Theorem),
Ef = {z=(v,) € EY,z, € Ok, /a, ¥n > n(K)}.
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Then

We set

with valuation
vp(77*z) = vg(z) — kug(7).

The following Theorem is the topics in the last section of Chapter 2 of
Fontaine’s Notes.

Theorem 4.1.1. (i) E is a field complete for vy with residue field F,, ring
of integers Bt and Gg, acts continuously with respect to vg.

(i) Er = kp((7)) iof F/Q, is unramified.

In general, Ex is a totally ramified extension of Ep of degree [K« : F. ],
thus a local field of characteristic p, with ring of integers E}; and residue field
kg

(iii)) E= U  FEk is a separable closure of Eq,, is stable under G,

[K:Qp]<+4o0
and Gal(E/Ex) = Hg. So Hg, acts continuously on E for the discrete
topology. )

(iv) E (resp. Ex) is the completion of the radical closure of E (resp.

Ex), ie., \J EP™ (resp. \J E%"). In particular, E is algebraically closed.
neN neN

4.1.2 Rings of characteristic 0

(6) Set
At =W(EY)=W(R), A:=W(E)=W(FrR).

Every element 2 € A can be written as
“+o0o

v=)_pled
k=0

while z;, € E and [zy)] is its Teichmiiller representative.
As we know from the construction of Witt rings, there are bijections

AT = (EDN, A= (E)N.
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There are two topologies in At and A:

(i) Strong topology or p-adic topology: topology by using the above bijec-
tion and the discrete topology on Et or E. A basis of neighborhoods of 0
are the p* A, k € N.

(ii) Weak topology: topology defined by vg. A basis of neighborhoods of
0 are the p*A + [7"]A*, k,n € N.

The commuting actions of G, and ¢ on A are given by

+00 +0o0 +00 400
gO> Pt lal) =D pMlglan)l, O pFlakl) = pFlad].
k=0 k=0 k=0 k=0

(7) B := A[%] is the fraction field of A. B is complete for the valuation Up,
its ring of integers is A and its residue field is E.
For the Gg, and ¢-actions,
szl = Zp, B¢:1 = Qpa
_ . . . -1 .
AHK == W(EK) = AK, BHK = AK[—] = BK.
D
(8) Set
=[] =1, t=logle]=log(l+ ).

The element [¢] is the p-adic analogue of €?™

given by

. The Gg,- and ¢- actions are

o(r+1) =(r+1? or+1)=(r+ 1)x(g)'

(9) Set .
AY = Z,[n]) — A

which is stable under ¢ and Gg,. Set

while " stands for completion under the strong topology, thus

Ag, = {Z apm " | ay € Zp,kEIElOO vp(ag) = o0}
keZ
Set By, := A@p[]%], then Bg, is a field complete for the valuation v,, with
ring of integers Ag, and residue field Eq,.
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Moreover, if [K : @,] < 400, B contains a unique extension By of B,
whose residue field is Ex, and Ax = Bg N A is the ring of integers. By
uniqueness, By is stable under ¢ and G acting through I'g.

The field
gur — U By
[K:Qp]<+o0

is the maximal unramified extension of Bq, = E. Set
B =&

be the closure of ~ |J By in B for the strong topology. Then A = BN A
[#:Qp]<+o00
is the ring of integers Oz and the residue field of B is A/pA = E. By
Ax-Sen-Tate,
B¢ = B, A< = Ag.

Remark. If 7y is a uniformising parameter of Ey, let mx € Ag be any
lifting. Then

Ax = {Z aviclar € Op, i vp(ay) = +oo}.
keZ

Remark. In the above construction, the correspondence A — A is obtained
by making ¢ bijective and then complete, where A = (Ek, E, Ak, A, B, B).

4.2 (¢,I')-modules and Galois representations.

Let K be a fixed finite extension over Q,, let I' = I'g.

Definition 4.2.1. (i) A (¢, ')-module over Ak is a finitely generated Ag-
module with semi-linear continuous (for the weak topology) and commuting
actions of ¢ and T'.

A (p,T')-module over By is a finite dimensional Bg-vector space with
semi-linear continuous (for the weak topology) and commuting actions of ¢
and I

(i) A (¢,I')-module D/ Ak is étale (or of slope 0) if (D) generates D as
an Ag-module.

A (p,I')-module D/By is étale (or of slope 0) if it has an Ag-lattice
which is étale, equivalently, there exists a basis {e1,--- ,e4} over B, such
that the matrix of ¢(e1), -+, @(eq) in ey, - ,eq is inside GLy(Ag).
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The following theorem is similar to Theorem 1.5.9 in §1.5.4 of Fontaine’s
Notes.

Theorem 4.2.2. The correspondence
Vi— D(V) = (A®g, V)"«

is an equivalence of ® categories from the category of Z,-representations
(resp. Qp-resp) of G to the category of étale (p,I')-modules over Ay (resp.
By ), and the Inverse functor is

D+ V(D) = (A®a, D)*

Remark. (i) 'k is essentially pro-cyclic, so a (¢, I')-module is given by two
operators and commuting relations between them. For example, if D/Ag is
free of rank d, let U be the matrix of y for (7) = 'k, let P be the matrix of
¢, then

Uy(P) = Pp(U), U, P € GLy(Ag).

(ii) We want to recover from D(V') the known invariants of V:

- HY(Gg,V); we shall do so in the coming lectures. We will also recover
the Iwasawa modules attached to V' and thus give another construction
of p-adic L-functions.

- DdR<V)> Dcris(v)7 Dst(V)



Chapter 5

(¢, I')-modules and Galois
cohomology

5.1 Galois Cohomology

Let M be a topological Z,-module (e.g. a finite module with discrete topology
or a finitely generated Z,-module with p-adic topology, or a Fontaine’s ring
B, --+), with a continuous action of G.

Let H (G, M) be the i-th cohomology groups of M of continuous coho-
mology. Then:

Hl(G M) = {c¢: Gx — M continuous, J1Cgy — Cgigs +Cq, = 0, Vg1,92 € Gk}
© {c:g9— (9g—1)x, for some x € M}

To a 1-cocycle ¢, we associate a G module E, such that
0O—-M—-FE.— N—=0
where E, ~ Z, x M as a Z,-module and Gx acts on E. by
g(a,m) = (a,gm +c,).
One can check easily
91(g2(a,m)) = g1(a, gam + ¢g,) = (@, grgam + gicg, + ¢g,) = g1ga(a, m).
E, is trivial if and only if there exists 1 € E,, such that g1 = 1 for all g, i.e.
1=(1,2),91—-1=(0,9z—x+4c,) =0, that is, ¢, = (1 —g)z is a coboundary.

91
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Theorem 5.1.1 (Tate’s Local Duality Theorem). Suppose K is a finite
extension of Q,. Let M be a Z,|Gk|-module of finite length. Then:
(i) H(Gg, M) =0 fori>3; H(Gx, M) is finite if i < 2.

2 .
(it) TT [ (G, M) = [ M|~
i=0
(iii) H*~"(Gx, Hom(M, p,)) ~ Hom(H (G, M), Q,/Zp).
We will give a proof using (¢, I')-module (Herr’s thesis).

Remark. (i) If M is a finitely generated Z,-module with p-adic topology,
then M =~ lim M/p"M, and H'(Gf, M) =~ lim H* (G, M/p"M).

Not tautological, the proof uses finiteness of (i) to ensure Mittag-Leffler
conditions.

(ii) If V is a Qp-representation of G, let ' C V be a Z,-lattice stable
by Gk. Then H (G, V) ~Q, ® H(Gk,T).

Corollary 5.1.2. If V is a Q,-representation of Gi. Then:
2 . .
(i) > (=1)"dimg, H'(Gk,V) = —[K : Q] dimg, V;

1=0

(i) H*(Gk,V) = H°(Gk, V*(1))*.

5.2 The complex C,,(K,V)

Assume that 'k is pro-cyclic (I'g, ~ Zj), v is a topological generator of I'x.
This assumption is automatic if p > 3, or if K O Q(uy) when p = 2. Let V
be a Z,- or Q,-representation of G'x. Set

D(V) = (A®z, V)"~
Definition 5.2.1. The complex C?_(K,V) = C,,(K,V) is

(p—1)

0 — D(V) YLD pyy g pv) G Zemen by g,

It is easy to see Cy (K, V) is really a complex (as ¢,y commute to each
other). We shall denote the complex by C*(V) if no confusion is caused. We
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have

HY(CH(V)) = (& € DV, () = 2, () = ).
1/ e Ay s (y=Dr = (¢ -1y}
V) = {002 2 € DAY
D(V)
(7 - 17 Y — 1)7
H'(C*(V)) =0,for i > 3.

H*(C*(V)) =

Theorem 5.2.2. H (Cy,,(K,V)) ~ H(Gg,V) for all i in N.

Proof. We have the following exact sequence (which can be proved by reduc-
ing modp):
0—2Z,— A LA 0,

here A = ng in Fontaine’s Course.
(1) @ = 0: For x € D(V)#=!, since D(V) = (A ®z, V)%, we have
D(V)#=t = (A9=t @g, V)Hx = VHK and (V)=
(2) 1 = 1: Let (z,y) satisfy the condltlon (v—1) ( — 1)y. Choose
be (A®z, V)Hx, (¢ —1)b = z. We define the map:

g—1
9€Gr = cayly) = 1Y (9 — 1)b.

while the meaning of %y is: as x(g) = lim x(v)™, y is fixed by Hg, we

i——+00
let .
= y= lm (1+y+---+7" Yy
Y= i—+4-00
This is a cocycle with values in V', because g — (g —1)(5% —b) is a cocycle,

and (¢ — 1)cyy(9) = (9 — 1)z — (¢ — 1)(g — 1)b = 0, which implies that
cry(9) € D(V)P=1 = V.

Injectivity: If ¢, = 0 in H'(Gg, V), then there exists z € V, ¢,(g9) =
(9 — 1)z for all ¢ € Gk, that is, L= iy (9 —1)(b— 2) for all g. Now
b—z € D(V), because it is fixed by ¢ 6 Hp. Then we have: y = (y—1)(b—2)
and z = (¢ — 1)(b — 2), hence (z,y) equal to 0 in H'(C*(V)).

Surjectivity: If ¢ € H'(Gg, V), we have:

0=V —FEk. — Z,— 0,
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here £, =7, xV,e € E.— 1€ Z, and ge = e + ¢, for g — ¢, representing
c. We have:
0— D(V)— D(E.) — Ag — 0,

here D(E.) CA® E.and é € D(E,) — 1 € Ak. Let
r=(p—-1)¢ y=(-1)¢

they are both in D(V) and satisfy (y — 1)z = (p — 1)y. Let b=¢€—e €
A®z, E.. Then c,,(g9) = %y —(g—1)b=c, and (p —1)(b) = x.
(3) i general: from the exact sequence:

0—272,— A LAl R 0,
tensoring with V' and taking the cohomology H'(Hy, —), we get
0 — Vx — D(V) £ D(V) — HY(Hg, V) — 0,

because A @V ~ ®(A/p') as Hx-modules and H (Hg,E) = 0, if i > 1, so
H (Hg, Ao V) =0 for all i > 1. Hence H'(Hg,V) =0 for all 1 > 1.
By the Hochschild-Serre Spectral Sequence for

1> Hg - Gg - Tk — 1,

we have H'(Tx, H (Hg,V)) = H"(Gg,V). When j or i > 2, the coho-
mology vanishes. So we have:

HY(Gg,V)=0, if¢g>3
H*(Gg,V) ~ H' (T, H' (Hg,V)).
Since H'(Hg,V) = L we get
) _ D) DV) D)
H (G V) = E/w_l)w—l Cp-Ly-1)

]

Remark. (1) The inflation-restriction exact sequence becomes the commu-
tative diagram

00— HY(Tg, Vir) HYGg,V) HY (Hg, V&) —0
i
0 i HY(C,p (K, V) (ZE)rw 0
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where the map H'(C,,(K,V)) — (%)FK is given by sending (z,y) to the
image of x.

(2) Let 4/ be another generator of ', we have 77/—:11 € (Zy|[I'k]])* and a
commutative diagram:

Cory:0——=DWV)—=DV) ® D(V) —=DV)—=0

B l o i ild \LId

Cpy: 0—=D(V)—=D(V) & D) —=D(V)—>0

It induces a commutative diagram

H(C3 )

HY Gk, V

where [ (y) = 12)%3‘“ for log X (T'x) =~ p"¥7Z,. So lx(7)c,,, “does not depend

on the choice of 7.

5.3 Tate’s Euler-Poincaré formula.

5.3.1 The operator .

Lemma 5.3.1. (i) {1,&,---,e?7'} is a basis of Eg, over p(Eqg,);

(ii) {1,e,--- ,eP'} is a basis of Ex over (Ex), for all [K : Q,] < 400,
(iii) {1,&,--- ,eP"'} is a basis of E over ¢(E);

(iv) {1,[e],- -+ ,[e]P"'} is a basis of A over ¢(A).

