
BOUNDED COHOMOLOGY, HIGGS BUNDLES,

AND MILNOR–WOOD INEQUALITIES

TOBIAS HARTNICK AND ANDREAS OTT

Abstract. We explain how the generalized Milnor–Wood inequality for reductive rep-
resentations of a cocompact complex-hyperbolic lattice into a Hermitian Lie group trans-
lates, under the non-abelian Hodge correspondence, into various kinds of Milnor–Wood
inequalities for Higgs bundles. This clarifies the relation between the representation the-
oretic generalized Milnor–Wood inequality and the various different versions of Milnor–
Wood inequalities for Higgs bundles that are known in the literature.
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1. Introduction and main results

1.1. Milnor–Wood inequalities. Over the last two decades there has been a strong
interest in the study of representations of surface groups into higher rank real Lie groups,
in particular in their moduli spaces and deformations, which nowadays goes under the
name of higher Teichmüller theory. More recently, these studies have been extended to
also include representations of fundamental groups of certain higher-dimensional manifolds
(in particular, Kähler manifolds). Via the non-abelian Hodge correspondence (see Section
3.3 below), originally due to Simpson, Donaldson and Corlette [36, 17, 15], certain classes
of representations correspond to various types of Higgs (principal) bundles. It is a natural
and important problem to understand how geometric properties of objects on either side
of the non-abelian Hodge correspondence relate to each other, see e.g. [32] for a recent
example.

The present article studies a special instance of this correspondence. Namely, we will be
concerned with bounds for characteristic numbers of representations and bundles which
generalize the classical Milnor–Wood inequality for representations of surface groups into
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PSL2(R) [30, 42]. Such inequalities have been established independently on the represen-
tation side and on the Higgs bundle side of the non-abelian Hodge correspondence, and it
is one of our main goals in this paper to explain how they translate into each other.

We will work in the following setting: M will be a closed complex-hyperbolic manifold
with fundamental group Γ and G will be a connected simple non-compact real Hermitian
Lie group with finite center. We will then consider reductive representations ρ : Γ → G
and their corresponding G-Higgs principal bundles over M (in the sense of Definition 3.2
below). The version of the non-abelian Hodge correspondence that will be relevant for
us in this paper was developed by Bradlow, Garcia-Prada, Gothen, and Mundet [5, 4] for
the case of surface group representations, generalizing the work of Donaldson [17], Hitchin
[23, 24], Corlette [15], Simpson [35, 36, 37, 38], and by Chaput, Koziarz and Maubon for
Higgs bundles over higher dimensional base manifolds [28, 29, 13]; see also [2, 19]. For the
rest of this introduction we will always assume this setting.

On the representation side, one can establish Milnor–Wood type inequalities by employ-
ing techniques from bounded cohomology developed by Burger and Iozzi [7, 8, 9, 10], and
by Burger, Iozzi and Wienhard [11, 12]; see also [33]. These inequalities are most naturally
formulated in terms of the so-called Toledo invariant T (ρ) of a representation ρ : Γ→ G,
which in the generality discussed in this article was first introduced by Burger and Iozzi
[7], extending a classical definition of Toledo [39]. It was pointed out by Burger and Iozzi
in [9] that the computation of the Gromov norm of the Kähler class of Hermitian Lie
groups (due to Domic and Toledo [16] and Clerc and Ørsted [14]) together with methods
from bounded cohomology implies bounds for the absolute value of the Toledo invariant
T (ρ). We refer to these bounds as representation-theoretic inequalities of Milnor–Wood
type. These inequalities apply to fundamental groups Γ of compact complex-hyperbolic
manifolds of arbitrary dimension (in fact, even to a much wider class of lattices) and to
arbitrary Hermitian targets G. Also, the proof of these inequalities (as recalled in Section
2 below) is uniform in that it does not involve any case-by-case analysis. Thus, on the
representation side of the non-abelian Hodge correspondence we have a clean universal
inequality of Milnor–Wood type, which applies in great generality.

The situation on the Higgs bundle side is more complicated. With a given Higgs princi-
pal bundle one can associate vector bundles in various different ways, each of which admits
its own Milnor–Wood type inequality in terms of certain characteristic numbers. Corre-
spondingly, several different formulations of Milnor–Wood inequalities for Higgs bundles
are found in the literature, see [28, 4, 5, 2, 29, 13].

As we will explain in the next subsection, there are essentially two different ways to for-
mulate Milnor–Wood type inequalities for Higgs bundles, which we call Milnor–Wood type
inequalities in isotropy form, respectively Milnor–Wood type inequalities in representation
form. The main goal of this article is to clarify in what sense both types of inequalities
appear as shadows of the universal representation-theoretic Milnor–Wood type inequality
under the non-abelian Hodge correspondence. This helps to organize the zoo of Milnor–
Wood inequalities for Higgs bundles, and explains why they are equivalent to each other
and to the representation-theoretic version. Beyond that, our methods may also be of
interest in their own right as they build a bridge between invariants from bounded coho-
mology and gauge-theoretic invariants.
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1.2. Isotropy form vs. representation form. We now explain how the two different
kind of Milnor–Wood type inequalities for Higgs bundles arise. Our starting point is
the observation that the Toledo invariant of a reductive representation can be expressed
as a characteristic number of two different (classes of) vector bundles associated to the
corresponding Higgs principal bundles.

To begin with the simplest case, assume first that ρ : Γ → SU(p, q) is a reductive
representation into G := SU(p, q). Then the associated Higgs principal bundle (in the
sense of Definition 3.2) is a certain K-principal bundle, where K = S(U(p) × U(q)). An
obvious choice of representation for K is the standard representation on Cp ⊕ Cq. Via
this representation, every G-Higgs principal bundle gives rise to a pair of vector bundles
V+

std and V−std of ranks p and q respectively. A less obvious, but more canonical choice
of representation of K is given by the complexified isotropy representation of K on the
complexified tangent space to G/K at the basepoint. This representation splits into the
±i-eigenspaces of the invariant complex structure on G/K, and hence every G-Higgs
principal bundle gives rise to another pair of vector-bundles V+

iso and V−iso whose ranks
both equal dimG/K = 2pq. One can now express the Toledo invariant and universal
Milnor–Wood type inequality either in terms of the bundles V+

std and V−std or in terms of

the bundles V+
iso and V−iso.

If G is an arbitrary Hermitian Lie group (satisfying our standing assumptions), then
the complexified isotropy representation is still defined, and hence we can still associate
vector bundles V+

iso and V−iso to a G-Higgs principal bundle. Instead of the standard
representation of S(U(p)×U(q)) we can choose any representation σ : K → GL(Cp ⊕Cq)
which is admissible in the sense of Definition 6.1 below. We then obtain associated vector
bundles V+

σ and V−σ , which generalize the bundles V+
std and V−std above. Again, we can

formulate the universal inequality of Milnor–Wood type either in terms of the bundles
V+

iso and V−iso or in terms of the bundles V+
σ and V−σ . This leads to Milnor–Wood type

inequalities in isotropy form, respectively Milnor–Wood type inequalities in representation
form.

1.3. Statement of the results. To state our results we introduce the following notation.
Let K < G be a maximal compact subgroup of G and let X := G/K be the associated
symmetric space. We write g = k⊕ p for the corresponding Cartan decomposition, where
p = TeKX , and denote by adp

k : k → End(p) the infinitesimal isotropy representation of k
on p. Since G is Hermitian, the space X admits a G-invariant complex structure IX , and
we fix one of the two possible choices of IX (equivalently, an orientation on X ) once and
for all. The space Ω(X )G of G-invariant 2-forms on X is one-dimensional, generated by
the canonical 2-form ωcan

G which is uniquely determined by the fact that at the basepoint
o = eK,

(ωcan
G )o(X,Y ) = trEnd(p)

(
(IX )o ◦ adp

k ([X,Y ])
)

(X,Y ∈ p = ToX ).

