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1 Introduction

The goal of my diploma thesis is the complete classification of primitive Fano
threefolds whose second Betti numbers are not less than two.

By a Fano threefold we mean a nonsingular projective variety over C of di-
mension 3 and with ample anticanonical divisor. It is called primitive if it is not
isomorphic to the blowing-up of a Fano threefold along a nonsingular irreducible
curve.

I will prove the following theorem. For any Fano threefold X, b2(X) denotes
its second Betti number and KX its canonical divisor.

Theorem. Primitive Fano threefolds X with b2(X) ≥ 2 are classified as follows.

b2(X) (−KX)3 type of X

2 6 a double covering of P2×P1 whose branch locus is a divisor
of bidegree (2, 4)

2 12 a double covering of W6, a nonsingular divisor on P2×P2 of
bidegree (1, 1), whose branch locus is a member of |−KW6|,
or a nonsingular divisor on P2 × P2 of bidegree (2, 2)

2 14 a double covering of V7 = P(OP2 ⊕ OP2(1)) whose branch
locus is a member of | −KV7|

2 24 a double covering of P2×P1 whose branch locus is a divisor
of bidegree (2, 2)

2 30 a nonsingular divisor on P2 × P2 of bidegree (1, 2)
2 48 W6, a nonsingular divisor on P2 × P2 of bidegree (1, 1)
2 54 P2 × P1

2 56 V7 = P(OP2 ⊕OP2(1))
2 62 P(OP2 ⊕OP2(2))
3 12 a double covering of P1 × P1 × P1 whose branch locus is a

divisor of tridegree (2, 2, 2)
3 14 a nonsingular member of the complete linear system

|OP (2)⊗ π∗OP1×P1(2, 3)| on the P2-bundle
π : P = P(OP1×P1 ⊕OP1×P1(−1,−1)⊕2) −→ P1 × P1

3 48 P1 × P1 × P1

3 52 P(OP1×P1 ⊕OP1×P1(1, 1))

This work is motivated as follows. In the early 1980’s S. Mori and S.Mukai
presented in [MM81] a list which was claimed to be the complete classification of
Fano threefolds with b2 ≥ 2.

However, a thorough proof of these results has never been published. Instead,
Mori and Mukai explained the general principle of how to classify such Fano
threefolds in [MM83], giving only outlines of proofs for parts of their list. Some
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20 years later it turned out that at least one type was missing in this list (cf.
[MM03]).

Hence it seems worthwhile to work out this classification in full detail and
to check whether any types are still missing. Of course it would be far beyond
the scope of a diploma thesis to go through the whole classification. Thus I
restrict myself to the classification of a tractable subclass of all Fano threefolds
with b2 ≥ 2, namely, the primitive ones. My result is the theorem above. In
particular, it shows that there are no primitive Fano threefolds missing in the list
of [MM81].

As already mentioned, my proof of this theorem follows [MM83], §1 - §6 and
§8. We shall proceed in three steps.

First, chapter 2 provides us with all the preliminaries that are necessary for
the classification of primitive Fano threefolds with b2 ≥ 2. Namely, it introduces
some aspects of Mori theory in the context of primitive Fano threefolds. We
will learn about Mori’s technique of extremal rays of Fano threefolds and its
geometric implications. Apart from minor modifications and some supplements,
this chapter is a summary of the main results from Mori’s paper [Mo].

Second, chapter 3 is a first step towards the classification of primitive Fano
threefolds with b2 ≥ 2. We will use our knowledge about extremal rays on
primitive Fano threefolds from the previous chapter to establish the existence of
certain morphisms from any primitive Fano threefold to surfaces or other three-
folds. These morphisms will give a first insight into the intrinsic structure of
primitive Fano threefolds with b2 ≥ 2. In particular, we will see that such Fano
threefolds must have b2 = 2 or 3.

Third, in the last two chapters we systematically exploit the results from
chapters 2 and 3 in order to classify primitive Fano threefolds with b2 ≥ 2.
Chapter 4 is devoted to primitive Fano threefolds with b2 = 2, chapter 5 to those
with b2 = 3.

There are two appendices. Appendix A contains a list of all types of primitive
Fano threefolds with b2 ≥ 2, similar to the one in the theorem above, but giving
additional technical information relevant to the proofs.

Appendix B provides a summary of basic general results needed frequently in
the course of the classification.

The main reference for this thesis is [Ha77] and the first chapter of [De]. In
particular, all the standard results used without reference may be found in one
of these texts.

I am very grateful to my supervisor Professor Thomas Peternell for constantly
supporting me in writing this thesis. Also, I would like to thank Dr Thomas
Bauer, Dr Priska Jahnke and Dr Ivo Radloff for their valuable help.
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2 Mori theory in the context of Fano threefolds

The purpose of this chapter is to provide a summary of those results from Mori
theory that are essential to the classification of primitive Fano threefolds with
b2 ≥ 2. We will refer to Mori’s paper [Mo] and tailor his results to our needs.
This chapter begins with some preliminaries in section 2.1, followed by the main
results (statements only) from Mori’s theory of extremal rays of Fano threefolds
in section 2.2. It concludes with the complete classification of extremal rays of
a primitive Fano threefold, in section 2.3. This classification will be the starting
point for the subsequent classification of primitive Fano threefolds with b2 ≥ 2.

2.1 Notation and definitions

This section introduces the required formalism to state the results from Mori
theory that we need for the classification.

Let X be a variety. We will follow [Mo, Ch. 1, §1] and [De, § 1.3]. By a 1-cycle
on X we understand an element of the free abelian group Z1(X) generated by all
the irreducible reduced curves on X. A 1-cycle

∑
nCC, nC ∈ Z is called effective

if nC ≥ 0 for all C. We denote numerical equivalence of 1-cycles with respect to
intersections with Cartier divisors on X by the symbol ≡. Then we set

N1(X)Z = Z1(X)/ ≡ and N1(X)R = N1(X)Z ⊗Z R.

We endow N1(X)R with its usual real topology.
Likewise, we denote numerical equivalence of Cartier divisors with respect to

intersections with 1-cycles on X by the symbol ≡, and set

N1(X)Z = Ca(X)/ ≡ and N1(X)R = N1(X)Z ⊗Z R,

where Ca(X) is the group of Cartier divisors on X.
The vector space N1(X)R is finite-dimensional ([De, § 1.3]), and its dimension

is called the Picard number ρ(X) of X. In particular, we see that ρ(X) is the
rank of N1(X)Z.

Via the intersection pairing ( , )X : N1(X)Z × N1(X)Z −→ Z, which is by
definition non-degenerate, N1(X)R is dual to N1(X)R.

This shows that the dimension of N1(X)R and the rank of N1(X)Z are both
equal to ρ(X).

We define NE(X) to be the convex cone in N1(X)R generated by the classes of
all effective 1-cycles on X.

A half line R = R+ [C] in the closure NE(X), where C is an effective 1-cycle
on X and R+ = {r ∈ R | r ≥ 0}, is called an extremal ray of X if the following is
satisfied:
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(i) (−KX · C)X > 0;

(ii) if Z1 and Z2 are classes in NE(X) such that Z1 + Z2 ∈ R, then Z1, Z2 ∈ R.

A rational curve l on X is called an extremal rational curve if (−KX · l)X ≤
dim(X) + 1 and the ray R+ [l] is an extremal ray of X.

2.2 Extremal rays of Fano threefolds

This section is a summary of the main results of Mori’s theory of extremal rays
of a Fano threefold, namely, the Cone Theorem and the Contraction Theorem.
Moreover, we will collect some useful basic properties of primitive Fano threefolds.

We start with the Cone Theorem, which is Theorem 1.2 in [Mo]. It clarifies the
structure of the cone NE(X) and shows that extremal rays on Fano threefolds
always exist. Its importance to our classification will become apparent when we
consider the geometric implications of extremal rays below. Note in particular
that this theorem implies that NE(X) is closed in N1(X)R.

Theorem 2.1 (Cone Theorem). Let X be a Fano threefold. Then X contains
finitely many extremal rational curves l1, . . . , ln with corresponding extremal rays
Ri = R+ [li] such that

NE(X) = R1 + . . . + Rn.

By the theorem, we can make the following definitions: We define the lenght
of an extremal ray R of X to be the number

µR = min{(−KX · C)X | C is a rational curve on X such that [C] ∈ R}.

Moreover we fix, for each extremal ray R of X, an extremal rational curve `R

on X such that [`R] ∈ R and

(−KX · `R)X = µR.

We digress for a moment and collect some basic properties of Fano threefolds
that we will frequently need.

Lemma 2.2. Let X be a Fano threefold.

1. hi(OX) = 0 for all i > 0. In particular, χ(OX) = 1.

2. (−KX · c2(X))X = 24.

3. For divisors on X, linear and numerical equivalence are the same, i.e., there
is an isomorphism N1(X)Z ∼= Pic(X).
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4. The Picard number ρ(X), the rank of Pic(X) and the second Betti number
b2(X) are equal.

5. Pic(X) is torsion-free.

6. For any effective divisor D on X,

(c2(X) ·D)X = 6 χ(OD) + 6 χ(OD(D))− 2 (D3)X − ((−KX)2 ·D)X .

Proof. 1. This is an immediate consequence of Kodaira’s vanishing theorem [We,
VI, 2.4]: −KX is ample since X is Fano, so Hi(X,OX) = 0 for all i > 0. Then
χ(OX) = h0(OX) = 1.

2. and 3. First of all, we derive a formula for χ(OX(D)), where D is any
divisor on X. We use intersection theory from [Ha77, A]. By the Riemann-Roch
formula [Ha77, A, 4.1],

χ(OX(D)) = deg (ch(OX(D)) · td(TX))3 . (1)

To compute this, note that since X has dimension 3, Ai(X) = 0 for all i > 3.
First we turn to the Chern character of OX(D). Since c1(OX(D)) = D by

[Ha77, A, 3.C1] and ci(OX(D)) = 0 for i > 1 since OX(D) has rank 1, we obtain
from [Ha77, A, § 4] that

ch(OX(D)) = 1 + D + 1
2
D2 + 1

6
D3. (2)

Now we compute the Todd class of the tangent sheaf TX . Since X has di-
mension 3, TX is locally free of rank 3 ([Ha77, p.180]), so ci(X) = ci(TX ) = 0 for
all i > 3. Moreover, since TX

∼= Ω∗
X , ωX

∼= det(ΩX) and c1(ωX) = KX , Chern
class formalism [Ha77, A, 3.C5] yields c1(X) = −KX . Hence we get from [Ha77,
A, § 4] that

td(TX) = 1 + 1
2
(−KX) + 1

12

(
(−KX)2 + c2(X)

)
+ 1

24
(−KX) · c2(X). (3)

Plugging (2) and (3) into (1) above, we obtain

χ(OX(D)) = 1
24

(−KX · c2(X)) + 1
12

((−KX)2 ·D) + 1
12

(D · c2(X))

+ 1
4
(−KX ·D2) + 1

6
(D3). (4)

To verify 2., we choose D ∼ 0 in (4). Then we obtain χ(OX) = (1/24) (−KX ·
c2(X)). By (1) above, χ(OX) = 1, and the desired result follows.

In order to prove 3., we have to show that any divisor D on X is linearly
equivalent to zero if an only if it is numerically equivalent to zero.

If D ∼ 0, then (D · C)X = 0 for all curves C on X, i.e., D ≡ 0.
Conversely, assume that D ≡ 0. Then, using 2. above, we obtain from (4)

χ(OX(D)) = 1. (5)
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On the other hand, since −KX is ample, ((D−KX) ·C) = (D ·C)+(−KX ·C) =
(−KX ·C) > 0 for all curves C on X. Since NE(X) is closed, Kleiman’s criterion
[De, 1.27] therefore implies that D −KX is ample. Thus hi(X,OX(D)) = 0 for
all i > 0 by Kodaira’s vanishing theorem [We, VI, 2.4], and we obtain

χ(OX(D)) = h0(X,OX(D)). (6)

By (5) and (6), h0(X,OX(D)) = 1. Hence, by [Ha77, II, 7.7], the complete linear
system |D| contains an effective divisor D0 on X, linearly equivalent to D. Then
we can write

D0 =
k∑

i=1

ni Di (7)

with coefficients ni ≥ 0 and prime divisors Di on X. Since X is projective, there
exists an embedding of X into some projective space PN . Now Bertini’s theorem
[Ha77, II, 8.18] shows that on cutting X successively with two sufficiently general
hyperplanes in PN , one obtains a curve C1 in X none of whose components is
contained in any of the divisors D2, . . . , Dk and which intersects D1 transversally.
We therefore obtain

0 = (D · C1) = (D0 · C1) =
k∑

i=1

ni (Di · C1) ≥ n1 (D1 · C1),

where (D1 · C1) > 0. Hence n1 = 0. In the same manner, we see that all the
other coefficients ni in (7) also vanish. This shows that D0 is linearly equivalent
to the zero divisor on X, and we are done.

The second part of the assertion is immediate from this: Since ∼ and ≡ are
the same,

N1(X)Z = (Ca(X)/ ≡) ∼= (Ca(X)/ ∼) = Pic(X).

4. The exponential sheaf sequence

0 −→ Z −→ OX −→ O∗
X −→ 0

on X induces an exact sequence of cohomology groups

H1(X,OX) −→ H1(X,O∗
X) −→ H2(X, Z) −→ H2(X,OX).

Here, H1(X,OX) and H2(X,OX) vanish by 1., so the arrow in the middle is
an isomorphism. By [Ha77, III, Ex. 4.5], H1(X,O∗

X) ∼= Pic(X). We conclude
Pic(X) ∼= H2(X, Z). Combining this with our result in 3., we get N1(X)Z ∼=
Pic(X) ∼= H2(X, Z). Hence these groups have the same rank.

5. Let D be a torsion element of Pic(X). Then α D ∼ 0 for some nonzero
integer α. Hence we get α (D · C) = (α D · C) = 0 and thus (D · C) = 0 for all
curves C on X, i.e., D ≡ 0. By 3., this means D ∼ 0 and D is zero in Pic(X).
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6. This is just another application of the Riemann-Roch formula. Let D be
an effective divisor on X. Using (−KX · c2(X)) = 24 from 2., we get from (4)
above

χ(OX(D)) = 1 + 1
12

((−KX)2 ·D) + 1
12

(D · c2(X)) + 1
4
(−KX ·D2) + 1

6
(D3),

χ(OX(−D)) = 1− 1
12

((−KX)2 ·D)− 1
12

(D · c2(X)) + 1
4
(−KX ·D2)− 1

6
(D3).

We obtain from this

χ(OX(D))− χ(OX(−D)) = 1
6
((−KX)2 ·D) + 1

6
(D · c2(X)) + 1

3
(D3). (8)

The standard exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0

yields an exact sequence

0 −→ OX −→ OX(D) −→ OD(D) −→ 0.

By [Ha77, III, Ex. 5.1], we deduce from these sequences

χ(OX(−D)) = χ(OX)− χ(OD),

χ(OX(D)) = χ(OX) + χ(OD(D)).

We obtain from this

χ(OX(D))− χ(OX(−D)) = χ(OD(D)) + χ(OD). (9)

Combining (8) and (9) we finally get

6 χ(OD) + 6 χ(OD(D)) = ((−KX)2 ·D) + (D · c2(X)) + 2 (D3),

which is the claimed identity.

Next, we state the Contraction Theorem, which is Theorem 3.1 and 3.2 in [Mo].
It explains the geometric meaning of extremal rays on a Fano threefold.

Theorem 2.3 (Contraction Theorem). Let X be a Fano threefold, and R an
extremal ray of X with associated extremal rational curve `R. Then there exists
a corresponding morphism f : X −→ Y to a projective variety Y , and with the
following properties:

1. f∗OX
∼= OY .

2. For any irreducible reduced curve C on X, [C] ∈ R if and only if f(C) is a
point.
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3. There is an exact sequence

0 −→ Pic(Y )
f∗−→ Pic(X)

( · `R)−→ Z,

where ( · `R)(D) = (D · `R)X for D ∈ Pic(X).

Moreover, the higher direct images Ri f∗OX vanish for all i > 0.

Such a morphism f is unique up to an isomorphism.

The morphism f of the theorem is called the Mori contraction of R and
denoted by contR : X −→ Y .

Once we have the classification of extremal rays at our disposal we will be
able to show in corollary 2.15 that the third map in the exact sequence of the
theorem is actually surjective.

We can use this theorem to deduce two useful properties of Mori contractions.

Corollary 2.4. Let X be a Fano threefold, and f : X −→ Y the contraction
corresponding to some extremal ray R of X. Then

hi (X,OX) = hi (Y,OY )

for all i > 0.

Proof. By (2.3) above, Ri f∗OX = 0 for all i > 0. By the Leray spectral sequence
([Ha77, III, Ex. 8.1]), we have isomorphisms Hi(X,OX) ∼= Hi(Y, f∗OX) for all
i > 0. Since f is a Mori contraction, f∗OX

∼= OY by (2.3) above. Hence
hi(X,OX) = hi(Y,OY ) for all i > 0.

Corollary 2.5. Let X be a Fano threefold, and f : X −→ Y the contraction
corresponding to some extremal ray R of X. Let L be a divisor on Y , and D =
f ∗ L. Then

χ(OD) = 1− χ(OY (−L))

and
χ(OD(D)) = χ(OY (L))− 1.

Proof. We start with the standard exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0,

which induces an exact sequence

0 −→ OX −→ OX(D) −→ OD(D) −→ 0.

By [Ha77, III, Ex. 5.1], these sequences imply

χ (OD) = χ (OX)− χ (OX(−D)) (10)

9



and

χ (OD(D)) = χ (OX(D))− χ (OX) . (11)

Since X is Fano, χ(OX) = 1 by (2.2).
Since D = f ∗ L, we obtain, using the projection formula [Ha77, III, Ex. 8.3],

Ri f∗OX(D) ∼=
(
Ri f∗

)
f ∗OY (L) ∼= OY (L)⊗ Ri f∗OX

for all i ≥ 0. Since f∗OX
∼= OY and Ri f∗OX = 0 for i > 0 by (2.3), this implies

f∗OX(D) ∼= OY (L) and Ri f∗OX(D) = 0 for all i > 0. Hence, by the Leray
spectral sequence ([Ha77, III, Ex. 8.1]),

Hi(X,OX(D)) ∼= Hi(Y, f∗OX(D)) ∼= Hi(Y,OY (L)).

Thus we get χ(OX(D)) = χ(OY (L)). Likewise, χ(OX(−D)) = χ(OY (−L)).
By (10) and (11) above, we therefore obtain χ(OD) = 1 − χ(OY (−L)) and

χ(OD(D)) = χ(OY (L))− 1.

2.3 Classification of extremal rays on primitive Fano three-
folds

This section gives a complete classification of extremal rays on a primitive Fano
threefold. It is based on Theorem 3.3 in [Mo] and on paragraph 3.3 in [Mi]. We
will slightly adapt and present the respective results in theorems 2.7, 2.11 and
2.14 for later use.

Let X be a primitive Fano threefold with b2(X) ≥ 2. By the Contraction
Theorem 2.3 there exists, to any extremal ray R of X, a corresponding contraction

f = contR : X −→ Y

to a projective variety Y .

We will now classify extremal rays R of X by specifying the following data: the
dimension of Y , the morphism f , the length µ of R and its associated extremal
rational curve ` on X.

Recall from section 2.2 that µ = min{(−KX · C) | C is a rational curve such
that [C] ∈ R}, and that ` is an extremal rational curve on X such that [`] ∈ R
and (−KX · `) = µ.

By [Mo, Thm. 3.5], the cases dim(Y ) = 3, 2, 1 or 0 are possible. However,
the case dim(Y ) = 0 cannot occur: For in this case Pic(Y ) = 0, so the exact
sequence of (2.3) yields an injective homomorphism Pic(X) −→ Z. This implies
b2(X) ≤ 1 by (2.2 (4)), which is a contradiction. Hence we have to distinguish
the cases dim(Y ) = 3, 2 or 1.
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Case dim(Y) = 3. By [Mo, Thm. 3.3 and Cor. 3.4.1], there is an irreducible
reduced divisor D on X such that f |X−D is an isomorphism and dim(f(D)) ≤
1. Such D is uniquely determined by R and called the exceptional divisor of
R. Correspondingly, f is called a divisorial contraction of X. Note that it is
birational. Moreover, f is the blowing-up of Y along the subvariety f(D) with
its reduced structure.

