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Abstract

Multi-parameter persistent homology naturally arises in applications of persistent topology

to data that come with extra information depending on additional parameters, like for exam-

ple time series data. We introduce the concept of a Vietoris-Rips transformation, a method

that reduces the computation of the one-parameter persistent homology of pathwise sub-

complexes in multi-�ltered �ag complexes to the computation of the Vietoris-Rips persistent

homology of certain semimetric spaces. �e corresponding pathwise persistence barcodes

track persistence features of the ambient multi-�ltered complex and can in particular be used

to recover the rank invariant in multi-parameter persistent homology. We present MuRiT,

a scalable algorithm that computes the pathwise persistence barcodes of multi-�ltered �ag

complexes by means of Vietoris-Rips transformations. Moreover, we provide an e�cient

so�ware implementation of the MuRiT algorithm which resorts to Ripser for the actual

computation of Vietoris-Rips persistence barcodes. To demonstrate the applicability of

MuRiT to real-world datasets, we establish MuRiT as part of our CoVtRec pipeline for

the surveillance of the convergent evolution of the coronavirus SARS-CoV-2 in the current

COVID-19 pandemic.

1. Introduction

Persistent homology is one of the most important tools in computational topology and topological

data analysis. It has the capability to detect and explore qualitative features of complex datasets

that are encoded in the geometric shape of the dataset and are otherwise hard to extract with tradi-

tional methods (see e.g. [EH08, Car09, OPT
+

17, Ghr07, Wei11, EH10, CdSGO16, Oud15, DW22]).

A common approach is Vietoris-Rips persistent homology, which analyzes the geometric shape

of metric datasets at varying distance scales. In many applications, however, data points come

with extra information that is given in terms of additional a�ributes and one wishes to leverage

this extra information in the topological data analysis. A typical example of this is time series

data.
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Our motivating application in this paper is exactly of this sort—we use persistent homology

for the surveillance of emerging adaptive mutations in the evolution of the coronavirus SARS-

CoV-2 in the current COVID-19 pandemic [BHPG
+

21, BHNO22]. Here the dataset consists of

coronavirus gene sequences. �e use of persistent homology to analyze the evolution of viruses

was initiated by Chan, Carlsson and Rabadán [CCR13]. �e coronavirus adapts itself to the

human host by developing new variants by mutating its genome. In [BHPG
+

21] we introduced a

topological descriptor for the adaptiveness of a given mutation in the genome of the coronavirus

that is de�ned by counting certain one-dimensional cycle representatives in the Vietoris-Rips

persistent homology of the gene sequences dataset (see Section 4). Now each coronavirus gene

sequence in the dataset is assigned the date at which it was collected from a patient. In this way,

the dataset comes with a natural strati�cation by sampling time, with a bunch of new sequences

being added every day.

Ideally, one would like to exploit this additional information and monitor topological signals of

adaptation over time in order to tell whether a given mutation is likely to become adaptive in the

future. A naive approach is to regard time as an external parameter, and to run the persistence

analysis separately for each sub-dataset consisting of all sequences that have been collected up

to a given point in time. However, this approach is computationally expensive, as the whole

analysis has to be repeated many times. Moreover, classes in persistent homology computed at

di�erent time steps will in general not be related with each other. As we will see, all these issues

can be resolved by including time as an additional parameter into the persistence analysis itself.

�e natural setup for this is multi-parameter persistent homology of multi-�ltered simplicial

complexes introduced by Carlsson and Zomorodian [CZ09, CSZ09]. While it is a challenge

to compute multi-parameter persistent homology in general [BL22], it turns out that for our

applications in viral evolution one only needs to compute the persistent homology of certain

one-�ltered subcomplexes in multi-�ltered �ag complexes.

In the present paper, we address this problem and present MuRiT, a fast and scalable algorithm

for the computation of the persistent homology of arbitrary one-�ltered subcomplexes of a given

multi-�ltered �ag complex (see Section 3.4). �e main idea of the MuRiT algorithm is to apply

Vietoris-Rips transformations in order to reduce the computation of the persistent homology

of one-�ltered subcomplexes in a multi-�ltered �ag complex to the computation of the usual

Vietoris-Rips persistent homology of certain semimetric spaces. We will explain Vietoris-Rips

transformations in more detail in the next paragraph. �e actual computation of the Vietoris-

Rips persistent homology of the semimetric space can then be carried out independently with

basically any of the presently available so�ware packages [OPT
+

17], depending on the needs

of the particular application one has in mind. However, one has to make sure that the chosen

so�ware package is able to handle the Vietoris-Rips persistent homology of semimetric spaces

that do not necessarily satisfy the triangle inequality.

We provide an e�cient so�ware implementation of the MuRiT algorithm at https://github.
com/tdalife/murit. In its current form, this implementation is tailored to the case of Vietoris-

Rips persistent homology of multi-�ltered point cloud datasets, a setup which naturally arises

in the Vietoris-Rips persistence analysis of time series data. By default, our implementation of

MuRiT resorts to the Ripser so�ware package by Bauer [Bau21b] for the actual computation
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Figure 1: Example of a multi-�ltered �ag complex. �e displayed �ag complex X is bi-

�ltered with three �ltration steps in each dimension. �e yellow squares mark the one-�ltered

subcomplex X(1,1) ⊆ X(1,2) ⊆ X(2,2) ⊆ X(3,2) ⊆ X(3,3) of X .

of persistence barcodes. Note at this point that Ripser is able to compute the Vietoris-Rips

persistence barcodes also for semimetric spaces that do not necessarily satisfy the triangle

inequality [Bau21a]. In this way, MuRiT takes full advantage of the computational power of

Ripser, which is among the most e�cient implementations for the computation of persistent

homology to date [OPT
+

17]. MuRiT is part of our CoVtRec pipeline for the surveillance of

potentially adaptive mutations in the evolution of the coronavirus SARS-CoV-2 in the current

COVID-19 pandemic [BHNO22] (see Section 4.3). �anks to highly optimized algorithms that

take advantage of the tree-like structure of the gene sequences dataset [BR22], CoVtRec has

the capability to process very large SARS-CoV-2 genomic datasets and easily scales to hundreds

of thousands of distinct genomes.