If ω ∈ Ω(X )G is non-zero then exactly one of ω(·, IX ·) and −ω(·, IX ·) is a Riemannian met-
ric on X , and we denote the minimal holomorphic sectional curvature of this Riemannian
metric by Kmin

ω .
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Now denote by ωM the Kähler form on M which pulls back to the hyperbolic Kähler
form on the universal cover of M . We denote by

Vol(M) :=

∫
M
ωnM

the hyperbolic volume of M . Given a vector bundle V over M , we define

deg(V) :==

∫
M
c1(V) ∧ ωn−1M ,

where c1(V) = c1(det(V)) denotes the first Chern class of V.
The following theorem is established in Corollary 5.3.

Theorem 1 (Universal Milnor–Wood inequality, isotropy form). The degrees of the bun-
dles V+

iso and V−iso as defined above satisfy the inequality∣∣deg(V+
iso)
∣∣ =

∣∣deg(V−iso)
∣∣ ≤ Vol(M) · rk(G)

4π · |Kmin
ωcan
G
|
.

The constant Kmin
ωcan
G

can be expressed in terms of root data of the Lie algebra of G. For

example for G = SU(p, q) we have Kmin
ωcan
G

= − 1
p+q , and thus we obtain∣∣deg(V+

iso)
∣∣ =

∣∣deg(V−iso)
∣∣ ≤ Vol(M)

4π
· (p+ q) ·min{p, q}.

To state the second version of the Milnor–Wood type inequality we observe that for
every admissible representation σ : G → GL(V ) in the sense of Definition 6.1, for all
X,Y ∈ p the complex trace trC(dσ(I) ◦ dσ([X,Y ])) is actually a real number and there
exists a unique non-zero G-invariant 2-form ωσ on X such that

(ωσ)o(X,Y ) = trC((IX )o ◦ dσ([X,Y ]))

for all X,Y ∈ p (see Lemma 4.3).
The following theorem is established in Corollary 6.4.

Theorem 2 (Universal Milnor–Wood type inequality, representation form). The degrees
of the bundles V+

σ and V−σ associated with an admissible representation σ satisfy the
inequality ∣∣deg(V+

σ )
∣∣ =

∣∣deg(V−σ )
∣∣ ≤ Vol(M) · rk(G)

2π · |Kmin
ωσ |

.

Again, the constant |Kmin
ωσ | can be computed explicitly for a given admissible representa-

tion σ. For the standard representation σ : SU(p, q)→ GL(Cp⊕Cq) we obtain|Kmin
ωσ | = 2,

and hence ∣∣deg(V+
std)
∣∣ =

∣∣deg(V−std)
∣∣ ≤ Vol(M)

4π
·min{p, q}.

In the special case where M = Σg is a closed hyperbolic surface of genus g ≥ 2 we have
Vol(M)

4π = g − 1, which is in accordance with the Milnor–Wood inequality obtained in [4].
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2. Toledo invariant and Milnor–Wood type inequality

2.1. Continuous bounded cohomology and the Gromov norm. Let G be a locally
compact group. The continuous cohomology H•c(G;R) of G with real coefficients [3] is the
cohomology of the complex (C•c (G;R), δ), where

Cnc (G;R) := C(Gn+1,R)G

denotes the space of continuous functions Gn+1 → R which are invariant under the diag-
onal G-action on Gn+1, and

(δf)(g0, . . . , gn) :=

n∑
i=0

(−1)i · f(g0, . . . , ĝi, . . . , gn).

Likewise, the continuous bounded cohomology H•cb(G;R) of G with real coefficients [31]
is defined to be the cohomology of the subcomplex (C•cb(G;R), δ) of (C•c (G;R), δ), where
Cncb(G;R) ⊂ Cnc (G;R) denotes the space of continuous bounded G-invariant functions
Gn+1 → R.

Given a class α ∈ Hn
cb(G;R) in the bounded cohomology of G, its Gromov norm is

defined as

‖α‖ := inf
{
‖c‖∞

∣∣ c ∈ α},
where the infimum is taken over all cocycles c representing the class α, and ‖c‖∞ denotes
the sup-norm of the bounded function c : Gn+1 → R.

2.2. Hermitian symmetric spaces and the bounded Kähler class. We recall basic
facts about Hermitian symmetric spaces and introduce some notation. Let G be a simple
non-compact Lie group with finite center. Fix a maximal compact subgroup K of G and
denote by g = k⊕ p the Cartan decomposition of the corresponding Lie algebras. We will
write KC, GC, kC, pC and gC for the complexifications of K, G, k, p and g respectively.

We denote by XG = G/K the associated symmetric space and fix an orientation for XG.
We also choose the identity coset o = eK as a basepoint in XG and identify the tangent
space ToXG of XG at o with p. The Lie group G, and also the symmetric space XG, are
called Hermitian if XG carries a G-invariant complex structure. In this case, there is a
unique G-invariant complex structure IG which is compatible with the chosen orientation.
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From now on we will always consider XG as a complex manifold with complex structure
IG. Note that there exists a unique element I ∈ k which is central in k and satisfies

(2.1) (IG)o(X) = ad(I)(X) = [I,X]

for all X ∈ p.
The space Ω2(XG)G of G-invariant 2-forms is one-dimensional. For any such form

ω ∈ Ω2(XG)G we define

(2.2) gω( ·, ·) = ω( ·, IG ·).

If ω is non-zero, then either gω or −gω is a Riemannian metric, and hence ω or −ω is a
Kähler form. We then denote by Kmin

ω the minimal holomorphic sectional curvature of
the Riemannian metric ±gω (see e.g. [1]). Note that ω is uniquely determined up to sign
by the invariant Kmin

ω .
Recall that the comparison map H2

cb(G;R) → H2
c(G;R) is an isomorphism (see [9],

Section 5). Composing the van Est isomorphism Ω2(XG)G → H2
c(G;R) (see [20], Ch. III

§7) with the inverse of the comparison map we obtain the bounded van Est isomorphism

(2.3) ι : Ω2(XG)G → H2
cb(G;R).

Following Burger and Iozzi [9], Section 5, we associate with every non-zero G-invariant
2-form ω ∈ Ω2(XG)G the associated bounded Kähler class

κbω := ι(ω) ∈ H2
cb(G;R).

Note that κbω generates H2
cb(G;R). Fixing a reference point x ∈ XG, we can represent the

class κbω by the cocycle

cω : G3 → R, cω(g0, g1, g2) :=

∫
4(g0.x,g1.x,g2.x)

ω,

where 4(x0, x1, x2) denotes, for any three points x0, x1, x2 ∈ XG, the geodesic triangle
in XG with vertices x0, x1, x2, taken with respect to some fixed G-invariant Riemannian
reference metric on XG.

2.3. Toledo invariant. Let G and H be simple Hermitian Lie groups (always assumed
non-compact and with finite center) with associated Hermitian symmetric spaces (XG, IG)
and (XH , IH). Let ωG ∈ Ω2(XG)G be an arbitrary non-zero G-invariant 2-form on XG,
and let ωH be the unique H-invariant Kähler form on XH normalized to Kmin

ωH
= −1.