By [Mo, Thm. 3.3], there are five different types of extremal rays on X. We
will denote them by E1, E2, E3, E4 and E5 in such a way that type Ei corresponds
to case (3.3.i) in [Mo, Thm. 3.3]. This theorem gives an explicit characterisation
of the rays E1, . . . , E5, and its statements are summarised in the table given
in theorem 2.7 on page 16. However, since we are dealing with primitive Fano
threefolds only, we can enhance the statement about rays of type E1 by means
of the following lemma:

Lemma 2.6. If R is of type E1, (3.3.1) in [Mo, Thm. 3.3] says that C = f(D)
is a nonsingular irreducible curve, Y is nonsingular and f |D : D −→ C is a
P1-bundle. Moreover, since X is primitive the following holds:

1. C ∼= P1

2. N ∗
C/Y

∼= OP1(1)⊕OP1(1)

3. D ∼= P1 × P1

4. OD(D) ∼= OP1×P1(−1,−1)

Proof. Since X is the blowing-up of Y along C, (B.4) applies. Since −KX is
ample, we obtain the following inequality from (B.4 (4)), which we will need
later:

(−KY · C) + 2− 2 g(C) > 0 (12)

Here, g(C) is the genus of the curve C. Moreover, π = f |D : D −→ C
is isomorphic to the projective space bundle P(N ∗

C/Y ), OD(−D) corresponds to

OD(1), and

−KX ∼ f ∗(−KY )−D, (13)

by (B.4 (2) and (1)).
Twisting the bundle P(N ∗

C/Y ) by OC(−KY ) gives us a projective space bundle

π′ : D′ = P(E) −→ C, where

E = N ∗
C/Y ⊗OC(−KY )

∼= N ∗
C/Y ⊗OC(−KC)⊗

∧2NC/Y

∼= OC(−KC)⊗NC/Y . (14)
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Here we used the adjunction formula for−KC on Y , and formula [Ha77, II, 5.16(b)].
We apply [Ha77, II, 7.9]: There is an isomorphism

ϕ : D′ ∼=−→ D,

commuting with the projections π and π′ to C. Moreover, using (13), we obtain

OD′(1) ∼= ϕ∗OD(1)⊗ π′∗OC(−KY )
∼= ϕ∗OD(1)⊗ (ϕ∗ ◦ π∗)OC(−KY )
∼= ϕ∗ (OD(1)⊗ π∗OC(−KY ))
∼= ϕ∗ (OD(−D)⊗ f ∗OY (−KY ))
∼= ϕ∗OD(−KX). (15)

Now since −KX is ample, so is OD(−KX) by [Ha70, I, 4.1]. Since ϕ is an isomor-
phism, this calculation therefore shows that OD′(1) is ample. Since D′ = P(E),
this implies that E is an ample sheaf on C, by [Ha70, III, 1.1].

In order to find out more about E , we need the following

Claim. (−KY · C) ≤ 0. In particular, C is isomorphic to P1.

Note that the claim already proves 1. To prove the claim, let us suppose to
the contrary, i.e. (−KY · C) > 0. We will show that −KY is ample. For then,
Y is Fano and hence X is not primitive since it is the blowing-up of Y along the
nonsingular irreducible curve C, which is a contradiction.

By [Ha77, II, 7.5], it suffices to prove that −m KY is ample, for some m > 0.
We will do this using criterion [Ha70, I, 4.6], which requires us to verify that
−m KY is generated by its global sections and has positive degree on every irre-
ducible reduced curve on Y .

So let us prove first that −m KY is generated by its global sections for suffi-
ciently large m:

Since −KX is ample, −n KX is very ample for sufficiently large n ([Ha77,
II, 7.6]). Hence the linear system | − n KX | has no base points ([Ha77, II, 7.1
and 7.8]). Since f |X−D is an isomorphism, it follows from (13) that −KX |X−D

∼=
−KY |Y−C , so

H0(X −D,−n KX |X−D) ∼= H0(Y − C,−n KY |Y−C).

This shows that | − n KY | has no fixed components or no base points outside of
C.

Next, we check that C is not contained in the base locus of | − n KY |. The
isomorphism

f ∗OY (−KY )
∼=−→ OX(−KX + D)

from (13) induces an isomorphism

f∗ f ∗OY (−KY )
∼=−→ f∗OX(−KX + D).
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Since f∗OX
∼= OY by (2.3), the projection formula [Ha77, II, Ex. 5.1 (d)] yields

f∗ f ∗OY (−KY ) ∼= OY (−KY ) ⊗ f∗OX
∼= OY (−KY ). Hence we arrive at an iso-

morphism

OY (−KY )
∼=−→ f∗OX(−KX + D).

We obtain a commutative diagram

H0(Y,OY (−KY ))
∼=−−−→ H0(Y, f∗OX(−KX + D))y y

H0(C,OC(−KY ))
∼=−−−→ H0(C, f∗OD(−KX + D))

(16)

where the vertical maps are the canonical restriction maps. By definition of the
direct image functor,

H0(Y, f∗OX(−KX + D)) = H0(X,OX(−KX + D))

and

H0(C, f∗OD(−KX + D)) = H0(C, (f |D)∗OD(−KX + D))

= H0(D,OD(−KX + D)).

Thus diagram (16) takes the following form:

H0(Y,OY (−KY ))
∼=−−−→ H0(X,OX(−KX + D))y y

H0(C,OC(−KY ))
∼=−−−→ H0(D,OD(−KX + D))

(17)

Tensoring the standard exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0

with OX(−KX + D) gives an exact sequence

0 −→ OX(−KX) −→ OX(−KX + D) −→ OD(−KX + D) −→ 0.

Taking cohomology yields an exact sequence

H0(X,OX(−KX + D)) −→ H0(D,OD(−KX + D)) −→ H1(X,OX(−KX)).

The first map in this sequence is the canonical restriction map, and therefore
equals the vertical map on the right in diagram (17). By Kodaira’s vanishing
theorem [We, VI, 2.4], H1(X,OX(−KX)) = 0 since −KX is ample. Hence we see
that the vertical map on the right in diagram (17) is surjective, so we conclude
that the canonical restriction map

H0(Y,OY (−KY )) −→ H0(C,OC(−KY )) (18)
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is also surjective.
By the Riemann-Roch formula [Ha77, IV, 1.3],

h0(C,OC(−KY )) ≥ χ(OC(−KY )) = degC(−KY )− (g(C)− 1).

By our assumption and [De, (1.3)], degC(−KY ) = (−KY ·C) > 0. By inequality
(12), (−KY · C) > 2 (g(C)− 1). Since g(C) ≥ 0 always, this shows that

h0(C,OC(−KY )) > 0.

By surjectivity of (18), we conclude from this that OY (−KY ) and hence also
OY (−n KY ) has a global section that does not vanish along C, i.e., C is not
contained in the base locus of | − n KY |.

As we have seen above, | − n KY | has no fixed components or no base points
outside of C.

Since C is irreducible, we conclude from these two facts that | − n KY | can
have base points only on C. Hence it can have only finitely many base points.
Thus, by Zariski’s theorem [Za, Thm. 6.2], | − n′ n KY | has no base points for
sufficiently large n′. In other words ([Ha77, II, 7.8]), −m KY is generated by its
global sections for sufficiently large m. This is the first condition required by
criterion [Ha70, I, 4.6].

Recall that the second condition requires −m KY to have positive degree on
every irreducible reduced curve on Y :

By our assumption, (−KY · C)Y > 0. Now consider any irreducible reduced
curve Z on Y , distinct from C. It meets C in at most finitely many points. Using
−KX ∼ f ∗(−KY )−D from (13), we therefore obtain

(−KY · Z)Y = (f ∗(−KY ) · Z̃)X = (−KX · Z̃)X + (D · Z̃)X > 0

since −KX is ample and D is effective, where Z̃ denotes the strict transform of
Z under the blowing-up f . By [De, (1.3)], it follows that −KY and hence also
−m KY has positive degree on every irreducible reduced curve on Y .

Thus the conditions of criterion [Ha70, I, 4.6] are satisfied and we conclude
that −KY is Fano, which proves the first assertion of the claim.

To prove that C ∼= P1, we combine inequality (12) with the first assertion of
the claim and obtain 2 g(C) − 2 < (−KY · C) ≤ 0. Hence g(C) = 0, and, by
[Ha77, IV, 1.3.5], C is rational. Since C is nonsingular, it is therefore isomorphic
to P1, by [Ha77, I, 6.12].

This completes the proof of the claim.

Now we come back to the sheaf E = OC(−KC) ⊗ NC/Y . Since C has codi-
mension 2 in Y , it is locally free of rank 2 on C ([Ha77, II, 8.17]). Since C ∼= P1

by the claim, E is decomposable by [Ha77, V, 2.14]. Hence we can write

E ∼= OP1(a)⊕OP1(b)
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with coefficients a, b ∈ Z.
Since E is ample, each of its summands is ample, by [Ha70, III, 1.8]. Hence

we must have a, b > 0 by [Ha77, II, 7.6.1]. Using formula [Ha77, II, 5.16 (d)], we
therefore get

degC(E) = degP1 (OP1(a)⊕OP1(b))

= deg
∧2 (OP1(a)⊕OP1(b))

= deg (OP1(a + b))

= a + b

≥ 2.

On the other hand, by (B.2 (3)), (15), (B.4 (4)) and the claim above,

degC(E) = c1(OD′(1))2

= c1 (ϕ∗(OD(−KX))2

= ((−KX |D)2)D

= ((−KX)2 ·D)X

= (−KY · C) + 2− g(C)

≤ 2.

We conclude from these inequalities that 2 = degC(E) = a + b. Since a, b > 0, we
must therefore have a = b = 1. Whence

E ∼= OP1(1)⊕OP1(1).

So far, we have proved that D ∼= D′ = P (OP1(1)⊕OP1(1)). Twisting by
OP1(−1), we see by [Ha77, V, 2.2] that D is isomorphic to the ruled surface
P(OP1 ⊕ OP1) over P1, which is nothing but P1 × P1 ([Ha77, V, 2.11.1]). This
proves 3.

Now we determine the sheaves N ∗
C/Y and OD(D). Since C ∼= P1 by the claim,

we obtain from (14)

N ∗
C/Y

∼= E∗ ⊗ ω−1
C
∼= OP1(−1)⊕2 ⊗OP1(2) ∼= OP1(1)⊕OP1(1).

This proves 2. Since D ∼= P1 × P1, we can write OD(D) ∼= OP1×P1(m, n) with
m, n ∈ Z. Then we obtain, using (B.2 (3)),

2 m n = c1 (OP1×P1(m, n))2

= c1 (OD(D))2

= c1 (OD(−1))2

= c1 (OD(1))2

= degC

(
N ∗

C/Y

)
= degP1 (OP1(1)⊕OP1(1))

= 2.
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Since OD(D) ∼= OD(−1), OD(D) has no nontrivial global sections, by [Ha77,
II, 7.11]. This implies m < 0 or n < 0, by [Ha77, II, 7.6.2]. Hence we must have
m = n = −1, i.e., OD(D) ∼= OP1×P1(−1,−1).

We summarise our results in the following

Theorem 2.7. Extremal rays R of X with corresponding contraction f = contR :
X −→ Y to a projective variety Y of dimension 3 satisfy the following:

f is birational with irreducible reduced exceptional divisor D such that f |X−D

is an isomorphism. In particular, D is uniquely determined by R and f is the
blowing-up of Y along the subvariety f(D) with its reduced structure. We distin-
guish five types of extremal rays:

type of R f and D µ `
E1 Y is nonsingular, 1 an exceptional line

C = f(D) ∼= P1,
N ∗

C/Y
∼= OP1(1)⊕OP1(1),

D ∼= P1 × P1,
OD(D) ∼= OP1×P1(−1,−1)

E2 Y is nonsingular, 2 a line on D
f(D) is a point,
D ∼= P2,
OD(D) ∼= OP2(−1),

E3 f(D) is a point, 1 P × P1 or P1 ×Q on
D ∼= P1 × P1, D (P, Q ∈ P1)
OD(D) ∼= OP1×P1(−1,−1),
P × P1 and P1 × Q are numerically
equivalent on X for all P, Q ∈ P1

E4 f(D) is a point, 1 a generator of D
D is isomorphic to an irreducible re-
duced singular quadric surface in P3,
OD(D) ∼= OD ⊗OP3(−1)

E5 f(D) is a point, 1 a line on D
D ∼= P2,
OD(D) ∼= OP3(−2)

In particular, the divisor D|D on D is always negative.

We finish the consideration of this case with two useful corollaries which we
will need later on.

Corollary 2.8. Let X be a primitive Fano threefold with an extremal ray R of
type E1, E2, E3, E4 or E5, and corresponding exceptional divisor D. Then any
curve on D can move on D.
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Proof. The claimed assertion is clear at least in case R is of type E1, E2, E3 or
E5. For then, D is isomorphic to P1 × P1 or P2 by (2.7), and the complete linear
system of any nonzero effective divisor on these surfaces has positive dimension,
by [Ha77, II, 7.8.3].

It remains to check the case R is of type E4. Then D is isomorphic to an
irreducible reduced singular quadric surface in P3, by (2.7). By the classification
of quadric hypersurfaces in [Ha77, I, Ex. 5.12], we may assume that D is defined in
P3 by the polynomial f = X2

0 + . . .+X2
r , where 0 ≤ r ≤ 3. Since D is irreducible

and singular, parts (b) and (c) of this exercise imply r = 2. Parts (c) and (d) then
show that D is isomorphic to the projective cone over the nonsingular irreducible
quadric curve C given by the polynomial f = X2

0 + X2
1 + X2

2 in P2, with vertex
a point P in P3 ([Ha77, I, Ex. 2.10]).

By [Ha77, II, Ex. 6.3 (a)], the corresponding projection π : D − P −→ C
induces an isomorphism π∗ : Cl(C) −→ Cl(D) of Weil divisor class groups. This
shows that any curve Z on D is the pull back of some nonzero effective divisor
E on C.

Since C is a curve of degree 2 on P2, g(C) = 0 by [Ha77, V, 1.5.1]. Since C is
nonsingular, it follows C ∼= P1, by [Ha77, IV, 1.3.5 and I, 6.12]. This shows that
E can move on C, by [Ha77, II, 7.8.3].

Consequently, Z can move in the pull back of the complete linear system of
E.

Corollary 2.9. Let X be a Fano threefold with an extremal ray R of type E2,
E3, E4 or E5. Then the corresponding exceptional divisor D is mapped to a point
by every morphism g : X −→ P1, if there is any.

Proof. Let us consider the restriction h = g|D : D −→ P1. By [Ha77, III, 11.5], it
has a Stein factorisation into a morphism with connected fibres from D onto some
curve, followed by a finite morphism from this curve onto P1. Hence, in order to
show that h maps D to a point, we may without loss of generality assume that h
has connected fibres. By [De, Prop. 1.14], h is uniquely determined by its relative
cone of curves, which, in our case, is a nontrivial extremal subcone of NE(D).

Now, if R is of type E2, E4 or E5, D is isomorphic to P2 or the the quadric
cone in P3, by (2.7). Hence ρ(D) = 1 ([Ha77, II, Ex. 6.5 (c)]). Then N1(D)R has
dimension 1 and the only nontrivial extremal subcone of NE(D) is NE(D) itself.
Thus h maps D to a point.

Likewise, if R is of type E3, we have an isomorphism ϕ : P1 × P1
∼=−→ D, by

(2.7). Then ρ(D) = 2, i.e. N1(D)R has dimension 2 and NE(D) has precisely 3
nontrivial extremal subcones: NE(D) itself and its two edges. Correspondingly,
h maps D to a point, or it corresponds, via ϕ, to the canonical projections
πi : P1 × P1 −→ P1 onto the i-th factor. In the latter case we may assume
without loss of generality that π1 = h ◦ ϕ. Fix arbitrary points P, Q ∈ P1.
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On the one hand,(
ϕ (P × P1) · g−1(P )

)
X

=
(
(ϕ ◦ π−1

1 )(P )) · g−1(P )
)

X

=
(
h−1(P ) · g−1(P )

)
X

= 0.

On the other hand, we know from (2.7) that ϕ (P × P1) and ϕ (P1 × Q),
considered as curves on X, are numerically equivalent. Thus we get(

ϕ (P × P1) · g−1(P )
)

X
=

(
ϕ (P1 ×Q) · g−1(P )

)
X

=
(
ϕ (P1 ×Q) · h−1(P )

)
D

=
(
(ϕ ◦ π−1

2 )(Q) · (ϕ ◦ π−1
1 )(P )

)
D

=
(
π−1

2 (Q) · π−1
2 (P )

)
P1×P1

= 1,

which is a contradiction. Hence this latter case cannot occur.

Case dim(Y) = 2. By (3.5.1) of [Mo, Thm. 3.5], Y is nonsingular and f :
X −→ Y is a conic bundle (cf. appendix B). The following result will enable us
to characterise this conic bundle more precisely.

Lemma 2.10. The surface Y is rational.

Proof. We are going to apply Castelnuovo’s criterion [BPV, VI, 2.1].
First, since f : X −→ Y is a Mori contraction, we obtain for the irregu-

larity q(Y ) of Y q(Y ) = h1(Y,OY ) = h1(X,OX), by (2.4). Since X is Fano,
h1(X,OX) = 0 by (2.2 (1)). Hence q(Y ) = 0.

Now we consider the second plurigenus P2(Y ) = h0(Y, 2 KY ) of Y and show
that it also vanishes.

Since Y is projective, there exists a very ample divisor H on Y . Then it will
be enough to prove that (KY ·H) < 0. For if we suppose that h0(Y, 2 KY ) 6= 0, the
linear system |2 KY | contains an effective divisor D linearly equivalent to 2 KY

([Ha77, II, 7.7 (a)]). But then, 2 (KY ·H) = (2 KY ·H) = (D ·H) ≥ 0 since H is
ample, which is a contradiction.

Using the relation −4 KY ≡ f∗ (−KX)2 + ∆f from (B.3), we obtain by the
projection formula [De, 1.10],

−4 (KY ·H) = ((−4 KY ) ·H)

=
(
f∗ (−KX)2 ·H

)
+ (∆f ·H)

=
(
(−KX)2 · f ∗ H

)
X

+ (∆f ·H)Y .

Ampleness of −KX implies that ((−KX)2 · f ∗ H) > 0. Ampleness of H implies
that (∆f ·H) ≥ 0, since ∆f is an effective divisor by (B.3 (3)). Hence (KY ·H) < 0.

As a result, q(Y ) = P2(Y ) = 0, and the lemma is proved.
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We can distinguish whether the discriminant locus ∆f of the conic bundle
f : X −→ Y is empty or not.

In the latter case, f has a degenerate fibre, by (B.3 (4)). In this case, we
denote the type of the extremal ray R by C1.

In the first case, all the fibres of f are isomorphic to P1, by (B.3 (4)). Thus the
local-triviality theorem [BPV, I, 10.1] shows that f is a holomorphic projective
fibre bundle with fibre P1. As it is explained in [El, § 3], if the Brauer group
Br(Y ) is trivial then the bundle f is isomorphic to the projective space bundle
P(E) associated to some locally free sheaf E of rank 2 on Y . But since Y is
rational by (2.10) above, Br(Y ) = 0 (cf. [Gr]). In this case, we denote the type
of the extremal ray R by C2.

We state our results in the following

Theorem 2.11. Extremal rays R of X with corresponding contraction f =
contR : X −→ Y to a projective variety Y of dimension 2 satisfy the follow-
ing:

f is a conic bundle, and Y is a nonsingular rational surface. We distinguish
two types of extremal rays:

type of R f µ `
C1 ∆f is a nonzero effective divisor,

and f has a degenerate fibre
1 an irreducible compo-

nent of a reducible fi-
bre or a reduced part
of a multiple fibre

C2 ∆f is zero, and f is a P1-bundle
associated to some locally free
sheaf of rank 2 on Y

2 a fibre of the P1-
bundle

Corollary 2.12. Let X be a Fano threefold and f : X −→ Y the conic bundle
associated to some extremal ray R of type C1 or C2 of X, of length µ and with as-
sociated extremal rational curve `. Then all fibres of f are numerically equivalent
to (2/µ) `.

Proof. If R is of type C1, by (2.11), any degenerate fibre of f is numerically
equivalent to 2 `, and µ = 1. But all fibres of f are numerically equivalent. If R
is of type C2, any fibre is numerically equivalent to `, and µ = 2.