Proof. (i) Since Eg, = F,((7)) with # = ¢ — 1, we have p(Eg,) = F,((7"));
(ii) Use the following diagram of fields, note that Eg,/¢(Eq,) is purely
inseparable and ¢(Ek)/¢(Eq,) is separable:

Ex —— ¢(Ek)

E@p - SO(EQP)

(ili) Because E = UE¥.
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(iv) To show that

p—1
(mOwrlv T 7xp—1) € AP — Z[g]zgp(l‘i) €A
=0
is a bijection, it suffices to check it mod p and use (iii). O

Definition 5.3.2. The operator ¢ : A — A is defined by

—_

p—

V() _lel'e(x:)) = zo.

7

Proposition 5.3.3. (i) v = 1d;
(ii) v commutes with G, .

Il
o

Proof. (i) The first statement is obvious.
(ii) Note that

oYl e()) = YO (gla)

If for 1 <4 <p—1, write ix(g9) = i, + pj, with 1 < i, <p—1, then

p—1 p—1

V[ e(g(a2)) = lelglwo)) + D lel“w([e7g(x:))) = g(wo)-

i=1

Il
o

O

Corollary 5.3.4. (i) If V is a Z,-representation of G, there exists a unique
operator ¢ : D(V') — D(V') with

P(pla)z) = ap(z),  Plap(r)) = Pla)z

if a € A, x € D(V) and moreover ¢ commute with I'k.
(ii) If D is an étale (p,I")-module over Ax or By, there exists a unique
operator ¢ : D — D with as in (i). Moreover, for any x € D,

p"—1

T = Z )" ()

=0

where x; = Y"([e] 'x).
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Proof. (i) The uniqueness follows from Ax ®,a,) ¢(D) = D. For the exis-
tence, use Yy on A®V D D(V). D(V) is stable under ¢ because ¢ commutes
with Hy, v commutes with I'y since ¢ commutes with G.

(ii) D = D(V(D)), thus we have existence and uniqueness of 1. The rest
is by induction on n. [

Example 5.3.5. Let D = Ag, D A&p = Zy[[r]] be the trivial (¢, ')-module,
here [¢] = (14 7). Then for x = F(r) € A} , p(z) = F((1+7)” —1). Write

—_

o
F(r)=Y (1+7)F((1+m)P—1),
then ¢(F (7)) = Fy(m). It is easy to see if F(mw) belongs to Z,[[r]], Fi(m)
belongs to Z,[[x]] for all i. Then ¢(Eg ) C Ey = Fy[[n]]. Hence ¢(Ag, ) C
Aap. Consequently, ¢ is continuous for the weak topology.
Moreover, we have:

I
=)

P(W(F) = Fol(1+m) ZZ (L o) (=1 + )P — 1)

zp 1 =0
= - Z F(z(14 ) —1).
zp 1
Recall Dy(Z,,Q,) ~ = Q, ®z, Ay, by = Au(m) = [, [e]"n. Recall

that ¥ (u) is defined by

= /pr ¢(§)u

From the above formula, we get, using formulas for Amice transforms,

Ay (m) = V(A,)(7).

Proposition 5.3.6. If D is an étale p-module over Ay, then 1 is continuous
for the weak topology.

Proof. As Ak is a free Ag,-module of rank [K : Qp(tt,~)], we can assume
K = Q,. Choose ej, €9, -+ ,e4 in D, such that

D = ®(Ag,/p")e;, mn; € NU{oo}.
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Since D is étale, we have D = ©(Ag,/p")¢(e;). Then we have the following
diagram:

D D

] }

©(Aqg,/p")p(e;) — B(Ag, /P )ei

Z 951‘80(61) Z 1/’(%‘)@'

Now z + 1) (z) is continuous in Ag,, hence 9 is continuous in D. O

5.3.2 DYland D/(¢ — 1)

Lemma 5.3.7. If D is an étale p-module over Eq,, then:
(i) DY=! is compact;
(ii) dimg, (D/(¢ — 1)) < +o0.

Proof. (i) choose a basis {e1, -+ ,eq}, then {p(eq),- -+, p(eq)} is still a basis.
Set vg(x) = inf, vp(x;) f =), xip(e;), x; € E&Sp. We have

d

Y(z) = Z@Z)(xi)ei and e; = Zam‘@(ej)-

i=1

Let ¢ = infvg(a;;), then we have

Up((@)) = e+ inf vp((z). (5.1)

From w(E(gp) - E&p and w<7_rpk$) _ ﬁ'kw(l‘), we get UE(w(x)) > |:UEZ§I)i| So
. evp(2:) vp(z)
UE(¢($))ZC+HI,1f[ . | >c+] 5 ]

If vp(z) < 1%, then vp((z)) > vg(z). Now D¥=!is closed since 1 is
continuous, and is a subset of the compact set

plc—1)

M :={x:vp(x) > o
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Hence D¥=! is also compact.

(i) ¥ — 1 is bijective on D/M from the proof of (i). We only need to
prove that M/((¢» —1)D N M) is finite, equivalently, that (¢ — 1)D contains
{z :vg(x) >} for some (.

d
¢(x;) can be written uniquely as ¢(x;) = > b; je;. Let ¢ = infvp(b;;),
j=1 &

then
d d d d

d
r= wple) =Y 2 ) bige; =Y (Y wibiyles.
i—1 j=1

i=1 j=1 i=1
d d
Let y; = > ;b; j, then x = > y,e;, and
i=1 j=1
ve(y;) = o+ ve(r).
From ¢(z) = 3 o(y;)e(e;), we get

=1

ve(e(r)) = infug(p(y;)) = pinfve(y;) > pue(x) + peo.

+oo |
So, if vp(z) > ZEP + 1, then vg(p™(z)) > p". It implies y = izzlgpz(a:)

converges in D. Now
+0o0 ' “+o0o A
(b=1Dy=) ¢'@) - ¢@) =2
i=0 i=1

implies that (1) — 1)D contains {z|vp(z) > -EF + 1}. O

Proposition 5.3.8. If D is an étale p-module over Ak (resp. over Byg),
then:

(i) D¥=! is compact (resp. locally compact);

(i) D/(v» — 1) is finitely generated over Z,(resp. over Q).

Proof. We can reduce to K = Q,. Bk follows from Ax by Q, ®z, —. So we
consider D over Ag,.

(i) Note that D¥=! = liLn(D/p”D)wzl. From the previous lemma we have
D/p™D is compact by easy induction on n. So D¥=! is compact.

(il) The quotient (D/(¢»—1))/p ~ (D/p)/¢ — 1 is finite dimensional over
F,. We have to check that
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if v = (¢ — 1)y, + p"Z, for all n, then x € (¢» — 1)D.

If m > n, Ypm —yn € (D/p™)¥=1, which is compact, we can extract a sequence
converging mod p”. Thus we can diagonally extract a sequence converging
mod p" for all n. Then y,, converges to y in D and x = (¢ — 1)y. ]

5.3.3 The I'-module D¥=Y,

If p# 2, we let I'y = I'g, ~ 7. Let I'y C T and I'y = 1 +p"Z, if n > 1.
Then I'y = A x T'y where A = p,, 4, and T, = liinfn/Fner. We define

m

Z’p[[rn]] = lim Zp[rn/rn+m] = D(I'n, Zy).

pam—

If n > 1, let 7, be a topological generator of I',. So I'), = 7%’7. The corre-
spondence

Z,[[Tn]] <=— Z,[[T)) = Ag,

Y — 1 1T s
is just the Amice transform. Then

Zp([Po]] = Zp[A] @ Zy[[IM]],
Zy{{Tn}t} == (Zp[[Talll(7a — 1)7'])" = Ag, (as aring),
Zp{{To}} = Zp[ A @ Zp{{T'1}}.

Modulo p, we get F,{{I',}} ~ Eg, as a ring.

Remark. Z,[[To]] ~ Do(To, Zy) =~ Do(Zy, Zy) =~ (AG)¥=°. So (Af )P~ is
a free Z,[[I'o]]-module of rank 1. This a special case of a general theorem
which will come up later on.

Lemma 5.3.9. (i) If M is a topological Z,-module (M = lim M/M;) with
a continuous action of T'y, (i.e. for all i, there exists k, such that T,y acts
trivially on M /M, ), then Z,[[T',]] acts continuously on M ;

(ii) If vn — 1 has a continuous inverse, then Z,{{I',}} also acts continu-
ously on M.
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Lemma 5.3.10. (i) If n > 1, vgp(y,.(7) — 7) = p"vp(T);
(ii) For all x in Eg,, we have vep(y,(x) — x) > vp(x) + (p" — 1)vg(7).

Proof. Since x(v) = 1+ p"u, u € Z;, we have

'3

=1+7)((1+7)"—1)".
Then we get (i).

+o00o
In general, for x = > a7, then vp(x) = kyvp (7). Now
k=Fko

and

]

Proposition 5.3.11. Let D be an étale (p,I")-module of dimension d over
Eg,. Assumen > 1, (i,p) =1. Then

(i) v € T induces '™ (D) ~ eXMipn(D);

(i1) v, —1 admits a continuous inverse on '™ (D). Moreover if{e1,--- ,eq}
s a basis of D, then:

Fp{{Tn}}! — ¢"(D)
(AL, s Ag) — Apxe'@™(er) + -+ Mg xe'p™(eq)
15 a topological isomorphism.

Proof. (i) is obvious. Now, remark that (ii) is true for n + 1 implies (ii) is
true for n, since

elp™(D) = '™ (@1l p(D)) = @ P o™ (D),

and for n > 1, 7,41 =%, so ﬁ = 7n+11—1(1 + Y+ -+ 9271, and

Fp{{Tn}} = Fp{{Tns1}} + - + 70 Fp{{Tnsa}}-
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So we can assume n big enough.
Recall vg(z) = infog(z;) if x = > x;e;. We can, in particular, assume

vp(Ta(e:) — €;) > 2vp(7), it implies ve(ya () — 2) > ve(x) + 2vp(7) for all
v €D (as vp(Vn(r) — ) > ve(x) + (p" — Dvge(T) for all x € Eg,). Now

X(m) =1+ p"u, u € Zy,
('™ (@) — '™ (x) = ' (e®" " (1 (@) — ™ (2)) = '™ (" (2) — ).

So we have to prove x — f(z) = £"~,(x) — x has a continuous inverse on D,
and D is a F,{{f}}-module with basis {e1,--- ,eq}. Let a = ™ —1; iu € Zj,

so vp(a) = vp(7). Then UE(g(m) —x) > vg(x) + vp(T). It implies g has an
inverse
+oo f
g= ;(1 — a)n and vgp(g(z) — ) > ve(zr) + ve(T).

So f has an inverse f~'(z) = ¢g(£) and vp(f~'(z) — £) > vg(x).
By induction, for all k£ in Z, we have

ve(f (@) — ofa) > vp(e) + (k + Dve(n).
Let M = Eg e1 @ -+ @ Eg eq, then f* induces
M/7M ~ o*M/a* M ~ 7% M /7" M.

So fEF,[[f]le1®- - @ f¥F,[[f]]eq is dense in #* M and is equal by compactness.
[

Corollary 5.3.12. v — 1 has a continuous inverse on D¥=°, and D¥=° is a
free F,{{T0}}-module with basis {ep(e1), - ,cp(eq)}.

Proof. Copy the proof that (ii) for n + 1 implies (ii) for n in the previous
proposition, using v, = 72" O

Proposition 5.3.13. If D is an étale (p,I")-module over Ak or Bk, then
v — 1 has a continuous inverse on D¥=Y.
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Proof. By follows from Ax by Q,®z,; and we can reduce Ax to Ag,.
p—1 p—1 )
Since D¥=0 — (D/p)¥=Yis surjective, (Y e'p(x;) can be lifted to Y_ [e]'p (%)),
=1 i=1

7
so we have the following exact sequence:

0 — (pD)** — D*=* — (D/p)*~* — 0.

Everything is complete for the p-adic topology, so we just have to verify the
result mod p, which is in corollary 5.3.12. ]

5.3.4 Computation of Galois chomology groups
Proposition 5.3.14. Let Cy , be the complex

) pry —(¢—1) pry

0 — D(V) L2 pvye pvy L D(V) = 0.
Then we have a commutative diagram of complexes
Cory:0—=D(V)—=DV) ® D(V) —DV)—=0
Idl —wi ild J{—
Cypy :0—=D(V)—=D(V) @ DV) —=D{V)—=0

which induces an isomorphism on cohomology.

Proof. Since (—¢)(¢ —1) = ¢ — 1 and ¢ commutes with v (i.e. ¥y = ),
the diagram commutes. v is surjective, hence the cokernel complex is 0. The
kernel is nothing but

0 — 0 —s D(V)¥=0 =5 D(V)¥=" — 0,
it has no cohomology by Proposition 5.3.13. [

Theorem 5.3.15. IfV is a Z, or a Q,-representation of Gk, then Cy (K, V)
computes the Galoits cohomology of V' :

() HO(G. V) = D(V)»=17=1 = D(y)e=1omt,

(i) H* (G, V) ~ 2.

(iii) One has an eract sequence

DV)»~!