Fix a cocompact lattice Γ < H, and consider a representation ρ : Γ → G. The repre-
sentation ρ gives rise to a map

(2.4) Tb(ρ) : Ω2(XG)G
ι−→ H2

cb(G;R)
ρ∗−→ H2

b(Γ;R)
Tb−→ H2

cb(H;R)

which is defined as the composition of the bounded van Est isomorphism (2.3), the natural
pull-back map ρ∗ : H2

cb(G;R)→ H2
b(Γ;R), and the bounded transfer map Tb : H2

b(Γ;R)→
H2

cb(H;R) (see [9], Sections 2.1 and 2.2 for details). Since H2
cb(H;R) ∼= R·κbωH the following

definition makes sense.
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Definition 2.1. Fix a representation ρ : Γ → G and a non-zero invariant 2-form ωG ∈
Ω2(XG)G. We define the Toledo invariant TωG(ρ) of ρ with respect to ωG by the relation

(2.5) Tb(ρ)(ωG) = TωG(ρ) · κbωH .
This definition is taken from Burger and Iozzi [9], up to composition with the bounded

van Est isomorphism and the fact that we do not assume any normalization condition for
ωG. Consequently, our invariant TωG(ρ) will depend on ωG. We warn the reader, that
different choices of normalization exist in the literature.

2.4. Milnor–Wood inequality. We keep the assumptions and notation from the pre-
vious section. Our knowledge of the Gromov norm of the bounded Kähler class due to
Domic and Toledo [16] and Clerc and Ørsted [14] immediately yields the following variant
of the Milnor–Wood inequality for the Toledo invariant, which is due to Burger and Iozzi.

Lemma 2.2 (Milnor–Wood inequality ([9], Thm. 7)). Let G and H be simple Hermitian
Lie groups with associated symmetric spaces XG and XH and let ωG ∈ Ω2(XG)G be a non-
zero invariant 2-form on XG. Fix a cocompact lattice Γ < H, and consider a representation
ρ : Γ→ G. Then the Toledo invariant TωG(ρ) of ρ with respect to ωG satisfies∣∣TωG(ρ)

∣∣ ≤ 1

|Kmin
ωG
|
· rk(G)

rk(H)
.

Proof. First of all we note that multiplying ωG by a scalar λ > 0 has the effect of mul-
tiplying Kmin

ωG
by a factor of 1/λ (see [14], p. 274 for details). Since the Toledo invariant

TωG(ρ) depends linearly on ωG, it follows that we may without loss of generality assume
that ωG is Kähler and normalized to Kmin

ωG
= −1.

With this normalization understood, by work of Domic and Toledo [16] and Clerc and
Ørsted [14] the Gromov norms of the bounded Kähler classes κbωG and κbωH are given by

‖κbωG‖ = π · rk(G), ‖κbωH‖ = π · rk(H).

Hence the defining relation (2.5) together with the fact that the map Tb ◦ ρ∗ in (2.4) does
not increase the Gromov norm yields

|TωG(ρ)| · π · rk(H) = |TωG(ρ)| · ‖κbωH‖ = ‖TωG(ρ) · κbωH‖ = ‖Tb(ρ)(ωG)‖
= ‖(Tb ◦ ρ∗ ◦ ι)(ωG)‖ ≤ ‖ι(ωG)‖ = ‖κbωG‖
= π · rk(G).

Dividing both sides by π · rk(H) gives the desired inequality. �

For later use let us also point out how the constant Kmin
ωG

can be computed in practice.
We first recall (see e.g. [11]) that if a ⊂ p is a maximal abelian subalgebra, then the root
system of g with respect to a is of type Cn or BCn according to whether XG is of tube
type or not. Thus there exist a basis (ξ1, . . . , ξr) of a∗ and integers a, b such that the roots
are given by ±2ξj , ±ξj ± ξk (j 6= k) and possibly ξj with respective multiplicities 1, a
and b. The integers a, b and r determine g uniquely. A fundamental invariant of g is the
number

(2.6) pg := (r − 1) · a+ b+ 2.

The following is an immediate consequence of [14]:
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Lemma 2.3. Let ωG ∈ Ω2(XG)G be a non-zero G-invariant 2-form on XG and I ∈ k as
in (2.1). Then for every non-zero X ∈ ToXG = p we have

(2.7) |Kmin
ωG
| = 1

pg
· | tr(ad(X)2)|
|(ωG)o(X, [I,X])|

.

Proof. Replacing ωG by −ωG if necessary, we may without loss of generality assume that
ωG is a G-invariant Kähler form, i.e., there exists a G-invariant Hermitian metric h =
g + i ωG on XG. We can realize XG as a bounded symmetric domain and denote by
hBerg = gBerg + i ωBerg the corresponding Bergman metric. Since the space of invariant
metrics on XG is one-dimensional we have h = λ · hBerg for some λ ∈ R. To compute λ we
recall two basic facts from [14]: Firstly, hBerg has minimal holomorphic sectional curvature

− 2
pg

. Secondly, the restriction of gBerg to p is given by 1
2κ, where κ ∈

∧2 p∗ denotes the

restriction of the Killing form κ(X,Y ) = tr(ad(X)ad(Y )) to p. Now for every X ∈ p we
have

λ =
ho(X,X)

(hBerg)o(X,X)
=

go(X,X)

(gBerg)o(X,X)
=

go(X,X)
1
2 tr(ad(X)2)

,

whence

Kmin
ωG

= − 1

λ
· 2

pg
= −

1
2 tr(ad(X)2)

go(X,X)
· 2

pg
= − 1

pg
· tr(ad(X)2)

(ωG)o(X, [I,X])
.

�

3. The non-abelian Hodge correspondence revisited

3.1. Notation and preliminaries. Keeping the notation from the previous section, we
now specialize to the case where H = SU(1, n). In this case, the associated symmetric
space (XH , IH) can be identified with complex hyperbolic n-space Hn

C together with the
standard complex structure. We denote by ωHnC the unique invariant Kähler form on Hn

C
normalized to minimal holomorphic sectional curvature Kmin

ωHnC
= −1.

By a compact complex-hyperbolic manifold we understand a manifold M of the form
M = Γ\Hn

C, where Γ < SU(1, n) is a cocompact lattice isomorphic to the fundamental
group of M . We then denote by π : Hn

C → M the universal covering projection. Every
compact complex-hyperbolic manifold inherits a complex structure IM and a Kähler form
ωM from Hn

C, given by π∗ωM = ωHnC . We define the normalized volume of M by

Vol(M) :=

∫
M
ωnM .

For 1-forms α, β ∈ Ω1(M ; h) taking values in some Lie algebra h, we denote by [α ∧ β] ∈
Ω2(M ; h) the Lie algebra valued 2-form (often simply written [α, β] in the literature)
defined by

[α ∧ β](v1, v2) := [α(v1), β(v2)]− [α(v2), β(v1)]

for v1, v2 ∈ TM .

Assumption 3.1. From now on we fix the following data: A compact complex-hyperbolic
manifold M = Γ\Hn

C, a simple Hermitian Lie group G with maximal compact subgroup K
of G and corresponding Cartan decomposition g = k⊕p, an orientation and corresponding
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complex structure IG on the symmetric space XG = G/K, a non-zero G-invariant 2-form
ωG ∈ Ω2(XG)G on XG, and a representation ρ : Γ → G. We further assume that ρ is
reductive, i.e., that the Zariski closure of ρ(Γ) is a reductive subgroup of G.

In the sequel we denote by Ad: GC → Aut(gC) < GL(gC) and ad: gC → gl(gC) the
adjoint representations of GC and gC respectively. If H is a closed subgroup of GC with
Lie algebra h and m ⊂ gC is an H-invariant subspace, then we denote the corresponding
representations of H and h on m by Adm

H , respectively adm
h , in particular we denote

(3.1) AdpC
K : K → GL(pC) and adpC

k : k→ GL(pC).