Case dim(Y) = 1. By (3.5.2) of [Mo, Thm. 3.5], Y is nonsingular and f :
X −→ Y is a del Pezzo fibration, i.e. every fibre of f is an irreducible reduced
surface which has negative canonical sheaf. The following result is similar to the
case dim(Y ) = 2 above.

Lemma 2.13. Y is isomorphic to P1.
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Proof. Since Y is nonsingular it is enough to show that g(Y ) = 0 ([Ha77, IV, 1.3.5
and I, 6.12]). By [Ha77, IV, 1.1], g(Y ) = h1(Y,OY ). Hence we can argue in
complete analogy to the first part of the proof of (2.10) above: Since f : X −→ Y
is a Mori contraction, we obtain g(Y ) = h1(Y,OY ) = h1(X,OX), by (2.4). Since
X is Fano, h1(X,OX) = 0 by (2.2 (1)). Hence g(Y ) = 0.

We summarise our results in the following

Theorem 2.14. Extremal rays R of X with corresponding contraction f =
contR : X −→ Y to a projective variety Y of dimension 1 satisfy the follow-
ing:

Y is isomorphic to P1. For all t ∈ P1, the fibre Xt of f is an irreducible
reduced surface such that −KXt is ample. We distinguish three types of extremal
rays:

type of R f µ `
D1 the generic fibre satisfies 1 ≤ (KXt)

2 ≤
6

1 a line on a fibre

D2 X is embedded in a P3-bundle P over
P1 such that Xt is isomorphic to an ir-
reducible reduced quadric in Pt

∼= P3,
and (KXt)

2 = 8, for all t ∈ P1

2 a line on a fibre

D3 X is isomorphic to a P2-bundle over P1,
and (KXt)

2 = 9, for all t ∈ P1

3 a line on a fibre

This completes the classification of extremal rays of X. We conclude this
chapter by using it to prove that the exact sequence of theorem 2.3 extends to a
short exact sequence. This will have a number of useful consequences.

Corollary 2.15. Let X be a primitive Fano threefold, and R an extremal ray of
X with corresponding contraction f : X −→ Y and associated extremal rational
curve `. Then there exists a split exact sequence

0 −→ Pic(Y )
f∗−→ Pic(X)

( · `)−→ Z −→ 0,

where ( · `)(D) = (D · `)X for D ∈ Pic(X). In particular,

ρ(X) = ρ(Y ) + 1.

Proof. By (2.3), we have this exact sequence, but without the zero on the right.
It remains to check that ( · `) is surjective, i.e., we have to find a divisor D on X
such that (D · `) = ±1.

If R is of type E1, E3, E4, E5, C1 or D1, then (−KX · `) = µ = 1 by (2.7),
(2.11) and (2.14).
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If R is of type E2, the exceptional divisor D on X satisfies D ∼= P2, OD(D) ∼=
OD(−1), and ` is a line on D, by (2.7). Hence (D ·`) = (D|D ·`)D = (c1(OP2(−1))·
c1(OP2(1))P2 = −1.

If R is of type C2, then, by (2.11), X is isomorphic to a P1-bundle P(E) over
Y , associated to some locally free sheaf E of rank 2 on Y . Moreover, ` is a fibre
of this bundle. Let ξ = OX(1). Then (ξ · `)X = 1 by (B.1).

If R is of type D2 or D3, we first note that the projective bundles appearing in
(2.14) are holomorphic fibre bundles by the local-triviality theorem [BPV, I, 10.1]
and hence are projective bundles associated to some locally free sheaf on P1 by
[BPV, V, 4.1]. This ensures that they carry a tautological line bundle.

If R is of type D2, then, by (2.14), X is embedded in a P3-bundle P over P1

such that Xt is an irreducible reduced quadric in Pt
∼= P3 for all t ∈ P3. Let E

be the divisor on X corresponding to OX(1) = OP (1) ⊗OX . Since ` is any line
in Xt ⊂ P3, we obtain (E · `) = (c1(OP3(1)) · `)P3 = 1.

If R is of type D3, then, by(2.14), X is a P2-bundle over P1, and ` is a line on
Xt

∼= P2. Then (c1(OX(1)) · `) = (c1(OP2) · `)P2 = 1.
By [SchSt, 42.12], this short exact sequence splits.
Analogously, we can use the divisor D on X satisfying (D · `) = ±1 to obtain

an exact sequence 0 −→ N1(Y )Z
f∗−→ N1(X)Z

( · `)−→ Z −→ 0. Hence ρ(X) =
ρ(Y ) + 1.

Corollary 2.16. Let X be a primitive Fano threefold with an extremal ray of
type D1, D2 or D3. Then ρ(X) = 2.

Proof. By (2.14), Y ∼= P1. Hence ρ(Y ) = 1, so ρ(X) = 2 by (2.15).

Corollary 2.17. Let X be a primitive Fano threefold with ρ(X) = 2, and let
R be an extremal ray of X with corresponding contraction f : X −→ Y . Then
Pic(Y ) is free of rank 1, generated by an ample divisor L on Y .

Proof. We have an exact sequence as in (2.15) above. Since ρ(X) = 2, this
shows, by (2.2 (4)), that Pic(Y ) is isomorphic to a subgroup of rank 1 of Pic(X),
by ([SchSt, 51.10]). Moreover, since Pic(X) is torsion-free by (2.2 (5)), it is free.
Hence Pic(Y ) is also free, by [SchSt, 39.6].

By (2.3), Y is projective, so it carries an ample divisor. Since Pic(Y ) ∼= Z, we
can fix a generator L of Pic(Y ) in such a way that this ample divisor is linearly
equivalent to some positive multiple of L. Then, by [Ha77, II, 7.5], L itself must
be ample.

Corollary 2.18. Let X be a primitive Fano threefold with ρ(X) = 2. Then X
has no extremal ray of type E1.

Proof. Assume to the contrary. Then there is an extremal ray R of type E1,
and f = contR : X −→ Y is the blowing-up of Y along a nonsingular curve C,
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by (2.7). We will show that Y is Fano. Then X is not primitive, which is a
contradiction.

So let us consider −KY . Since Y is projective, there exists an ample divisor
H on Y corresponding to the embedding of Y into some projective space PN .
Since Pic(Y ) ∼= Z we can write −KY ∼ α H, α ∈ Z. Now Bertini’s theorem
[Ha77, II, 8.18] shows that on cutting Y successively with two sufficiently general
hyperplanes in PN , one obtains a curve Z in Y which is disjoint from C. In
particular, its strict transform Z̃ under the blowing-up f is disjoint from the
exceptional divisor D of f . By (B.4 (1)), −KX ∼ f ∗ (−KY ) − D. Since f :
X−D −→ Y −C is an isomorphism by (2.7), we therefore obtain by the projection
formula [De, 1.10](

(−KX) · Z̃
)

X
=

(
f ∗ (−KY ) · Z̃

)
X
−

(
D · Z̃

)
X

=
(
(−KY ) · f∗(Z̃)

)
Y

= ((−KY ) · Z)Y

= α (H · Z)Y .

Here, ((−KX) · Z̃)X and (H ·Z)Y are positive since −KX and H are ample. This
implies that α > 0. Since −KY ∼ α H, −KY is therefore ample by [Ha77, II, 7.5],
i.e. Y is Fano.
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3 A first characterisation of primitive Fano three-

folds with b2 ≥ 2

The purpose of this chapter is to give a first characterisation of primitive Fano
threefolds with b2 ≥ 2. Using the classification of extremal rays from section 2.3
we establish the existence of certain contractions on a primitive Fano threefold
with b2 ≥ 2, depending on the value of b2. It will turn out that b2 is always 2 or
3.

A precise statement of these results is given in the following theorem, which will
serve as a starting point for the actual classification of primitive Fano threefolds
with b2 ≥ 2 to be carried out in chapters 4 and 5.

Theorem 3.1. Let X be a primitive Fano threefold with b2(X) ≥ 2. Then the
following holds:

1. b2(X) ≤ 3.

2. If b2(X) = 2, then X has an extremal ray of type C1 or C2. Moreover, any
contraction corresponding to an extremal ray of X of type C1 or C2 is a
conic bundle f : X −→ P2.

3. If b2(X) = 3, then there are the following two cases:

(i) X has two distinct extremal rays R1 and R2, each of type C1 or C2. The
corresponding contractions are conic bundles f1, f2 : X −→ P1 × P1.

(ii) X has an extremal ray R1 of type C1 or C2 and an extremal ray R2 of
type E1. The corresponding contractions are a conic bundle f1 : X −→
P1 × P1, and a birational morphism f2 : X −→ Y to a nonsingular
projective threefold Y with exceptional divisor D ∼= P1 × P1 such that
OD(D) ∼= OD(−1,−1).

The remainder of this chapter is devoted to the proof of this theorem.

So let X be a primitive Fano threefold with b2(X) ≥ 2. We will proceed in
several steps, starting with a review of the types of extremal rays of X.

First, we recall some facts from chapter 2. By the Cone Theorem (2.1), X
has a finite number of pairwise distinct extremal rays R1, . . . , Rn, generating the
cone NE(X). Here, Ri = R+ [`i], where [`i] ∈ N1(X)R is the class of the extremal
rational curve `i = `Ri

associated to Ri. In particular, the classes [`1], . . . , [`n]
generate the cone NE(X).
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Since b2(X) ≥ 2, the vector space N1(X)R has dimension at least 2, by (2.2).
Hence the cone NE(X) has at least 2 distinct extremal rays, i.e., we may assume
that X has two distinct extremal rays R1 and R2.

Lemma 3.2. X has an extremal ray of type C1, C2, D1, D2 or D3.

Proof. Assume to the contrary. Then, by the classification of extremal rays in
section 2.3, the rays R1, . . . , Rn are of type E1, E2, E3, E4 or E5. Let D1, . . . , Dn

denote their corresponding exceptional divisors on X. By (2.7), the Di are irre-
ducible reduced surfaces. We make the

Claim. D1 ∩Di = ∅ for all 1 < i ≤ n.

To prove the claim, let us assume to the contrary. Then Z = D1 ∩ Dj is
nonempty in X for some 1 < j ≤ n. By the dimension theorem [Ha77, I, 7.1],
every irreducible component of Z has dimension at least 1. Moreover, Z contains
no irreducible component of dimension greater than 1. For otherwise this would
imply that D1 = Dj since D1 and Dj are irreducible. But R1 and Rj are distinct
rays, so this is impossible, by (2.7) and (2.3). Hence we conclude that Z is a
curve on X.

On the one hand, Z is a curve on D1. Since D1|D1 is negative by (2.7), we
therefore obtain

(D1 · Z)X = (D1|D1 · Z)D1
< 0.

On the other hand, Z is a curve on Dj. By (2.8), we can move it on Dj out
of the intersection D1 ∩Dj to the effect that non of its components is any longer
contained in D1. Hence

(D1 · Z)X ≥ 0,

which is a contradiction. The claim is proved.

Now, since −KX is ample, −m KX is very ample for sufficiently large m
([Ha77, II, 7.6]), and induces an embedding of X into some projective space PN .
By Bertini’s theorem [Ha77, II, 8.18], there are distinct hyperplanes H1, H2 in PN

such that Ei = Hi ∩X are distinct effective divisors on X linearly equivalent to
−m KX and such that their intersection (E1 · E2) = E1 ∩ E2 is a curve on X.

Since NE(X) is generated as a cone by the classes of the curves `1, . . . , `n, we
can therefore write (E1 · E2) ≡

∑n
i=1 ai `i with nonnegative real coefficients ai.

On the one hand, we obtain

((E1 · E2) ·D1)X = a1 (`1 ·D1)X +
n∑

i=2

ai (`i ·D1)X .

Here, (`1 ·D1)X < 0 since D1|D1 is negative and `1 is a curve on D1. Moreover,
(`i ·D1)X = 0 for all i > 1 since `i is a curve in Di and Di is disjoint from D1 by
the claim above. Hence

((E1 · E2) ·D1)X ≤ 0.
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On the other hand, since E1 ∼ E2 ∼ −m KX , we obtain

((E1 · E2) ·D1)X =
(
(−m KX)2 ·D1

)
X

= m2
(
(−KX)2 ·D1

)
X

> 0

since −KX is ample on X.
This is a contradiction.

Lemma 3.3. If X has an extremal ray of type D1, D2 or D3, then it has another
one of type C1 or C2.

Proof. Without loss of generality, we may assume that the extremal ray R1 is
of type D1, D2 or D3. By (2.14), there exists a corresponding contraction f1 :
X −→ P1. By (2.16), ρ(X) = 2.

By the classification of extremal rays in section 2.3, it will be enough to show
that R2 is not of type E1, E2, E3, E4, E5, D1, D2 or D3.

First, R2 is not of type E1 since ρ(X) = 2, by (2.18).

Second, assume that R2 is of type E2, E3, E4 or E5. By (2.9), f1 : X −→ P1

maps D2 to a point. Since all the fibres of f1 are irreducible by (2.14), it follows
that D2 is a fibre of f1. Let us consider the extremal rational curve `2 on D2.

On the one hand, there is a fibre of f1 disjoint from D2. Since all fibres of f1

are numerically equivalent, this implies

(D2 · `2)X = 0.

On the other hand, D2|D2 is negative by (2.7), so

(D2 · `2)X = (D2|D2 · `2)D2
< 0.

This shows that R2 cannot be of type E2, E3, E4 or E5.

Lastly, assume that R2 is of type D1, D2 or D3. Consider the morphism f =
(f1, f2) : X −→ P1×P1, where each fi : X −→ P1 is the contraction corresponding
to the extremal ray Ri of type D1, D2 or D3. It must be finite, for otherwise
there would exist an irreducible reduced curve on X which is contained in a fibre
of f . Then this curve would be contracted by both f1 and f2. Hence, by (2.3),
the class of this curve would be contained in R1 ∩R2 = {0}, which is impossible.
But this is a contradiction, since X has dimension 3 ([Ha77, II, Ex. 3.22(b)]).

Proposition 3.4. X has an extremal ray of type C1 or C2.

Proof. This is an immediate consequence of (3.2) and (3.3).

By the proposition, we may assume without loss of generality that the extremal
ray R1 is of type C1 or C2. Then, by (2.11), its corresponding contraction f1 :
X −→ S onto a rational nonsingular projective surface S is a conic bundle.
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Our next aim is to determine this surface S. Since S is rational, one might
ask whether it is a relatively minimal model in the birational equivalence class of
rational nonsingular projective surfaces. Indeed, it will be an immediate conse-
quence of the following lemma that the answer is in the affirmative.

Lemma 3.5. The surface S contains no irreducible reduced curve which has
negative self-intersection number on S.

Proof. Suppose to the contrary. Then S contains an irreducible reduced curve E
such that E2 < 0.

Let C be a curve on X such that f1(C) = E. The existence of such a curve can
be seen as follows: Since X is projective, we can embed it into some projective
space PN . Fix a fibre of f1 over some point of E. An application of Bertini’s
theorem [Ha77, II, 8.18] to both this fibre and the surface f−1

1 (E) shows that
there exists a hyperplane H in PN meeting this fibre transversally and such that
the intersection C = H ∩ f−1

1 (E) is a curve on X. As a consequence, f1(C) is a
closed subset of E which is not a single point. Since E is irreducible, we must
therefore have f1(C) = E.

Since NE(X) is generated as a cone by the classes of the curves `1, . . . , `n, we
can write C ≡

∑n
i=1 ai `i with nonnegative real coefficients ai.

Now (f1)∗(C) is by construction some positive multiple of E. Since (E2)S < 0,
this implies

n∑
i=1

ai ((f1)∗(`i) · E)S = ((f1)∗(C) · E)S < 0.

We conclude ((f1)∗(`j) ·E)S < 0 for some j, and since `1 is contracted by f1, we
may assume without loss of generality that j = 2. So let us state explicitly

((f1)∗(`2) · E)S < 0. (19)

Since E is irreducible, this implies that

f1(`2) = E. (20)

In particular, `2 is a curve on f−1
1 (E).

Our next aim is to find out the type of the extremal ray R2.

Since E is reduced, we obtain by the projection formula [De, 1.10] and (19)
above (

`2 · f−1
1 (E)

)
X

= (`2 · f ∗1 (E))X = ((f1)∗(`2) · E)S < 0. (21)

By the classification of extremal rays in section 2.3, this implies that R2 is of
type E1, E2, E3, E4 or E5: Assume that R2 were of type C1, C2, D1, D2 or D3.
By (2.11) and (2.14), the fibres of f2 are curves resp. surfaces. Since f−1

1 (E) is
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properly contained in X we could fix an irreducible reduced curve Z which is
contained in a fibre of f2 but not contained in f−1

1 (E). Then (Z · f−1
1 (E))X ≥ 0.

Moreover, by (2.3), both classes [`2] and [Z] would lie on R2 \ {0}, so `2 would
be numerically equivalent to some positive multiple of Z. Hence(

`2 · f−1
1 (E)

)
X
≥ 0,

which contradicts (21). So R2 is of type E1, E2, E3, E4 or E5.

The exceptional divisor D2 of f2 satisfies the following

Claim. D2 = f−1
1 (E).

To prove this, let us assume to the contrary. By the dimension theorem [Ha77,
I, 7.1], every irreducible component of D2 ∩ f−1

1 (E) has dimension at least 1. By
our assumption, it will follow that D2 ∩ f−1

1 (E) is of pure dimension 1 once we
know that both D2 and f−1

1 (E) are irreducible.
This is clear for D2 by (2.7), but to verify that f−1

1 (E) is irreducible requires
some more justification: Suppose that f−1

1 (E) were reducible. By (B.3 (7)), the
discriminant locus ∆f1 of the conic bundle f1 contains E as a connected compo-
nent. Moreover, f−1

1 (E) = Z1 ∪ Z2 with irreducible reduced components Z1 and
Z2.

The fibre Xs of f1 over a generic point s of E not contained in the singular
locus of E decomposes as Xs = l1 ∪ l2, where each li is an irreducible curve on
Zi. In particular,

(l1 · Z2)X > 0.

On the other hand, the generic fibre Xs′ of f1, where s′ is a point of S not
contained in E, is disjoint from Z2, so (Xs′ ·Z2)X = 0. By (2.3), both classes [l1]
and [Xs′ ] lie on R1 \{0}, so l1 is numerically equivalent to some positive multiple
of Xs′ . Hence

(l1 · Z2)X = 0,

which is a contradiction. This shows that f−1
1 (E) is irreducible.

Now that we know that D2∩f−1
1 (E) is a curve on X, we consider the extremal

rational curve `2. By (20) above, it is contained in D2 ∩ f−1
1 (E). By (2.8), we

can move `2 on D2 out of the curve D2 ∩ f−1
1 (E). But this implies that(

`2 · f−1
1 (E)

)
X
≥ 0,

which contradicts (21). This proves the claim.

Let us now consider an irreducible component C of a special fibre Xs of f1

over some point s on E. By the claim above, C is a curve on D2. Since R2 is of
type E1, E2, E3, E4 or E5, D2|D2 is negative by (2.7), so

(C ·D2)X = (C ·D2|D2)D2
< 0.
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On the other hand, the generic fibre Xs′ of f1 over some point s′ on S not
contained in E is disjoint from f−1

1 (E). By the claim above, we therefore get
(Xs′ · D2)X = (Xs′ · f−1

1 (E))X = 0. By (2.3), both classes [C] and [Xs′ ] lie on
R1 \ {0}, so C is numerically equivalent to some positive multiple of Xs′ . This
yields

(C ·D2)X = 0,

which is a contradiction.

Corollary 3.6. The surface S is a relatively minimal model.

Proof. If this were not the case, S would contain an exceptional curve of the first
kind, that is, a nonsingular rational curve with self-intersection number −1 on S
([Ha77, V, 5.4 and 5.7]). This contradicts (3.5).

To sum up our results, we have shown that S is a nonsingular projective surface
which is a relatively minimal model in the birational equivalence class of rational
surfaces. Thus, by [Ha77, V, 5.8.2], S is isomorphic to P2 or the rational ruled
surface Xe = P(OP1 ⊕OP1(−e)) on P1, where e ≥ 0 and e 6= 1.

By [Ha77, V, 2.11.3], Xe has a section which is an irreducible reduced curve
and which has self-intersection number −e ≤ 0 on Xe. Hence, by (3.5), e can
only take the value 0. In this case, X0 is isomorphic to P1×P1 ([Ha77, V, 2.11.1]).
Thus we have proved the following result.

Proposition 3.7. The surface S is isomorphic to P2 or P1 × P1.