Let us state our main result and outline the basic idea underlying Vietoris-Rips transforma-

tions (see Section 3). Assume that X is a �nite P -�ltered �ag complex for some partially

ordered set P = (P,≤), and consider a (discrete) path in P that is given by a monotone se-

quence ν = (ν1 ≤ ν2 ≤ ν3 ≤ . . . ) of elements in P . �is gives rise to a one-�ltered subcomplex

Xν = (Xν1 ⊆ Xν2 ⊆ Xν3 ⊆ . . . ) of X (see Figure 1). Ideally, for the actual computation of

the one-parameter persistent homology of Xν we would like to resort to any of the currently

available e�cient algorithms for the computation of Vietoris-Rips persistent homology, like

for example Ripser. To that end, we construct a semimetric d on the vertex set Vert(Xν) that

encodes the �ltration steps of the one-�ltered complex Xν in a suitable way, and de�ne the

Vietoris-Rips transformation of Xν as the Vietoris-Rips complex

V̂R(Xν) := VR(Vert(Xν), d))
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of the semimetric space (Vert(Xν), d). �en we prove that the one-parameter persistent ho-

mology of the Vietoris-Rips transformation V̂R(Xν) recovers the persistent homology of the

original �ltration Xν in the sense that there is an isomorphism

H`(Xν) ∼= H`

(
V̂R(Xν)

)
of persistence modules in every positive degree ` > 0 (see �eorem 3.1). In the proof we

use the fact that the subcomplexes Xνi are �ag complexes. Let us remark that the distance

function d will in general not satisfy the triangle inequality, which is why in the de�nition of

the Vietoris-Rips transformation we need to consider Vietoris-Rips complexes of semimetric

spaces. We will normally phrase our result in terms of pathwise barcodes by saying that in every

positive degree ` > 0, the persistence barcode of the complex X along the path ν is computed

by

B`(Xν) = B`
(
V̂R(Xν)

)
in terms of the usual Vietoris-Rips persistence barcode of the Vietoris-Rips transformation

V̂R(Xν) of the one-�ltered subcomplex Xν ⊆ X (see Section 3.2).

As is shown in [CZ09], there exists no discrete and complete invariant in multi-parameter

persistent homology like the persistence barcode known from one-parameter persistence. But

there are several approaches to de�ne invariants for multi-persistence, like for example the rank
invariant introduced in [CZ09], Hilbert functions (see e.g. [BL22]), multi-graded Be�i numbers
(see e.g. [MS05]), signed barcodes [BOO21] and �bered barcodes [LW15, BL22, CFF

+
13]. Our

approach to consider pathwise barcodes of �nite multi-�ltered �ag complexes is reminiscent

of the concept of �bered barcodes, where the basic idea is to compute persistence barcodes

along a�ne lines in Rn
. In particular, both pathwise and �bered barcodes recover the rank

invariant for multi-parameter persistence (see Section 3.3). With RIVET, Wright, Lesnick et

al. [WLK
+

20, LW15] provide a so�ware package for working with two-parameter persistent

homology, which provides an interactive visualization of the Hilbert function, the bi-graded

Be�i numbers, and the �bered barcode. Another algorithm speci�cally designed for the e�cient

computation of the persistent homology of directed �ag complexes is the Flagser so�ware

package by Lütgehetmann, Govc, Smith and Levi [LGSL19]. A particular feature of MuRiT in

comparison with Flagser is that it does not do the actual computation of persistent homology by

itself. In this way, MuRiT o�ers maximum �exibility regarding the choice of so�ware package

for the computation of persistent homology. �is feature is, for example, indispensable in our

application of MuRiT to the evolution of the coronavirus, as we need to use a custom version of

Ripser that is speci�cally optimized for the e�cient localization of cycles in the gene sequences

dataset. Another feature of our implementation of MuRiT is that it is genuinely designed to

deal with pathwise sub�ltrations of multi-�ltered complexes.

�e paper is organized as follows. In Section 2, we �x the notation and recall some basic facts

and de�nitions about the persistent homology of multi-�ltered �ag complexes. In Section 3,

we introduce the notion of a Vietoris-Rips transformation, de�ne pathwise barcodes and relate

them with the rank invariant, and present the MuRiT algorithm. �e �nal Section 4 discusses

an application of the MuRiT algorithm to the evolution of the coronavirus.
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2. Preliminaries

2.1. Partially Ordered Sets. Let us denote by N = {1, 2, 3, . . . } the set of natural numbers,

and write N0 = N ∪ {0}. For n ∈ N, we will be working with the following partial order on the

n-fold cartesian product Rn
that is induced by the usual total order ≤ on the real line R. For

any pair of tuples a = (a1, . . . , an) and b = (b1, . . . , bn) in Rn
, we de�ne a ≤ b if ai ≤ bi for all

i ∈ {1, . . . , n}. �e subset Nn ⊆ Rn
naturally becomes a partially ordered set with the induced

partial order ≤ inherited from Rn
.