0

y=1
—s HY(Gg,V) — (—) — 0

(z,y) +—
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Let C(V) = (¢ — 1)D¥=! C D¥=0) the exact sequence
0 — D(V)*=' — D(V)¥=' —C(V) — 0

induces an exact sequence

since C(V)7=t C (D¥=)r=1 = (.

Proposition 5.3.16. If D is an étale (p,I")-module of dimension d over
Eq,. then C = (¢ — 1)D¥=! is a free F,[[T]]-module of rank d.

Proof. We know:
e C C DY it implies C is a F,[[[g]]-module of rank less than d;
e C is compact, because D¥=! is compact;

e So we just have to prove (see proposition 5.3.11 and corollary 5.3.12)
that C contains {ep(e1), - ,ep(eq)}, where {ey, - ,eq} is any basis
of D over Eg,.

Let {f1,---, fa} be any basis. Then ¢"(7*f;) goes to 0 when n goes to +o0
+00

if k> 0. Let g; = . ¢"(ep(7*f;)). Then we have:
n=0

e (g;) = g;, because Y(ep(7*f;)) = 0;
o (p—1)gi=—ep(*f;) eC.
We can take e; = 7 f;. O

5.3.5 The Euler-Poincaré formula.

Theorem 5.3.17. If V is a finite Z,-representation of G, then

2
X(V) = [T1H (Gr, V)|V = v |1,

1=0
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Proof. From Shapiro’s lemma, we have

i ~ ITi Gap
H (GK,V) ~ H (G@p’IHdGK V)
Since ]Indg% V| = |[V|E®] we can assume K = Q,. Given an exact se-
quence

0—-Vi—=V -V, —0,

then x(V) = x(Vi)x(Va) and |V| = |Vi||V3] from the long exact sequence
in Galois Cohomology, thus we can reduce to the case that V is a IF,-
representation of Gx. Then we have:

Y| = |D(V)7=10=
) = 2V W), (D(V)) ;

v—1 v—1 Y —1
D(V)
H?| = :
==,

So |HO||H?||H ™! = \%\_1, because D(V)¢=! and % are finite groups,
and for a finite group M, the exact sequence:

0= o M

v—1
implies that |M7=!| = |%| Now % is a (F,[[Lo]]/(y — 1)) = Fp-module
of rank dimp, D(V) = dimy, V. Hence ]%] =|V|. O

5.4 Tate’s duality and residues

Let M be a finite Z, module. We want to construct a perfect pairing
H' (G, M) x H* (Gg, M"(1)) — Q,/Z,.
By using Shapiro’s lemma, we may assume K = Q,.

Definition 5.4.1. Let 2 = ) a,7* € Bg,, define
kez

res(zdm) = a_q.
The residue of z, denoted by Res(x) is defined as

7T)'

1+7

Res(z) = res(x
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The map Res : Bg, — Q, maps Ag, to Z,, thus it induced a natural
map By, /Aq, = Qu/Z,.

Proposition 5.4.2.

Res(¢(x)) = Res(x);
Res(y(x)) = x(7)"! Res(x)

Proof. Exercise. O

Let D be an étale (¢, I')-module over Ag,, denote DY = Homa, (D, Bg,/Aqg,),
let z € DY, y € D, denote

<$ay> = l’(y) € BQp/AQp'
Then

(v(2),7(y)) =z, 9)),
(p(z), p(y) = v((z,9))

determines the (¢, I')-module structure on DY. Set

[z,y] := Res({(z,y)) € Qp/Zy.
The main step is following proposition.

Proposition 5.4.3. (i) The map x — (y — [z,y]) gives an isomorphism
from DY to D(V') = Homeont (D, Q,/Z,,).
(ii) The following formulas hold:

[z, 0(y)] = [¥(x),y]
(@), 9] = x(7) "z, v ()

Corollary 5.4.4. Let V"(1) = Homg, (V,(Q,/Z,)(1)), then D(V"(1)) =
DV(1).

Now the two complexes

Con(@p V) D(V) ——=D(V) & D(V) —— D(V)

DV(V) <2 pv(1) e DV(1) <L
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are in duality, where diz = ((p— 1)z, (y—1)z), da(z,y) = (v—1)x— (¢ —1)y,
d17 = (¥ —1)2, (v = 1)), d&'(2",y) = (7' = 1)a’ — (¥ — 1)y, and the
duality map in the middle given by [(x,y), (2/,y)] = [2/, ] — [/, y].

One can check that the images are closed. Therefore their cohomology
are in duality. For details, see Herr’s paper in Math Annalen (20017).
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Chapter 6

(¢, ')-modules and Iwasawa
theory

6.1 Iwasawa modules H| (K,V)

6.1.1 Projective limits of cohomology groups

In this chapter we assume that K is a finite extension of Q, and G is the
Galois group of K/K. Then K, = K(p,) and T, = Gal(K/K,) = Vo
if n > 1 (n > 2if p = 2) where =, is a topological generator of I',,. We
choose 7, such that v,, = ”yfnil. The Iwasawa algebra Z,|[I'k]] is isomorphic
to Z,[[T']] with the (p,T")-adic topology by sending T" to v — 1. We have

Zy[[Lk]l/ (7 = 1) = Z,|Gal(Ky/ K)].

Furthermore Z,[[I'k]] is a Gg-module: let ¢ € Gk and = € Z,[[I'x]], then
gr = gx, where g is the image of g in ['x. By the same way, Gx acts on
Z,|Gal(K,/K)].

Using Shapiro’s Lemma, we get, for M a Z,[Gk]-module,

H'(Gg,, M) — H(Gg,Z,|Gal(K,/K)] ® M),
with the inverse map given by

((01,...,O'i)'—> Z g®C’g(01,...,Ji)) — ((01,...,0i)r—> id(al,...,al-)).
g€Gal(Kn/K)

109
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Thus we have a commutative diagram:
H (G, M) —"— HI (G, Z,[Gal(K 1 /K)] @ M)
H{(Gk,,M) —— H(Gk,Z,[Gal(K,/K)|® M)

One can check that the second vertical arrow is just induced by the natural
map Gal(K,1/K) — Gal(K,/K).
Definition 6.1.1. (i) If V is a Z,-representation of G, define

Hliw(K’ V)= liLnHi(GKnv V)

while the transition maps are the corestriction maps.
(i) If V is a Q,-representation, choose T" a stable Z,-lattice in V/, then
define
HIZw(Ka V) = @p ®Zp lew(K7 T)

6.1.2 Reinterpretation in terms of measures

Proposition 6.1.2. H (G, Z,[[l'k]]®@ V) = H} (K, V).

Proof. The case of QQ, follows from the case of Z, by using Q,®z,. Now
assume that V' is a Z,-representation of G'x. By definition,

A = Z,[[T)) = Im Z, [/ (3 — ),

it induces the map 6:

H{(G, A ® V) ~nlim H(Gre, A (3 — 1) @ V) = Hi, (K, V)

lim H' (G, A/ (0", 70— 1) © V)

The surjectivity is general abstract nonsense.

The injectivity of a implies the injectivity of ; to prove that of «, it is
enough to verify the Mittag-Leffler conditions of H*~!, which are automatic,
because of the Finiteness Theorem: A/(p”, v, —1) ® V is a finite module, so
H™Y Gk, N/ (p", v, — 1) ® V) is a finite group. O
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Remark. (i) Recall that Dy(I'k, V) is the set of p-adic measures from I'g
to V:
Zy|Tk]] @V =2Dy(T'k,V), 7®@v+06,Ru,

where 6, is the Dirac measure at 7. Let g € Gk, u € Dy(I'k,V); the action
of Gk on Dy(I'k, V') is as follow:

: o(x)(gp) = g( [ o(gz)n).

'k
Hence, for any n € N, the map H (G, Z,[[T'k]] ® V) — H(Gk,, V) (trans-

lation of Shapiro’s lemma) can be written in the following concrete way:

((01,.c0s05) = pa(01, .0y 07)) — ((o1, ..., 04) — Ipy -p(or, ..., 04) € V)neN.
Ik

(ii) Let g € Gk, A\, p € Z,[[I'k]], x € V, then
g ® V) = gGAL® gv = A\Gu ® gv = Ag(p @ pu).

So A and g commutes, it implies that Hf (K, V) are Z,[[I k]]-modules.

6.1.3 Twist by a character (a la Soulé)

Let n: ' — Qj, be a continuous character. It induces a transform
Dy(I', V) = Do(T'k, V), pr—n-p.
For A\ € Z,[[I'k]], we have
n-(Aw) = (- M) - p).
Indeed, it is enough to check it on Dirac measures. In this case
N (0x 00, @ V) =1(A1A2)00,0n, @V = (1 0x,) (- Iy,) ® .

Recall that Z,(n) = Z, - e,, where, if g € Gk, then ge, = n(g)e,. Define
Vin) =V & Zyn).

Exercise. The map 1 € Dy(I', V) — (n-p) ®e, € Do(I'k, V') is an isomor-
phism of Z, |G k]-modules.
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By the above exercise, we have a commutative diagram:

Hi, (K, V) Hi, (K, V()

H'(Gg,Do(Tk,V)) —= H (Gk, Do(Tk,V(n)))

So i, is an isomorphism of cohomology groups. It can be written in a concrete
way

i - ((01, ey 03) = (o, ...,ai)) — ((01, ey OF) Ir,c n-p(or, "'7Ui)®€n)neN'
'k

It is an isomorphism of Z,-modules.
Warning: i, is not an isomorphism of Z,[[I'k]]-modules, because i,(\z) =
(- A)iy(x): there is a twist.

6.2 Description of H!_ in terms of D(V)

Remark. Hi (K,V) = lim H(Gg,, V), so we can always assume n > 0.

Lemma 6.2.1. Let 1, = =L = 1 +’Yn71+,--->+7£j € Zp|[l'k]], the

diagram ot
Copry (K, V) 0—=DV)——=D(V) & D(V) D(V) 0
N
Cy s (K1, V) 0—=D(V)——=D(V) & D(V) D(V) 0

15 commutative and induces corestrictions on cohomology via
Hi(C¢a7n (Knv V)) — Hi(GKn» V)-

Proof. 7, is a cohomological functor and induces Trg, /k,_, on H 0 so it
induces corestrictions on H". O

Theorem 6.2.2. IfV s a Z, or Q, representation of Gk, then we have:
(i) Hi (K, V) =0, ifi #1,2.
(i) HE (K, V)= D(V)¥=!, HE (K,V) = (Vl), and the isomorphisms are
canonical.
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Remark. (i) The isomorphism
Exp*: H. (K,V)— D(V)"=!

is the map that will produce p-adic L-functions. Let’s describe (Exp*)~!. Let
y € D(V)¥~1 then (¢ — 1)y € D(V)¥=°. There exists unique z,, € D(V)¥=°
satisfying that (v, — 1), = y,, then we can find b, € A ® V such that
(¢ — 1)b, = x,,. Then

., logx(7) <<(9 =D (g 1)bn)

pn Yo — 1)

: . : I
gives a cocycle on G, with values in V, and *2X0n) does not depend on n.

Denote by ty,(y) € H (Gk,, V) the image of this cocycle, then
(Exp™) ™y = (o stpn(y)+ Jnen € Hy (K, V)

doesn’t depend on the ch01ce of vp.

(11) We see that PO §s dual to D(VA(1))¥=! = VA1) 5 so HE (K, V) =
28— (v )A-

Before proving the theorem, we introduce a lemma.

Lemma 6.2.3. If M is compact with continuous action of Ik, then

M Em(M/Vn - 1).

n

Proof. We have a natural map from M to lim (M /v, —1).

Injectivity: let V' be an open nelghborhood of 0. For all x € M, there
exists n, € N and U, 3 z, an open neighborhood of = such that (y— l)x eV
for v € I'k, and 2’ € U,. By compactness, M = |J U,,, where I is a finite

i€l
set. Let n = AX T2y, It implies that (y — 1)M C V, if v € I, then

N (7n — 1)M = 0, this shows the injectivity.
neN

Surjectivity: Let (2, )nen € lim (M /v, —1). From the proof of injectivity,
we know that z,, is a Cauchy-sequence. Because M is compact, there exists
x = limx,. We have z, . — x, = (7, — 1)y, for all £ > 0, as M is compact,
there exists a subsequence of y, converging to y, passing to the limit, we get
x — 2, = (7, — 1)y. This shows the surjectivity. O
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Proof of Theorem 6.2.2. Hj (K,V) is trivial if ¢ > 3 and the case of Q,
follows from Z, by Q,®z,.