Recall that the compact real form of gC is given by the Lie algebra u := k⊕ i p ⊂ gC, hence
in particular gC = u ⊕ i u. We will denote by τ : gC → gC the complex conjugation with
respect to u in gC, i.e. τ(X + i Y ) = X − i Y for X,Y ∈ u.

3.2. Higgs principal bundles.

Definition 3.2. By a G-Higgs principal bundle over the manifold M we mean a triple
(P,A, ϕ) consisting of

• a principal K-bundle P →M ,
• a connection 1-form A ∈ Ω1(P ; k),
• a 1-form ϕ ∈ Ω1,0(M,P ×Ad pC) with values in the bundle P ×Ad pC,

such that the pair (A,ϕ) satisfies the complex Higgs equations

(3.2)


∂Aϕ = 0,

[ϕ ∧ ϕ] = 0,

FA − [ϕ ∧ τ(ϕ)] = 0.

For an explanation of the notation see Remark 3.4 below.

The 1-form ϕ ∈ Ω1,0(M,P ×Ad pC) is often called the Higgs field. If M is a curve,
the complex Higgs equations (3.2) are also known as Hitchin’s equations or self-duality
equations [23]. In this case, the second equation is automatically satisfied for dimensional
reasons.

Remark 3.3. Our definition of a G-Higgs principal bundle is adapted from the various
definitions appearing in the literature, see e.g. Hitchin [23], Koziarz and Maubon [28],
Sec. 2 and Bradlow, Garćıa-Prada, and Gothen [4], Sec. 2. Sometimes a G-Higgs principal
bundle is alternatively defined as a holomorphic KC-principal bundle PKC over M , together
with a holomorphic 1-form θ ∈ Ω1,0(M,PKC ×Ad pC) satisfying the equation [θ ∧ θ] = 0.
However, as explained in [28], Sec. 2 and [4], Sec. 2.3, this definition is in fact equivalent
to ours. The bundle PKC is simply given by the complexification PKC = P ×K KC of the
bundle PK .

Remark 3.4. Let us comment on the notation appearing in Definition 3.2.
(i) The twisted Dolbeault operator ∂A is defined as the (0, 1)-part of the connection

dA : Ω1(M,P ×Ad pC)→ Ω2(M,P ×Ad pC), dAϕ := dϕ+ [A ∧ ϕ]
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on the bundle P ×Ad pC. More concretely, this means that

∂Aϕ =
1

2
(dAϕ+ i ◦ dAϕ ◦ IM ) .

The first equation in (3.2) then says that the 1-form ϕ is holomorphic with respect to the
holomorphic structure on the bundle P ×Ad pC defined by the connection dA.

(ii) The assumption that the 1-form ϕ ∈ Ω1,0(M,P ×Ad pC) be of type (1, 0) means
the following. Denote by IM the complex structure on M and by i the standard complex
structure on pC = p⊕i p. Then ϕ is complex linear when viewed as a linear map ϕ : TM →
P ×Ad pC, i.e. i ◦ ϕ = ϕ ◦ IM .

(iii) The curvature 2-form FA ∈ Ω2(M,P ×Ad k) is defined as

FA := dA+
1

2
[A ∧A] .

(iv) The conjugation τ : gC → gC at the compact real form induces a fiberwise involution

P ×Ad pC → P ×Ad pC

on the bundle P ×Ad pC. By abuse of notation, we also denote this fiberwise involution
by τ .

For more details on G-Higgs principal bundles and the complex Higgs equations, the
reader may consult [23, 28, 4, 41]. For background information on gauge theory we rec-
ommend [40], App. A.

3.3. Constructing Higgs bundles from representations. The non-abelian Hodge
correspondence (see e.g. [23, 17, 15, 35, 36, 37, 38, 5, 19, 41]) provides the link between
reductive representations of the fundamental group of a given compact Kähler manifold
into a semisimple Lie group on the one hand, and Higgs bundles over this Kähler manifold
satisfying certain stability conditions on the other hand. For our purpose in this article
it will be sufficient to spell out how a G-Higgs principal bundle (P,A, ϕ) over M is con-
structed from a reductive representation ρ : Γ → G. In the following we will denote this
assignment by

NAHG : ρ 7→ (P,A, ϕ)

for short. The details are carefully explained in Koziarz and Maubon [28], Sec. 2 (see also
Bradlow, Garćıa-Prada, and Gothen [4], Sec. 2). For later reference we briefly recall the
main steps of this construction.

Step 1: The principal K-bundle P

Fix a reductive representation ρ : Γ→ G. Recall from Sect. 3.1 that Γ < G acts on Hn
C

with quotient M = Γ\Hn
C, and that XG = G/K. We denote by

PG := Hn
C ×ρ G→M

the flat principal G-bundle associated to the representation ρ. It is well-known (see e.g.
[27], Sec. I.5) that there is a correspondence between the following three types of objects:

(i) principal K-subbundles P of PG;
(ii) metrics on the principal G-bundle PG, i.e., reductions of its structure group to the

maximal compact subgroup K of G;
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(iii) sections of the associated fiber bundle PG×GXG ∼= Hn
C×ρXG →M , or, equivalently,

smooth ρ-equivariant maps f : Hn
C → XG.

Here the K-subbundle P of PG associated with a map f as in (iii) is determined by the
relation π∗P = f∗G, where π : Hn

C →M denotes the projection and G is thought of as the
canonical principal K-bundle G→ XG = G/K. More concretely, the bundle P is obtained
as follows: since the map f is ρ-equivariant, the principal K-bundle f∗G→ Hn

C is invariant
under the action of Γ from the left and hence descends to the principal K-bundle P →M .
Such a principal K-subbundle in turn defines a reduction of structure group for the bundle
PG. We say that a metric on PG is harmonic if the corresponding map f is harmonic.

The non-abelian Hodge correspondence relies on the basic fact, due to Donaldson [17]
and Corlette [15] that, whenever the representation ρ is reductive there exists a unique
ρ-equivariant harmonic map f : Hn

C → XG as in (iii) above. Accordingly, since our repre-
sentation ρ is assumed to be reductive we obtain a unique principal K-subbundle P of PG
corresponding to the harmonic map f . It fits into the following commutative diagram.

PG Hn
C ×G

P f∗G G

M Hn
C

M Hn
C XG

π

id id

f

Step 2: The connection form A

Let αG ∈ Ω1(G, g)G be the Maurer-Cartan form on G and let pk : g → k denote the
canonical projection along p associated to the Cartan decomposition g = k ⊕ p. The
k-valued 1-form pk ◦ αG ∈ Ω1(G, k) is a connection 1-form on the canonical principal K-
bundle G→ XG = G/K. It pulls back to a connection 1-form on the principal K-bundle
f∗G → Hn

C, and then further descends under the action of Γ to a connection 1-form
A ∈ Ω1(P, k) on the principal K-bundle P .

Step 3: The Higgs field ϕ

Denote by pp : g → p the canonical projection along k associated to the Cartan de-
composition g = k ⊕ p. The p-valued 1-form pp ◦ αG ∈ Ω1(G, p), where αG is the
Maurer-Cartan form as above, is horizontal and K-invariant, hence descends to a 1-form
αp
G ∈ Ω1(XG, G ×Ad p) on the symmetric space XG = G/K taking values in the bundle
G ×Ad p of the canonical principal K-bundle G → XG = G/K. Since f is ρ-equivariant
and αG is G-invariant, the 1-form f∗αp

G ∈ Ω1(Hn
C, f

∗G ×Ad p) is Γ-invariant and hence
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descends to a unique 1-form ψ ∈ Ω1(M,P ×Ad p) on M satisfying the relation

(3.3) π∗ψ = f∗αp
G.