A poset P = (P,≤) is said to have dimension n if there exists an order preserving embedding

(P,≤) ↪→ (Rm,≤) for m = n, but at the same time no such embedding exists for m < n.
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2.2. Simplicial Complexes and Graphs. We brie�y recall some basic facts and de�nitions

about simplicial complexes, and �x some notation and terminology.

An undirected graph is a pairG = (V,E) consisting of a set V of vertices and a setE of unordered

pairs of vertices in V called the edges.

An (abstract) simplicial complex is a set X of nonempty �nite sets such that if σ is an element

of X , so is every nonempty subset of σ. �e elements of X are called the simplices of the

complexX . A simplex with k+1 elements is called a k-simplex, and k is also called its dimension.

As a particular case of this, 0-simplices in X are also called vertices and 1-simplices in X are

called edges. Any subset of X that is itself a simplicial complex is called a subcomplex of X .

For every non-negative integer k, the subcomplex X(k) ⊆ X consisting of all simplices in X of

dimension at most k is called the k-skeleton of X . �e 0-skeleton X(0)
is also called the vertex set

Vert(X) of X , and the complement Edge(X) := X(1) \X(0)
of the vertex set in the 1-skeleton

will be called the edge set of X .

Consider an undirected graph G = (V,E). A clique in the graph G is a �nite subset C ⊆ V of

the set of vertices such that for any two distinct vertices u and v in C , the unordered pair {u, v}
formed by these two vertices is contained as an edge in E. We denote by C (G) the set of all

cliques in G. By construction, C (G) is a simplicial complex and is called the clique complex of

the graph G.

Let X be a simplicial complex. Observe that the vertex and edge sets of X give rise to an

undirected graph

G(X) := (Vert(X),Edge(X))

�e complex X is called a �ag complex if it satis�es the condition X = C (G(X)). In other

words, a �ag complex is by de�nition the clique complex of the graph formed by its vertex and

edge sets. �en the simplices of the �ag complex are precisely the cliques in its vertex set. Note

that in this way, every �ag complex is completely determined by its 1-skeleton.

2.3. Filtered Sets and Filtered Simplicial Complexes. Let P = (P,≤) be a poset and X be

a set. A P -�ltration of X is a family of sets X• = (Xp)p∈P satisfying the following conditions:

(i) Xp ⊆ X is a subset for every p ∈ P .

(ii) Xp ⊆ Xq for all p, q ∈ P with p ≤ q.

(iii)

⋃
p∈P Xp = X.

A set X is called P -�ltered if it admits a P -�ltration. If P is n-dimensional, X is called n-�ltered.

X is called multi-�ltered if X is n-�ltered for some n ≥ 2.

A simplicial complex X is called P -�ltered if X is a P -�ltered set and Xp ⊆ X is a subcomplex

for every p ∈ P . A P -�ltered simplicial complex X is called a P -�ltered �ag complex if X is a

�ag complex and the subcomplexes Xp are �ag complexes for all p ∈ P .
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2.4. Vietoris-Rips Complexes of Semimetric Spaces. In the literature, Vietoris-Rips com-

plexes are normally de�ned for metric spaces. It is key to our approach in this paper to consider

Vietoris-Rips complexes for a larger class of spaces equipped with a more general notion

of distance function that is not required to satisfy the triangle inequality. Let S be a set and

[0,∞] = R≥0∪{∞}, where∞ henceforth denotes +∞ for short. A function d : S×S → [0,∞]

is called a semimetric if it satis�es the following two axioms:

(i) d(x, y) = d(y, x) for all x, y ∈ S.

(ii) d(x, y) = 0 if and only if x = y, for all x, y ∈ S.

�e pair (S, d) is called a semimetric space. �e function dwill also be called the distance function
of the semimetric space (S, d). Note that a semimetric space is not required to satisfy the triangle

inequality, and that we allow the distance function to take the value∞.

Let (S, d) be a semimetric space. For every r ∈ [0,∞), the Vietoris-Rips complex of (S, d) at scale
r is the abstract simplicial complex de�ned by

VRr(S, d) :=
{
σ ⊆ S

∣∣ ∅ 6= σ �nite and d(x, y) ≤ r for all x, y ∈ σ
}
.

Let us remark that this de�nition makes sense also if the distance function d is not required

to satisfy the triangle inequality. Note moreover that VRr(S, d) is in fact a �ag complex. Its

simplices are precisely all �nite non-empty subsets of the set S whose points have pairwise

distance at most r. We will also consider the simplicial complex

VR(S, d) := {σ ⊆ Vert(X)
∣∣ ∅ 6= σ �nite and d(x, y) <∞ for all x, y ∈ σ

}
.

It is a �ag complex and we will refer to it as the Vietoris-Rips complex of the semimetric

space (S, d). Note that VR(S, d) becomes a [0,∞)-�ltered �ag complex with Vietoris-Rips

�ltration VR•(S, d) = (VRr(S, d))r∈[0,∞).

2.5. Persistence Modules. Let P = (P,≤) be a poset, and �x a coe�cient �eld F. In later

computations we will normally choose F = Fp to be a �nite �eld of prime order. A persistence
module over P is a functor

M : P → VecF, p 7→M(p)

from P into the category VecF of vector spaces over the �eld F. It assigns to every pair p, q ∈ P
with p ≤ q an F-linear map denoted by

M(p ≤ q) :M(p)→M(q).