Now we are in a position to complete the proof of the theorem.

By (3.4), there exists a conic bundle f1 : X −→ S corresponding to an extremal
ray of type C1 or C2. By (2.15), ρ(X) = ρ(S) + 1. Using (2.2 (4)), we obtain
from this the following equation, which provides a link between b2(X) and the
type of S:

b2(X) = ρ(S) + 1.

By (3.7), S is isomorphic to either P2 or P1×P1. In the former case, ρ(S) = 1
and in the latter case, ρ(S) = 2.

This implies that b2(X) = 2 or 3, which proves the first assertion of the
theorem. Moreover, we obtain a converse to this. Namely,

if b2(X) = 2 then S ∼= P2, and

if b2(X) = 3 then S ∼= P1 × P1.
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Thus we see that in the case b2(X) = 2, any contraction f : X −→ Y
corresponding to an extremal ray of type C1 or C2 is a conic bundle with base
Y ∼= P2. This proves the second assertion of the theorem. One might wonder
why not also to consider the type of the second extremal ray R2 in order to
get more information about X. Actually, this is precisely what we are going
to do in chapter 4. We have to postpone it until later, for it will require some
supplementary results which go beyond the scope of this chapter.

But in the case b2(X) = 3, things are quite different. Here we have already
gathered enough material to give a more detailed characterisation of X by con-
sidering both extremal rays R1 and R2 of X.

In this case, the considerations above show that any contraction f : X −→ Y
corresponding to an extremal ray of type C1 or C2 is a conic bundle with base
Y ∼= P1 × P1.

We can use this to obtain more information about the other extremal ray R2,
as follows.

Proposition 3.8. If b2(X) = 3 then the extremal ray R2 is of type E1, C1 or
C2.

Proof. Since ρ(X) = b2(X) = 3 by (2.2 (3)), (2.16) shows that R2 cannot be of
type D1, D2 or D3. By the classification of extremal rays in section 2.3, it will
therefore suffice to show that R2 is not of type E2, E3, E4 or E5.

Let us assume to the contrary. Consider the exceptional divisor D2 corre-
sponding to R2. Composing our contraction f1 : X −→ P1 × P1 with the canon-
ical projections πi : P1 × P1 −→ P1 onto the i-th factor, we obtain morphisms
gi = πi ◦ f1 : X −→ P1, for i = 1, 2. By (2.9), both g1 and g2 map D2 to a point.
Consequently, the surface D2 is mapped to a point already by f1. But all the
fibres of f1 have dimension 1, so this is impossible.

Accordingly, if R2 is of type C1 or C2 there exists a corresponding contraction
which is, as we have remarked above, a conic bundle f2 : X −→ P1 × P1.

If R2 is of type E1 then, by (2.7), there exists a corresponding contraction
f2 : X −→ Y to a smooth projective threefold Y and with exceptional divisor
D ∼= P1×P1 such that OD(D) ∼= OD(−1,−1). This proves the third assertion of
the theorem.
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4 Classification of primitive Fano threefolds with

b2 = 2

Our goal in this chapter is to classify primitive Fano threefolds with b2 = 2.
In section 4.1 we establish their main properties, based on our results from the
last chapter. A key result is proposition 4.4, which plays a central role in our
classification. Specifically, this proposition will enable us to turn information on
the types of extremal rays of our Fano threefold into strong restrictions concerning
its geometry. After these preparations we work out the actual classification of
primitive Fano threefolds with b2 = 2 in section 4.2.

4.1 Primitive Fano threefolds with b2 = 2

The purpose of this section is to collect the properties of primitive Fano three-
folds with b2 = 2 that are relevant to their classification.

So let X be a primitive Fano threefold with b2(X) = 2. Then ρ(X) = 2
by (2.2 (4)), so N1(X)R ∼= R2. In particular, the cone NE(X) has two distinct
extremal rays R1 and R2.

As we have seen in chapter 2 (2.3 and 2.15), there is, for i = 1, 2, a corre-
sponding contraction

fi = contRi
: X −→ Yi

to a projective variety Yi, with lenght µi and associated extremal rational curve
`i, and an exact sequence

0 −→ Pic(Yi)
f∗i−→ Pic(X)

( ·`i)−→ Z −→ 0. (22)

By (2.17), Pic(Yi) is free of rank 1, generated by an ample divisor Li on Yi. Let
us denote by

Hi = f ∗i Li

the pull back of Li to X. It has the following property.

Lemma 4.1. Hi is a primitive element of Pic(X).

Proof. Assume to the contrary. Then Hi = r H, where H ∈ Pic(X) and r is
some integer, r > 1. Exactness of sequence (22) above then implies (H · `i) = 0,
so H is contained in f ∗i Pic(Yi). But Hi is a generator of f ∗i Pic(Yi), so Hi = r H
is impossible.
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According to (3.1), we may without loss of generality assume that R1 is of type
C1 or C2.

Moreover, R2 is not of type E1, by (2.18). By the classification of extremal
rays in section 2.3, we therefore have the cases R2 is of type E2, E3, E4, E5, C1,
C2, D1, D2 or D3.

Much of our work in this chapter will consist in running through the various
cases made up by all possible combinations of the types of R1 and R2. For our
convenience, we will therefore denote by (?− ??) the case R1 is of type ? and R2

is of type ??.

Since R1 is of type C1 or C2, H1 has the following property, which we will
frequently need.

Lemma 4.2. The divisor H1 = f ∗1 L1 on X satisfies

H2
1 ≡ 2

µ1
`1.

Proof. By (3.1), the contraction corresponding to R1 is a conic bundle f1 : X −→
P2. In particular, Li corresponds to OP2(1) on P2. Hence L2

1 is a point on P2, so
H2

1 = f ∗1 L2
1 is a fibre of f1. Hence, by (2.12), the assertion follows.

We will frequently need the following result.

Lemma 4.3. For i = 1, 2, the divisor Hi on X satisfies:

type of Ri E2 E3 or E4 E5

(c2(X) ·Hi) 24/r 24/r 45/r

Here, r is the largest integer which divides −KX+Di (resp.−KX+2 Di, 2 (−KX)+
Di) in Pic(X), where Di is the exceptional divisor of Ri, if Ri is of type E3 or
E4 (resp.E2, E5) (cf. 2.7).

type of Ri C1 C2

(c2(X) ·Hi) 6 + deg(∆fi
) 6

Here, ∆fi
denotes the discriminant locus of the conic bundle fi : X −→ P2 if Ri

is of type C1 (cf. 2.11). In this case, deg(∆fi
) > 1.

type of Ri D1 D2 D3

(c2(X) ·Hi) 12− (KXt)
2 4 3

Here, Xt denotes any fibre of fi if Ri is of type D1 (cf. 2.14).
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Proof. If Ri is of type E2, µi = 2, Di
∼= P2, ODi

(Di) ∼= ODi
(−1) and `i is a line

on Di, by (2.7). Then

((−KX + 2 Di) · `i)X = (−KX · `i)X + 2 (Di · `i)X

= µi + 2 (Di|Di
· `i)Di

= 2 + 2 (c1(OP2(−1)) · c1(OP2(1))P2

= 2 + 2 · (−1)

= 0.

By exactness of sequence (22), this implies that −KX + 2 Di is contained in
f ∗i Pic(Yi) ∼= Hi Z. By definition, r is the largest integer which divides −KX +2 Di

in Pic(X). Since Hi is a primitive element of Pic(X) by (4.1), we conclude

−KX + 2 Di ∼ r Hi.

Then we obtain, using (2.2 (2)),

(c2(X) ·Hi) = (1/r) ((c2(X) · (−KX)) + 2 (c2(X) ·Di))

= (1/r) (24 + 2 (c2(X) ·Di)) .

To compute the second summand, we use formula (2.2 (6)) which states that

(c2(X) ·Di) = 6 χ(ODi
) + 6 χ(ODi

(Di))− 2 (D3
i )− ((−KX)2 ·Di). (23)

Since Di
∼= P2, χ(ODi

) = h0(ODi
) = 1, by [Ha77, III, 5.1(b)].

Moreover, χ(ODi
(Di)) = χ(ODi

(−1)) = h0(P2,OP2(−1)) = 0.
(D3

i ) = (Di|Di
)2
Di

= (c1(OP2(−1)))2
P2 = 1.

((−KX)2 ·Di) = (−KX |Di
)2
Di

. By the adjunction formula, ODi
(KX) ∼= ODi

(KDi
−

Di) ∼= OP2(−3 + 1) ∼= OP2(−2). Hence ((−KX)2 ·Di) = c1(OP2(2))2 = 4.
Plugging these results into (23) above, we obtain (c2(X)·Di)X = 6+0−2−4 = 0.
Thus our result is

(c2(X) ·Hi) = 24/r.

If Ri is of type E3 or E4, µi = 1, Di is isomorphic to an irreducible reduced
quadric surface in P3 and ODi

(Di) ∼= OP3(−1) ⊗ ODi
, by (2.7). To see this in

case Ri is of type E3, we use the Segre embedding Di
∼= P1 × P1 ↪→ P3 ([Ha77,

I, Ex. 2.15]). Then

((−KX + Di) · `i)X = (−KX · `i)X + (Di · `i)X

= µi + (Di|Di
· `i)Di

= 1 + (Di|Di
· `i)Di

.

To compute the second summand, we have to distinguish two cases:
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If Ri is of type E3, Di
∼= P1 × P1, ODi

(Di) ∼= OP1×P1(−1,−1) and `i cor-
responds to P × P1 or P1 × Q, P, Q ∈ P1, by (2.7). Then (Di|Di

· `i)Di
=

(c1(O(−1,−1)) · (P × P1))P1×P1 = (c1(O(−1,−1)) · (P1 ×Q))P1×P1 = −1.
If Ri is of type E4, Di is isomorphic to an irreducible reduced singular quadric

surface in P3, ODi
(Di) ∼= OP3(−1)⊗ODi

and `i is a generator of Di, by (2.7). Let
Z0, Z1, Z2, Z3 be homogeneous coordinates on P3. By ([Ha77, II, Ex. 6.5(b)]), Di

is isomorphic to the cone defined by the equation Z0 Z1 = Z2
2 . Moreover, −Di|Di

corresponds to the divisor on Di obtained by intersecting Di with the hyperplane
H0 = {Z0 = 0}, and `i corresponds to the line Z1 = Z2 = 0 (cf. [Ha77, II, 6.5.2]).
This line intersects H0 transversally in the vertex of the cone Di, so we obtain
(Di|Di

· `i)Di
= −(H0 · `i ·Di)P3 = −1.

Now we can finish our calculation:

((−KX + Di) · `i)X = 1 + (Di|Di
· `i)Di

= 1− 1 = 0.

As in case R2 is of type E2 above, exactness of sequence (22) implies

−KX + Di ∼ r Hi,

and we obtain

(c2(X) ·Hi) = (1/r) (24 + (c2(X) ·Di)) .

To compute the second summand, we use again formula (2.2 (6)):

(c2(X) ·Di) = 6 χ(ODi
) + 6 χ(ODi

(Di))− 2 (D3
i )− ((−KX)2 ·Di). (24)

Since Di is a hypersurface in P3, χ(ODi
) = h0(ODi

) = 1, by [Ha77, III, Ex. 5.5 (c)].
Moreover, χ(ODi

(Di)) = h0(Di,ODi
(−1)), which is zero since the natural map

H0(P3,OP3(−1)) −→ H0(Di,ODi
(−1)) is surjective, by [Ha77, III, Ex. 5.5 (a)],

and OP3(−1) has no nontrivial global sections.
Since ODi

(Di) ∼= OP3(−1)⊗ODi
, we get (D3

i )X = (Di|Di
)2
Di

= c1(OP3(−1)⊗ODi
)2

= (c1(O(−1))2 · c1(O(2)))P3 = 2.
Likewise, ((−KX)2 · Di) = (−KX |Di

)2
Di

. Since Di is a hypersurface in P3, it is
a local complete intersection in X, by [Ha77, II, 8.22.2]. Hence we can apply
the adjunction formula. We obtain ωX ⊗ ODi

∼= ω◦
Di
⊗ ODi

(−Di), where ω◦
Di

is
the dualizing sheaf for Di. Since Di is a quadric in P3, ω◦

Di

∼= ωP3 ⊗ ODi
(Di) ∼=

OP3(−4 + 2) ⊗ ODi
∼= OP3(−2) ⊗ ODi

, by [Ha77, III, 7.11]. Hence we obtain
ODi

(−KX) ∼= OP3(2)⊗OP3(−1)⊗ODi
∼= OP3(1)⊗ODi

. Thus we obtain ((−KX)2 ·
Di)X = c1(OP3(1)⊗ODi

)2 = (c1(O(1))2 · c1(O(2)))P3 = 2.
Plugging these results into (24) above, we obtain (c2(X)·Di)X = 6+0−4−2 = 0.
Thus our result is

(c2(X) ·Hi) = 24/r.
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If Ri is of type E5, µi = 1, Di
∼= P2, ODi

(Di) ∼= ODi
(−2) and `i is a line on

Di, by (2.7). Then

((2 (−KX) + Di) · `i)X = 2 ((−KX) · `i)X + (Di · `i)X

= 2 µi + (Di|Di
· `i)Di

= 2 + (c1(OP2(−2)) · c1(OP2(1))P2

= 2− 2

= 0.

As in case R2 is of type E2 above, exactness of sequence (22) implies

2 (−KX) + Di ∼ r Hi,

and we obtain

(c2(X) ·Hi) = (1/r) (2 · 24 + (c2(X) ·Di)) .

To compute the second summand, we use again formula (2.2 (6)):

(c2(X) ·Di) = 6 χ(ODi
) + 6 χ(ODi

(Di))− 2 (D3
i )− ((−KX)2 ·Di). (25)

Since Di
∼= P2, χ(ODi

) = h0(ODi
) = 1, by [Ha77, III, 5.1(b)].

Moreover, χ(ODi
(Di)) = χ(ODi

(−2)) = h0(P2,OP2(−2)) = 0.
(D3

i ) = (Di|Di
)2
Di

= (c1OP2(−2))2
P2 = 4.

((−KX)2·Di)X = (−KX |Di
)2
Di

. By the adjunction formula, ODi
(KX) ∼= ODi

(KDi
−

Di) ∼= OP2(−3 + 2) ∼= OP2(−1). Thus we obtain ((−KX)2 ·Di)X = c1(OP2(1))2 =
1.
Plugging these results into (25) above, we obtain (c2(X)·Di)X = 6+0−8−1 = −3.
Thus our result is

(c2(X) ·Hi) = (1/r) (2 · 24− 3) = 45/r.

If Ri is of type C1 or C2, fi : X −→ P2 is a conic bundle, by (2.11). Since Li

is an ample generator of Pic(P2), it is a line on P2. In particular, Hi is effective,
so formula (2.2 (6)) yields

(c2(X) ·Hi) = 6 χ(OHi
) + 6 χ(OHi

(Hi))− 2 (H3
i )− ((−KX)2 ·Hi). (26)

By (2.5) and [Ha77, III, 5.1] we get:
χ(OHi

) = 1− χ(OP2(−Li)) = 1− χ(OP2(−1)) = 1− h0(P2,O(−1)) = 1− 0 = 1.
χ(OHi

(Hi)) = χ(OP2(Li))− 1 = χ(OP2(1))− 1 = h0(P2,O(1))− 1 =
(
2+1
2

)
− 1 =

3− 1 = 2 by [Ha77, II, 7.8.3].
Since L3

i = 0, H3
i = f ∗i L3

i = 0.
By the projection formula [De, 1.10], ((−KX)2·Hi) = ((−KX)2·f ∗i Li) = ((fi)∗(K

2
X)·
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Li)P2 . By (B.3), (fi)∗(K
2
X) ≡ −4 KP2 −∆fi

. Hence ((−KX)2 ·Hi)X = −4 (KP2 ·
Li)P2−(∆fi

·Li)P2 = −4 (c1(O(−3))·c1(O(1)))P2−(∆fi
·c1(O(1))) = 12−deg(∆fi

).
Plugging these results into (26) above, we obtain

(c2(X) ·Hi)X = 6 + 12− 0− 12 + deg(∆fi
) = 6 + deg(∆fi

).

If Ri is of type C1, then ∆fi
= OP2(a) is nonzero, by (2.11), so a > 0. If

we had a = 1, ∆fi
would be a line on P2. But this contradicts (B.3 (6)), for

fi is a Mori contraction satisfying ρ(X) = 2 = ρ(P2) + 1. Hence we must have
deg(∆fi

) = a > 1.
If Ri is of type C2, then ∆fi

= 0, by (2.11).

If Ri is of type D1, D2 or D3, fi : X −→ P1 by (2.14). Since Li is an ample
generator of Pic(P1), it is a point on P1. In particular, Hi is effective, so formula
(2.2 (6)) yields

(c2(X) ·Hi) = 6 χ(OHi
) + 6 χ(OHi

(Hi))− 2 (H3
i )− ((−KX)2 ·Hi). (27)

As in case Ri of type C1 or C2 above, we get by (2.5) and [Ha77, III, 5.1]:
χ(OHi

) = 1− χ(OP1(−Li)) = 1− χ(OP1(−1)) = 1− h0(P1,O(−1)) = 1− 0 = 1.
χ(OHi

(Hi)) = χ(OP1(Li))− 1 = χ(OP1(1))− 1 = h0(P1,O(1))− 1 =
(
1+1
1

)
− 1 =

2− 1 = 1 by [Ha77, II, 7.8.3].
Since L3

i = 0, H3
i = f ∗i L3

i = 0.
By the adjunction formula, ((−KX)2 · Hi)X = (KX |Hi

)2
Hi

= (KHi
− Hi|Hi

)2
Hi

.
Since Li is a point on P1, Hi|Hi

= 0. Moreover, Hi = f ∗i Li is a fibre of fi. Hence,
by (2.14), ((−KX)2 ·Hi)X = K2

Xt
, where Xt, t ∈ P1 is a fibre of fi.

Plugging these results into (27) above, we obtain:
If Ri is of type D1, then (c2(X) ·Hi)X = 6 + 6− 0−K2

Xt
= 12−K2

Xt
.

If Ri is of type D2, then K2
Xt

= 8 by (2.14), and thus (c2(X) · Hi)X =
6 + 6− 0− 8 = 4.

If Ri is of type D3, then K2
Xt

= 9 by (2.14), and thus (c2(X) · Hi)X =
6 + 6− 0− 9 = 3.

Now we come to the promised proposition which clarifies the structure of
Pic(X) and therefore plays a crucial role in our classification.

Proposition 4.4. {H1, H2} is a Z-basis of Pic(X) ∼= N1(X)Z, and {`1, `2} is the
corresponding dual basis of N1(X)Z. In particular,

−KX ∼ µ2 H1 + µ1 H2.

Proof. First, we check that H1 and H2 are linearly independent over R. So let

0 = λ1 H1 + λ2 H2
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with coefficients λ1, λ2 ∈ R. By exactness of sequence (22), (H1·`1) = (f ∗1 L1·`1) =
0. Hence we obtain

0 = λ1 (H1 · `1) + λ2 (H2 · `1) = λ2 (H2 · `1).

Here, (H2 · `1) is nonzero. To see this, assume to the contrary. Recall from the
beginning of this section that `1 and `2 generate N1(X)R. Hence, by exactness
of sequence (22), the functional (H2, ) would be identically zero on N1(X)R.
Since the intersection pairing ( , )X : N1(X)R × N1(X)R −→ R is nondegenerate,
the class of H2 in N1(X)Z would therefore be zero. But N1(X)Z ∼= Pic(X) by
(2.2 (3)), so we would have H2 ∼ 0, which is impossible by exactness of (22). We
conclude λ2 = 0. Likewise, λ1 = 0.

Now we prove that H1 and H2 generate Pic(X). This will require considerable
effort.

As we have just seen, H1 Z ⊕ H2 Z is a free subgroup of rank 2 of Pic(X).
Since Pic(X) is free of rank 2 by (2.2), the quotient

Pic(X) / (H1 Z⊕H2 Z) (28)

is a finite abelian group ([SchSt, 39.8]). Let a denote its order.
We claim that there is an isomorphism of groups

Pic(X) / (H1 Z⊕H2 Z) ∼= Z / (H2 · `1) Z. (29)

To see this, consider the epimorphism

Pic(X)
( ·`1)−→ Z ν1−→ Z / (H2 · `1) Z,

which is obtained by composing the third map in sequence (22) with the canonical
epimorphism. We check that it has kernel H1 Z ⊕ H2 Z. This will give us the
desired isomorphism. If H is in this kernel, (H · `1) is contained in (H2 · `1) Z.
Then (H · `1) = (α2 H2 · `1) for some α2 ∈ Z. By exactness of sequence (22),
this implies that H and α2 H2 differ by some element of f ∗1 Pic(Y1) = H1 Z. So
H = α1 H1 +α2 H2, α1 ∈ Z. Conversely, if this holds, then (H · `1) = α2 (H2 · `1),
which is mapped to zero by ν1.