For ¢ =0,

HYy (K, V) = lim Vo,
Tr

VCEn is increasing and C V, as V is a finite dimensional Z,-module, the
sequence is stationary for n > ng. Then Trg, ,/k, is just multiplication by
p for n > ng, but V does not contain p-divisible elements. This shows that
lim_ V& = 0.
«—Tr

For i = 2: H*(Gg,,V) = (¢—D1,(—7Vn)—1)' The corestriction map is induced by
Id on D(V'), thus

. D(V) D(V)
2 _ _
Hy (K, V) = linﬁ/(% -1) = 1
by Lemma 6.2.3, as % is compact (and even finitely generated over Z,).
For ¢+ = 1: we have commutative diagrams:
=1 D(V) \ =
0— 2% H' (G, V) = (o)™ ——0
\Lpl Lcor lTn
=1 _
0 lf)yi‘i)lil Hl (Ganlﬂ V) —_— (?p(j/l))')/nflfl —_— O

where p1(y) = ¥, p2((Z,9)) = Z, for any x,y € D(V). Using the functor lim,
we get:

0 —lim 22— Jim A (G, V) — lim(502) =

Because D(V)¥=" is compact, by Lemma 6.2.3 we have D(V)¥=" =~ lim DS:—):TI.
By definition, Hy, (K, V) = lim H'(G,, V). The same argument for showing
HP (K, V) = 0 shows that lim(2%)m=1 = 0. So we get

w &\ p—1

D(V)¥=t = HL (K, V).
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6.3 Structure of H} (K,V)

Recall that we proved that if D is an étale (¢, I')-module of dim d over Eg,,
then C = (p — 1)D¥=! is a free F,[[['g,]]-module of rank d. The same proof
shows that if n > 1,7 € Z3, CNep™(D) is free of rank d over F,[[I',]].

Corollary 6.3.1. If D is an étale (p,I')-module of dimension d over Fy,
then C is a free Fp[[['k|]-module of rank d - [K : Q,].

Proof. Exercise. Hint: D is of dimension d - [Hg, : Hg| over Eg, and [K :
Qp] = [G@p : GK] = [F@p . FK][HQP . HK] D

Proposition 6.3.2. If V is a free Z, or Q, representation of rank d of G,
then

(i) D(V)#=! is the torsion sub-Z,[[Lx NT1]]-module of D(V)¥=1.

(ii) We have ezact sequences:

0 — D(V)?=! — D(V)¥=! £ (V) — 0.
and C(V') is free of rank d - [K : Q,] over Z,[[I'k]] (or over Q, ®z, Zy[['k]]).

Corollary 6.3.3. If V is a free Z, representation of rank d of G, then
the torsion Z,[[Lx N T1]]-module of HL,(K,V) is D(V)?=' = VHx  and
H{ (K, V)/VHx s free of rank d - [K : Q,] over Z,|[T'k]].

Proof of Proposition 6.3.2. D(V)#=t = V¥x is torsion because it is finitely
generated over Z,, so (i) implies (i). To prove (ii), we have to prove
C(V)/pC(V) is free of rank d - [K : Q,] over F,[[['k]].

Consider the following commutative diagram with exact rows

1

D(V)#=! D)=t (V) ——=0

| | |

0——= (D(V)/p)#=" — (D(V)/p)*="—=C(V/p) —=0

0

Using the exact sequence

0—-pV -V ->V/p—0
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and apply the snake lemma to the vertical rows of the diagram above, we
have the cokernel complex is

D) C(V/p)
W1 CV)/pc(V)

— 0.

p — torsion of — p — torsion of

(p—1)

Note that the p-torsion of

(
(¥v—1)
% is also a finite dimensional [F,-vector space, hence C(V')/pC(V') is

a IF,[[I'k]]-lattice of C(V/p), but C(V/p) is a free F,[[['k]]-module of rank
d-[K : Q] by Corollary 6.3.1. O

D(V)

is a finite dimensional F,-vector space, thus

Remark. (i) The sequence
0— DV)*=' = DV)¥ =C(V)—0
is just the inflation-restriction exact sequence
0— H' T, A@ Vi) - H (G, A®V) - H'(Hg, A@ V)'* — 0.

(ii) Let 0 = Vi = V — V45 — 0 be an exact sequence, then the exact

sequence
0— D(Vy) — D(V)— D(Va) =0

and the snake lemma induces
o D) D(V) _ D(V)

0 — D(W1)*~" — D(V)*=! — D(V%) v—1 o-1 _9-1

By Theorem 6.2.2, this is just

0— Hllw(Ka Vl) _>H11W(K7 V) - Hllw(K7 ‘/2)
—H; (K, Vi) — H{ (K, V) — Hp (K, Va) — 0.

It can also be obtained from the longer exact sequence in continuous coho-
mology from the exact sequence

0= Z[[Tk]]@ Vi = Z[[Tk]] @V — Z,[[Tk]] @ V2 — 0.



Chapter 7

Zy(1) and Kubota-Leopoldt zeta
function

7.1 The module D(Z,(1))"=!

The module Z,(1) is just Z, with the action of Gg, by g € Gg,, v € Zy(1),
g(x) = x(g)z. We shall study the exponential map

Exp* : Hllw(QmZp(l)) - D(Zp(l))w:1-

Note that D(Z,(1)) = (A® Z,(1))"% = Ag, (1), with usual actions of ¢ and
¢, and for vy € T, y(f(7)) = x(7) f((1 + m)XV) — 1), for all f(7) € Ag,(1).

Proposition 7.1.1. (i) A(’éjl =Z, =@ (Aap)wzl
(ii) We have an eract sequence:

0 — Z, — (A )™ £ (1Ag )= — 0.

Remark. Under the map p — fz % u, <7TA+ )¥=0 is the image of measures
with support in Z; (¢ = 0) and fZ* =0

(TAG,)" ™" =C(Zy) = (v = 1)Z,[[Tg, ] -

Zp[[T'g,]] can be viewed as measures on I'g, = Z*, and pu € (v — 1)Z,[[['g, ]
means pr p = 0. It implies that C(Z,) is free of rank 1 over Zy[[I'g,]] which

is a special case of what we have proved.

117
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Proof. (i) We have proved

WAL) C AL () =1,

T T
ve(t(z)) > [%ﬁ, if € Eq,.

These facts imply that ¢ — 1 is bijective on Eq, /7~ 'E and hence it is also
bijective on AQP/W*IA@. So
Y(r)=z= zen 1A} .
(ii)) We know that (¢ — I)Aap - ﬂAap For z € (ﬂAap)wZO, then

p"(x) € p"(m)Ag, — 0if n — oo.

+oo

Hence y = > ¢"(x) converges, and one check that ¢(y) =y, (p— 1)y = —x.
n=0

This implies the surjectivity of ¢ — 1. O

7.2 Kummer theory

Recall that
€= (1,5(1)’5(2), _._,5(“), .)€ E&, c Bt = R, e £ 1.

Let 7, = ¢™ —1, F,, = Q,(m,) for n > 1. Then 7, is a uniforming parameter
of F,,, and

NFn+1/Fn (Tnt1) = T, OFn+1 = OF, [7T7H—1]/((1 + 1) =1+ ).

For an element a € F, choose x = (a, zM ) € E. This x is unique up to
e" with u € Z,. So if g € Gf,, then

g(l‘) — gc(g) ’

ez
- c(9) p

gives a 1-cocycle ¢ on G, with values in Z,(1). This defines the Kummer
map:

ko B — HY(Gr,, Z,(1))

a— k(a).
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By Kummer theory, we have H'(Gp,,Z,(1)) = Z, - k(m,) & £(O5, ). The
diagram

F;—i-l — Hl(GFnﬂva(l))

lNFnH/Fn lcor
F; —— H'Gp,,Z,(1))
is commutative, we have a map:

ke thF; — Hy, (Qp, Z,(1))

and
Hyo(Qp, Z(1)) = Zyy - (mp) @ £(lim OF, ).

7.3 Coleman’s power series

Theorem 7.3.1 (Coleman’s power series). Let u = (up)p>1 € im(Op,)—
{0} (pour les applications Ng, ., /r, ), then there exists a unique power series
fu € Z,|[T]] such that f,(m,) = u, for alln > 1.

Lemma 7.3.2. (i) If x € Op,, v € Gal(F,41/F,), then y(x) —x € mOp,, , .
(11) NFnJrl/an —aP e 7T10Fn+1.

Proof. 1t is easy to see that (i) implies (ii) since [F,11 : F,] = p. Write
p—1

X(v) =1+ p"u for u € Z,. Let =3 2;(1 + m,41)", where z; € OF,. Then
i=0
p—1
y(z) —x = Z:pz(l + 1) (1 +m)" = 1) € mOp,,,.
i—0

]

Corollary 7.3.3. @ = (u}, 4y, ..., Uy,...) € E&p, where u, is the image of
U, mod 7.

Definition 7.3.4. Let N : O [[T]] — Op,[|T]] such that

NOO+TP=1) =[] F(a+T)z=1).

zP=1
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Lemma 7.3.5. (i) N(f)(7m) = Ng,, /5, (f(Tns1)),
(i) N(Z,[[T1]) < Z,[[T),
(iii) N(f) = f € mOR [[T]].
(iV) If f e OFlHTH*7 k=1, 4f (f _g) € 7T]1€OF1[[TH; then

N(f) = N(g) € 7' OR [[T]].

Proof. (i) The conjugates of m,,; under Gal(F,,/F,) are those (1+m,)z—1
for 2P = 1, this implies (i).
(ii) Obvious, is just Galois theory.
(iii) Look mod 7y, because z = 1 mod 7y, we have N(f)(T?) = f(T')P.
(iv) We have N(%) = N "6 we can reduce to f =1 and g = 1 + 7¥h.

N(g)’
Then !
N(@)((1+T) =1)=1+7f Y h((1+T)z— 1)modaf*
zP=1
and Y h((1+7T)z—1) is divisible by p. O
2P=1

Corollary 7.3.6. (i) Ifu € E@p and vg(u) = 0, then there ezists a unique
Gu € Zy|[T]] such that N(g,) = gu and g,(7) = .
(ii) If v € 1 + 7fOp,.,, then N, /5, (x) € 1

Proof. (i) Take any g € Z,[[T"]] such that g(7) = u, then g € Z,[[T]]*, by (iv)
of Lemma 7.3.5, N¥(g) converges in g + mZ,[[T]] and g, is the limit.

(ii) There exists f € 1 + 7F¥Op, [T] such that z = f(m,.1). Then use (i)
and (iv) of Lemma 7.3.5. O

+17

Proof of Theorem 7.3.1. The uniqueness follows from the fact that 0 # f €
Zy,[[T]] has only many finitely zeros in mg, (Newton polygons).

Existence: let u = (u,), write u,, = 7Fau),, where k € Z and o € p,_4
do not depend on n, and u, € 1 +mpg,. Then Ng, . /5wy, = w),. If for all
n, fu(mp) =ul, let f, = T*afy, then f,(m,) = u,. Thus we are reduced to
the case that u, € 1 +mpg for all n.

By (i) of Corollary 7.3.6, we can find g, € Z,[[T]] for u. We have to check
that g,(m,) = u, for all n # 1. Write v, = g,(m,). Then N(g,) = gu, by
(i) of Lemma 7.3.5, implies that Ng, /g, (Un41) = vp; and g,(7) = @ implies
that v,, = u,, modm for all n. Let w,, = Z—’;, then we have

NFn+1/Fn(wn+1) = Wnp and w, €1 +7TlOFn'
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By (ii) of Corollary 7.3.6, we have

wn, = Np, /5, (Wnyr) € 14+ *Op, for all k,
then w,, = 1. This completes the proof. ]
Corollary 7.3.7.

Ofu
Jfu

of.
fa

N(fu) = fu, ¢( ) =

where 8 = (14 T)-%

Proof. By (i) of Lemma 7.3.5, we have N(f,)(m,) = Np,,,/m, (fu(Tns1)) =
fu(my), for all n, thus N(f,) = fu.

Using the formula ¢ (0log f) = d(log N(f)), we immediately get the result
for 1. As for the proof of this last formula, we know that

P(N(NH(T) =N(NH((A+TP-1) =[] F(A+T)z—1)

zP=1

S +TP —1) = ]% S HA+T)2—1)

zP=1

Then we have two ways to write d(log ¢(N(f)))

I(log p(N(f))) = pp (9log N(f))(9 0 ¢ = pp 0 J)
ON(f), _ ON(f) b
= p(9log N(f))((1 +T)" — 1),

d(log p(N(f))) = d(log ] £(1+T)z - 1))

zpl
= 1+Tp—1)

= py(

of

fXU+TV—D

_ZTf (1+T)z—1)=py(

= p(Y(@log (1 +T)" —1),

hence the formula. O
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7.4 An explicit reciprocity law

Theorem 7.4.1. The diagram

lim(Op, —{0}) - Hy, (Qp, Zy(1))

15 commutative.

Remark. (i) The proof is typical of invariants defined via Fontaine’s rings:
easy to define and hard to compute.
(ii) For another example, let X/K be a smooth and projective variety,
then
Dar(Hy(X x K,Qp)) = Hyp(X/K).

The proof is very hard and is due to Faltings and Tsuji.
(iii) Let a € Z such that a # 1, (a,p) = 1. The element

27i

e v —1
Uy = —57—— € Q(ppn)
e r —1

is a cyclotomic unit in Og,,.) (Whose units are called global units). Then

tn € Fo = Qp(ptpn),  tn =

where 7, € I'g, such that x(v) = b. From Np /5, (Thy1) = 7, one gets
Ng, 1 /5, (Ung1) = Un (v commutes with norm), thus

u = (u,) € lim Op,.