If P is n-dimensional, then M is also called an n-parameter persistence module. M is called a

multi-parameter persistence module ifM is an n-parameter persistence module for some n ≥ 2. A

persistence moduleM over P is called pointwise �nite dimensional ifM(p) is a �nite dimensional

F-vector space for all p ∈ P .
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Let now X be a �nite P -�ltered simplicial complex. �en for every non-negative integer ` ≥ 0,

the assignment

H`(X) : P → VecF, p 7→ H`(Xp)

de�nes a pointwise �nite dimensional persistence module over P , where H`(Xp) = H`(Xp;F)
denotes the `-th simplicial homology of Xp with coe�cients in the �eld F.

3. Main Results

3.1. Vietoris-Rips Transformations. We start with a construction that assigns a �nite

semimetric space to any �nite N-�ltered �ag complex X . For this, we turn the vertex set of X

into a semimetric space by explicitly constructing a semimetric d on Vert(X) in the following

way. Let x, y ∈ Vert(X) be any pair of vertices. If x 6= y, we set

d(x, y) :=

{
min{i | {x, y} ∈ Xi} if {x, y} ∈ Edge(X),

∞ otherwise,
(1)

while if x = y, we set d(x, y) := 0. So the distance d(x, y) between any two distinct vertices x, y

is given by the smallest �ltration step at which the edge {x, y} enters into the �ltration X•,

and it is assigned the value∞ if {x, y} is not an edge in X . Note that since N does not contain

the number zero, we have d(x, y) = 0 if and only if x = y. We remark that the distance

function d only de�nes a semimetric as it will in general not satisfy the triangle inequality. With

this understood, the Vietoris-Rips transformation of X is de�ned as the N-�ltered Vietoris-Rips

complex

V̂R(X) := VR(Vert(X), d)

with �ltration V̂R•(X) = (VR i(Vert(X), d))i∈N. Our main result now states that the persistent

homology in degree greater than zero of the N-�ltered �ag complexX can be computed in terms

of the usual one-parameter persistent homology of its Vietoris-Rips transformation.

�eorem 3.1. Let X be a �nite N-�ltered �ag complex. �en in every positive degree ` > 0, the
Vietoris-Rips transformation induces an isomorphism

H`(X) ∼= H`

(
V̂R(X)

)
(2)

of persistence modules over N.

Let us remark that the isomorphism (2) will in general not hold in degree ` = 0. �is is because

the �ltration V̂R•(X) is de�ned on the vertex set Vert(X) of the whole complex, while the vertex

set Vert(Xi) can be a proper subset of Vert(X).

Proof of the theorem. By construction of the semimetric d in (1), for every i ∈ N we have an

identity

X
(1)
i = VR i(Vert(X), d)(1) \ (Vert(X) \ Vert(Xi))

8



of one-dimensional simplicial complexes, where on the right-hand side we need to remove all

vertices inX that are not contained inXi. Since bothXi and VRi(Vert(X), d) are �ag complexes,

the above identity extends to an identity

Xi = VR i(Vert(X), d) \ (Vert(X) \ Vert(Xi)).

In particular, this identity means that the complexes Xi and VR i(Vert(X), d) consist of the same

k-simplices for k ≥ 1. Hence we immediately obtain the claimed isomorphism of persistence

modules in all positive degrees ` > 0.

3.2. Pathwise Persistence Barcodes. A non-empty subset I ⊆ N is called an interval if

r ≤ s ≤ t with r, t ∈ I implies s ∈ I . We de�ne a persistence module FI over N as follows:

FI(t) =

{
F if t ∈ I,
0 otherwise,

and FI(s ≤ t) is the identity map for all s, t ∈ I with s ≤ t and the zero map otherwise. FI is

also called an interval module.

Let M be a persistence module over N of �nite type, i.e. M is pointwise �nite dimensional and

there exists some N ∈ N such that M(N ≤ m) is an isomorphism of F-vector spaces for all

m ∈ N with N ≤ m. �e structure theorem for one-parameter persistence modules then states

that M admits a decomposition

M ∼=
m⊕
j=1

FIj

for a �nite family B(M) = (I1, . . . , Im) of intervals which is uniquely determined up to the

ordering of the intervals. �is family B(M) is called the (persistence) barcode ofM . �e intervals

in the persistence barcode are also called bars.

If M = H`(X) is the persistent homology in �xed degree ` ≥ 0 of some �nite N-�ltered

simplicial complex X , then H`(X) is of �nite type and we denote its persistence barcode by

B`(X). �e persistence barcode B`(X) encodes the persistent homology of X in degree `. �e

starting point of each bar in the persistence barcode corresponds to the birth of a homology

feature, while its endpoint, if it exists, marks the death of the feature. �e material about

persistence barcodes summarized here is standard and can for example be found in [ZC05] or

[CZCG05, §5.2].