Likewise, there is an isomorphism

Pic(X) / (H1 Z⊕H2 Z) ∼= Z / (H1 · `2) Z. (30)

Since Li is ample, it is nef and hence also Hi = f ∗i Li is nef, by [De, 1.25].
Thus (H1 · `2) and (H2 · `1) are both nonnegative and we deduce from (29) and
(30) that

(H1 · `2) = a = (H2 · `1). (31)
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By exactness of sequences (22),

(H1 · `1) = 0 = (H2 · `2). (32)

Recall from the above that H1 and H2 are linearly independent over R. Hence
their classes form a basis of the 2-dimensional vector space N1(X)R ∼= Pic(X)⊗R.
Thus we get a relation in Pic(X)⊗ R

−KX ∼ β1 H1 + β2 H2

with real coefficients β1, β2. Using (31) and (32), we obtain from this

µ1 = (−KX · `1)

= β1 (H1 · `1) + β2 (H2 · `1)

= β2 · a.

Likewise, we get µ2 = β1 · a. Hence the relation becomes

a (−KX) ∼ µ2 H1 + µ1 H2. (33)

Now we see from (28), (31), (32) and (33) that in order to complete the proof
of the proposition it will be enough to prove that a = 1.

The key will be the equality

24 a = a (−KX · c2(X)) = µ2 (H1 · c2(X)) + µ1 (H2 · c2(X)) , (34)

which follows from (33) and (2.2 (2)).
We will combine it with a suitable estimation of (c2(X) ·Hi). This estimation,

depending on the type of Ri, is obtained as follows:

If Ri is of type C1, then fi : X −→ P2 is a conic bundle, by (3.1). By (4.3),

(c2(X) ·Hi) = 6 + deg(∆fi
),

where ∆fi
is the discriminant locus of fi. By (2.11), ∆fi

is not empty. Hence
deg(∆fi

) > 0. By (B.3), ∆fi
≡ −4 KP2 − (fi)∗(K

2
X). So we get by the projection

formula [De, 1.10]

deg(∆fi
) = −4 deg(KP2)− deg

(
(fi)∗(K

2
X)

)
= −4 deg(OP2(−3))−

(
(fi)∗(K

2
X) · c1(OP2(1))

)
P2

= 12−
(
(−KX)2 · f ∗i c1(OP2(1))

)
X

.

Since −KX is ample, ((−KX)2 · f ∗i c1(OP2(1)))X > 0. Hence deg(∆fi
) < 12. We

obtain the estimation

7 ≤ deg(∆fi
) ≤ 17. (35)
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If Ri is of type D1, then

(c2(X) ·Hi) = 12− (KXt)
2,

where Xt is the generic fibre of fi, by (4.3) above. By (2.14), 1 ≤ (KXt)
2 ≤ 6.

Hence we get the estimation

6 ≤ (c2(X) ·Hi) ≤ 11. (36)

Since R2 is of type E2, E3, E4, E5, C1, C2, D1, D2 or D3, combining the
results of (4.3), (35) and (36) we obtain the following basic estimation:

(c2(X) ·H2) ≤ 24 or = 45 (37)

We are now going to apply this to equation (34) above in order to determine
the value of a. We have to distinguish the following cases.

Case (C1 − E3,E4,E5,C1,D1). By (2.7), (2.11) and (2.14), µ1 = µ2 = 1. So
equation (34) takes the following form:

24 a = (H1 · c2(X)) + (H2 · c2(X))

By (35), 7 ≤ (H1 · c2(X)) ≤ 17. Now we use (37): If (c2(X) ·H2) = 45, we obtain

52 = 7 + 45 ≤ 24 a ≤ 17 + 45 = 62,

which is a contradiction. Hence we must have (c2(X) ·H2) ≤ 24. Then we get

24 a ≤ 17 + 24 = 41,

which implies that a = 1.

Case (C1 − E2,C2,D2). By (2.7), (2.11) and (2.14), µ1 = 1 and µ2 = 2. So
equation (34) takes the following form:

24 a = 2 (H1 · c2(X)) + (H2 · c2(X))

We claim that a is odd. To check this, assume to the contrary. By (33),
a (−KX) ∼ 2 H1 + H2. Then H2 would be divisible by 2 in Pic(X), which is
not possible since H2 is a primitive element of Pic(X), by(4.1).

By (35), (H1 · c2(X)) ≤ 17. By (4.3), (c2(X) ·H2) ≤ 24. Hence we obtain

24 a ≤ 2 · 17 + 24 = 58.

Since a is odd, it follows that a = 1.

Case (C1 −D3). By (2.11) and (2.14), µ1 = 1 and µ2 = 3. So equation (34)
takes the following form:

24 a = 3 (H1 · c2(X)) + (H2 · c2(X))
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We claim that a is odd. To check this, we proceed as follows: By (33), a (−KX) ∼
3 H1 + H2. By (31) above, we obtain

a3 (−KX)3 = 33 (H3
1 ) + 3 · 32 (H2

1 ·H2) + 3 · 3 (H1 ·H2
2 ) + (H3

2 )

= 33 · 2 (`1 ·H2)

= 33 · 2 a.

Here we used that H3
1 = f ∗1 L3

1 = 0, and that f2 : X −→ P1 by (2.14) since R2 is
of type D3, so L2 = c1(OP1(1)) and hence H2

2 = f ∗2 L2
2 = 0. Moreover, we used

that H2
1 ≡ (2/µ1) `1 = 2 `1, by (4.2). Carrying on, we obtain

a2 (−KX)3 = 33 · 2.

This shows that a cannot be even.
By (35), (H1 · c2(X)) ≤ 17. By (4.3), (c2(X) ·H2) = 3. Hence we obtain

24 a ≤ 3 · 17 + 3 = 54.

Since a is odd, it follows that a = 1.

Case (C2 − E3,E4,E5,C1,D1). By (2.7), (2.11) and (2.14), µ1 = 2 and µ2 = 1.
So equation (34) takes the following form:

24 a = (H1 · c2(X)) + 2 (H2 · c2(X))

By (4.3), (H1 · c2(X)) = 6. Similarly to case (C1−E2, C2, D2) above, we see that
a is odd. Now we use (37):

If (c2(X) ·H2) ≤ 24, we obtain 24 a ≤ 6 + 2 · 24, i.e.,

12 a ≤ 3 + 24 = 27.

Since a is odd, it follows that a = 1.
If (c2(X) ·H2) = 45, we obtain 24 a = 6 + 2 · 45, i.e.,

12 a = 3 + 45 = 48,

which is a contradiction.

Case (C2 − E2,C2,D2). By (2.7), (2.11) and (2.14), µ1 = µ2 = 2. So equation
(34) takes the following form:

24 a = 2 (H1 · c2(X)) + 2 (H2 · c2(X))

By (4.3), (H1 · c2(X)) = 6. Now we use (4.3):
If R2 is of type E2, then (H2 · c2(X)) = 24/r, and we get

12 a = 6 + 24
r
.
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The left hand side is an integral multiple of 12, so 24/r is an odd multiple of 6,
i.e., r = 4. Hence a = 1. If R2 is of type C2 or D2, then (H2 · c2(X)) ≤ 6, and we
get

12 a ≤ 6 + 6 = 12,

which implies that a = 1.

Case (C2 −D3). By (2.11) and (2.14), µ1 = 2 and µ2 = 3. So equation (34)
takes the following form:

24 a = 3 (H1 · c2(X)) + 2 (H2 · c2(X))

By (4.3), (H1 · c2(X)) = 6 and (H2 · c2(X)) = 3. Hence we get

24 a = 3 · 6 + 2 · 3 = 24,

which implies that a = 1.

4.2 Classification of primitive Fano threefolds with b2 = 2

Now we are in a position to start with the actual classification of primitive Fano
threefolds X with b2(X) = 2. We will run through all possible configurations of
the types of R1 and R2, each time working out their geometric implications by
means of proposition 4.4.

As explained in the beginning of the previous section, if we take R1 to be of
type C1 or C2 we need to consider the cases that R2 is of type E2, E3, E4, E5,
C1, C2, D1, D2 or D3.

This will give us precisely nine types of primitive Fano threefolds with b2 = 2,
which make up the first part of the Theorem in chapter 1. A more detailed list
can be found in appendix A.

4.2.1 Case R2 is of type E2, E3, E4 or E5

We consider the case that R2 is of type E2, E3, E4 or E5. By (3.1), we are in
the following situation:

X
f2−−−→ Y

f1

y
P2

Here, f1 : X −→ P2 is a conic bundle, corresponding to the ray R1 of type C1

or C2, and f2 : X −→ Y is a contraction, corresponding to the ray R2 of type
E2, E3, E4 or E5, to a projective variety Y of dimension 3, and with exceptional
divisor D.

We will determine the structure of the conic bundle f1 by means of the divisor
D.
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Lemma 4.5. Extremal rays of X and the morphism f1|D : D −→ P2 satisfy the
following:

If R1 is of type C1, then R2 is of type E3 or E4 and f1|D is a double covering.

If R1 is of type C2, then R2 is of type E2 or E5 and f1|D is an isomorphism.

Proof. First of all, we prove that f1|D is finite and surjective. So let us assume
to the contrary. Then there exists an irreducible reduced curve C1 on D which
is contained in a fibre of f1. Since D|D is negative by (2.7), we therefore have

(D · C1)X = (D|D · C1)D < 0.

Since D is properly contained in X, there exists an irreducible reduced curve C2

in a fibre of f1 which is not contained in D. Hence (D · C2)X ≥ 0. By (2.3),
both classes [C1] and [C2] lie on R1 \{0}, so C1 is numerically equivalent to some
positive multiple of C2 and we get

(D · C1)X ≥ 0.

This is a contradiction, so f1|D must be finite. In particular, its image is a closed
subvariety of P2 of dimension 2, so f1|D is surjective.

By (2.12), the fibres of f1 are all numerically equivalent to (2/µ1) `1. Since D
is reduced by (2.7), we therefore obtain

deg(f1|D) = 2
µ1

(D · `1)X . (38)

We are now going to compute (D · `1)X .
By (4.4), −KX ∼ µ2 H1 + µ1 H2. Moreover, H2

1 ≡ (2/µ1) `1 by (4.2). Hence
we get

H2
1 ≡ 1

µ2
2

(−KX − µ1 H2)
2

≡ 1
µ2

2

(
(−KX)2 − 2µ1 (−KX) ·H2 + µ2

1 H2
2

)
. (39)

Since R2 is of type E2, E3, E4 or E5, f2(D) is a point on Y by (2.7). Now
since L2 is ample on Y , n L2 is very ample for sufficiently large n ([Ha77, II, 7.6])
and therefore obtained as a hyperplane section with respect to the corresponding
embedding of Y into some projective space. By Bertini’s theorem [Ha77, II, 8.18],
we then see that L2 is linearly equivalent to a divisor on Y which does not contain
the point f2(D). Since H2 = f ∗2 L2, we conclude that

H2 ·D ≡ 0.

Thus, using H2
1 ≡ (2/µ1) `1 and (39), we obtain

2
µ1

(`1 ·D)X = (H2
1 ·D)X = 1

µ2
2
((−KX)2 ·D)X = 1

µ2
2
(KX |D)2

D.
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As we have already remarked in the proof of (4.3), we can apply the adjunction
formula to D even in the case R2 is of type E4. We obtain OD(KX) ∼= ω◦

D ⊗
OD(−D), where ω◦

D is the dualizing sheaf for D. Thus we have

2
µ1

(`1 ·D)X = 1
µ2

2
c1 (ω◦

D ⊗OD(−D))2 . (40)

To carry on, we have to distinguish the type of R1.

If R1 is of type C1, then µ1 = 1. We will consider equation (40) for each type
of R2, using (2.7):

If R2 is of type E2, then µ2 = 2, D ∼= P2 and OD(D) ∼= OD(−1). Hence we
get

2 (`1 ·D) = 1
4

c1(OP2(−3 + 1))2 = 1.

If R2 is of type E3, then µ2 = 1, D ∼= P1 × P1 and OD(D) ∼= OD(−1,−1).
Hence we get

2 (`1 ·D) = c1(OP1×P1(−2 + 1,−2 + 1))2 = 2.

If R2 is of type E4, then µ2 = 1, D is isomorphic to an irreducible reduced
singular quadric surface in P3 and OD(D) ∼= OD⊗OP3(−1). By [Ha77, III, 7.11],
ω◦

D
∼= ωP3 ⊗ OP3(D) ⊗ OD

∼= OD ⊗ OP3(−4 + 2) ∼= OD ⊗ OP3(−2). Hence we
obtain

2 (`1 ·D) = c1 (OP3(−2 + 1)⊗OD)2

=
(
c1(O(−1))2 · c1(O(D))

)
P3

=
(
c1(O(−1))2 · c1(O(2))

)
P3

= 2.

If R2 is of type E5, then µ2 = 1, D ∼= P2 and OD(D) ∼= OD(−2). Hence we
get

2 (`1 ·D) = c1(OP3(−3 + 2))2 = 1.

Since (`1 ·D) is an integer, these equations show that R2 can only be of type
E3 or E4. Moreover, in this case, (`1 · D) = 1, so deg(f1|D) = 2 by (38) above.
This proves the first assertion.

If R1 is of type C2, then µ1 = 2 by (2.11). Assume that R2 were of type E3 or
E4. Then we would have µ2 = 1 by (2.7) and we would obtain from (4.4) above
that −KX ∼ H1 + 2 H2. Hence, by (2.2 (2)) and (4.3),

24 = (c2(X) · (−KX))

= (c2(X) ·H1) + 2 (c2(X) ·H2)

= 6 + 48
r

for some integer r, which is a contradiction. Thus R2 is of type E2 or E5. Now
we can refer to our calculations above which show that equation (40) takes the
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following forms: If R2 is of type E2, then (`1 · D) = 1, and if R2 is of type E5,
then (`1 ·D) = 1.

Thus, in this case, f1|D has degree 1 by (38) above. Hence it is bijective and
therefore an isomorphism, by (B.5).

By (4.5), the following configurations of types of extremal rays of X are
possible.

Case (C1 − E3 or E4). By (B.3 (2)), the conic bundle structure of X gives us
a natural embedding

X
ι−−−→ P = P ((f1)∗OX(−KX))yπ

P2

(41)

which establishes X as a divisor on some P2-bundle P over P2. We are now
going to exploit this fact in order to obtain a characterisation of X. First, we
have to determine this P2-bundle, i.e., we have to compute the direct image
(f1)∗OX(−KX) on P2.

We begin with the standard exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0

which yields an exact sequence

0 −→ OX(−KX −D) −→ OX(−KX) −→ OD(−KX) −→ 0.

By [Ha77, III, § 8], this induces an exact sequence

0 −→ (f1)∗OX(−KX −D) −→ (f1)∗OX(−KX) −→ (f1)∗OD(−KX)

−→ R1(f1)∗OX(−KX −D).

We claim that R1(f1)∗OX(−KX−D) vanishes: Since f1 is flat by (B.3 (1)), this
follows essentially from the semicontinuity theorem [Ha77, III, 12.9], as follows.

Let Xt denote the fibre of f1 over t ∈ P2, considered as a closed subscheme of
X. Then we have to verify that h1(Xt,OXt(−KX −D)) = 1 for all t ∈ P2.

For generic t, Xt
∼= P1 by (B.3 (4)). Since f1|D has degree 2 by (4.5), D is

reduced and Xt ≡ 2 `1 by (2.12),

degXt
((−KX−D)|Xt) = ((−KX−D)·Xt)X = 2 (−KX ·`1)X−(D·Xt)X = 2−2 = 0.

Hence we conclude that OXt(−KX −D) ∼= OXt .
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For special t ∈ ∆f1 , Xt = l1 + l2 is degenerate, where li ∼= P1, by (B.3 (4)).
Moreover, li ≡ `1 by (2.11) and, as we have seen in the proof of (4.5) above,
(D · `1)X = 1. We obtain

degli
((−KX −D)|li) = ((−KX −D) · li)X = (−KX · `1)X − (D · `1)X = 1− 1 = 0.

Hence we conclude that −KX −D is trivial along both l1 and l2, which implies
OXt(−KX −D) ∼= OXt .

Summing up, we have proved that

OXt(−KX −D) ∼= OXt (42)

for all t ∈ P2.
Since f1 is a conic bundle Xt is connected, by (B.3 (4)). Hence

h0(Xt,OXt) = 1 (43)

for all t ∈ P2. Moreover, since f1 is flat it follows from [Ha77, III, 9.10] in
combination with [Ha77, III, Ex. 5.3] that χ(OXt) = h0(Xt,OXt) − h1(Xt,OXt)
is independent of t. Hence we conclude that h1(Xt,OXt) is independent of t.
Thus we may compute its value using the generic fibre Xt

∼= P1. But then it is
immediate that h1(Xt,OXt) = 0, by [Ha77, III, 5.1].

By (42) above, this implies that h1(Xt,OXt(−KX − D)) = 0 for all t ∈ P2.
Therefore, R1(f1)∗OX(−KX −D) = 0.

Hence we have an exact sequence

0 −→ (f1)∗OX(−KX −D) −→ (f1)∗OX(−KX) −→ (f1)∗OD(−KX) −→ 0. (44)

We are now going to work out the direct images appearing in this sequence.

Note that, no matter whether R2 is of type E3 or E4, D is isomorphic to an
irreducible reduced quadric surface in P3, by (2.7). To see this in case R2 is of
type E3 we use the Segre embedding D ∼= P1×P1 ↪→ P3 ([Ha77, I, Ex. 2.15]). We
will write, for n ∈ Z, OD(n) = OP3(n) ⊗ OD. Then OD(−1,−1) corresponds to
OD(−1) if R2 is of type E3. Thus in both cases we have

OD(D) ∼= OD(−1). (45)

Recall from (4.5) that f1|D : D −→ P2 is a double covering. For our compu-
tations we will need the following

Claim. For all n ∈ Z, (f1|D)∗OP2(n) ∼= OD(n).

It will be enough to prove this for n = 1. If R2 is of type E4, D ∼= P1×P1 and
we can write (f1|D)∗OP1×P1(1) ∼= OD(a, b), a, b ∈ Z. By the projection formula
[De, 1.10],

2 a b = c1(OD(a, b))2 = deg(f1|D) · c1(OP2(1))2 = 2 · 1 = 2.
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We conclude a b = 1. If we had a, b < 0 then OD(a, b) would have no nontrivial
global sections which is impossible since OD(a, b) is the pull back of OP2(1). Thus
we must have a, b > 0, whence a = b = 1. By the above, OD(1, 1) corresponds to
OD(1).

If R2 is of type E3, the hyperplane section homomorphism Pic(P3) −→
Pic(D) is an isomorphism, by [Ha77, II, Ex. 6.2 and 6.5 (c)]. Hence we can write
(f1|D)∗OP2(1) ∼= OD(a), a ∈ Z. By the projection formula,

c1(OD(a))2 = deg(f1|D) · c1(OP2(1))2 = 2 · 1 = 2.

Since D is a quadric surface in P3,

c1(OD(a))2 = c1(OP3(a)⊗OD)2

= c1(OP3(a))2 · c1(OP3(D))

= c1(OP3(a))2 · c1(OP3(2))

= 2 a2.

Combining both equations, we conclude a2 = 1. By [Ha77, III, Ex. 5.5], the
natural map H0(P3,OP3(a)) −→ H0(D,OD(a)) is surjective. This shows that if
a < 0 then OD(a) would have no nontrivial global sections which is impossible
since OD(a) is the pull back of OP2(1). Thus we must have a > 0, whence a = 1.
The claim is proved.

Now we turn to the computation of the first sheaf in sequence (44). Combining
(42) and (43) above, we obtain that h0(Xt,OXt(−KX − D)) = 1 for all t ∈ P2.
Since f1 is flat, it follows from [Ha77, III, 12.9] that (f1)∗OX(−KX−D) is locally
free of rank 1 on P2. Hence we can write (f1)∗OX(−KX −D) ∼= OP2(k), k ∈ Z.
Then

OX(−KX −D) ∼= f ∗1 (f1)∗OX(−KX −D) ∼= f ∗1 OP2(k).