This 1-form ψ will be called the real Higgs field. We then define the complex Higgs field
ϕ ∈ Ω1,0(M,P ×Ad pC) as the (1, 0)-part of ψ with respect to the complex structure IM
on M and the standard complex structure i on pC = p⊕ i p. More concretely, this means
that

(3.4) ϕ :=
1

2
(ψ − i ◦ ψ ◦ IM ) .

The next lemma relates the real and complex Higgs fields.

Lemma 3.5. The real Higgs field ψ ∈ Ω1(M,P ×Ad p) and the complex Higgs field ϕ ∈
Ω1,0(M,P ×Ad pC) are related by the formula

ψ = ϕ− τ(ϕ).

Proof. Recall from Remark 3.4 (v) that τ : gC → gC denotes complex conjugation in gC
with respect to u = k⊕ i p. It follows that τ |p = − Id and τ |ip = + Id. Since ψ takes values
in p we conclude that τ ◦ ψ = −ψ and τ ◦ i ◦ ψ = i ◦ ψ. Thus we compute with (3.4) that

ϕ− τ(ϕ) =
1

2
ψ − 1

2
i ◦ ψ ◦ IM −

1

2
τ ◦ ψ +

1

2
τ ◦ i ◦ ψ ◦ IM = ψ.

�

Step 4: The complex Higgs equations

Harmonicity of the ρ-equivariant map f : Hn
C → XG in Step 1 implies that the pair

(A,ϕ) does in fact satisfy the complex Higgs equations (3.2). This was first observed by
Donaldson [17]. We refer the reader to Koziarz and Maubon [28], Sec. 2.1 and 2.2 for
further details.

4. Toledo invariants in terms of Higgs principal bundles

4.1. A differential-geometric formula for the Toledo invariant. Throughout this
section we will freely use the notations introduced in Section 3. Moreover, we fix a non-
zero invariant 2-form ωG ∈ Ω2(XG)G (subject to additional restrictions in Subsection 4.3),
and consider representations ρ : Γ → G. Our starting point is the following expression,
due to Burger and Iozzi, for TωG(ρ) in terms of purely differential-geometric data.

Proposition 4.1 ([9], Lemma 5.3). Fix a representation ρ : Γ → G and a non-zero in-
variant 2-form ωG ∈ Ω2(XG)G. Let f : Hn

C → XG be a smooth ρ-equivariant map. Then
the Toledo invariant of ρ with respect to ωG is given by

TωG(ρ) =
1

Vol(M)
·
∫
M

(π∗f
∗ωG) ∧ ωn−1M .

Proof. Combining formula (1.2) and Lemma 5.3 in [9], we may express the Toledo invariant
as

TωG(ρ) =

〈
π∗f

∗ωG, ωM
〉

〈ωM , ωM 〉
,
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where 〈·, ·〉 denotes the L2-inner product on the space Ω2(M) of 2-forms on M given by

〈α, β〉 :=

∫
M
α ∧ β ∧ ωn−2M .

It follows that 〈
π∗f

∗ωG, ωM − TωG(ρ) · ωM
〉

= 0,

which means that∫
M

(π∗f
∗ωG) ∧ ωn−1M =

∫
M
TωG(ρ) · ωnM = TωG(ρ) ·Vol(M).

�

4.2. The von-Wangen-zu-Geroldseck formula. The restriction (ωG)o of our non-zero
invariant 2-form ωG ∈ Ω2(XG)G to the tangent space ToXG ∼= p is a K-invariant real-valued
antisymmetric bilinear form on p. It thus gives rise to a fiberwise antisymmetric bilinear

form Ω̃G on the bundle G×Ad p→ XG associated with the canonical principal K-bundle

G→ XG = G/K. This bilinear form Ω̃G is invariant under the action of G from the left.

Since f is ρ-equivariant, it follows that the pullback f∗Ω̃G to the bundle f∗G×Ad p→ Hn
C

is Γ-invariant, hence descends to a unique fiberwise antisymmetric bilinear form ΩG on
the bundle P ×Ad p→M satisfying

(4.1) π∗ΩG = f∗Ω̃G.

Given a 1-form β ∈ Ω1(M,P ×Ad p) we may then define a real-valued 2-form ΩG(β, β) ∈
Ω2(M) by setting

ΩG(β, β)(ξ1, ξ2) := ΩG(β(ξ1), β(ξ2))

for ξ1, ξ2 ∈ TM .

Proposition 4.2 (von-Wangen-zu-Geroldseck1 formula). Fix a reductive representation
ρ : Γ → G and a non-zero invariant 2-form ωG ∈ Ω2(XG)G. The Toledo invariant of ρ
with respect to ωG is given in terms of the associated G-Higgs principal bundle NAHG(ρ) =
(P,A, ϕ) over M by

(4.2) TωG(ρ) =
1

Vol(M)
·
∫
M

ΩG (ϕ− τ(ϕ), ϕ− τ(ϕ)) ∧ ωn−1M .

Proof. In view of Proposition 4.1 and Lemma 3.5 it suffices to show that

(4.3) ΩG(ψ,ψ) = π∗f
∗ωG.

Now by (3.3), (4.1) and the definition of the bilinear form ΩG above we have

π∗
(
ΩG(ψ,ψ)

)
= π∗ΩG (π∗ψ, π∗ψ)

= f∗Ω̃G

(
f∗αp

G, f
∗αp

G

)
= f∗

(
Ω̃G(αp

G, α
p
G)
)

= f∗
(
(ωG)o(pp ◦ αG, pp ◦ αG)

)
,

1Friedrich Ludwig Franz Reichsfreiherr von Wangen zu Geroldseck, 1727-1782, Prince-Bishop of Basel,
Switzerland.
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where the notation is as in Step 3 in Section 3.3. Thus in order to establish the relation
(4.3) it remains to show that

ωG = (ωG)o(pp ◦ αG, pp ◦ αG).

However, both forms are G-invariant and the claimed identity certainly holds at the base
point o of XG. �

4.3. The Toledo invariant for trace forms. So far our choice of the non-zero invariant
2-form ωG ∈ Ω2(XG)G was arbitrary. We will be able to obtain a more concrete formula
for the Toledo invariant in terms of degrees of certain vector bundles once we restrict to a
special class of such invariant 2-forms.

For this let V be a complex vector space and let σ : K → GL(V ) be a representation with
differential dσ : k → gl(V ). We then define the associated trace form as the alternating
bilinear form on p given by

(4.4) (ωσG)o(X,Y ) := tr(dσ(I) ◦ dσ([X,Y ])) (X,Y ∈ p),

where I ∈ k is the central element defining the complex structure IG on XG via (2.1) and
tr denotes the complex trace of a complex linear endomorphism.

Lemma 4.3. For every complex representation σ : K → GL(V ) with tr(dσ(I)2) 6= 0 the
associated trace form (ωσG)o is non-zero, takes real values and is invariant under K, hence
extends to a non-zero invariant 2-form ωσG ∈ Ω2(XG)G.