Let P = (P,≤) be a poset. A monotone sequence ν = (ν1 ≤ ν2 ≤ ν3 ≤ . . . ) of elements in P

is also called a (discrete) path in P . �e sequence ν stabilizes if there exists some m ∈ N such

that νi = νm for all i ≥ m. In this case, we use the notation ν = (ν1 ≤ · · · ≤ νm). Let us now

consider a �nite P -�ltered �ag complex X . Any path ν = (νi)i∈N in P gives rise to an N-�ltered

subcomplex Xν =
⋃
i∈NXνi of X with �ltration (Xνi)i∈N. As an immediate consequence of

�eorem 3.1, in every positive degree ` > 0, the persistence barcode of Xν may be computed in
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Figure 2: Example of a Vietoris-Rips transformation. On the le�, we see a bi-�ltered �ag

complexX . �e yellow squares mark the one-�ltered subcomplexX(1,2) ⊆ X(2,2) ⊆ X(2,3) = Xν

de�ned by the path ν = ((1, 2) ≤ (2, 2) ≤ (2, 3)). �e Vietoris-Rips transformation V̂R(Xν)
of this subcomplex is the Vietoris-Rips complex shown on the right. �e coloring of the edges

indicates at which scale an edge enters into the Vietoris-Rips �ltration.

terms of a Vietoris-Rips persistence barcode of the Vietoris-Rips transformation as

B`(Xν) = B`
(
V̂R(Xν)

)
.

We refer to B`(Xν) as the persistence barcode of X along the path ν. An instructive example of a

Vietoris-Rips transformation is shown in Figure 2.

Our result demonstrates the usefulness of Vietoris-Rips transformations in practice. In fact, it

reduces the computation of pathwise persistence barcodes in a �nite multi-�ltered �ag complex

to the computation of the persistence barcode of certain Vietoris-Rips �ltrations. In Section 3.4,

we will present the MuRiT algorithm, a so�ware implementation of the Vietoris-Rips trans-

formation for the e�cient computation of pathwise persistence barcodes of multi-�ltered �ag

complexes.

3.3. Pathwise Persistence Barcodes and the Rank Invariant. Let X be a �nite P -�ltered

�ag complex. Pathwise persistence barcodes are closely related to the rank invariant of H`(X)

introduced by Carlsson and Zomorodian [CZ09]. Let P 2
∆ = {(v, w) ∈ P 2 | v ≤ w}. Now the

rank invariant of H`(X) is given as the assignment

P 2
∆ → N0, (v, w) 7→ rank(H`(Xv)→ H`(Xw)).

10



It captures important persistence features of the multiparameter persistence module H`(X) and,

as Carlsson and Zomorodian observerd, it is equivalent to the persistence barcode in the case

of one-parameter persistence. We can recover the rank invariant of H`(X) by computing the

persistence barcode along the path (ν1 ≤ ν2) for every pair (ν1, ν2) ∈ P 2
∆.

3.4. �e MuRiT Algorithm for Multi-Filtered Flag Complexes. Based on our theoretical

considerations in the previous subsections, we now introduce the MuRiT algorithm, displayed

in Algorithm 1. It is designed for the computation of pathwise persistence barcodes in positive

homology degree of �nite multi-�ltered �ag complexes via Vietoris-Rips transformations. �e

MuRiT algorithm �rstly e�ciently computes the Vietoris-Rips transformation, and secondly

uses Ripser to compute the persistence barcodes of this Vietoris-Rips transformation.

Our setup for MuRiT will be a �nite P -�ltered �ag complex X with �ltration X• = (Xp)p∈P
for some �nite n-dimensional subposet P ⊆ Rn

. �is ensures that MuRiT will be applicable to

a large class of real-world data, like for example time series data. Instead of encoding the full

complex X , it will be su�cient to specify a �nite edge entry annotation list

L : Edge(X)→ P(P )

which takes values in the power set P(P ) of P and records, for every edge {x, y} ∈ Edge(X),

the minimal �ltration steps p ∈ P at which this edge enters into the �ltration:

L({x, y}) := min{p ∈ P | {x, y} ∈ Xp} ⊆ P

Recall at this point that minima of subsets of posets are in general not unique. Lastly, we need to

specify a path ν = (ν1 ≤ · · · ≤ νm) in P , which de�nes the one-�ltered subcomplex Xν ⊆ X

we would like to analyze.

From this input data, MuRiT �rst computes the lower triangular distance matrix D of the

following semimetric d on the vertex set Vert(X): the restriction of d to the vertex set Vert(Xν)

coincides with the semimetric (1) associated with the Vietoris-Rips transformation V̂R(Xν),

while for any pair x, y ∈ Vert(X) \ Vert(Xν), we set d(x, y) :=∞ if x 6= y and d(x, y) = 0 if

x = y. �is makes the algorithm more user friendly—the user only has to encode the complex X

once by specifying the annotation list L. A�er that, they only have to de�ne the paths in P

along which they want to compute persistence barcodes.

To �x the notation, we denote the vertices in X by Vert(X) = {x1, . . . , xN}. �en D is given

by Dij = d(xi, xj) with i > j. In order to determine the distance Dij , MuRiT calculates the

unique minimal intersection of the upper set of L({xi, xj}) with the given path ν in P . Recall

that for a subset Q ⊆ P , the upper set of Q in P is de�ned as the set of all p ∈ P such that q ≤ p

for some q ∈ Q. In a second step, MuRiT passes the distance matrix D to Ripser for the actual

computation of the persistence barcodes B•(Xν) := (B`(Xν))`≥1 in positive homology degree.

Note at this point that the distance matrix D will in general not satisfy the triangle inequality.