To figure out the value of k, note that by the claim above and the adjunction
formula

OD(k) ∼= (f1|D)∗OP2(k) ∼= OD(−KX −D) ∼= (ω◦
D)−1,

where ω◦
D is the dualizing sheaf for D. By [Ha77, III, 7.11],

ω◦
D
∼= ωP3 ⊗OP3(D)⊗OD

∼= OP3(−4)⊗OP3(2)⊗OD
∼= OD(−2). (46)

Hence we obtain OD(k) ∼= OD(2), so k = 2. Whence

(f1)∗OX(−KX −D) ∼= OP2(2). (47)

In order to compute the third sheaf in sequence (44), note that these cal-
culations further show that OD(−KX − D) ∼= OD(2). Combining this with
OD(D) ∼= OD(−1) from (45) we obtain

OD(−KX) ∼= OD(1).
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Using the claim above and the projection formula [Ha77, II, Ex. 5.1 (d)], we there-
fore get

(f1)∗OD(−KX) ∼= (f1)∗OD(1)
∼= (f1)∗ (OD ⊗ (f1)

∗OP2(1))
∼= (f1)∗OD ⊗OP2(1)
∼= (f1|D)∗OD ⊗OP2(1).

Since f1|D : D −→ P2 is a double covering by (4.5), it is cyclic. Hence, by
([BPV, I, 17.2]), (f1|D)∗OD

∼= OP2 ⊕ OP2(−b), where b ∈ Z such that ω◦
D
∼=

(f1|D)∗(ωP2 ⊗ OP2(b)). Since ω◦
D
∼= OD(−2) by (46) this implies, by the claim

above,

OD(−2) ∼= (f1|D)∗ (OP2(−3)⊗OP2(b)) ∼= (f1|D)∗OP2(b− 3) ∼= OD(b− 3).

We conclude b = 1, so (f1|D)∗OD
∼= OP2 ⊕OP2(−1) and we obtain

(f1)∗OD(−KX) ∼= (OP2 ⊕OP2(−1))⊗OP2(1)
∼= OP2 ⊕OP2(1). (48)

Plugging in the results of (47) and (48), sequence (44) takes the following
form:

0 −→ OP2(2) −→ (f1)∗OX(−KX) −→ OP2 ⊕OP2(1) −→ 0.

By [Ha77, III, Ex. 6.1], this sequence splits. For

Ext1(O ⊕O(1),O(2)) ∼= Ext1(O, (O ⊕O(−1))⊗O(2))
∼= Ext1(O,O(2)⊕O(1))
∼= H1(P2,O(2)⊕O(1))

by [Ha77, III, 6.3 and 6.7], and this cohomology group vanishes because the nat-
ural exact sequence on P2

0 −→ O(2) −→ O(2)⊕O(1) −→ O(1) −→ 0

induces an exact sequence in cohomology

H1(P2,O(2)) −→ H1(P2,O(2)⊕O(1)) −→ H1(P2,O(1))

whose first and third term vanishes by [Ha77, III, 5.1 (b)]. Hence we conclude

(f1)∗OX(−KX) ∼= OP2 ⊕OP2(1)⊕OP2(2).
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Embedding (41) now takes the form

X
ι−−−→ P = P(E)yπ

P2

where E = OP2 ⊕OP2(1)⊕OP2(2).

In particular, X is a divisor on P , and since Pic(P ) ∼= π∗ Pic(P2) ⊕ Z by
[Ha77, II, Ex. 7.9] we can write

OP (X) ∼= OP (n)⊗ π∗OP2(a) (49)

where n, a ∈ Z. We are now going to figure out these coefficients. First, by the
adjunction formula,

OX(−KX) ∼= OP (−KP )⊗OP (−X)⊗OX . (50)

By (B.2 (1)) we obtain

OP (−KP ) ∼= OP (3)⊗ π∗ (ωP2 ⊗ det E)−1

∼= OP (3)⊗ π∗ (OP2(−3)⊗OP2(3))
∼= OP (3), (51)

using

det E ∼=
∧3 (O ⊕O(1)⊕O(2))

∼= O ⊗O(1)⊗O(2)
∼= O(3).

By (B.3 (2)), the embedding ι : X −→ P is induced by the exact sequence

f ∗1 (f1)∗OX(−KX) −→ OX(−KX) −→ 0

on X, which implies

OX(−KX) ∼= ι∗OP (1) ∼= OP (1)⊗OX (52)

by [Ha77, II, 7.12]. Plugging in this, (51) and (49), relation (50) becomes

OP (1)⊗OX
∼= OP (3− n)⊗ π∗OP2(−a)⊗OX .

Comparing coefficients we obtain n = 2 and a = 0, whence

OP (X) ∼= OP (2). (53)
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This is the desired explicit description of X as a divisor on the bundle P = P(E).

In particular, we can use it to compute (−KX)3. In our case here, formula
(B.2 (4)) applies and we get

(−KX)3 = 2 c1(E)2 − 2 c2(E) + 4 c1(E) · c1(O) + 6 c1(E) ·KP2

+ 9 c1(O) ·KP2 + 6 K2
P2 + 3 c1(O)2.

Since E = O ⊕O(1)⊕O(2), by [Ha77, A, 3.C3 and C5]

c1(E) = c1(O) + c1(O(1)) + c1(O(2)) = c1(O(3)),

c2(E) = c1(O(1)) · c1(O(2)) = 2,

c1(O) = 0.

Thus c1(E)2 = 9. Moreover, KP2 = O(−3), so c1(E) · KP2 = −9 and K2
P2 = 9.

Plugging these results into our formula above, we obtain

(−KX)3 = 2 · 9− 2 · 2 + 4 · 0 + 6 · (−9) + 9 · 0 + 6 · 9 + 3 · 0
= 14.

We are now going to work out a more explicit description of X as a double
covering of the bundle P(OP2 ⊕OP2(1)).

Recall from the above that we have an embedding

X
ι−−−→ P = P(O ⊕O(1)⊕O(2))yπ

P2

such that X is a divisor on P linearly equivalent to OP (2). By [Ha77, II, 7.12
and Ex. 7.8], there is a section σ : P2 −→ P of the bundle P corresponding to the
natural exact sequence

0 −→ O(1)⊕O(2) −→ O ⊕O(1)⊕O(2) −→ O −→ 0 (54)

on P2 and satisfying σ∗OP (1) ∼= OP2 . Let S = σ(P2) denote its image. Then
OP (1)⊗OS

∼= (σ ◦ π|S)∗OP (1) ∼= (π|S)∗σ∗OP (1) ∼= (π|S)∗OP2
∼= OS, i.e., OP (1)

is trivial along S.
We can use this to show that X∩S = ∅. Namely, if we assume that X∩S were

not empty, it would have dimension at least 1, by [Ha77, I, 7.1], for S is a surface
and P has dimension 4. Since P is projective ([Ha77, II, 7.10]), X ∩ S would
therefore contain a curve C. Now we know from (52) that OX(−KX) ∼= OX(1),
and, as we have just seen, OS(1) ∼= OS. Hence

(−KX · C)X = (c1(OX(1)) · C)X = (c1(OS(1)) · C)S = (c1(OS) · C)S = 0.
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On the other hand,
(−KX · C)X > 0

since −KX is ample, which is a contradiction.

Now let us consider the blowing-up π̃ : P̃ −→ P of P along the section S.
To go on, we will need a local description of this blowing-up: As it is explained

in [Ha77, II, § 7], P̃ is obtained as the Proj of the sheaf of graded algebras
S =

⊕
d≥0 Id associated to the ideal sheaf I of S on P . Let U be any affine

open subset of P2. Then W = π−1(U) is an open subset of P and π̃−1(W ) ∼=
ProjS(W ). To obtain a local description of W , fix sections ξ0 ∈ O(U), ξ1 ∈
O(1)(U) and ξ2 ∈ O(2)(U) which are trivializing over U . They generate the
symmetric algebra

⊕
d≥0 Sd(O⊕O(1)⊕O(2)) locally over U , so W = π−1(U) ∼=

Proj OU [ξ0, ξ1, ξ2] ∼= P2
U . Since S is the section of P corresponding to sequence

(54) above, its restriction to W ∼= P2
U is given as the common zero locus of π∗ ξ1

and π∗ ξ2, i.e., locally over W the ideal sheaf I is generated by π∗ ξ1 and π∗ ξ2.
Using homogeneous coordinates with respect to ξ0, ξ1, ξ2 on the relative projective
space P2

U , we may therefore identify S ∩W with the single point (1, 0, 0) on P2
U .

This way of thinking of S locally as a point on the relative projective space P2
U

will automatically lead us to an alternative description of the blowing up of P
along S.

Namely, it follows from the construction above in combination with [Ha77,
II, 7.12.1] that blowing up P along S is, locally over W , the same as blowing up P2

U

in the point (1, 0, 0). Arguing in complete analogy with [Ha77, V, 2.11.4] we then
see that P2

U blown up in (1, 0, 0) is isomorphic to the P1-bundle P(O⊕O(1)) over
P1

U , where P1
U is identified with the set of points in P2

U whose first homogeneous
coordinate vanishes. Moreover, the exceptional divisor of this blowing up is a
section of P(O ⊕O(1)).

Since P1
U is identified with the P1-bundle V ′

7 |U = P(OU(1) ⊕ OU(2)) over
U , we can express our result by saying that P̃ |W is isomorphic to the bundle
P(OV ′

7 |U ⊕OV ′
7 |U (1)) over V ′

7 .
So far, we have only given local descriptions of globally existing objects. Hence

our construction above globalises and we obtain an isomorphism

P̃
∼=−−−→ N ′ = P

(
OV ′

7
⊕OV ′

7
(1)

)yπ̃

yν′

P = P(O ⊕O(1)⊕O(2)) V ′
7 = P(O(1)⊕O(2))yπ

yp′

P2 P2

(55)

under which the exceptional divisor of the blowing up of P along its section S
corresponds to a section T ′ of ν ′ : N ′ −→ V ′

7 .
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Note that since X is a divisor on P disjoint from S, X is embedded into N ′

as a divisor disjoint from T ′.
We can still simplify this situation by twisting the bundle V ′

7 = P(O(1)⊕O(2))
by O(−1). Then we get a bundle p : V7 = P(O⊕O(1)) −→ P2. By [Ha77, II, 7.9],
there is an isomorphism ϕ : V ′

7 −→ V7, commuting with the projections p′ and p,
under which OV ′

7
(1) ∼= (ϕ∗)−1OV7(1)⊗ p′∗O(1). Thus the bundle

ν ′ : N ′ = P(OV ′
7
⊕OV ′

7
(1)) −→ V ′

7

is isomorphic to the bundle

ν : N = P(OV7 ⊕OV7(1)⊗ p∗OP2(1)) −→ V7. (56)

By (B.2 (1)),

ωV7
∼= OV7(−2)⊗ p∗ (ωP2 ⊗ det(OP2 ⊕OP2(1)))
∼= OV7(−2)⊗ p∗ (OP2(−3)⊗OP2(1))
∼= OV7(−2)⊗ p∗OP2(−2).

Thus we conclude OV7(1) ⊗ p∗OP2(1) ∼= OV7(−1
2
KV7). Using this, bundle (56)

can be written as

ν : N = P
(
OV7 ⊕OV7(−1

2
KV7)

)
−→ V7.

Moreover, we write T for the image of the section T ′ under ϕ.
Modifying diagram (55) appropriately, we can now summarize our results:

There is an isomorphism

P̃
∼=−−−→ N = P

(
OV7 ⊕OV7(−1

2
KV7)

)yπ̃

yν

P = P(O ⊕O(1)⊕O(2)) V7 = P(O ⊕O(1))yπ

yp

P2 P2

(57)

under which the exceptional divisor of the blowing up of P along its section S
corresponds to a section T of the bundle ν : N −→ V7. Moreover, X is embedded
into N as a divisor disjoint from T .

Now we claim that the induced morphism ν|X : X −→ V7 is a double covering:
To see this, we first check that ν|X is finite and surjective: Consider any fibre F
of ν. Let t = (p ◦ ν)(F ) be its projection down to P2. Since F ∼= P1 contains
a point of the section T , it cannot be contained in X, for X is disjoint from
T . This shows that F intersects X in at most finitely many points, i.e., ν|X is
finite. In particular, its image is a closed subvariety of V7 of dimension 3, so ν|X
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is surjective. Next, unravelling the construction of isomorphism (57) we see that
this isomorphism takes F to a line G in the fibre Pt = π−1(t) ∼= P2 of the bundle
P . But we know from (53) that OP (X) ∼= OP (2) on P . Thus X restricts to O(2)
on the fibre Pt

∼= P2. Hence

(X · F )N = (X ·G)P = (X|Pt ·G)Pt = (c1(O(2)) ·G)P2 = 2. (58)

This shows that ν|X has degree 2.

Since ν is a double covering it is cyclic. Hence, by [BPV, I, 17.1 (iii)], its
branch locus B is the divisor on V7 determined by

OX(KX) ∼= ν∗
(
OV7(KV7)⊗OV7(

1
2
B)

)
⊗OX . (59)

In order to compute the left hand side of this relation, we need to describe X as
a divisor on N . Since Pic(N) ∼= ν∗ Pic(V7)⊕Z by [Ha77, II, Ex. 7.9], we can write

X ∼ ν∗L + n ξ

where L ∈ Pic(V7), n ∈ Z and ξ = ON(1)). Since X is disjoint from the section
T of ν, it follows that L ∼ 0. Then, intersecting with any fibre F of ν we obtain,
by (B.1) and (58), 2 = (X · F )N = n (ξ · F )N = n. Hence

ON(X) ∼= ON(2).

Moreover, by (B.2 (1)),

ωN
∼= ON(−2)⊗ ν∗

(
OV7(KV7)⊗ det

(
OV7 ⊕OV7(−1

2
KV7)

))
∼= ON(−2)⊗ ν∗OV7(

1
2
KV7).

Therefore, by the adjunction formula,

OX(KX) ∼= ωN ⊗ON(X)⊗OX

∼= ON(−2)⊗ ν∗OV7(
1
2
KV7)⊗ON(2)⊗OX

∼= ν∗OV7(
1
2
KV7)⊗OX .

Comparing with (59) we see that B ∼ −KV7 .

We can now state our final result: X is isomorphic to a double covering of
V7 = P(OP2 ⊕OP2(1)) whose branch locus is a member of | −KV7|. This is type
no. 3 in table A.1.

Case (C2 − E2 or E5). By (2.11), the conic bundle f1 is isomorphic to the
projective space bundle associated to some locally free sheaf E of rank 2 on P2.
Hence we can write

f1 : X ∼= P(E) −→ P2.
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We are now going to determine this sheaf E by means of the divisor D.

By (4.5) above, f1|D : D −→ P2 is an isomorphism. The standard exact
sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0

yields an exact sequence

0 −→ OX −→ OX(D) −→ OD(D) −→ 0.

By [Ha77, III, § 8], this induces an exact sequence

0 −→ (f1)∗OX −→ (f1)∗OX(D) −→ (f1)∗OD(D) −→ R1(f1)∗OX .

Since R1(f1)∗OX = 0 by (2.3), we arrive at an exact sequence

0 −→ (f1)∗OX −→ (f1)∗OX(D) −→ (f1)∗OD(D) −→ 0. (60)

We are now going to work out the direct images appearing in this sequence.

By [Ha77, II, 7.11], it is immediate that

(f1)∗OX
∼= OP2 . (61)

Since Pic(X) ∼= Pic(P(E)) ∼= f ∗1 Pic(P2)⊕ Z by [Ha77, II, Ex. 7.9], we can write

OX(D) ∼= f ∗1L ⊗OX(n)

where L ∈ Pic(P2) and n ∈ Z. Intersecting D with any fibre F of f1 we obtain,
by (B.1),

1 = (D · F ) = (c1(OX(D)) · F ) = (f ∗1 c1(L) · F ) + n (c1(OX(1)) · F ) = n.

Hence the projection formula [Ha77, II, Ex. 5.1 (d)] together with [Ha77, II, 7.11]
yields

(f1)∗OX(D) ∼= (f1)∗(f
∗
1L ⊗OX(1))

∼= L ⊗ (f1)∗OX(1)
∼= L ⊗ E . (62)

When computing the direct image (f1)∗OD(D) we have to bear in mind that this
sheaf depends on the type of R2. Namely, by (2.7), OD(D) ∼= OD(e), where
e = −1 if R2 is of type E2 and e = −2 if R2 is of type E5. Since f1|D is an
isomorphism we therefore obtain

(f1)∗OD(D) ∼= (f1|D)∗OD(D)
∼= (f1|D)∗OD(e)
∼= OP2(e). (63)
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Plugging in the results of (61), (62) and (63), sequence (60) takes the following
form:

0 −→ OP2 −→ L⊗ E −→ OP2(e) −→ 0

By [Ha77, III, Ex. 6.1], this sequence splits. For

Ext1(O(e),O) ∼= Ext1(O,O(−e)) ∼= H1(P2,O(−e))

by [Ha77, III, 6.7 and 6.3], and this cohomology group vanishes by the Kodaira
vanishing theorem [We, VI, 2.4] because O(−e)⊗ω−1

P2
∼= O(−e)⊗O(3) ∼= O(3−e)

is ample on P2 since e ≤ 0. Hence we conclude that

L ⊗ E ∼= OP2 ⊕OP2(e).

Then we obtain, by [Ha77, II, 7.9],

X ∼= P (E)
∼= P(L ⊗ E ⊗OP2(−e))
∼= P (OP2 ⊕OP2(−e)) . (64)

Now it remains to compute (−KX)3. In our case here, formula (B.2 (2))
applies and we get

(−KX)3 = 2 c1(O ⊕O(−e))2 − 8 c2(O ⊕O(−e)) + 6 (KP2)2.

By [Ha77, A, 3.C3 and C5],

c1(O ⊕O(−e)) = c1(O) + c1(O(−e))

= c1(O(−e)),

c2(O ⊕O(−e)) = c1(O) · c1(O(−e))

= 0.

Thus c1(O⊕O(−e))2 = e2. Moreover, (KP2)2 = c1(O(−3))2 = 9. Plugging these
results into the formula above, we obtain

(−KX)3 = 2 · e2 − 0 + 6 · 9 = 2 e2 + 54. (65)

Resubstituting the values of e into (64) and (65) we finally get:
If R2 is of type E2, then e = −1 and

X ∼= P (OP2 ⊕OP2(1)) ,

(−KX)3 = 2 · (−1)2 + 54 = 56.

This is type no. 8 in table A.1.
If R2 is of type E5, then e = −2 and

X ∼= P (OP2 ⊕OP2(2)) ,

(−KX)3 = 2 · (−2)2 + 54 = 62.

This is type no. 9 in table A.1.
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4.2.2 Case R2 is of type C1 or C2

We consider the case that R2 is of type C1 or C2. By (3.1), we are in the
following situation:

X
f2−−−→ P2

f1

y
P2

Here, f1, f2 : X −→ P2 are conic bundles corresponding to distinct rays R1 and
R2 of type C1 or C2.

We will describe X as a covering space of its image under the morphism

f = (f1, f2) : X −→ P2 × P2.

We need a couple of lemmas.

Lemma 4.6. The morphism f is finite.

Proof. Assume to the contrary. Then there exists an irreducible reduced curve
on X which is contained in a fibre of f . Then this curve is contracted by both
f1 and f2. Hence, by (2.3), the class of this curve is contained in R1 ∩R2 = {0},
which is a contradiction.

Since f is finite, f(X) is a closed subvariety of P2 × P2 of dimension 3. In
particular, it is a divisor on P2 × P2. The morphism f induces a finite morphism

f̃ : X −→ f(X).

We are going to consider the divisor

f∗(X) = deg(f̃) · f(X) (66)

on P2 × P2 (cf. [Ha77, A, § 1]).
Note that in our case here, Li = O(1) on the i-th factor of P2 × P2. Hence

Pic(P2 × P2) is generated by the divisors

Mi = π∗i Li,

i = 1, 2, where πi : P2 × P2 −→ P2 denotes the canonical projection onto the i-th
factor. In particular, f ∗Mi = (f ∗ ◦ π∗i ) Li = f ∗i Li = Hi.