Proof. The key observation is that dσ(I) is central in dσ(k) (cf. Section 2.2). This, together
with conjugation-invariance of the trace implies that (ωσG)o is K-invariant. It also implies
that the dσ(I)-eigenspaces V± are invariant under dσ(k). Hence, in order to show that
the trace of dσ(I) ◦ dσ([X,Y ])|V± is real it suffices to show that the trace of dσ([X,Y ])|V±
is purely imaginary for all X,Y ∈ p. However, this follows from the fact that since K is
compact, σ(K) takes values in a maximal compact subgroup of GL(V ), which is conjugate
to U(V ). Thus dσ(k) takes values in a conjugate of u(V ), and we are left only with showing
that (ωσG)o 6= 0.

For this, we extend the representation dσ complex-linearly to a representation dσC : kC →
gl(V ). Then it suffices to show that the the complex-linear extension

(4.5) (ωσG)Co : pC × pC → C, (ωσG)Co (X,Y ) := tr(dσ(I) ◦ dσC([X,Y ]))

of (ωσG)o is non-zero. Recall that, by a classical theorem of Gordon Brown [6] every element
in a complex semisimple Lie algebra arises as a commutator. Thus there exists X,Y ∈ gC
such that [X,Y ] = I. Since kC = z(k) ⊕ [kC, kC] and [kC, pC] ⊂ pC we necessarily have
X,Y ∈ pC. For this choice of elements X and Y we then have

tr(dσ(I) ◦ dσ([X,Y ])) = tr(dσ(I)2) 6= 0

which shows that the bilinear form (4.5) is non-zero. �

In the situation of Lemma 4.3 we refer to ωσG ∈ Ω2(XG)G as the invariant 2-form
associated with σ.
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Assumption 4.4. For the rest of this subsection we fix a complex vector space V and
a representation σ : K → GL(V ). We assume that there exist non-zero real number
µ± ∈ R \ {0} and a splitting V = V+ ⊕ V− such that dσ(I) acts on the summands V± by

dσ(I)|V± = µ± · i · 1V± .

As we shall see in Sections 5 and 6 below, this assumption will be satisfied whenever σ
belongs to one of the following two types of representations:

• the adjoint representation AdpC
K : K → GL(pC) (see Section 5.1);

• the restriction to K of an admissible representation σ : G → GL(V ) (see Section
6.1).

Note that every representation σ which satisfies Assumption 4.4 automatically satisfies
the assumptions of Lemma 4.3, hence the associated invariant 2-form ωσG ∈ Ω2(XG)G is
well-defined and non-zero. We are now going to express the Toledo invariant of this 2-form
in terms of degrees of certain vector bundles, which are constructed as follows.

Given a principal K-bundle P → M , the representation σ : K → GL(V ) gives rise to
the associated vector bundle

Vσ := P ×σ V.
It is a complex vector bundle over M . By Assumption 4.4, the K-module V admits a
splitting as a sum of K-modules V = V+⊕V−, which in turn determines a splitting of the
associated vector bundle

Vσ = V+
σ ⊕V−σ ,

with the subbundles V+
σ and V−σ defined by

V±σ := P ×σ V±.

We denote the corresponding frame bundles by GL(Vσ) and GL(V±σ ). A connection 1-
form A ∈ Ω1(P ; k) on the bundle P then gives rise to connection 1-forms on the associated
frame bundles, denoted by

Aσ ∈ Ω1(GL(Vσ); gl(V )), A±σ ∈ Ω1(GL(V±σ ); gl(V±)).

The curvature 2-form FAσ of Aσ (see Remark 3.4 (iv)) may then be expressed in terms of
the curvature 2-forms of A and A±σ by the relation

(4.6) FAσ = dσ(FA) =

(
FA+

σ
0

0 FA−
σ

)
.

Before we state our result we briefly review how Chern-Weil theory provides a gauge
theoretic interpretation of the degree of the vector bundles V±σ . We define the degree
deg(V±σ ) of the vector bundle V±σ by

(4.7) deg(V±σ ) :==

∫
M
c1(V

±
σ ) ∧ ωn−1M ,

where c1 denotes the first Chern class. Note that for curves M this definition agrees with
the usual notion of degree for line bundles, and that in general deg(V±σ ) = deg(detV±σ )
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depends only on the associated determinant line bundle detV±σ . Chern-Weil theory tells
us that the first Chern class of V±σ is given in terms of the curvature by

(4.8) c1(V
±
σ ) =

i

2π
· FA±

σ
.

Note that this holds independently of the choice of the connection 1-form A±σ . For more
details on Chern-Weil theory the reader is referred to [18].

Theorem 3. Fix a reductive representation ρ : Γ→ G, and let (V, σ) be as in Assumption
4.4 with associated invariant 2-form ωσG ∈ Ω2(XG)G. Then the Toledo invariant of ρ with
respect to ωσG is given in terms of the associated G-Higgs principal bundle NAHG(ρ) =
(P,A, ϕ) by the formula

TωσG(ρ) = − 2π

Vol(M)
·
(
µ+ · deg(V+

σ ) + µ− · deg(V−σ )
)
,

where V±σ := P ×σ V± are the associated vector bundles.

Proof. Let (P,A, ϕ) = NAHG(ρ), and let Vσ := P ×σ V and V±σ := P ×σ V±. The proof
is in two steps.

Step 1. We claim that it follows from the von-Wangen-zu-Geroldseck Formula (4.2) that
the Toledo invariant is given by

(4.9) TωσG(ρ) = − 1

Vol(M)
·
∫
M

tr (dσ(I) ◦ dσ(FA)) ∧ ωn−1M ,

where FA ∈ Ω2(M,P ×Ad k) denotes the curvature of A. Indeed, for ξ1, ξ2 ∈ TM we have

ΩG (ϕ− τ(ϕ), ϕ− τ(ϕ)) (ξ1, ξ2)

= tr (dσ(I) ◦ dσ ([(ϕ− τ(ϕ))(ξ1), (ϕ− τ(ϕ))(ξ2)]))

= tr

(
dσ(I) ◦ dσ

(
1

2
[(ϕ− τ(ϕ)) ∧ (ϕ− τ(ϕ))] (ξ1, ξ2)

))
.

Since [−∧−] is symmetric, τ is a Lie algebra homomorphism, and using the second of the
Higgs equations (3.2) we have

[(ϕ− τ(ϕ)) ∧ (ϕ− τ(ϕ))] = [ϕ ∧ ϕ]− 2 [ϕ ∧ τ(ϕ)] + τ ([ϕ ∧ ϕ]) = −2 [ϕ ∧ τ(ϕ)].

Applying the third of the Higgs equations (3.2) we therefore arrive at

ΩG (ϕ− τ(ϕ), ϕ− τ(ϕ)) = −tr (dσ(I) ◦ dσ(FA)) .

Formula (4.9) now follows from Formula (4.2).

Step 2. By Formula (4.6) and Assumption 4.4 we compute

tr (dσ(I) ◦ dσ(FA)) = tr

(
dσ(I) ◦

(
FA+

σ
0

0 FA−
σ

))
= i · tr

(
µ+ · FA+

σ
0

0 µ− · FA−
σ

)
= i ·

(
µ+ · tr(FA+

σ
) + µ− · tr(FA−

σ
)
)
.
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Hence applying Chern-Weil theory and combining Formulas (4.9), (4.7) and (4.8) we obtain

TωσG(ρ) = − i

Vol(M)
·
∫
M

(
µ+ · tr(FA+

σ
) + µ− · tr(FA−

σ
)
)
∧ ωn−1M

= − 2π

Vol(M)
·
∫
M

(
µ+ · c1(V+

σ ) + µ− · c1(V−σ )
)
∧ ωn−1M

= − 2π

Vol(M)
·
(
µ+ · deg(V+

σ ) + µ− · deg(V−σ )
)
,

which proves the theorem. �

5. Toledo invariants in terms of the complexified isotropy bundle

5.1. Splitting of the complexified isotropy bundle. The goal of this section is to
establish the universal Milnor–Wood type inequality in isotropy form. We will use all the
notations introduced in the previous two sections. Recall that the isotropy representation
of K complexifies to a representation AdpC

K : K → GL(pC), and that the complexified
tangent space pC of X admits a K-invariant splitting

(5.1) pC = p+ ⊕ p−,

where p± denote the eigenspaces of (IX )o⊗C = adpC
k (I) for the eigenvalues ±i. We deduce

that the pair (V, σ) defined by

V = pC, σ = AdpC
K : K → GL(pC)

satisfies Assumption 4.4 with

V± = p±, µ± = ±1.