Obviously the Coleman power series

f_(l—i-T)_“—l Ofu a 1
Y4t -1 f,  (A4+Te—-1 T
So % is nothing but the Amice transform of i, that was used to construct

p-adic zeta function. So Exp* produces Kubota-Leopoldt zeta function from
the system of cyclotomic units.
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(iv) The example in (iii) is part of a big conjectural picture. For V" a fixed
representation of G, then conjecturally

{compatible system of global elements of V} — H{. (Q,V)

— H}i,(Q,, V) LN D(V)¥=! _ Amice | p-adic L-functions.

transform

At present there are very few examples representation of G for which this
picture is known to work. The Amice transform works well for Z,(1), because
v improves denominators in 7, and Aé tcl A+p can be viewed as measures.
In general, to use the properties of ¥, we will have to introduce overconvergent
(¢, T')-modules.

7.5 Proof of the explicit reciprocity law

7.5.1 Strategy of proof of Theorem 7.4.1

Let u € lim OF,, and g — Cy,(g) be the cocycle on G, by Kummer theory,
i.e the image of u under the composition of

lim(Or, —{0}) == Hy(Qp. Zy(1)) — H'(GF,, Zy(1)).

Let y € D(Z,(1))¥=! = Aéjl(l), let g — C!(g) be the image of y under the
composition of

D(Z,(1))*= = 457 (1) B2 B (Q,,Z,(1) — H' (G, Z,(1)).

We need to prove that C,, = C}, for all n implies y = af“ (7).
For C),, we have

Cl(g) = 28X (1) ( X9 =L, (- 1)bn> ,

pn X(m) — 1

where b,, € A is a solution of (o — 1)b, = (X(7)Vn — 1) (p — 1)y, we know
that (¢ — 1)y € Afé:o. The exact value of b, is not important.

For C,,, choose z,, = (x%o),.. xﬁﬁ),...) € E* such that 2¥ = wu,. Let

Uy, = [x,], then
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Proposition 7.5.1. Assume n > 1.
(i) There exists k € Z, b, € Oc,/p™ such that

log x(7n) g—1
pCi(0) =X I D+ (g -

in Oc, /p".
(ii) There exists k € Z, b, € Oc,/p"™ such that

log x(g) 0fu
PCulg) = p XDy 4 (g 1y
P fu
m Ocp/pn.
Proposition 7.5.2. There exists a constant ¢ € N, such that for all n and
forallk, if x € Op,,,, b € Oc, satisfy

—1
vp(j — 1x+(g— 1)b) > n, Vg € Gp,

n

+k

then
p_k TanJrk/Fn T e pn_cOFn .

We shall prove Proposition 7.5.1 in the next n°, and Proposition 7.5.2
in the third n°. We first explain how the above two propositions imply the
theorem:

If h(m) = ¢(h(m)), then h(m,) = p~' Trr,,,/k, (R(Tnyi1)). By hypothesis,
Y(y) =y, we get

p_k TanJrk/Fn(y(ﬂ—n-‘rk)) = y(ﬂ-n)a VTL, Vk (*)

. log X(7,) of
O, n u
PRI () — S () b=, = b
p fu
By Proposition 7.5.1, and the hypothesis C,,(g) = C! (g), we get

r=Dp

vgn_—lﬁ” + (g —1)b=p*(Cp(9) — Culg)) = 0.

The first equality is because for every z € F,, 4Lz = %

o x. Using
Proposition 7.5.2, we get

pzbg(;%")) (y(mn) — af{" (mn))€ p" Ok,
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then for every n,

0 fu
y(mn) — f_J;

Let h =y — %, then ¢(h) = h and h(m,) € p"*2OF,. Using the fact
p " Trp,,,/p OF,., C Op, and the formula (*), then for every i € N, n > 1,

(ﬂ_n) c pnfcf2OFn )

h‘(ﬂ'l) = pi(nii) Tan/Fz<h(7Tn)) € pnicizon

thus h(m;) = 0 for every ¢ € N, hence h = 0.

7.5.2 Explicit formulas for cocyles

This n° is devoted to the proof of Proposition 7.5.1
(i) Recall that 7 = [¢] — 1, 0(3 p™[z,]) = S p™aty) and (7) =1 —1 =
0. Let @, = ¢™(r) € AT, then 7, = [e¥/?"] — 1, 0(7,) = m,. Write

+oo _
b, = > p'[z], where 2, € E. As C!\(g) € Z,, we have
1=0

go_("+k)07'7,(9> =(C!(g), forall nand k.

As

1
vp(p ™ (z)) = EUE(Zz),
we can find k such that
vp(e™ ™R (5)) > =1, foralll<n—1.

Let p = (p,...) € BT, then for every | <n—1, -~ ") (z) € E+. We have

FCL () = 2 ;{5%) 7] - sti;in__lly(ﬁm) + [8l(x(9)g — D~ " (by,).

Both sides live in A™ + p"A, reduce mod p™ and use 6 : AT /p" — Oc,/p",
then [p] — p and

, lo n —1
pC(g9) =p BX(n) . 9

n -1y
S () + (0 D,

where B, = 0([l~ "9 (b,)).
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(ii) Write u = (7)(v,), where v, are units € Of, . So we just have to
prove the formula for (m,) and (v,). Thus we can assume v,(u,) < 1.

Let
r—1 rz—1

) =6(

™ t

H:1+tBj,—C, x—0(

);

recall that ¢ = log(1 + 7). We have

H((1+7z)(1+my)) = H(1+7(2'+y ) +722'y) = 0(2'+y') = H(1+72')+H (1+7y),
thus H(zy) = H(x) —{—1H(y).

Write @, = [(tn, ud,...)], we have 482k — [£]n(9) = 1+ O, (g)7 +-- -, thus

Un

Uy,
We know u,, = f,(m,) and 0(1,) = u,, then

0(fu(Tn)) = fu(0(70n)) = fulmn) = upn = 0(in).

So, if we set a,, = Li"), then 0(a,) = 1.

We know that [pla, € A* since v,(u,) < 1. Then we get H(a,) € 1#10@?
because of the following identity
[Pla. — [P] [Plan — [p] 1
H(a,) =0(————) =40 O(—==—),

and because w = Z- is a generator of Kerf in At as w € Ker6, and

w=——, sovg(w)=(1- ]—))UE(e —-1)=1

Then we have

gUfulf) _ Ful(l+ 7)) — 1)

Jfu(Tn) JulTn)
S+ R)A ) -1
fu(Tn)
=1+ %(frn) : %ﬂ' + terms of higher degree in 7,
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hence

9(fu(T))\ _ x(g) =1 Of.
1w ) - 7, )

Using formula f,(7,) = @,a,, we get

= 8 AL

We conclude the proof by multiplying p?, noticing that x(g) = 1 mod p™, so

x(9) =1 _exp(logx(g)) =1 _logx(g)
p" " p

mod p";

set b/ = —p*H (a,), we get the result.

7.5.3 Tate’s normalized trace maps
Let m, =™ — 1, F,, = Qu(m,), Foo = U Fp.

Lemma 7.5.3. Ifn > 1, x € F, then p~* Trg,,,/r, © does not depend on
k such that x € F, .

Proof. Use the transitive properties of the trace map and the fact [Fj x :
F,] = p~. O

Let R, : F, — F}, be the above map. Denote
Y; = {i[) € E-,TrFi/Fi_l T = 0}
Lemma 7.5.4. (i) R,, commutes with I'g,, is I}, linear and R, 0 R, = R,,.

+oo
(ii) Letx € Fi, thenx = R, (x)+ ) R ;(x), where R}, (z) = Ryyi(x)—
=1

Roii1(x) € Yous and is 0 if i > 0.
(iii) Let k € Z, then vy(x) = kvy(m,) if and only if v,(R,(x)) = kv,(m,)
and vy(Ry () = kvy(m,) for every i € N.
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Proof. (i) is obvious.
(i) is also obvious, since Ry,4;—1(R},;(2)) = 0= R} (x) € Y.
(iii) <= is obvious. For =, let x € Op,,,, then

pk—1

xr = Z CLj(l +7Tn+k)j, a; € OFn-

J=0

Write j = p*~%j" with (j',p) = 1, then

Ra(@) = a0, Rpi(@)= D apei(l4 mup)”

(4",p)=1
since
-1 i (1 + 7Tn+i)ja if p | J
TI' . . 1 + n-4i J =
P TR i (L ) {0, if (j,p) = 1.
Thus
vp(x) = 0= v(Ry(x)) = 0 and vy (R}, () > 0.
By F,-linearity we get the result. O

Remark. In the whole theory, the following objects play similar roles:

Y e p  Trg,m,
Pp=0— Y,

Lemma 7.5.5. Assume that j < i —1 and j > 2. and assume ; is a
generator of I'y. Let u € Q5. If vy(u—1) > vy(m1), then uy; — 1 is invertible
on'Y;. Moreover if v € Yy, v,(z) = kvy(my,), then vy((uy;—1)"1x) = kvy(m,)—

vp ().
Proof. If v;_1 = Wﬁ?ifjfl, then

i—j—1

(U’}/j B 1)71 = (up Yi-1 — 1)71<1 +uy; + -+ (ufyj>pi_j_1fl)7

so it is enough to treat the case j =i — 1.

Let z € Op, NY;, write

p—1

T = Z%(l + )" x4 € Op_,,

a=1
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write x(7i—1) = 1 4+ p*~'v with v € Z, then

p—1
(wyi — Dz =Y (14 m)*(u(l +m)™ - 1).
a=1
We can check directly
p—1 T
wy_ — D)7 le = : 14+ m)°.
( “i—1 ) s (u(l + 7.(.l)av _ 1>( )
Moreover, if v,(z) > 0, then v,((uy; — 1) x) = —v,(m). O

Proposition 7.5.6. Assumen > 1, u € Qy and vy(u — 1) > v,(m1), then
(i) z € Fyx can be written uniquely as x = R,(x) + (uy, — 1)y with
R,.(y) =0, and we have

V(R () > vp(x) —vp(m),  vp(y) > vp(x) — vp(my) — vp(m1).

(ii) R, extends by continuity to Fy, and let X, = {x € Fy, R,(x) = 0}.
Then every x € Fy, can be written uniquely as © = R, (z) + (uy, — 1)y with
y € X,, and R,(z) € F,, and with the same inequalities

Up(Rn(2)) = vp(x) — vp(mn),  vp(y) 2 vp(x) — vp(mn) — vp(m1).
Proof. (i) As

+oo

t = Ra(2) + ) _(uya — D((uy — )7 Ry ().

=1

—+00

we just let y = Y (uy, — 1) 'R, ().
=1
(ii) By (i), we have v,(R,(x)) = v,(x) — C, so R,, extends by continuity

to Fi; the rest follows by continuity. [

Remark. (i) The maps R, : E., — F, are Tate’s normalized trace maps.
(ii) they commutes with I'g, (or Ggq,). )
(i) Ry(z) =z if 2 € Fx and n > 0, hence R, (x) — z if € F and
n — 00.
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7.5.4 Applications to Galois cohomology
Proposition 7.5.7. (i) The map
r € Fy— (v alogx(y)) € H'(Tr,, Fy)
induces 1somorphism
F, = H'(Tg,, F,) = H' (T'r,, Fx).
(ii) If n : Tr, — Q5 is of infinite order, then H'(T'p,, Fo(n)) = 0.

Proof. If n > 0 so that v,(n(y,) — 1) > v,(m). Using the above proposition
(let uw =n(v,)), we get

H' (T, Fon)) = -2 T
(wym =1)  (uym—1)  wym—1
If u=1, weget (v, —1)F,=0.Ifu#1, weget F,,/(u—1)F, =0.
For n small, using inflation and restriction sequence, as Gal(F,1/F,) is
finite, and Fi(n) is a Q,-vector space, we have

HY(Gal(Fuya/Fa), From) ™v) = 0, H? =0,
then we get an isomorphism

H'(Tr,, Foo(n)) = H'(Tp, . Fo (1)) 1t/ 1),

)

From the case of n > 0, we immediately get the result. O

Recall that the following result is the main step in Ax’s proof of the
Ax-Sen-Tate theorem (cf. Fontaine’s course).

Proposition 7.5.8. There exists a constant C' € N, such that if x € C, if
H C Gg, is a closed subgroup, if for all g € H, v,((9 — 1)x) > a for some a,
then there exists y € C such that vy(x —y) > a — C.

The following corollary is Proposition 7.5.2 in the previous section.

Corollary 7.5.9. For x € Op_, if there exists ¢ € Oc, such that

-1
UP(j _195—(9—1)C> >n, forallg € Gp,.

Then we have
Vp(Ry(z)) =2 n—C —1(or 2).
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Proof. By assumption, we get
vp((g —1)c) = n, V g € Ho, = Kery,
then by Ax, there exists ¢ € Fi, such that
vplc—c)=n—C.
Take g = 7y, then vy(z — (1, — 1)) =2 n—C. As Ry, = 1R, = R, we get
Up(Bn (@) = vp(Ru(z — (yn — 1)) 2 n = C = vp(m1) — vp(ma),

hence the result. O]

7.5.5 No 2 in C,!

Theorem 7.5.10. (i) C, does not contain log 2mi, i.e. there exists no x € C,
satisfies that g(x) = x+log x(g) for all g € Gk, where K is a finite extension

of Qp.
(i) C,(k) =0, if k # 0.