But this is not a problem as Ripser can handle distance matrices of semimetric spaces and in

particular does not require the matrix D to satisfy the triangle inequality [Bau21a].
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Algorithm 1 MuRiT algorithm

Input:
Vertex Set Vert(X) = {x1, . . . , xN}
Edge Entry Annotation List L : Edge(X)→ P(P )
Path ν = (ν1 ≤ · · · ≤ νm) in P

Output:
Persistence barcodes B•(Xν)

1: for every xi, xj in Vert(X) with i > j parallel do
2: D(xi, xj) :=∞
3: for every step νk in the path ν do
4: for every �ltration step p in the edge entry annotation L({xi, xj}) do
5: if p ≤ νk then . check if the edge {xi, xj} is contained in Xνk

6: D(xi, xj) = k
7: goto bottom
8: end if
9: end for

10: end for
11: bottom
12: end parallel do
13: B•(Xν) := Ripser(D)

14: return B•(Xν)

A common way in which multi-�ltered �ag complexes naturally arise in applications is in the

Vietoris-Rips persistence analysis of multi-�ltered metric datasets that come with extra structure

given by additional parameters. A typical example of this is time series data in the evolution of

the coronavirus (see Section 4). To formalize this, let (S, h) be a �nite semimetric space equipped

with a �ltration S• = (St)t∈T for some �nite n-dimensional subposet T ⊆ Rn
. For example, in

the case of time series data we could have a totally ordered subset T = {t1 ≤ . . . ≤ tm} ⊆ R
that speci�es the time steps. We may then consider the Vietoris-Rips complex VR r(St, h) for

each �ltration step t ∈ T and r ∈ h(S), where h(S) denotes the set of pairwise distances

h(x, y) of elements x, y ∈ S. �is gives rise to a multi-�ltered �ag complex in the following

way. Consider the poset

P := T × h(S) ⊆ Rn+1.

�en VR(S, h) naturally becomes a P -�ltered �ag complex with �ltration

VR•(S•, h) = (VR r(St, h))(t,r)∈P

As a result, we may use MuRiT to e�ciently investigate the multi-parameter persistent homol-

ogy of the multi-�ltered �ag complex VR(S, h) by computing pathwise persistence barcodes via

Vietoris-Rips transformations.

In order to be able to run the MuRiT Algorithm 1, we �rst need to prepare the input data,

which will be done with Algorithm 2. We denote the points in the dataset by S = {x1, . . . , xN}.

12



Moreover, we denote by H the lower triangular distance matrix of the semimetric space (S, h)

given by Hij = h(xi, xj) with i > j. Algorithm 2 takes as input this lower triangular distance

matrixH , a path ν in P of the form ν = ((t1, r1) ≤ · · · ≤ (tm, rm)), and a point entry annotation
list K : S → P(T ) where for every point x ∈ S

K(x) := min{t ∈ T | x ∈ St} ⊆ T.

�e output of Algorithm 2 is the edge entry annotation list Lν : Edge(VR(S, h)ν)→ P(P ) of

the one-�ltered subcomplex VR(S, h)ν ⊆ VR(S, h) given by

Lν({x, y}) = min{(ti, ri) ∈ ν | {x, y} ∈ VRri(Sti , h)} ⊆ P.

We may then pass as input for Algorithm 1 the one-�ltered subcomplex VR(S, h)ν ⊆ VR(S, h)

with vertex set Stm ⊆ S, together with the annotation list Lν .

Algorithm 2 Preparation of Multi-Filtered Data for MuRiT
Input:

Lower Triangular Distance Matrix H
Point Entry Annotation List K : S → P(T )
Path ν = ((t1, r1) ≤ · · · ≤ (tm, rm)) in P

Output:
Edge Entry Annotation List Lν : Edge(VR(S, h)ν)→ P(P )

1: function GetPointOfEntry(List K(x), path ν)

2: for every step (ti, ri) in the path ν do
3: for every �ltration step u in the point entry annotation K(x) do
4: if u ≤ ti then . check if the point x is contained in Sti
5: return (ti, ri)
6: end if
7: end for
8: end for
9: return∞

10: end function

11: procedure GetEdgeEntryAnnotation
12: Set Lν to empty list

13: for every pair of points xi, xj in S with i > j parallel do
14: a := GetPointOfEntry(K(xi), ν)

15: b := GetPointOfEntry(K(xj), ν)

16: Append (max(a, b), Hij) to Lν
17: end parallel do
18: end procedure

A parallelized implementation of the MuRiT algorithm, is available at https://github.com/
tdalife/murit. �is implementation combines Algorithms 1 and 2, and is optimized for the

Vietoris-Rips persistence analysis of multi-�ltered datasets.
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4. An Application to Viral Evolution

4.1. Topology of Evolutionary Processes. A particularly useful application of the MuRiT

algorithm is in the surveillance of pathogen evolution proposed in [BHPG
+

21]. While the evolu-

tion of an organism is usually modeled according to the paradigm of phylogenetic trees, there are

various biological phenomena that are incompatible with this approach. In the example of viral

evolution, an exchange of genomic information between distinct lineages can happen through

recombination or reassortment, which is known to be a key factor in rapid host adaptation for

many viruses [CCR13]. �ese instances of reticulate evolution can be viewed as a deviation

from a trivial tree topology and obstruct the existence of a single phylogeny, as di�erent parts

of the genome might admit con�icting evolutionary histories.

In this context, we consider a �nite set S of genome sequences, which we will think of as �nite

words x = (x1, x2, . . . , xN) of uniform length N in the alphabet {A,C,T,G} corresponding to

the four nucleotides, and endow it with a semimetric measuring the genetic distance between

any pair of sequences. A standard choice of semimetric is given by the Hamming distance

h : S × S → N (x, y) 7→ h(x, y) := #{i |xi 6= yi},

which counts the number of genomic positions at which two sequences di�er. As put forward

in [CCR13], persistent homology provides a fast and e�ective method to extract pa�erns of

non-trivial topology from the genomic data set S. In this approach, evolutionary relationships

at all scales are comprehensively encoded in the Vietoris-Rips �ltration

VR 0(S, h) ⊆ VR 1(S, h) ⊆ VR 2(S, h) ⊆ . . . ,

while information on both the tree-structure and reticulate events is captured in the persistence

barcode.