Given a principal K-bundle P → M , the corresponding associated vector bundles are
the adjoint bundles

Viso = P ×
Ad

pC
K

pC, V±iso = P ×
Ad

pC
K

p±,

which are related by

(5.2) Viso = V+
iso ⊕V−iso.

Lemma 5.1. The determinant line bundle of the bundle Viso is trivial, and hence we have
deg(Viso) = 0.

Proof. We have to show that the structure group of P×
Ad

pC
K
pC can be reduced to SLn(pC).

For this it suffices to show that trpC(adpC
k (X)) = 0 for all X ∈ k. By conjugation-invariance

of the trace, it suffices to show this for all T ∈ t, where t < k is a maximal torus. Since
G is Hermitian we have rkR(G) = rkR(K), i.e. tC is a Cartan subalgebra of gC. Let us
call a root α of gC with respect to tC a compact, respectively non-compact root if the
corresponing root space is contained in kC, respectively pC. The key observation is that if
α is a non-compact root, then so is −α. This implies that trpC(adpC

k (T )) = 0 for all T ∈ tC,

and consequently also trpC(adpC
k (X)) = 0 for all X ∈ k. �

In terms of the splitting (5.2), Lemma 5.1 can be restated in the form

(5.3) deg(V+
iso) + deg(V−iso) = 0.
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5.2. Toledo invariant and Milnor–Wood type inequality. By definition, the invari-
ant 2-form associated with the pair (V, σ) = (pC,AdpC

K ) is precisely the canonical 2-form

ωcan
G ∈ Ω2(XG)G from the introduction, which is uniquely determined by the formula

(ωcan
G )o(X,Y ) = tr

(
adpC

k (I) ◦ adpC
k ([X,Y ])

)
for X,Y ∈ p. Using Relation (5.3), as an immediate consequence of Theorem 3 we obtain
the following formula for the Toledo invariant with respect to the canonical trace form.

Corollary 5.2. Fix a reductive representation ρ : Γ → G. Then the Toledo invariant of
ρ with respect to the canonical 2-form ωcan

G is given in terms of the associated G-Higgs
principal bundle NAHG(ρ) = (P,A, ϕ) by the formula

(5.4) Tωcan
G

(ρ) = − 4π

Vol(M)
· deg(V+

iso) =
4π

Vol(M)
· deg(V−iso).

Combining Corollary 5.2 with Lemma 2.2 yields the following bounds of Milnor–Wood
type on the degrees of the bundles P ×Ad p±.

Corollary 5.3. Fix a reductive representation ρ : Γ→ G with associated G-Higgs principal
bundle NAHG(ρ) = (P,A, ϕ). Then∣∣deg(V±iso)

∣∣ ≤ Vol(M)

4π · |Kmin
ωcan
G
|
· rk(G).

Here ωcan
G ∈ Ω2(XG)G is the canonical 2-form, and the constant Kmin

ωcan
G

may be computed

by Formula (2.7) using only Lie algebra data.
To illustrate this inequality we discuss the following example.

Example 5.4. Let Q be a quadratic form of signature (p, q). We may assume that p < q
and that Q is of the form Q := diag(1, . . . , 1,−1, . . . ,−1). Let G := SU(Q) = SU(p, q)
and denote by g its Lie algebra. According to [11], Example 3.1, we have

pg = (p− 1)2 + (q − p) + 2 = p+ q.

We have a Cartan decomposition g = k⊕ p, where

k =

{(
A 0
0 D

)
| A ∈ up(C), D ∈ uq(C), tr(A) + tr(D) = 0

}
∼= s(u(p)⊕ u(q))

and

p =

{(
0 B
C 0

)
| B ∈Mp,q(C), C ∈Mq,p(C), B = C∗

}
∼= Mp,q(C).

The element I defining the complex structure is given by

I =
i

p+ q
·
(
q · 1p 0

0 −p · 1q

)
,

We choose X ∈ p as

X =

(
0 B
B> 0

)
, B =


1 0 . . . 0 0 . . . 0
0 1 0 0 . . . 0
...

. . .
...

...
...

0 0 . . . 1 0 . . . 0

 .
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Under ad(X)2, p decomposes into three eigenspaces with eigenvalues 4, 1 and 0 given by

p4 =


 0 B1 0
B∗1 0 0
0 0 0

 | B1 = −B∗1 ∈ u(p)

 ,

p1 =


 0 0 B2

0 0 0
B∗2 0 0

 | B2 ∈Mq−p,p(C)

 ,

p0 =


 0 B1 0
B∗1 0 0
0 0 0

 | B1 = B∗1 ∈Mp,p(C)

 .

Similarly, k decomposes into three eigenspaces with eigenvalues 4, 1 and 0 given by

k4 =


A 0 0

0 −A 0
0 0 0

 | A ∈ up(C)

 ,

k1 =


0 0 0

0 0 D12

0 −D∗12 0

 | D12 ∈Mq−p,p(C)

 ,

k0 =


A 0 0

0 A 0
0 0 D22

 | A ∈ up(C), D22 ∈Mq−p.q−p(C), 2 tr(A) + trD22 = 0


We thus get

tr(ad(X)2) = 4 · p2 + 1 · 2(q − p)p+ 4 · p2 + 1 · 2(q − p)p = 4p2 + 4pq.

On the other hand,

[X, [I,X]] =

[(
0 B
B 0

)
,

(
0 iB>

−iB> 0

)]
=

−2i1p
2i1p

0

 ,

and thus

(adp
k ([X, [I, Y ]] ◦ adp

k (I))

 0 B1 B2

C1 0 0
C2 0 0

 =

 0 4B1 2B2

4C1 0 0
2C2 0 0

 .

Hence the real trace of adp
k ([X, [I, Y ]] ◦ adp

k (I) is given by

trp(adp
k ([X, [I, Y ]] ◦ adp

k (I)) = 4 · 2p2 + 2 · 2p(q − p) = 4p2 + 4pq,

and this coincides with the complex trace of adpC
k ([X, [I, Y ]] ◦ adpC

k (I). Plugging this into
(2.7) we obtain

Kmin
ωcan
G

= − 1

p+ q
· 4p2 + 4pq

4p2 + 4pq
= − 1

p+ q
.
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The Milnor–Wood type inequality for the adjoint bundles from Corollary 5.3 in the case
G = SU(p, q) therefore becomes∣∣deg(V±iso)

∣∣ ≤ Vol(M)

4π
· (p+ q) ·min{p, q}.

6. Toledo invariants in terms of vector bundles associated with admissible
representations

6.1. Admissible representations. In [4], Bradlow, Garćıa-Prada, and Gothen express
the Toledo invariant of surface group representations in terms of the degrees of certain
vector bundles. For example, they use the standard representation SU(p, q)→ GLp+q(C)
to associate with every SU(p, q)-Higgs principal bundle a vector bundle. This vector bundle
then naturally splits into two subbundles, and the authors express the Toledo invariant
in terms of the degrees of these subbundles. In this section, we will provide a framework,
based on the notion of admissible representation, that generalizes this example.