Lemma 4.7. f∗(X) is linearly equivalent to the divisor

2
µ2

M1 + 2
µ1

M2.
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Proof. Since Pic(P2 × P2) is generated by the divisors Mi, we can write

f∗(X) ∼ a1 M1 + a2 M2

with coefficients a1, a2 ∈ Z. Fix a curve C1 = (point × line) on P2 × P2. By
construction, M1 ∼ (line× P2) and M2 ∼ (P2 × line), whence (M1 · C1) = 0 and
(M2 · C1) = 1. We obtain

(f∗(X) · C1)P2×P2 = a2.

Since M2
1 ·M2 ≡ (point×P2) · (P2× line) ≡ (point× line), we have M2

1 ·M2 ≡ C1.
By (4.2), H2

1 ≡ (2/µ1) `1. Hence, by the projection formula [Ha77, A, 1.A4] and
(4.4), we obtain

(f∗(X) · C1)P2×P2 =
(
f∗(X) ·M2

1 ·M2

)
P2×P2

=
(
X · (f ∗M1)

2 · f ∗M2

)
X

=
(
H2

1 ·H2

)
X

= 2
µ1

(`1 ·H2)X

= 2
µ1

.

We conclude a2 = 2/µ1. Similarly, using a curve C2 = (line × point) we obtain
a1 = 2/µ2.

Lemma 4.8. If the morphism f̃ : X −→ f(X) has degree 1, then it is an
isomorphism.

Proof. We have seen above that Y = f(X) is a subvariety of P2×P2 of dimension
3. By [Ha77, II, Ex. 3.8], f̃ : X −→ Y factors into ν ◦ g, where ν : Ỹ −→ Y is
the normalisation of Y and g : X −→ Ỹ is a surjective morphism with connected
fibres.

Since f̃ has degree 1, g is bijective und must therefore be an isomorphism,
by (B.5). This allows us to assume without loss of generality that Ỹ = X and
f̃ : X −→ Y is the normalisation of Y .

We will use duality theory to show that f̃ is an isomorphism. Namely, by [Re,
Prop. 2.11],

ω◦
X
∼= HomOY

(
f̃∗OX , ω◦

Y

)
(67)

where ω◦
X and ω◦

Y denote the dualizing sheaves for X resp.Y . By [Ha77, III, 7.12],
ω◦

X
∼= ωX . Since f̃ has degree 1, Y = f(X) = f∗(X) is a Cartier divisor on

P2 × P2. In particular, Y is a local complete intersection in P2 × P2. Hence we
obtain (cf. [Ha77, III, 7.11]), using OP2×P2(Y ) ∼= OP2×P2(2/µ2, 2/µ1) from (4.7),

ω◦
Y

∼= ωP2×P2 ⊗OP2×P2(Y )⊗OY

∼= OP2×P2(−3,−3)⊗OP2×P2

(
2
µ2

, 2
µ1

)
⊗OY

∼= OP2×P2

(
2
µ2
− 3, 2

µ1
− 3

)
⊗OY . (68)
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In particular, ω◦
Y is an invertible sheaf on Y .

Since Y is a local complete intersection in P2×P2, it satisfies the S2-condition
(cf. [Re, 2.2]). Hence, by [Re, Prop. 2.3], (67) implies the subadjunction formula

f̃ ∗K◦
Y ∼ KX + C. (69)

Here, KX and K◦
Y denote the divisors corresponding to the dualizing sheaves ωX

and ω◦
Y , and C is the divisor corresponding to the conductor ideal sheaf of the

normalisation f (cf. [Re, 2.1]). We can rewrite (68) as

K◦
Y ∼

(
2
µ2
− 3

)
M1|Y +

(
2
µ1
− 3

)
M2|Y .

Hence we get

f̃ ∗K◦
Y ∼

(
2
µ2
− 3

)
f̃ ∗M1 +

(
2
µ1
− 3

)
f̃ ∗M2

∼
(

2
µ2
− 3

)
H1 +

(
2
µ1
− 3

)
H2. (70)

Moreover, by (4.4)

KX ∼ −µ2 H1 − µ1 H2. (71)

Since Ri is of type C1 or C2, µi only takes the values 1 or 2, by (2.11). Hence 2/µi−
3 = −µi, for i = 1, 2. Thus, comparing (70) and (71) we see that f̃ ∗K◦

Y ∼ KX ,
so C in (69) must be zero. But this means that the normalisation f̃ : X −→ Y
actually is an isomorphism.

Lemma 4.9. (−KX)3 = 6 (µ2
1 + µ2

2)

Proof. By (4.4), −KX ∼ µ2 H1 +µ1 H2. Since Li is a line on P2, H3
i = (f ∗i Li)

3 =
f ∗i (L3

i ) = 0. By (4.2), H2
i ≡ (2/µi) `i. Hence, by (4.4),

(−KX)3 = (µ2 H1 + µ1 H2)
3

= µ3
2 H3

1 + 3 µ2
2 µ1 H2

1 ·H2 + 3 µ2 µ2
1 H1 ·H2

2 + µ3
1 H3

2

= 3 µ2
2 µ1 · 2

µ1
(H2 · `1) + 3 µ2 µ2

1 · 2
µ2

(H1 · `2)

= 6
(
µ2

1 + µ2
2

)
.

We now come to the actual classification. Since R1 and R2 are of type C1 or
C2, the possible types of extremal rays of X are as follows.
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Case (C1 −C1). In this case, µ1 = µ2 = 1 by (2.11). Hence, by (66) and (4.7),

deg(f̃) · f(X) = f∗(X) ∼ 2 M1 + 2 M2.

Since M1 and M2 form a basis of Pic(P2 × P2), this implies that deg(f̃) is either
1 or 2.

In the former case, f(X) ∼ 2 M1 + 2 M2 and f̃ : X −→ f(X) is an isomor-
phism, by (4.8). Hence X is isomorphic to a nonsingular divisor on P2 × P2 of
bidegree (2, 2).

In the latter case, W6 = f(X) ∼ M1 + M2 is a divisor on P2 × P2 of bidegree
(1, 1) and f̃ : X −→ W6 is a double covering.

Claim. W6 is nonsingular.

Suppose not and aim for contradiction. First, note that both π1|W6 and π2|W6

are equidimensional of dimension 1. To see this, recall that W6 = f(X) and
f = (f1, f2) : X −→ P2 × P2. Then, since f is finite, any fibre of f1 is mapped to
a curve by f2, and vice versa.

W6 is defined by a nonzero polynomial H(z, w), bihomogeneous of bidegree
(1, 1) on P2×P2, where z = (z0, z1, z2) resp.w = (w0, w1, w2) denote homogeneous
coordinates on the factors of P2 × P2. We may without loss of generality assume
that W6 is singular at a point (x0, y0) in the affine chart {z0 6= 0 and w0 6= 0} of
P2×P2 with local coordinates x = (x1, x2), xi = zi/z0 and y = (y1, y2), yi = wi/w0.
In this chart, W6 is defined by the polynomial H̃(x, y), obtained by dehomoge-

nizing H(z, w). By [Ha77, I, § 5], the Jacobian matrix
(
∂H̃/∂x, ∂H̃/∂y

)
is zero

at (x0, y0). Since H̃(x, y) is linear in x and y separatedly, and H̃(x0, y0) = 0, this
means that each H̃(x, y0) and H̃(x0, y), considered as a polynomial in x resp. y
only, is the zero polynomial. Hence W6 ∩ π−1

1 (x0) and W6 ∩ π−1
2 (y0) locally have

dimension 2, which is a contradiction. This proves the claim.

Since f̃ is a double covering, it is cyclic. Hence, by [BPV, I,17.1 (iii)], its
branch locus B is the divisor on W6 determined by

KX ∼ f̃ ∗
(
KW6 + 1

2
B

)
. (72)

By the adjunction formula,

KW6 ∼ (KP2×P2 + W6) |W6

∼ (−3 M1 − 3 M2 + M1 + M2) |W6

∼ −2 (M1 + M2) |W6 ,

whence

f̃ ∗KW6 ∼ −2 f̃ ∗ (M1 + M2) |W6 ∼ −2 H1 − 2 H2.
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On the other hand, by (4.4),

KX ∼ −H1 −H2.

Hence relation (72) implies that B ∼ −KW6 , i.e., f̃ is branched along a divisor
on W6 which is a member of | −KW6|.

In both cases, formula (4.9) yields

(−KX)3 = 6
(
µ2

1 + µ2
2

)
= 6 · (1 + 1) = 12.

This is type no. 2 in table A.1.

Case (C1 −C2). In this case, µ1 = 1 and µ2 = 2 by (2.11). Hence, by (66)
and (4.7),

deg(f̃) · f(X) = f∗(X) ∼ M1 + 2 M2.

This shows that deg(f) must be 1. Thus f(X) ∼ M1 +2 M2 and f̃ : X −→ f(X)
is an isomorphism, by (4.8). Hence X is isomorphic to a nonsingular divisor on
P2 × P2 of bidegree (1, 2).

Formula (4.9) yields

(−KX)3 = 6
(
µ2

1 + µ2
2

)
= 6 · (1 + 4) = 30.

This is type no. 5 in table A.1.

Case (C2 −C1). This case is equivalent to case (C1 − C2).

Case (C2 −C2). In this case, µ1 = µ2 = 2 by (2.11). Hence, by (66) and (4.7),

deg(f̃) · f(X) = f∗(X) ∼ M1 + M2.

This implies deg(f) = 1. Thus f(X) ∼ M1 + M2 and f̃ : X −→ f(X) is
an isomorphism, by (4.8). Hence X is isomorphic to a nonsingular divisor on
P2 × P2 of bidegree (1, 1).

Formula (4.9) yields

(−KX)3 = 6
(
µ2

1 + µ2
2

)
= 6 · (4 + 4) = 48.

This is type no. 6 in table A.1.

58



4.2.3 Case R2 is of type D1, D2 or D3

We consider the case that R2 is of type D1, D2 or D3. By (3.1), we are in the
following situation:

X
f2−−−→ P1

f1

y
P2

Here, f1 : X −→ P2 is a conic bundle corresponding to the ray R1 of type C1 or
C2, and f2 : X −→ P1 is a contraction corresponding to the ray R2 of type D1,
D2 or D3.

We will describe X as a covering space of P2 × P1 by means of the morphism

f = (f1, f2) : X −→ P2 × P1.

We need a couple of lemmas.

Lemma 4.10. Extremal rays of X and the morphism f : X −→ P2 × P1 satisfy
the following:

If R1 is of type C1 then R2 is of type D1 or D2 and f is a double covering.

If R1 is of type C2 then R2 is of type D3 and f is an isomorphism.

Proof. First, we prove that f is finite and surjective. So let us assume to the
contrary. Then there exists an irreducible reduced curve on X which is contained
in a fibre of f . This curve is contracted by both f1 and f2. Hence, by (2.3), the
class of this curve is contained in R1 ∩ R2 = {0}, which is a contradiction. In
particular, the image of f is a closed subvariety of P2 × P1 of dimension 3, so f
is surjective.

By (2.12), the fibres of f1 are all numerically equivalent to (2/µ1) `1. Since
L2 is a point on P1 H2 = f ∗2 (L2) is a fibre of f2. In particular, it is reduced. We
therefore obtain, by (4.4),

deg(f) = 2
µ1

(H2 · `1)X = 2
µ1

. (73)

If R1 is of type C1, then µ1 = 1 by (2.11). Assume that R2 were of type D3.
Then µ2 = 3 by (2.14) and we would obtain from (4.4) −KX ∼ 3 H1+H2. Hence,
by (2.2 (2)),

24 = (c2(X) · (−KX)) = 3 (c2(X) ·H1) + (c2(X) ·H2).

Here, (c2(X) ·H1) > 7 and (c2(X) ·H2) = 3, by (4.3). Thus we would have

24 > 3 · 7 + 3 = 24,
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which is a contradiction. Hence R2 must be of type D1 or D2. By (73), f has
degree 2.

If R1 is of type C2, then µ1 = 2 by (2.11). By (73), f has degree 1, so it
is bijective and therefore an isomorphism, by (B.5). Then X is isomorphic to
P2 × P1 and it is immediate from (2.14) that R2 is of type D3.

Lemma 4.11. (−KX)3 = 6 µ2
2

Proof. By (4.4), −KX ∼ µ2 H1 +µ1 H2. Since L1 is a line on P2, H3
1 = (f ∗1 L1)

3 =
f ∗1 (L3

1) = 0. Since L2 is a point on P1, H2
2 = 0. By (4.2), H2

1 ≡ (2/µ1) `1. Hence,
by (4.4),

(−KX)3 = (µ2 H1 + µ1 H2)
3

= µ3
2 H3

1 + 3 µ2
2 µ1 H2

1 ·H2 + 3 µ2 µ2
1 H1 ·H2

2 + µ3
1 H3

2

= 3 µ2
2 µ1 · 2

µ1
(H2 · `1)X

= 6 µ2
2.

We now come to the actual classification. Recall that Li corresponds to O(1)
on the i-th factor of P2 × P1. Hence Pic(P2 × P1) is generated by the divisors
Mi = π∗i Li, i = 1, 2, where πi denotes the canonical projection onto the i-th factor
of P2 × P1. In particular, f ∗Mi = (f ∗ ◦ π∗i ) Li = f ∗i Li = Hi.

By (4.10), we obtain the following possibilities for types of extremal rays of
X.

Case (C1 −D1). In this case, µ1 = µ2 = 1 by (2.11) and (2.14). By (4.10), f
is a double covering of P2 × P1.

Hence it is cyclic and, by [BPV, I, 17.1 (iii)], its branch locus B is the divisor
on P2 × P1 determined by

KX ∼ f ∗
(
KP2×P1 + 1

2
B

)
. (74)

Since Pic(P2 × P1) is generated by M1 and M2, we can write

B ∼ b1 M1 + b2 M2

with coefficients b1, b2 ∈ Z. Then (74) takes the form

KX ∼ f ∗
(
−3 M1 − 2 M2 + b1

2
M1 + b2

2
M2

)
∼

(
b1
2
− 3

)
f ∗M1 +

(
b2
2
− 2

)
f ∗M2

∼
(

b1
2
− 3

)
H1 +

(
b2
2
− 2

)
H2.

On the other hand, by (4.4),

KX ∼ −H1 −H2.
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Since H1 and H2 form a basis of Pic(X) by (4.4), comparing coefficients yields
b1 = 4 and b2 = 2. Thus the double covering f is branched along a divisor on
P2 × P1 of bidegree (4, 2).

Formula (4.11) yields

(−KX)3 = 6 µ2
2 = 6 · 1 = 6.

This is type no. 1 in table A.1.

Case (C1 −D2). In this case, µ1 = 1 and µ2 = 2 by (2.11) and (2.14). By
(4.10), f is a double covering of P2 × P1.

To determine its branch locus, we proceed as in case (C1 - D1) above. Namely,
the branch divisor is given by

B ∼ b1 M1 + b2 M2,

with coefficients b1, b2 ∈ Z satisfying

KX ∼
(

b1
2
− 3

)
H1 +

(
b2
2
− 2

)
H2.

On the other hand, by (4.4),

KX ∼ −2 H1 −H2.

Comparing coefficients yields b1 = b2 = 2. Thus the double covering f is branched
along a divisor on P2 × P1 of bidegree (2, 2).

Formula (4.11) yields

(−KX)3 = 6 µ2
2 = 6 · 4 = 24.

This is type no. 4 in table A.1.

Case (C2 −D3). In this case, µ1 = 1 and µ2 = 3 by (2.11) and (2.14). By
(4.10) above, f is an isomorphism, i.e., X is isomorphic to P2 × P1.

Formula (4.11) yields

(−KX)3 = 6 µ2
2 = 6 · 9 = 54.

This is type no. 7 in table A.1.
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5 Classification of primitive Fano threefolds with

b2 = 3

In this chapter we will refine the characterisation of primitive Fano threefolds
with b2 = 3 given in chapter 3 to a complete classification.

So let X be a primitive Fano threefold with b2(X) = 3. According to (3.1), X
has two distinct extremal rays R1 and R2, where R1 is of type C1 or C2 and R2

is of type C1, C2 or E1. We will run through all possible configurations of the
types of R1 and R2, each time working out their geometric implications. As in
chapter 4, we will denote by (? − ??) the case that R1 is of type ? and that R2

is of type ??.
This will give us precisely four types of primitive Fano threefolds with b2 = 3,

which make up the second part of the Theorem in chapter 1. A more detailed
list can be found in appendix A.

5.1 Case R2 is of type E1

We consider the case that R2 is of type E1. By (3.1), we are in the following
situation:

X
f2−−−→ Y

f1

y
P1 × P1

Here, f1 : X −→ P1×P1 is a conic bundle corresponding to the ray R1 of type C1

or C2, and f2 : X −→ Y is a contraction, corresponding to the ray R2 of type E1,
to a nonsingular projective threefold Y and with exceptional divisor D ∼= P1×P1

such that OD(D) ∼= OD(−1,−1).
We will determine the structure of the conic bundle f1 by means of the divisor

D.

Lemma 5.1. The morphism f1|D : D ∼= P1 × P1 −→ P1 × P1 satisfies the
following:

If R1 is of type C1, then f1|D is a double covering.

If R1 is of type C2, then f1|D is an isomorphism.

Proof. First, we prove that f1|D is finite and surjective. So let us assume to
the contrary. Then there exists an irreducible reduced curve C1 on D which is
contained in a fibre of f1. Since D|D is negative by (2.7), we therefore have

(D · C1)X = (D|D · C1)D < 0.
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Since D is properly contained in X, there exists an irreducible reduced curve C2

in a fibre of f1 which is not contained in D. Hence (D · C2)X ≥ 0. By (2.3),
both classes [C1] and [C2] lie on R1 \{0}, so C1 is numerically equivalent to some
positive multiple of C2, and we get

(D · C1)X ≥ 0.

This is a contradiction, so f1|D must be finite. In particular, its image is a closed
subvariety of P1 × P1 of dimension 2, so f1|D is surjective.

Since the fibres of f1 are all numerically equivalent to (2/µ1) `1 by (2.12) and
D is reduced by (2.7), we obtain

deg f1|D = 2
µ1

(D · `1). (75)

In order to compute (D · `1) we will express the divisor D in terms of data
corresponding to the conic bundle f1. The exact sequence of (2.15)

0 −→ Pic(P1 × P1)
f∗1−→ Pic(X)

( ·`1)−→ Z −→ 0 (76)

splits, so

Pic(X) ∼= f ∗1 Pic(P1 × P1)⊕ ZE,

where E ∈ Pic(X) such that (E · `1) = 1. Hence we can write

D ∼ f ∗1 L + a E, (77)

where L ∈ Pic(P1 × P1) and a ∈ Z. Then we get

(D3) = (f ∗1 L + a E)3 = f ∗1 L3 + 3 a (f ∗1 (L2) · E) + 3 a2(f ∗1 L · E2) + a3 E3.

Since L is a divisor on P1×P1, f ∗1 L3 = 0 and we can writeO(L) ∼= O(k, l), k, l ∈ Z.
Then L2 corresponds to 2 kl times a point on P1 × P1, so f ∗1 (L2) ≡ 2 kl F , where
F is a fibre of f1. By (2.12), F ≡ (2/µ1) `1. So we obtain f ∗1 (L2) ≡ (4 kl/µ1) `1,
whence

(D3) = 3 a · 4 kl
µ1

(E · `1) + 3 a2
(
f ∗1 L · E2

)
+ α3 E3

= 6 a · 2 kl
µ1

+ 3 a2
(
f ∗1 L · E2

)
+ a3 E3.

On the other hand, recall from (2.7) that f2 is the blowing-up of Y along a curve
C ∼= P1 with exceptional divisor D and N ∗

C/Y
∼= OP1(1) ⊕ OP1(1). Hence, by

(B.4 (3)),

(D3) = degC (N ∗
C/Y ) = degP1

(∧2 (OP1(1)⊕OP1(1))
)

= degP1 (OP1(2)) = 2.
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Combining both results, we obtain

2 = 6 a · 2 kl
µ1

+ 3 a2
(
f ∗1 L · E2

)
+ a3 E3.

This shows that a is nonzero and divides 2. Since µ1 is either 1 or 2 by (2.11),
we further see that a cannot be 2, for then the right hand side would be divisible
by 4. By (77) and exactness of sequence (76), (D · `1) = (f ∗1 L · `1)+a (E · `1) = a,
so a is positive. Hence we must have a = 1, and we obtain from (75)

deg(f1|D) = 2
µ1

(D · `1) = 2
µ1

a = 2
µ1

.