4.2. Topological Recurrence Analysis. In addition to the exchange of genetic material, a

further source of non-trivial topology in the phylogeny is convergent evolution. �e correspond-

ing reticulate events are called homoplasies and mean the independent acquisition of a speci�c

mutation in di�erent lineages. If the sampling of data is su�ciently dense, this typically gives

rise to a persistent homology class at the smallest scale, admi�ing a cycle representative for

which all edges correspond to single nucleotide variations (SNV) with edge length equal to 1.

Recall at this point that a single nucleotide variation means a mutation of a single nucleotide at

precisely one position in the genome. Such cycles admit a convenient description in terms of

their location in the barcode. �e representatives of persistent homology classes corresponding

to bars in the barcode B1(VR(S, h)) that are born in the �rst �ltration step VR 1(S, h) will be

called SNV cycles.

In [BHPG
+

21], SNV cycles are used to de�ne a measure of convergent evolution based on

one-parameter persistent homology. Let us brie�y outline the main ideas of this approach. �e

barcode associated with the one-dimensional persistent homology H1(VR(S, h)) is computed
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with a custom version of Ripser [Bau21b] that also has the capability to �nd cycle representatives.

�is method of exhaustive reduction (see [ZC05, EO19]) aims to produce cycles that tightly �t

the data, by systematically replacing the longest edge of a given cycle with shorter edges of

suitable nearby cycles. By de�nition of SNV cycles, for their extraction it su�ces to consider

persistent homology only on the smallest scale, which amounts to running Ripser with scale

parameter threshold set to 2, leading to a substantial speedup of the computation. �anks to

the speci�c properties of the Hamming geometry of the semimetric space (S, h) in combination

with the tree-like structure of the phylogeny, Ripser is able to process hundreds of thousands

of data points in the particular case of SARS-CoV-2 evolution [BHPG
+

21, BR22].

For each mutation in the viral genome, its topological recurrence index (tRI) is de�ned to be the

total number of SNV cycles containing an edge that gives rise to the given mutation. Here we

use the fact that each edge in an SNV cycle has length 1 and hence corresponds to a uniquely

determined mutation in the genome. �e topological recurrence index provides a lower bound

for the number of independent occurrences of a mutation in the evolution of an organism and is

therefore a measure for convergent evolution. As was demonstrated in [BHPG
+

21], there is an

abundance of SNV cycles in the SARS-CoV-2 genomic dataset and hence the above de�nition of

the topological recurrence index, which only relies on SNV cycles, will already lead to statistical

signi�cant signals. It was moreover shown that the topological recurrence index can serve as an

early indicator for emerging adaptive mutations in the evolution of the coronavirus.

In the case of ongoing genomic surveillance, the dataset admits a natural �ltration by sampling

time S1 ⊆ · · ·Sm−1 ⊆ Sm, where St denotes the set of all viral genomes sampled up until time

step t. For every t ∈ {1, . . . ,m}, we denote by SNVt the full set of SNV cycle representatives in

time step t we get from the persistence analysis of (St, h) with Ripser. Note that, as a feature

of Hamming geometry, the homology classes associated to SNV cycles are in a certain sense

stable with respect to adding points in a time series: Inclusion of new data points might lead to

a spli�ing of the cycle, but the resulting homology class is typically non-zero. It can happen

that the homology class is destroyed by adding data points only when gaps or insertions in the

genome alignment are involved in the SNV cycle.

In the study of SARS-CoV-2 evolution in [BHPG
+

21], the barcode B1(VR(St, h)) for each time

step t is computed separately. Tracking SNV cycles over time yields information about the

adaptation process of the pathogen. However, this can be troubled by the following two issues.

(1) Computing persistence homology at each time step separately can be time consuming and

computationally expensive if the �ltration by time of the dataset is large (like for example

in a time series analysis over one year on a daily basis).

(2) SNV cycle representatives of the same homology class at di�erent time steps will in general

not be compatible with each other, which can lead to noise in the topological recurrence

analysis. More precisely, if ω ∈ SNVt and if its image under the canonical morphism

H1(VR 1(St, h))→ H1(VR 1(St+1, h))

induced by the inclusion St ⊆ St+1 is non-zero, then it may still happen that ω 6∈ SNVt+1.
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Both of these problems are resolved by the MuRiT algorithm in the following way. As explained

in Section 3.4, we de�ne the poset

P := {1, . . . ,m}︸ ︷︷ ︸
time steps

× h(S)︸︷︷︸
distances

.

�en the Vietoris-Rips complexX = VR(S, h) naturally becomes a P -�ltered simplicial complex.