Proof. (i) If K = Q,, if there exists such an x, by Ax-Sen-Tate, we get

- H
z € Fyy = C, . Then we have:

Ry (9(7)) = 9(Rn(2)) = Rn(z) +log x(g)-

Because R,(x) € F,, it has only finite number of conjugates but log x(¢g) has
infinitely many values, contradiction!
Now for K general, we can assume K/Q, is Galois, let

1
Vg

o€eS

where S are representatives of Gg,/G . For g € Gg,, we can write go = o, h,
for h, € Gk and o], € S. From this we get

Zlogx(hg) = [K : Qp]log x(9).

oes
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Then we have

1 1 ,
90) = 7T, ;90@) = %0, Uezsﬂahax
Z ol (x +1og x(hey))

€S

B 1
a (K : Q]

1 1
= m Z o(x)+ m Z log x(he)

o€eS ’ c€eS
=y +log x(9).

Then by the case K = Q,, we get the result.

(ii) If 0 # a € C,y(k), then g(z) = x(g)*z. Let y = &% then we have

9(y) =y +log x(g), which is a contradiction by (i). O




Chapter 8

(¢, I')-modules and p-adic
L-functions

8.1 Tate-Sen’s conditions

8.1.1 The conditions (TS1), (TS2) and (TS3)

Let G be a profinite group and x : Go — Z; be a continuous group homo-
morphism with open image. Set v(g) = v,(log x(g)) and Ho = Ker y.
Suppose A is a Z,-algebra and

v: A — RU{+o0}

satisfies the following conditions:
(i) v(z) = +oo if and only if z = 0;
(i) v(zy) = v(z) + v(y);
(iii) v(z +y) > inf(v(2), v(y));
(iv) v(p) > 0, v(pz) = v(p) + v(z).

Assume A is complete for v, and Gy acts continuously on A such that
v(g(x)) =v(z) for all g € Gy and x € A.

Definition 8.1.1. The Tuate-Sen’s conditions for the quadruple (Gy, x, A, v)
are the following three conditions TS1-TS3.

(TS1). For all Cy > 0, for all Hy C Hy C Hy open subgroups, there exists an
a € At with
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(In Faltings’ terminology, A/A™0 is called almost étale.)

(TS2). Tate’s normalized trace maps: there exists Cy > 0 such that for
all open subgroups H C Hy, there exist n(H) € N and (Agy)p>n(m), an
increasing sequence of sub Z,-algebras of A” and maps

Ry, - A A p

satisfying the following conditions:

(a) if H1 C Hg, then AHQ,TL = (AHl,n>H2, and RHl,n = RHz,n on AH2;
(b) for all g € Gy,
g(AH,n) - AgHgfl,n g o RH,n - RgHgfl,n ° g,

(¢) Rup is Ap,-linear and is equal to Id on Ap,;
(d) v(Rgn(z)) = v(z) — Cyif n > n(H) and z € AT,

(e) nEIEoo Ry n(x) =x.

(TS3). There exists C3, such that for all open subgroups G C Gy, H =
G N Hy, there exists n(G) > n(H) such that if n > n(G), v € G/H and
v(y) = vp(log x(7)) < n, then v — 1 is invertible on Xy, = (Ry,, — 1)A and

o((r = 1)) > o) — Gy
for x € Xy .
Remark. RH,n 9] RHm = .RHJ17 SO AH = AH,n D XH,n-

8.1.2 Example : the field C,

Theorem 8.1.2. The quadruple (/~\ = C,, v = v,, Gy = Gg, and x=the
cyclotomic character) satisfies (TS1), (1S2), (TS3).

Proof. (TS1): In Fontaine’s course, we know that for any Q, C K C L such
that [L : Q,] < 400, then

vp(0r,/k,) — 0 as n — +o00.

The proof showed that v,(y(m,) — m,) — 0 as n — +o0, where 7, is a
uniformizer of L, and v € Gal(L,/K,) = Gal(Ly/K) when n > 0. We
also have

Trp ke = TrL, /K,
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on L, if n> 0 and
Trp,/x,(OL,) D x| Ok

thus Try_ k. (Or. ) contains elements with v, as small as we want. Take

x € O, and let a = m, then
Z (o) = Trp k. () = 1.
TGHK/HL

Then for all C; > 0, we can find € O such that v,(Tr. k. (x)) is small
enough, thus v,(«a) > —C}.

(TS2) and (TS3): By Ax-Sen-Tate, C//* = Ko, let Ag, n = K, and
Ry n = pF Try, ., /K, on K.

It K =Q,, Ry, n= R,, that’'s what we did in last chapter. We are going
to use what we know about R,,.

For G = Gg, then H = Hp, choose m big enough such that for any
n = m, v,(0k, /) is small and [K : Fio] = [K, : F,] = d. Let {ey,...,eq}
be a basis of Ok, over Op, and {ej,...,e;} be the dual basis of K,, over F,
for the trace map (x,y) — Trg,/p,(zy). This implies that {e],...,e}} is a
basis of OE{i/Fn and vp(ef) = —v,(0k,/r,) are small. Any x € K., can be

written as
d

x = Z Tr./x(ze;)e;,

i=1
then

inf Up(Trgyr (€3)) > vp(2) > inf Vp(Trgyr (7€3)) — 0, (0K, 7 ),

and )
Ry n() = Z Ry(Trg. r. (zei))e;, n=m.
i=1
So use what we know about R,, to conclude. ]

Remark. By the same method as Corollary 7.5.7, we get

(i) HY(T', K) = K, where the isomorphism is given by x € K —— (v +—
rlogx(v)).

(i) HY(T, K« (n)) = 0 if n is of infinite order.
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8.2 Sen’s method

Proposition 8.2.1. Assume A verifying (TS1), (TS2) and (TS3). Let o —
Uy, be a continuous cocycle from Gy to GLd(fX). If G C Gy is an open normal
subgroup of Go such that v(U, — 1) > 2Cy + 2C5 for any 0 € G. Set
H = G N Hy, then there exists M € GLd(]\) with v(M — 1) > Cy + C5 such
that

or—V,=M'U,o(M)
satisfies V, € GLq(Ap ) and Vo =1 if o € H.

Example 8.2.2. Ezample of Sen: For the case A = C,, for U, a 1-cocycle
on G with values in GL4(C,), there exists [L : K| < oo, such that U, is
cohomologous to a cocycle that which is trivial on H; and with values in
GL4(Ly,) for some n.

The proof of Proposition 8.2.1 needs three Lemmas below. It is technical,
but the techniques come over again and again.

8.2.1 Almost étale descent

Lemma 8.2.3. If A satisfies (TS1), a > 0, and o — U, is a 1-cocycle on H
open i Hy and
v(U, —1) > a for any o € H,
then there exists M € GLg(A) such that
o(M —1) > g WM U,0(M) —1) > a+ 1.

Proof. The proof is approximating Hilbert’s Theorem 90.

Fix H; C H open and normal such that v(U, — 1) > a + 1 + a/2 for
o € Hy, which is possible by continuity. Because A satisfies (TS1), we can
find a € A such that

v(a) = —a/2, Z T(a) = 1.

T€H/Hy
Let S C H be a set of representatives of H/H;, denote Mg = Y o(a)U,, we
oeS
have Mg —1= > o(a)(U, — 1), this implies v(Mg —1) > a/2 and moreover
oS
+o00

Mg' =Y "(1- Mg)",

n=0
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so we have v(Mgz') > 0 and Mg € GLg(A).

If r € Hy, then U,, — U, = U,(c(U;) — 1). Let S’ C H be another set of
representatives of H/H, so for any ¢’ € §', there exists 7 € H; and 0 € S
such that ¢’ = o7, so we get

Mg — Mg =Y _o(a)(Uy = Uyr) = Y _a(a)Us(1 = o(U,)),

o€eS geSs

thus
v(Ms— Mg) 2a+1+a/2—a/2=a+1.

For any 7 € H,
U.m(Mg) = 70(a)U.7(U,) = Ms.
oes

Then
MU, 7(Ms) =1+ Mg'(M,s — Ms),

with v(Mg'(M,;s — Mg)) > a+ 1. Take M = Mg for any S, we get the
result. ]

Corollary 8.2.4. Under the same hypotheses as the above lemma, there

exists M € GLg4(A) such that
v(M —1)>a/2, M'U,o(M)=1,Y o€ H.
Proof. Repeat the lemma (a — a+1 +— a+2+— ---), and take the limits. O

Exercise. Assume A satisfies (TS1), denote by At = {z € Alv(z) > 0}. Let
M be a finitely generated AT-module with semi-linear action of H, an open
subgroup of Hy. Then H'(H, M) is killed by any z € A with v(z) > 0.

Hint: Adapt the proof that if L/ K is finite Galois and M is a L-module with
semi-linear action of Gal(L/K), then H'(Gal(L/K),L) = 0 for all i > 1. Let
« € L such that Trp k(o) = 1. For any ¢(g1,--- , gn) an n-cocycle, let

C,(gla"' 7gn—1) = Z gl"'gn—lh(a)c(gla”' 7gn—17h)7
heGal(L/K)

then dc = c.
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Theorem 8.2.5. (i) The map v — (g — xlog x(g)) gives an isomorphism
K = HY(Gg,C,).
(ii) If n : Gxg — ' — Q}, is of infinite order, then H'(Gk,Cy(n)) = 0.

Proof. Using the inflation and restriction exact sequence
0— HI(FK7 CP(U)HK) Lf) HI(GKa Cp(n)) ﬁ) HI(HK7 Cp(n))rK'

by the above exercise, H!(Hg, C,(n))'* = 0, then the inflation map is actu-

A~

ally an isomorphism. We have C,(n)#x = K_(n), and use Corollary 7.5.7.
In fact

K = H'(Tx,K,) = H(Tk, K) = Hom(I', K) = K - log x,

the last equality is because I'k is pro-cyclic. O]

8.2.2 Decompletion

Now recall that we have the continuous character: Gy = Zy, Hy = Ker x. A
is complete for v, with continuous action of Gy. H is an open subgroup of Hy,
and we have the maps: Ry, : A — Ap,,. By (TS2), v(Run(z)) > v(z)—Cs;
and by (TS3), v((y—1)"'z) > v(x)—Cs, if Ry ,(x) = 0 and v,(log x (7)) < n.

We can use these properties to reduce to something reasonable.

Lemma 8.2.6. Assume given 6 > 0, b > 2C5 + 2C5 + 6, and H C Hy is
open. Supposen > n(H), v € G/H with n(y) <n, U =1+ Uy + Uy with

Uy € Ma(Agp),v(Uy) > b—Cy — Cs
Uy € My(A™), v(Uy) > b.
Then, there exists M € GLg(A®), 0(M — 1) > b — Cy — Cy such that
MUy (M) =14 Vi + Va,
with

Vi e Ma(App), v(Vi) > b—Cy — Cy),

Vo € Mg(A"), v(Va) > b+ 6.
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Proof. Using (TS2) and (TS3), one gets Uy = Ry ,,(Us) + (1 — )V, with
U(RH7n<U2)> Z 'U(UQ) — Cg, U(V) 2 U(Uz) — CQ — 03.
Thus,

(I4+V)'UyA+V) =1 -V +V>— )1+ U+ Ua) (1 +~(V))
=14 U; + (v — 1)V 4 Uy + (terms of degree > 2)

Let Vi = Ui+ Ry, (Us) € My(Ap,n) and W be the terms of degree > 2. Thus
v(W)>2(b—Cy—C3) >b+9. Sowe can take M =14V, Vo =W. O

Corollary 8.2.7. Keep the same hypotheses as in Lemma 8.2.6. Then there
exists M € GLy(A"),v(M — 1) > b — Cy — C3 such that M~*U~r(M) €
GLa(Amn).

Proof. Repeat the lemma (b +— b+0 — b+24 — ---), and take the limit. [

Lemma 8.2.8. Suppose H C Hy is an open subgroup, i > n(H), v € G/H,
n(y) > i and B € GLg(AT). If there exist Vi, Vy € GLq(Ap ;) such that

v(‘/l - ]-) > 037 U(‘/Q - 1) > C3a V(B) = ‘/IB‘/Qv
then B € GL4(Ap,).
Proof. Take C' = B — Ry ;(B). We have to prove C' = 0. Note that C has

coefficients in Xpg; = (1 — Ry;)A”, and Ry, is Ay -linear and commutes
with +. Thus,

Y(C) = C =iV, — C = (Vi = 1)CVs + iC(Va — 1) — (Vi — )C(Va — 1)

Hence, v(y(C) — C) > v(C) + C5. By (TS3), this implies v(C) = 400, i.e.
C=0. O]

Proof of Proposition 8.2.1. Let o — U, be a continuous 1-cocycle on Gy with
values in GLg(A). Choose an open normal subgroup G of G such that
ingU(Ug — 1) > 2(02 + 03)
oc

By Lemma 8.2.3, there exists M; € GL4(A), v(M; — 1) > 2(Cy + Cs) such
that o — U, :~M1_1U00(M1) is trivial in H = G N Hy (In particular, it has
values in GL4(Af)).
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Now we pick v € G/H with n(vy) = n(G). In particular, we want n(G)
big enough so that 7 is in the center of Go/H. Indeed, the center is open,
since in the exact sequence:

1 — Hy/H — Gy/H — G/H — 1,

G/H ~ Z, x (finite), and Hy/H is finite. So we are able to choose such a
n(G).