Let us fix a complex vector space V , and consider a non-trivial representation σ : G→
GL(V ). We denote by

(6.1) dσ : gC → gl(V )

the complex linear extension of the linearization dσ : g → gl(V ) to the complexification
gC. While in general the complexification of a simple Lie algebra is merely semisimple,
the complexified Lie algebra gC happens to be simple (as follows from the classification
in [22]). Since the representation (6.1) is non-trivial, it is therefore automatically faithful.
Moreover, since gC is perfect, i.e. [gC, gC] = gC, the representation (6.1) takes values in
[gl(V ), gl(V )] = sl(V ).

We claim that the endomorphism dσ(I) of V is diagonalizable. To see this, we first
observe that ad(I) : gC → gC, X 7→ [I,X] is diagonalizable. In fact, since I is central in
k we have ad(I)|k = 0; moreover, ad(I)|p± = ±i Id for the splitting pC = p+ ⊕ p− as in
(5.1). It then follows from Cor. 6.4 in [25] that dσ(I) is diagonalizable. If Vλ denotes the
eigenspace of dσ(I) of eigenvalue λ, then dσ(kC) preserves Vλ (since I is central in kC) and

(6.2) dσ(p±).Vλ ⊂ Vλ±i.

Since tr(dσ(I)) = 0, the weighted sum of the eigenvalues of dσ(I) equals 0, and in par-
ticular dσ(I) has at least two eigenvalues since dσ is faithful. Note that, in principle, the
number of eigenvalues of dσ(I) can be arbitrarily large.

Definition 6.1. The representation σ : G → GL(V ) is called admissible if the endomor-
phism dσ(I) ∈ gl(V ) has exactly two eigenvalues.

The following proposition shows that admissible representations share many structural
properties with the standard representation of SU(p, q), and in particular, satisfy Assump-
tion 4.4.

Proposition 6.2. Let σ : G→ GL(V ) be an admissible representation. Then the following
hold.

(i) σ takes values in SL(V ).
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(ii) There exist a splitting V = V+ ⊕ V− such that

dσ(kC) ⊂
(
∗ 0
0 ∗

)
, dσ(p+) ⊂

(
0 ∗
0 0

)
, dσ(p−) ⊂

(
0 0
∗ 0

)
and

(6.3) dσ(I) =
i

dimV
·
(

dimV− · 1V+ 0
0 −dimV+ · 1V−

)
,

In particular, the pair (V, σ) satisfies Assumption 4.4.

Proof. Assertion (i) follows from the observation above that the representation (6.1) takes
values in [gl(V ), gl(V )] = sl(V ). To see (ii), we denote by λ± the two eigenvalues of dσ(I)
and by V± the corresponding eigenspaces. Since I is central in kC, the latter preserves the
splitting V = V+⊕V−. Since dσ is faithful, p± act non-trivially on V . It thus follows from
(6.2) that we can ensure (by exchanging λ± if necessary) that

(6.4) λ+ − λ− = i.

Then dσ(p±)V± = {0} and dσ(p±)V∓ = V±. This proves that dσ(kC) and dσ(p±) are of
the desired form. Moreover, since dσ takes values in sl(V ) we have

dim(V+) · λ+ + dim(V−) · λ− = tr(dσ(I)) = 0.

Combining this with (6.4) and using dim(V+) + dim(V−) = dim(V ) we obtain

λ± = ±dimV∓
dimV

· i,

which shows that dσ(I) is of the desired form. �

6.2. Toledo invariant and Milnor–Wood type inequality. Fix an admissible rep-
resentation σ : G → GL(V ). By Proposition 6.2 the pair (V = V+ ⊕ V−, σ) satisfies
Assumption 4.4 with

µ± = ±dimV∓
dimV

.

Given a principal K-bundle P → M , keeping the notation from Section 4.3 the corre-
sponding associated vector bundles will be denoted by

Vσ = P ×σ V, V±σ = P ×σ V±.

As a consequence of Theorem 3 we obtain the following formula for the Toledo invariant
with respect to the invariant 2-form ωσG associated with the pair (V, σ).

Corollary 6.3. Fix a reductive representation ρ : Γ→ G and an admissible representation
σ : G → GL(V ). Then the Toledo invariant of ρ with respect to the invariant 2-form ωσG
is given in terms of the associated G-Higgs principal bundle NAHG(ρ) = (P,A, ϕ) by the
formula

(6.5) TωσG(ρ) = − 2π

Vol(M)
· deg(V+

σ ) =
2π

Vol(M)
· deg(V−σ ),

where V±σ := P ×σ V± are the associated vector bundles.
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Proof. Since σ takes values in SL(V ) by Proposition 6.2 (i), it follows that deg(Vσ) = 0.
In view of the splitting Vσ = V+

σ ⊕V−σ this implies that

deg(V+
σ ) + deg(V−σ ) = 0.

Using this relation, we obtain from Theorem 3 that

TωσG(ρ) = − 2π

Vol(M)
·
(
µ+ · deg(V+

σ ) + µ− · deg(V−σ )
)

= − 2π

Vol(M)
·
(

dimV−
dimV

· deg(V+
σ ) +

dimV+
dimV

· deg(V+
σ )

)
= − 2π

Vol(M)
· deg(V+

σ ),

and likewise for the second identity. �

Combining Corollary 6.3 with Lemma 2.2 yields the following bounds of Milnor–Wood
type on the degrees of the vector bundles V±σ = P ×σ V±.

Corollary 6.4. Fix a reductive representation ρ : Γ→ G with associated G-Higgs principal
bundle NAHG(ρ) = (P,A, ϕ), and an admissible representation σ : G→ GL(V ). Then∣∣deg(V±σ )

∣∣ ≤ Vol(M)

2π · |Kmin
ωσG
|
· rk(G).

Here ωσG ∈ Ω2(XG)G is the invariant 2-form associated with the pair (V, σ), and the
constant Kmin

ωσG
may be computed by Formula (2.7) using only Lie algebra data. We

illustrate the corollary by working out the case of the standard representation of SU(p, q).

Example 6.5. As in Example 5.4 we consider the group SU(p, q), p < q, and we use the
same notations as introduced there. Moreover, we denote by σ : SU(p, q) → GLp+q(C)
the standard representation. Recall from Example 5.4 that pg = p + q, and that we can
choose X ∈ p such that

tr(ad(X)2) = 4p2 + 4pq

and

[X, [I,X]] =

−2i1p
2i1p

0

 .

We deduce that

ωσo (X, [I,X]) = tr

 i

p+ q

q · 1p p · 1p
p · 1q−p

−2i1p
2i1p

0

 = 2p,

and hence, by (2.7),

|Kmin
ωσG
| = 1

pg
· tr(ad(X)2)

(ωG)o(X, [I,X])
=

1

p+ q
· 4p2 + 4pq

2p
= 2.
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The Milnor–Wood type inequality from Corollary 6.4 for the vector bundles associated
with the standard representation of G = SU(p, q) therefore becomes

(6.6)
∣∣deg(V±σ )

∣∣ ≤ Vol(M)

4π
·min{p, q}.

In the special case dim(M) = 1, in which M = Σg is a Riemann surface of genus g ≥ 2
this inequality specializes to∣∣deg(V±σ )

∣∣ ≤ |χ(Σg)|
2

·min{p, q} = (g − 1) ·min{p, q},

which agrees with the inequality obtained in [4].

References

1. W. Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European
Mathematical Society (EMS), Zürich, 2006.
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