As for the de�nition of the topological recurrence index it is only relevant to determine the time

of birth of each SNV cycle, it su�ces to compute the persistence barcode in homology degree one

of the subcomplex VR(S, h)ν ⊆ VR(S, h) determined by the path ν = ((1, 1) ≤ · · · ≤ (m, 1))

in P (see Figure 3). For this, we use MuRiT to compute the persistence barcode in homology

degree one of the Vietoris-Rips transformation of VR(S, h)ν . At each time step t, Ripser extracts

a full set of SNV cycles such that the corresponding homology classes correspond to bars

I ∈ B1

(
V̂R(VR(S, h)ν)

)
with t ∈ I . In this way, we achieve compatibility of SNV cycles across

all �ltration steps. From a computational perspective, this means a great gain of e�ciency as the

persistence barcode of H1(VR(S, h)ν), which resolves all time steps, is computed with a single

run of Ripser.
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Figure 3: Pathwise subcomplexes and SNV cycles in viral evolution. �e blue tiles

mark the horizontal subcomplex VR(S, h)ν of the P -�ltered Vietoris-Rips complex VR•(S•, h)
corresponding to the path ν = ((1, 1) ≤ · · · ≤ (m, 1)) in P = {1, . . . ,m} × h(S). �is

subcomplex keeps track of the formation of SNV cycles in the time-�ltered dataset S1 ⊆ S2 ⊆
· · · ⊆ Sm = S of viral gene sequences equipped with the Hamming distance h.
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4.3. �e CoVtRec Pipeline. �e MuRiT algorithm is part of our CoVtRec pipeline for

the early warning and surveillance of recurrent mutations in the evolution of the coronavirus

SARS-CoV-2 in the current COVID-19 pandemic [BHNO22]. Regular reports containing analyses

on the basis of SARS-CoV-2 genomic data shared via GISAID, the global data science initiative

[SM17, KGF
+

21], are available at https://tdalife.github.io/covtrec. Recall that recurrent

mutations are potentially adaptive in the sense that they could confer some �tness advantage to

the virus, such as immune evasion or higher infectivity. In the current phase of the pandemic,

the early identi�cation of potentially adaptive mutations is of paramount importance as the virus

is constantly developing new variants by mutating its genome. For more details on the biological

aspects of the topological recurrence analysis of SARS-CoV-2 genomic data see [BHPG
+

21].
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Figure 4. Surveillance of the convergent evolution of the coronavirus SARS-CoV-2.
�e diagram shows the time plots at daily resolution for the topological recurrence index (tRI)

of the adaptive SARS-CoV-2 Spike gene mutations D614G, E484K and L452R over a period

of 27 months, from the beginning of the pandemic in late December 2019 until 15 March 2022.

�e MuRiT algorithm enables the e�cient topological analysis of hundreds of thousands of

data points over time by leveraging the natural strati�cation by time of the coronavirus gene

sequences dataset. While the mutation D614G is currently observed in essentially all virus

samples, E484K occurred in the Alpha and Beta variants, and L452R has more recently been

observed in the Delta and Omicron BA.5 variants.

�e CoVtRec pipeline generates time series analysis charts for the topological recurrence index

(tRI) at daily resolution by leveraging the natural strati�cation by time of SARS-CoV-2 genomic

data. �anks to highly optimized algorithms that take advantage of the tree-like structure of the

data [BR22], CoVtRec can process very large SARS-CoV-2 genomic datasets and easily scales to

hundreds of thousands of distinct genomes. �is demonstrates the e�ciency and usefulness of
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the MuRiT algorithm in practice. To give a concrete example, we analyzed topological signals

for the ongoing convergent evolution for three prominent mutations of the SARS-CoV-2 genome

from the beginning of the pandemic in December 2019 until 15 March 2022. To that end, we

performed a topological recurrence analysis for a curated alignment of 5,323,639 high-quality

SARS-CoV-2 Spike gene sequences shared via GISAID. �e analysis was restricted to the Spike

gene, a part of the genome that determines the structure of the Spike protein on the surface of

the virus and therefore plays an essential role in immune evasion and infectivity. Our algorithm

performed the topological analysis of 359,650 distinct Spike gene sequences in less than a day

on a machine with Intel Xeon Gold 6230R processors and 52 kernels.

We analyzed topological signals of convergence for the Spike gene mutations D614G, E484K
and L452R (see Figure 4). All of these mutations exhibit a topological signal of convergence,

with the topological recurrence index (tRI) rising over the course of the pandemic. We conclude

that they are potentially adaptive. In fact, there is by now experimental evidence that the

mutation D614G increases transmissibility [KFG
+

20, LWN
+

20] and in vitro infectiousness

[PLL
+

21, HCH
+

20, YWP
+

20], and the mutations E484K and L452R enable the virus to evade

immune protection [GLC
+

21, LVB
+

21]. While the mutation D614G superseded the wild type

already at the beginning of the pandemic and is currently observed in essentially all virus

samples, E484K occurred in the Alpha and Beta variants, and L452R has more recently been

observed in the Delta and Omicron BA.5 variants [WHO]. A more detailed discussion of

biological implications of the presence of topological signals for mutations in the evolution of

the coronavirus is available in [BHPG
+

21].

Data Availability and Data Preparation. All SARS-CoV-2 genome data used in this work are

available from the GISAID EpiCov Database [SM17, KGF
+

21] and are accessible online at https:
//doi.org/10.55876/gis8.220629ug. Our analysis of SARS-CoV-2 genome data is based on

the alignment msa 0315.fasta downloaded from the GISAID EpiCoV Database [SM17, KGF
+

21]

on 28 March 2022. �is alignment comprises 8,297,154 SARS-CoV-2 whole genome sequences

that have been aligned to the reference sequence Wuhan/WIV04 with GISAID accession number

EPI ISL 402124 using MAFFT (Version 7) [Kat02]. Sequences in this alignment were

truncated to the Spike gene (reference site positions 21,563 to 25,384), and subsequently sequences

containing any characters other than A, C, T, G or gaps or insertions represented by - were

removed. �is resulted in an alignment comprising 5,323,639 complete SARS-CoV-2 Spike genes

of length 4,874nt.
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