Then we have v(U]) > 2(Cy + C3), and by Corollary 8.2.7, there exists
M, € GLy(Af) satisfying

v(My —1) > Cy + Cs and My Uy (Ms) € GLa(Agnc))-
Take M = M - Ms, then the cocycle
oV, =M 'U,a(M)
a cocycle trivial on A with values in GLd(KH ), and we have
v(V,—=1) > Cy + Cs and V,, € GLg(Agne))-

This implies V,, comes by inflation from a cocycle on Gy/H.
The last thing we want to prove is V, € GLq(Ap () for any 7 € Go/H.
Note that y7 = 77 as  is in the center, so

Vir(Vy) = Viy = Vi = Vir(V7)

which implies y(V;) = V,7'V,7(V,). Apply Lemma 8.2.8 with V; = V7!,V =
7(V,), then we obtain what we want. O

8.2.3 Applications to p-adic representations

Proposition 8.2.9. Let T be a free Z,-representation of Go, k € N, v(p*) >
2C5 + 205, and suppose G C Gy is an open normal subgroup acting trivially
on T/p*T, and H = G N Hy. Let n € Nyn > n(G). Then there exists a
unique Dy ,(T) C A® T, a free Ay ,,-module of rank d, such that:

(1) Dun(T) is fived by H, and stable by G

(i) A ®ay, Dan(T) — AR T;

(iii) there exists a basis {e1,...,eq} of Dy, over Ay, such that if v €
G/H, then v(V, — 1) > C3, V, being the matriz of ~.
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Proof. Translation of Proposition 8.2.1, by the correspondence
A-representations of Gy —— H'(Gy, GL4(A)).
For the uniqueness, one uses Lemma 8.2.8. O

Remark. H, acts through Hy/H (which is finite) on Dy, (T). If Ay, is étale
over Ap, , (the case in applications), and then Dy, ,(T) = Dy, (T)Ho/H) s
locally free over Ap, ,, (in most cases it is free), and

At Q) Diyin(T) = Diyn(T).

AHO,n

Example 8.2.10. For A= C,, let V be a Q,-representation of G for
[K : Q] <400, T CV be a stable lattice. Then

DSen,n(V> = DHK,’VZ(T)

is a K-vector space of dimension d = dimg, V' with a linear action of I'g, .
Sen’s operator is defined as follows:

log ~y

Sen — 5
log x(7)

where 7 € I'g,, log x(7) # 0.

It is easy to see:

Proposition 8.2.11. V is Hodge-Tate if and only if Oge, is semi-simple,
and the eigenvalues lie in Z. These eigenvalues are the Hodge-Tate weights

of V.

Remark. For general V| the eigenvalues of Og,,, are the generalized Hodge-
Tate weights of V.

8.3 Overconvergent (p,[')-modules
8.3.1 Overconvergent elements

+oo | ~ ~
Definition 8.3.1. (i) For z = ) p'[a;] € A, 2; € E = Fr R, k € N, define
=0

)

w(x) = 1I<1£UE(JJ1) (One checks easily that wy(z) > vg(a), a € E, if and
only if [a]x_e At 4 pFLA),
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(ii) For a real number r > 0, define

k k
(O’T] =1 — =] —
v P (z) érellgwk(x) + . érelng(:vk) + - € RU{£o0}.

(iii) AC = {z e A: klim (vp(zk) + &) = klirf (wp(zk) + &) = 400}
—+00 ——+o00
Proposition 8.3.2. A0 g g ring and v = v satisfies the following
properties:
(i) v(z) =40 <z =0;

(i) v(zy) = v(z) + v(y);

(iii) v(x +y) = inf(v(x), v(y));

(iv) v(pr) = v(z) + 3

(v) v(la]z) = ve(a) +v(z) f e € E
(vi) v(g(x)) = v(2) if g € Go,;

(vid) v () = po®7(2).

Proof. Exercise. O

+o0 ~

Lemma 8.3.3. Given x € Y pFlxi] € A, the following conditions are equiv-
k=0

alent:

(i) kzjop [x1] converges in Bjp;

(i) Z pkx,(;)) converges in Cy;
k=0
(iii) k1—1>I—Poo(k +vg(zr)) = 400,

(iv) z € A1,

Proof. (iii) < (iv) is by definition of A®"). (i) & (iii) is by definition of
vg. (i) = (i) is by the continuity of 6 : BJ, — C,. So it remains to show
(i) = (i).
Write p = (p,p'/?,---) € E*, then ¢ = [p] —p is a generator of Ker fNA+.
We know
ap =k + [vp(x)] — +o0 if k — +o0.

Write zj, = pF~%yy, then y, € E+. We have

]%)ak-k[yky

Pl = (g) B ] = (1 +
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Note that p*(1 + f;)“k_k € p™ AT + (Ker 0)™ for all m. Thus, a, — +o0
implies that p*[z;] — 0 € BJ,/(Ker )™ for every m, and therefore also in
B, by the definition of the topology of Bjp. O

Remark. We just proved A0 := BN A, and we can use
o A0, fo

to embed AO") in B, for r > p.
Define

At = U A0 — {7 € A: o ™"(x) converges in B for n> 0}.

r>0

+00 ~

Lemma 8.3.4. z € Y p¥[z;] is a unit in A if and only if o # 0 and
k=0

UE(;”C—’S) > —é for all k > 1.

Proof. Exercise. Just adapt the proof of Gauss Lemma. ]

Set )
B/(O7 Tl _ AV(O,T][_] _ U p—n;{(o,r]7
p neN
endowed with the topology of inductive limit, and
Bt = U B, .
r>0

again with the topology of inductive limit.

Theorem 8.3.5. Bt is a subfield of E, stable by ¢ and Gg,, both acting
continuously.

BT is called the field of overconvergent elements. We are going to prove
elements of D(V)¥=! are overconvergent.

Definition 8.3.6. (i) Bf = Bf N B, At = AT N B (so B is a subfield of B
stable by ¢ and Gy, ), A®"1 = A©71N B,

(ii) If K/Q, is a finite extension and A € {gT,ET,AT, Bt, AOr g0
define Ax = A% For example Ag?’ = 40 Agk.

(iii) If A € {A, B, AT, Bf, AQr] BONY "and n € N, define Ay, = ¢ "(Ag) C
B.
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We now want to make Aﬁ?’r] more concrete. Let F' C K be the maximal
unramified extension of Q,, Tx be a uniformizer of Ex = kp((Tx)), Px €
Er[X] be a minimal polynomial of 7. Let Px € A}, [X] (note that AL, =
Op[[7]]) be a lifting of Px. By Hensel’s lemma, there exists a unique 7x €
Ak such that Pg(mg) =0 and T = mg modp. If K = F’, we take mx = .

Lemma 8.3.7. If we define

{1, if Ex/Eq, is unramified,
'k =

(2vE(Ey/By,)) " otherwise .

then Tk and Py (7)) are units in Ag?’r} forall0 <r <rg.
Proof. The proof is technical but not difficult and is left to the readers. [

Proposition 8.3.8. (i) Ax ={)>_ ay7} : a, € Op, lim vy(a,) = +00};

(i) A™ = {3 awtk : an € Op,
neN

So f — f(rk) is an isomorphism from bounded analytic functions on the

annulus 0 < v,(T) < rvg(7k) to the ring Bé?,r]‘

nEIPm(Up(an) + rnug(Tk)) = +oo}.

Proof. The technical but not difficult proof is again left as an exercise. See
Cherbonnier-Colmez Invent. Math. 1998. ]

Corollary 8.3.9. (i) Aﬁ?’” is a principal ideal domain;
(ii) If L/K is a finite Galois extension, then Ag)’ "l is an étale extension
of Aﬁ?’” if r < rp, and the Galois group is nothing but Hyx /H,.

Define m, = ¢ (1), Tk = @ "(Tkn).

Proposition 8.3.10. (i) If p"rx > 1, 0(Tk.) is a uniformizer of K,;
(il) Trm € Kn[[t]] C Byg.

Proof. First by definition
Tn = [eY7"] =1 =cMe!? — 1 € F,[[t] C Bl

(for [¢'/P"] = e(et/P" : the 6 value of both sides is €™, and the p"-th power
of both side is [¢] = €' (recall t = log[e])). This implies the proposition in
the unramified case.
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For the ramified case, we proceed as follows.

By the definition of Ex, 7k, = 0(Tk,) is a uniformizer of K, moda =
{z 1 v,(x) > %} Write w,, be the image of 7k, in K, mod a. So we just have
to prove g, € K.

Write

Define

then P, (mxn) = 0(¢p(Pk(mk))) = 0. Then we have v, (P n(wn)) > Il) and
/ 1 /(= 1 1 . n
Up(Prc p(wn)) = ﬁvE<PK(7TK)) = EUE(DEK/E@I,) <2 if p"rg > 1.

Then one concludes by Hensel’s Lemma that 7g,, € K,.
For (ii) , one uses Hensel’s Lemma in K, [[t]] to conclude Tk, € K,[[t]].
]

Corollary 8.3.11. If0 <r < rg and p"r > 1, w“(AﬁS’”) C K,[[t] € B

8.3.2 Overconvergent representations

Suppose V' is a free Z, representation of rank d of Gg. Let
DO = (ACT g, V) C D(V).
This is a Ag’r]-module stable by I'. As for ¢, we have
p: DOT(V) — DOrT(y),

Definition 8.3.12. V is overconvergent if there exists an ry > 0,1y < rg
such that
A () 4.0 DOTV) 2 DY)

By definition, it is easy to see for all 0 < r < ry,

r 0,7 r
DONV) = AR Q) o DOV,
K
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Proposition 8.3.13. If V is overconvergent, then there exists a Cy such

that if v € Txe, n(7y) = vp(log(x(7))) and r < inf{p~'ry,p "M}, then v — 1
is invertible in DOI(V)¥=0 and

VO ((y = 1)) > 0 (@) — Cv — p"Pog(x).

p—1

Proof. Write x = > [e]'¢(z;) and adapt the proof of the same statement as
i=1

in the characteristic p case. One has to use the fact that [g]?"~! is a unit in

AL if r < prand i € Z;, 0

Remark. This applies to (Ag?’ 7’])w:O.

Theorem 8.3.14 (Main Theorem). (i) All (free Z, or Q,) representations
of Gk are overconvergent.
(ii) D(V)¥=t c DOvI(V),

Sketch of Proof. (ii) is just because 1) improves convergence.
(i) follows from Sen’s method applied to

K = AV(O’ 1], v = U(O’ 1], GO = GK?‘/\HK,n = QO_n(Agg 1})

Now we show how to check the three conditions.
(TS1). Let L > K D Q, be finite extensions, for o = [T1](}_, c i/, ([7c]) 71,
then for all n,

Y. mleTa) =1,

TEHK/HL

and
lim v (e (a)) = 0.

n—+oo
(TS2). First Ap,n, = Ag?:rlj. Suppose p"rx > 1. We can define Ry, by

the following commutative diagram:

RK,n : ggg’l] > Ag?:rlj

%7%%160%07%}»1@

0,1
A&(,n]—&—k
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One verifies that ™" 01" 0 o"** does not depend on the choice of k, using
the fact 1o = Id. Then the proof is entirely parallel to that for C, with
in the role of p~* Trp, ., /k, and T, in the role of m, 4.

(TS3). For an element = such that Ry ,(z) = 0, write

=" Ricn(e), where R, (x) € @~ ((agr " =)

Then just apply Proposition 8.3.13 on (Ag?’p_(“m)])‘”:o.

Now Sen’s method implies that there exists an n and a Ag?:rll]—module
Df,?;n” c ACITQV such that

A0 o, DOY 2 0N gy,
K,n ’

Play with (TS3) just like Lemma 8.2.8, one concludes that D&?:i] C o (D(V))
and gpn(Dgg:;]) C D(O,p*"}(‘/)_ We can jllSt take ry =n. =

8.3.3 p-adic Hodge theory and (¢, [')-modules

Suppose we are given a representation V, 0 < r < ry and n such that
p"r > 1. Then we have

e (DON(V)) = BV -5 C,@V
and ,
—n 077‘
e AL o K (1] -5 K.

So we get the maps
0op™: K,® 00 DN (V)—C,®@V (8.1)
K

and
O " (] ® 401 DONV) — B, @V, VicZ (8.2)

Theorem 8.3.15. There exists an n(V') € N such that if n > n(V'), then we
have

(i) the image of 0 o ™" in (8.1) is exactly Dgen n(V);

(ii) Fil' Dgr(V) = (Im o ™)'« in (8.2) for all i;

(iii) Dar(V) = (Kau((£) @ 401 DO (V).
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Let K/Q, be a finite extension, and define

Bl = {F(rk) : Fis a bounded analytic function on 0 < v,(t) < r(F), r(F) > 0},
leg x = {F(mk) : F is an analytic function on 0 < v,(t) < r(F), r(F) > 0}

(this last ring is the Robba ring in the variable ), and

BlTog,K = B;rig,K[log TK].

Extend ¢, 'k by continuity on Brlg i, and set
T
p(log ) = plog m + log il pK),
Tk
T
Y(log i) = log mc + log 1)
TK
where log £ ( x) ¢ Bl and log *- WK) € Bflg - Let

1 d

N =— . .
UE(ﬁ—K) dlog x

Theorem 8.3.16 (Berger). For

DI(V) = (B'@ V)"« = | DO"\(v

>0
if V' is semi-stable, then
T 1 t 1 ;
Ble s [5] ©160 Da(V) = Bl ic[3] @1, DY)

is an isomorphism of (@, N,T'x)-modules. This implies that Dy (V') is the
mwvariant under 'y

8.3.4 A map of the land of the rings

The following nice picture outlines most of the objects that we have discussed
till now and that we shall have to discover more about in the future.
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p-adic _
Hodge :_BJR—:
Theory g T |

~ |~
Blog B, B},
1) t oy !
¥, 1) > R+ +
modules Bng : ng : \?ms
! !
B¢ B B L prl—"——C,
i y ! b f
AC A At L+ Oc,
modpi | ¢ | $ | ¢ | $
EC :_E_; Bt :_ E_Jr_; Oc,/p
where

rlg ﬂ gO crzs 10g ﬂ 90 B:;

Note that most arrows from (g, I')-modules to p-adic Hodge theory are in
the wrong direction, but overconvergence and Berger’s theorem allow us to
go backwards.

8.4 Explicit reciprocity laws and p-adic L-functions

8.4.1 Galois cohomology of B;r

Suppose K is a finite extension of Q,. Recall that we have the following:

Proposition 8.4.1. For k € Z, then

(i) if k # 0, then H (G, Cy(k)) =0 for all i

(ii) o k& = 0, then H(Gk,C,) = 0 for i > 2, H'(Gk,C,) = K,

and H'(Gk,C,) is a 1-dimensional K-vector space generated by logy €
HY Gk @p) (i.e, the cup product x — x Ulogx gives an isomorphism
H°(Gg,

Cp) ~ H'(Gk,Cp)).
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Remark. This has been proved for i < 1. For i > 2, H (H,C,(k)) = 0 by
using the same method as for H'. Then just use the exact sequence

1l— Hgy — Gg —T'g —1
and Hochschild-Serre spectral sequence to conclude.
Proposition 8.4.2. Suppose i < j € Z U {£o0}, then ifi > 1 or j <0,
H' (G, t' B/t Bip) = 0;
if i <0 and j >0, then x — x Ulogx gives an isomorphism
HY(G, t'BlL /¥ Bl) (=~ K) = H'(Gk,t'Bj/t' Biy).

Proof. Use the long exact sequence in continuous cohomology attached to
the exact sequence

0 — tT"Cp(~ Cy(i +n)) — t'Bip /""" ' B, — !B, /tT"Bl, — 0,

Y

and use induction on j—i (note that in the base step j = i+1, t'Bjj, /! B, =
C,(i)), and Proposition 8.4.1 to do the computation. This concludes for
the case where 7, j are finite. For the general case, one proves it by taking
limits. O

8.4.2 Bloch-Kato’s dual exponential maps

Let V be a de Rham representation of G'x, we have
Bar ®q, V = Bar @k Dar(V) = H(Gk, Bair®@V)
and
HY(Gg, Bir®V) = H Gk, Bir @k Dar(V)) = H (G, Bar) @k Dar(V).
So we get an isomorphism

Dar(V) = HY(Gk, Bir®V); x> xUlogx.
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Definition 8.4.3. The exponential map exp* is defined through the com-
mutative diagram:

exp*: HY Gk, V) Dyr(V)

\%

HY (Gg,Bir ®V)

Proposition 8.4.4. (i) The image of exp* lies in Fil° Dyp(V).
(ii) For c € HY(Gg,V), exp*(c) = 0 if and only if the extension E.

0O—V-—FE —Q,—0,

is de Rham as a representation of G.

Proof. (ii) is just by the definition of de Rham. For (i), ¢ € H(Gg, V)
implies ¢ = 0 € H'(Gk, (Bar/Bjz) ® V). But 2 — z Ulogx gives an
isomorphism

Dar(V)/ Fil’(Dar(V))(= H*(Gk, (Bar/Br)®V)) — H'(Gk, (Bir/Biz)2V)).
So exp*(c) =0 (mod Fil°) O

Remark. exp* is a very useful tool to prove the non-triviality of cohomology
classes.

Now suppose k € Z, L is a finite extension of K. Then V' (k) is still de
Rham as a representation of G;. Define

Dar,1(V(k)) := H*(Gr, Bir @ V(k)) =t *L @, Dar(V)
by an easy computation. Thus,
Fil’(Dgr. 1(V(k))) = t % @k Fil* Dgr(V)
and this is 0 if £ > 0. So for every k € Z, for L/K finite,
exp* : HY(Gp,V(k)) — t *L @K Dgr(V)

is identically 0 for & > 0.
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8.4.3 The explicit reciprocity law
Recall that

Hy, (K, V) = H' Gk, Z,[Tk]] ® V) = H(Gk, Do(T'k, V).

It n: Tk — Q is a continuous character, for n € N,

pe H (G, Do(Tk, V) — nu € H' (Gk,, V@mn).

Tk,

where we write V @7, not as V(1) to distinguish from V (k) = V ® x*. Then
eXp*(/ X*n) € t7° K, @k Dar(V)
Tk,

and is 0 if £ > 0.
Recall also that we have the isomorphism Exp* : H*(K, V) = D(V)¥=1,
that D(V)¥=! ¢ D®™}(V) and that there exists n(V) such that

e DOV € K,((t) ®k Dar(V), for all n > n(V).
Now denote by
Tre, o/, = Tri, o(@)/Ka(@) @1d 0 Kngr((1)@Dar(V) — Ku((t))@Dar(V).
Theorem 8.4.5 (Explicit Reciprocity Law). Let V be a de Rham repre-

sentation of Gi and p € Hiy, (K, V).
(i) If n > n(V), then

(i) Forn € Nyn+1i>n(V), then

Exp*y. (1) = Tre, i, (07"~ ) (Exp* (1))

does not depend on i, and Exp*y (n) = exp*(fFK XFu).
keZ "
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Proof. (ii) follows from (i) and from the commutative diagram:
HY(GL,v) —— Ly ®xk Dar(V)
corl J,TrLQ/Ll R Id

HY (G, v) =25 Ly @k Dan(V)
where Ly C Ly are two finite extensions of K.
For (i), suppose y = Exp*(u), z € D(V), and z(k) is the image of z in
D(V(k)) = D(V)(k) (Thus, p(z(k)) = ¢(z)(k) and v(z(k)) = x(7)*y(z)(k)).
The integral fFKn x* 11 is represented by the cocycle:

logx(n) (9—1
— c, = . y k — g — 1 b
g ey = BN (D2 D) — (g - 1)
where b € A ® V is the solution of
(p=1b= (=1 ((¢ = D)K)).
From y € DO™vI(V)¥=! one gets
(¢ — 1)y € DOPI(V)r=0
and then
(30 = D) H(p = D)y € DOPI(V)P=°,
Thus b € A®?""1 @ V. This implies that ¢~"(b) and ¢ "(y) both converge
in Bj, ® V. Then ¢, = ¢ "(c,) differs from
logx(9n) g9—-1  _
c = . o "(y)(k
= BN I g
by the coboundary (g — 1)(¢~"(b)). Therefore, they have the same image in
HY(Gg, Bip @ V(k)). Write

P M y) = wyit', i € K, @k Dap(V),

1219

then

- h X(g9)™* -1
c, = log x(9)y-xt +;km ’

yit'

=1lo —k . yiti
= log x(9)y-xt™" + (g 1)2_% T

So we get exp* (fFKn o) = yxt™*. O
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8.4.4 Cyclotomic elements and Coates-Wiles morphisms.

Let K = Q, V = Q1) u= ()., € lmOp,, x(u) € Hh,(Q, QylL)),

the Coleman power series f, = HLT Then we have
df., 1
Exp* =1+4+T)-—=(m) = —.
<" () = (14 7) T (m) =~
Note that 1

¢ m) = (- 1) =

(1+m)et/r —1’

then
1 _ 1 1
Exp’e, (k(u) = 2 Trgyemy/g, ¢~ (1) = Y.
zP=1, z#1
111 1t t/p
_Gt—l_];'et/p—l g'(et—l et/p—]_)
~+00 _
~ (_t)n 1
i N
- - S
n=1

exp X rk(p)) = kel
FQp (]‘ - pk)<<]' + k) ((,t])cfl)! 3 it k S —1.

Remark. (i) The map

lim O, — {0} — Hi(Q Q1) — Q" exp’ (| i)
Tq,
is the Coates-Wiles homomorphism.
(ii) Since ¢(1 + k) # 0 if k < —1 is even, the above formula implies that
the extensions of Q, by Q,(k + 1) constructed via cyclotomic elements are
non-trivial and are even not de Rham.

(iii) dimg, H'(Gg,, Qy(k)) = 1if k #0, 1.

Corollary 8.4.6. Non-trivial extensions of Q, by Q,(k) are not de Rham if
k <0 is odd.

Exercise. (i) Prove that this is also true for k& < —1 even by taking a general
element of D(Q,(1))¥=".
(ii) For [K : @Q,] < oo, prove the same statement.
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8.4.5 Kato’s elements and p-adic L-functions of mod-
ular forms.

Now we come to see the relations with modular forms. Suppose
=Y a.q" € Si(N), k> 2
n=1

is primitive. So Q(f) = Q(ay, - ,a,,---) is a finite extension of @, and
Q,(f) =Qp(a1,...,an,...) is a finite extension of Q,,.

Theorem 8.4.7 (Deligne). There exists a representation Vy of Go of di-
mension 2 over Q,(f), non-ramified outside Np, such that if €4 Np, for ¢

the arithmetic Frobenius at ¢ (@g(€%) = e%), then

det(1 — X, ) =1—a, X + -1 X2

Remark. A Q,(f)-representation V' of dimension d is equivalent to a @Q,
representation of dimension d - [Q,(f) : Q,] endowed with a homomorphism
Q,(f) — End(V) commuting with Gg. Therefore, D.,is(V'), Dst(V'), Dar(V)
are all Q,(f)-vector spaces.

Theorem 8.4.8 (Faltings-Tsuji-Saito). (i) V; is a de Rham representa-
tion of Gg, with Hodge-Tate weights 0 and 1 — k, the 2-dimensional Q,(f)-
vector space Dyr(Vy) contains naturally f, and

Dap(V) = Dar(Vy), Dap(Vy) =0, Dyp(Vy) = Q(f)f if 1<i<k—1.
(i) If pt N, then Vy is crystalline and
det(X — ) = X? —a, X +p" .

If p| N but a, # 0, then V; is semi-stable but not crystalline and a, is the
eigenvalue of ¢ on D..is(V); if a, = 0, then Vy is potentially crystalline.

Remark. If V is a representation of G, pu € H (K, V),

/ o€ H' (G, V(R)),
'k

n

then this is also true for [ . ¥ for all @ € T'x and for Jrw o(x)x*u, with
¢ : I'x — 7Z, being constant modulo 'k, .
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Theorem 8.4.9 (Kato). There exists a unique element zkaro € Hi, (Qp, V})
(obtained by global methods using Siegel units on modular curves), such that
if 0 <j <k—2, ¢ is locally constant on Z; = T'q, with values in Q(f), then

exp*( (z)ah 1. ZKato) = %K@ca ¢,j+1)-

k—1—j5
Lxp t J

where

AU 0.0+ 1) €QU ), s € FI(Dun(Vy(k — 1~ ).

Our goal is to recover L, (f, s) from zkat (recall L, , is obtained from
11,0 € Dy (a)(Z,) before). We have Exp*(zkato) € D (V)= but the question
is how to relate this to Deyis(Vy), Dst(Vy).

If p| N, let a be a root of X? —a,X + p*~! with v,(a) < k—1;if p ¥ N,
let & = a, # 0 (in this case pa? = p*~1). In both cases, take 8 = p"1a~1.
Thus, «, 8 are eigenvalues of ¢ on D (V).

Assume a # (3 (which should be the case for modular forms by a conjec-
ture). Define Il = g_;z to be the projection on the (-eigenspace in Dy (V)

and extend it by BITOg s-linearity to

1
BlTog,K[g} ®K0 DSt(Vf) - BlTog,K ®BI{ DT(Vf)

Theorem 8.4.10. (i) IIz(f) #0;
(i)
g .

Remark. py  exists up to now only in the semi-stable case, but 2k, exists
all the time. So a big question is:
How to use it for p-adic L-function?

5 (Exp* (21ca0)) = ( /

Zyp