If R1 is of type C1 then µ1 = 1 by (2.11), so deg(f1|D) = 2.
If R1 is of type C2 then µ1 = 2 by (2.11), so (f1|D) has degree 1. Hence it is

bijective and therefore an isomorphism, by (B.5).

Case (C1 − E1). By (B.3 (2)), the conic bundle structure of X gives us a nat-
ural embedding

X
ι′−−−→ P ′ = P ((f1)∗OX(−KX))yπ′

P1 × P1

(78)

which establishes X as a divisor on some P2-bundle P ′ over P1 × P1. We are
now going to exploit this fact in order to obtain a characterisation of X. First,
we have to determine this P2-bundle, i.e., we have to compute the direct image
(f1)∗OX(−KX) on P1 × P1.

We begin with the standard exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0

which yields an exact sequence

0 −→ OX(−KX −D) −→ OX(−KX) −→ OD(−KX) −→ 0.

By [Ha77, III, § 8], this induces an exact sequence

0 −→ (f1)∗OX(−KX −D) −→ (f1)∗OX(−KX) −→ (f1)∗OD(−KX)

−→ R1(f1)∗OX(−KX −D).

We claim that R1(f1)∗OX(−KX−D) vanishes: Since f1 is flat by (B.3 (1)), this
follows essentially from the semicontinuity theorem [Ha77, III, 12.9], as follows.

Let Xt denote the fibre of f1 over t ∈ P1×P1, considered as a closed subscheme
of X. Then we have to verify that h1(Xt,OXt(−KX −D)) = 1 for all t ∈ P1×P1.
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For generic t, Xt
∼= P1 by (B.3 (4)). Since f1|D has degree 2 by (5.1), D is

reduced and Xt ≡ 2 `1 by (2.12),

degXt
((−KX−D)|Xt) = ((−KX−D)·Xt)X = 2 (−KX ·`1)X−(D·Xt)X = 2−2 = 0.

Hence we conclude that OXt(−KX −D) ∼= OXt .
For special t ∈ ∆f1 , Xt = l1 + l2 is degenerate, where li ∼= P1, by (B.3 (4)).

Moreover, li ≡ `1 by (2.11) and, as we have seen in the proof of (5.1), (D·`1)X = 1.
We obtain

degli
((−KX −D)|li) = ((−KX −D) · li)X = (−KX · `1)X − (D · `1)X = 1− 1 = 0.

Hence we conclude that −KX −D is trivial along both l1 and l2, which implies
OXt(−KX −D) ∼= OXt .

Summing up, we have proved that

OXt(−KX −D) ∼= OXt (79)

for all t ∈ P2.
Since f1 is a conic bundle Xt is connected, by (B.3 (4)). Hence

h0(Xt,OXt) = 1 (80)

for all t ∈ P1 × P1. Moreover, since f1 is flat it follows from [Ha77, III, 9.10] in
combination with [Ha77, III, Ex. 5.3] that χ(OXt) = h0(Xt,OXt) − h1(Xt,OXt)
is independent of t. Hence we conclude that h1(Xt,OXt) is independent of t.
Thus we may compute its value using the generic fibre Xt

∼= P1. But then it is
immediate that h1(Xt,OXt) = 0, by [Ha77, III, 5.1].

By (79) above, this implies that h1(Xt,OXt(−KX−D)) = 0 for all t ∈ P1×P1.
Therefore, R1(f1)∗OX(−KX −D) = 0.

Hence we have an exact sequence

0 −→ (f1)∗OX(−KX −D) −→ (f1)∗OX(−KX) −→ (f1)∗OD(−KX) −→ 0. (81)

We are now going to work out the direct images appearing in this sequence.

This will require us to know more about the morphism

f1|D : D ∼= P1 × P1 −→ P1 × P1.

In fact, in our case here we can give an explicit description of f1|D as follows: By
(5.1), f1|D is a double covering. In particular, it is cyclic. By [BPV, I, §17], it is
completely determined by the invertible sheaf L on P1 × P1 satisfying

ωD
∼= (f1|D)∗ (ωP1×P1 ⊗ L) .
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Writing L ∼= OP1×P1(a, b), a, b ∈ Z we obtain

OD(−2,−2) ∼= (f1|D)∗OP1×P1(a− 2, b− 2).

Since OD(−2,−2) has no nontrivial global sections, we must have a−2, b−2 < 0.
By the projection formula [De, 1.10],

c1(OD(−2,−2))2 = deg(f1|D) · c1(OP1×P1(a− 2, b− 2))2,

which implies 2 · (−2)2 = 2 · 2 (a− 2)(b− 2). Hence we conclude a = 0 and b = 1
or vice versa. For symmetry reasons, we may assume without loss of generality
that

L ∼= OP1×P1(0, 1).

We are now going to prove that f1|D equals the morphism

id× p : D ∼= P1 × P1 −→ P1 × P1,

where p : P1 −→ P1 is the double covering defined by OP1(1) (cf. [BPV, I, §17]).
By [Ha77, II, 6.9], we have the following formula:

(id× p)∗OP1×P1(α, β) ∼= OD(α, 2 β) for α, β ∈ Z. (82)

The morphism id×p is a double covering. Hence, by [BPV, I, §17], it is determined
by the invertible sheaf L′ on P1 × P1 satisfying

ωP1×P1
∼= (id× p)∗(ωP1×P1 ⊗ L′).

Writing L′ ∼= OP1×P1(a′, b′), a′, b′ ∈ Z, we obtain by (82)

OP1×P1(−2,−2) ∼= (id× p)∗OP1×P1(a′ − 2, b′ − 2)
∼= OP1×P1(a′ − 2, 2 (b′ − 2)).

We conclude a′ = 0 and b′ = 1. Hence we have L′ ∼= OP1×P1(0, 1) ∼= L, and this
implies that

f1|D = id× p, (83)

which is the desired explicit description of f1|D.

Now we come back to the sheaves in sequence (81). To compute the first
sheaf in this sequence we combine (79) and (80) to obtain h0(Xt,OXt(−KX −
D)) = 1 for all t ∈ P2. Since f1 is flat, it follows from [Ha77, III, 12.9] that
(f1)∗OX(−KX − D) is locally free of rank 1 on P1 × P1. Hence we can write
(f1)∗OX(−KX −D) ∼= OP1×P1(k, l) with k, l ∈ Z. Then

OX(−KX −D) ∼= f ∗1 (f1)∗OX(−KX −D) ∼= f ∗1 OP1×P1(k, l).
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Hence, by the adjunction formula, (83) and (82),

OD(2, 2) ∼= OD(−KD)
∼= OD(−KX −D)
∼= (f1|D)∗OP1×P1(k, l)
∼= (id× p)∗OP1×P1(k, l)
∼= OD(k, 2 l).

This implies k = 2 and l = 1, so

(f1)∗OX(−KX −D) ∼= OP1×P1(2, 1). (84)

Next, we compute (f1)∗OD(−KX). The calculation above in particular shows
that OD(−KX −D) ∼= OD(2, 2). Combining this with OD(D) ∼= OD(−1,−1), we
obtain OD(−KX) ∼= OD(1, 1). Then, by (83), the projection formula [De, 1.10]
and (82),

(f1)∗OD(−KX) ∼= (f1)∗OD(1, 1)
∼= (id× p)∗ (OD(1, 2)⊗OD(0,−1))
∼= (id× p)∗ ((id× p)∗OP1×P1(1, 1)⊗OD(0,−1))
∼= OP1×P1(1, 1)⊗ (id× p)∗OD(0,−1).

Claim. (id× p)∗OD(0,−1) ∼= OP1×P1(0,−1)⊕2

To prove this, we first compute p∗OP1(1): By [Ha77, IV, Ex. 2.6], p∗OP1(1) is
locally free of rank 2 on P1 since p has degree 2. Hence, by [Ha77, V, 2.14], we
can write p∗OP1(1) ∼= OP1(a)⊕OP1(b), a, b ∈ Z. Then

det p∗OP1(1) ∼= det(OP1(a)⊕OP1(b)) ∼= OP1(a + b).

On the other hand, p∗OP1
∼= OP1 ⊕ OP1(−1), which follows from [BPV, I, 17.2]

since p was defined by OP1(1). Thus, by [Ha77, IV, Ex. 2.6 (a)],

det p∗OP1(1) ∼= (det p∗OP1)⊗OP1(1)
∼= det (OP1 ⊕OP1(−1))⊗OP1(1)
∼= OP1(−1)⊗OP1(1)
∼= OP1 .

We conclude a+b = 0, and hence p∗OP1(1) ∼= OP1(a)⊕OP1(−a). Then, by [Ha77,
II, 6.9] and the projection formula [Ha77, II, Ex. 5.1 (d)],

p∗OP1(−1) ∼= p∗ (OP1(1)⊗OP1(−2))
∼= p∗ (OP1(1)⊗ p∗OP1(−1))
∼= p∗(OP1(1))⊗OP1(−1)
∼= (OP1(a)⊕OP1(−a))⊗OP1(−1)
∼= OP1(a− 1)⊕OP1(−a− 1).
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Hence we may assume without loss of generality that a ≥ 0. Then, using [Ha77,
II, 7.8.3], we get

0 = h0(P1,OP1(−1))

= h0(P1, p∗OP1(−1))

= h0(P1,OP1(a− 1)⊕OP1(−a− 1))

= h0(P1,OP1(a− 1)) + h0(P1,OP1(−a− 1))

=
(

a−1+1
1

)
+ 0

= a.

Thus p∗OP1(−1) ∼= OP1(−1)⊕2, and we obtain

(id× p)∗OD(0,−1) ∼= OP1 � p∗OP1(−1)
∼= OP1 �OP1(−1)⊕2

∼= OP1×P1(0,−1)⊕2.

This proves the claim.

Then, by the claim,

(f1)∗OD(−KX) ∼= OP1×P1(1, 1)⊗OP1×P1(0,−1)⊕2

∼= OP1×P1(1, 0)⊕2.

Plugging in this and (84), sequence (81) takes the following form:

0 −→ OP1×P1(2, 1) −→ (f1)∗OX(−KX) −→ OP1×P1(1, 0)⊕2 −→ 0.

By [Ha77, III, Ex. 6.1], this sequence splits. For

Ext1(O(1, 0)⊕2,O(2, 1)) ∼= Ext1(O,O(−1, 0)⊕2 ⊗O(2, 1))
∼= Ext1(O,O(1, 1)⊕2)
∼= H1(P1 × P1,O(1, 1)⊕2)

by [Ha77, III, 6.3 and 6.7], and this cohomology group vanishes because the nat-
ural exact sequence on P1 × P1

0 −→ O(1, 1) −→ O(1, 1)⊕2 −→ O(1, 1) −→ 0

induces an exact sequence in cohomology

H1(P1 × P1,O(1, 1)) −→ H1(P1 × P1,O(1, 1)⊕2) −→ H1(P1 × P1,O(1, 1))

whose first and third term is zero by the Kodaira vanishing theorem [We, VI, 2.4]
since O(1, 1)⊗ω−1

P1×P1
∼= O(1, 1)⊗O(2, 2) ∼= O(3, 3) is ample. Hence we conclude

(f1)∗OX(−KX) ∼= OP1×P1(2, 1)⊕OP1×P1(1, 0)⊕2.
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The embedding (78) now takes the form

X
ι′−−−→ P ′ = P(E ′)yπ′

P1 × P1

(85)

where E ′ = OP1×P1(2, 1)⊕OP1×P1(1, 0)⊕2.

In particular, X is a divisor on P ′, and since Pic(P ′) ∼= π′∗ Pic(P1 × P1) ⊕ Z
([Ha77, II, Ex. 7.9]) we can write

OP ′(X) ∼= OP ′(n)⊗ π′∗OP1×P1(a, b) (86)

where n, a, b ∈ Z. We are now going to figure out these coefficients. By the
adjunction formula,

OX(−KX) ∼= OP ′(−KP ′)⊗OP ′(−X)⊗OX . (87)

By (B.2 (1)), we obtain

OP ′(−KP ′) ∼= OP ′(3)⊗ π′∗ (ωP1×P1 ⊗ det E ′)−1

∼= OP ′(3)⊗ π′∗ (OP1×P1(2, 2)⊗OP1×P1(−4,−1))
∼= OP ′(3)⊗ π′∗OP1×P1(−2, 1) (88)

using

det E ′ ∼=
∧3 (

O(2, 1)⊕O(1, 0)⊕2
)

∼= O(2, 1)⊗O(1, 0)⊗O(1, 0)
∼= O(4, 1).

By (B.3 (2)), the embedding ι′ : X −→ P ′ is induced by the exact sequence

f ∗1 (f1)∗OX(−KX) −→ OX(−KX) −→ 0

on X, which implies

OX(−KX) ∼= ι′∗OP ′(1) ∼= OP ′(1)⊗OX

by [Ha77, II, 7.12]. Plugging this, (88) and (86) into relation (87), we get

OP ′(1)⊗OX
∼= OP ′(3− n)⊗ π′∗OP1×P1(−2− a, 1− b)⊗OX .

Comparing coefficients we obtain n = 2, a = −2 and b = 1, whence

OP ′(X) ∼= OP ′(2)⊗ π′∗OP1×P1(−2, 1). (89)
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This is the desired explicit description of X as a divisor on the bundle P ′ = P(E ′).
However, we can improve this description a little by twisting the bundle E ′

by M = OP1×P1(−2,−1). Let

E = E ′ ⊗M
∼=

(
O(2, 1)⊕O(1, 0)⊕2

)
⊗O(−2,−1)

∼= O ⊕O(−1,−1)⊕2

with associated P2-bundle π : P = P(E) −→ P1 × P1. Then, by [Ha77, II, 7.9],
there is an isomorphism

ϕ : P
∼=−→ P ′,

commuting with the projections π and π′ to P1 × P1. Moreover, by (86)

OP (ϕ−1(X)) ∼= ϕ∗OP ′(X)
∼= ϕ∗OP ′(2)⊗ ϕ∗ π′∗OP1×P1(−2, 1)
∼= (ϕ∗OP ′(1))⊗2 ⊗ ϕ∗ π′∗OP1×P1(−2, 1)

∼=
(
OP (1)⊗ π∗M−1

)⊗2 ⊗ π∗OP1×P1(−2, 1)
∼= OP (2)⊗ π∗M−2 ⊗ π∗OP1×P1(−2, 1)
∼= OP (2)⊗ π∗ (OP1×P1(4, 2)⊗OP1×P1(−2, 1))
∼= OP (2)⊗ π∗OP1×P1(2, 3).

For our convenience, we simply identify X with ϕ−1(X) on P . We arrive at the
following final result: There is an embedding

X
ι = ϕ−1◦ι′−−−−−→ P = P (O ⊕O(−1,−1)⊕2)yπ

P1 × P1

such that

OP (X) ∼= OP (2)⊗ π∗OP1×P1(2, 3).

It remains to compute (−KX)3. In our case here, formula (B.2 (4)) applies
and we get

(−KX)3 = 2 c1(E)2 − 2 c2(E) + 4 c1(E) · c1(F) + 6 c1(E) ·KP1×P1

+ 9 c1(F) ·KP1×P1 + 6 K2
P1×P1 + 3 c1(F)2,

where F ∼= O(2, 3). Since E = O ⊕O(−1,−1)⊕2, by [Ha77, A, 3.C3 and C5]

c1(E) = c1(O) + 2 c1(O(−1,−1)) = 2 c1(O(−1,−1)),

c2(E) = c1(O(−1,−1))2 = 2.
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Thus c1(E)2 = 8. Moreover, KP1×P1 = O(−2,−2), so c1(E) · c1(F) = −10,
c1(E) ·KP1×P1 = 8, c1(F) ·KP1×P1 = −10, K2

P1×P1 = 8 and c1(F)2 = 12. Plugging
these results into our formula above, we obtain

(−KX)3 = 2 · 8− 2 · 2 + 4 · (−10) + 6 · 8 + 9 · (−10) + 6 · 8 + 3 · 12

= 14.

This is type no. 2 in table A.2.

Case (C2 − E1). By (2.11), the conic bundle f1 is isomorphic to the projective
space bundle associated to some locally free sheaf E of rank 2 on P1 × P1. Hence
we can write

f1 : X ∼= P(E) −→ P1 × P1.

We are now going to determine this sheaf E by means of the divisor D.

By (5.1) above, f1|D : D −→ P1 × P1 is an isomorphism. The standard exact
sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0

yields an exact sequence

0 −→ OX −→ OX(D) −→ OD(D) −→ 0.

By [Ha77, III, § 8], this induces an exact sequence

0 −→ (f1)∗OX −→ (f1)∗OX(D) −→ (f1)∗OD(D) −→ R1(f1)∗OX .

Since R1(f1)∗OX = 0 by (2.3), we arrive at an exact sequence

0 −→ (f1)∗OX −→ (f1)∗OX(D) −→ (f1)∗OD(D) −→ 0. (90)

We are now going to work out the direct images appearing in this sequence.

By [Ha77, II, 7.11], it is immediate that

(f1)∗OX
∼= OP1×P1 . (91)

Since Pic(X) ∼= f ∗1 Pic(P1 × P1)⊕ Z by [Ha77, II, Ex. 7.9], we can write

OX(D) ∼= f ∗1L ⊗OX(n)

where L ∈ Pic(P1 × P1) and n ∈ Z. Intersecting D with any fibre F of f1 we
obtain, by (B.1),

1 = (D · F ) = (c1(OX(D)) · F ) = (f ∗1 c1(L) · F ) + n (c1(OX(1)) · F ) = n.
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Hence the projection formula [Ha77, II, Ex. 5.1 (d)] together with [Ha77, II, 7.11]
yields

(f1)∗OX(D) ∼= (f1)∗(f
∗
1L ⊗OX(1))

∼= L ⊗ (f1)∗OX(1)
∼= L ⊗ E . (92)

Lastly, since f1|D is an isomorphism we obtain

(f1)∗OD(D) ∼= (f1|D)∗OD(D)
∼= (f1|D)∗OD(−1,−1)
∼= OP1×P1(−1,−1). (93)

Plugging in the results of (91), (92) and (93), sequence (90) takes the following
form:

0 −→ OP1×P1 −→ L⊗ E −→ OP1×P1(−1,−1) −→ 0

By [Ha77, III, Ex. 6.1], this sequence splits. For

Ext1(O(−1,−1),O) ∼= Ext1(O,O(1, 1)) ∼= H1(P1 × P1,O(1, 1))

by [Ha77, III, 6.7 and 6.3], and this cohomology group vanishes by the Kodaira
vanishing theorem [We, VI, 2.4] because O(1, 1) ⊗ ω−1

P1×P1
∼= O(1, 1) ⊗ O(2, 2) ∼=

O(3, 3) is ample. Hence we conclude that

L ⊗ E ∼= OP1×P1 ⊕OP1×P1(−1,−1).

Then we obtain, by [Ha77, II, 7.9],

X ∼= P (E)
∼= P(L ⊗ E ⊗OP1×P1(1, 1))
∼= P (OP1×P1 ⊕OP1×P1(1, 1)) .

Now it remains to compute (−KX)3. In our case here, formula (B.2 (2))
applies and we get

(−KX)3 = 2 c1(O ⊕O(1, 1))2 − 8 c2(O ⊕O(1, 1)) + 6 (KP1×P1)2.

By [Ha77, A, 3.C3 and C5],

c1(O ⊕O(1, 1)) = c1(OP1×P1) + c1(OP1×P1(1, 1))

= c1(OP1×P1(1, 1)),

c2(O ⊕O(1, 1)) = c1(OP1×P1) · c1(OP1×P1(1, 1))

= 0.

Thus c1(O⊕O(1, 1))2 = 2. Moreover, (KP1×P1)2 = c1(O(−2,−2))2 = 8. Plugging
these results into the formula above, we obtain

(−KX)3 = 2 · 2− 0 + 6 · 8 = 52.

This is type no. 4 in table A.2.
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5.2 Case R2 is of type C1 or C2

We consider the case that R2 is of type C1 or C2. By (3.1), we are in the
following situation:

X
f2−−−→ P1 × P1

f1

y
P1 × P1

Here, f1, f2 : X −→ P1 × P1 are conic bundles corresponding to distinct rays R1

and R2 of type C1 or C2.

Before we begin, note that we may assume without loss of generality that
((P1 × P1) · f2(C1))P1×P1 > 0 for some irreducible reduced curve C1 in a fibre of
the conic bundle f1 and some point P1 ∈ P1. For, since R1 ∩R2 = {0}, it follows
by (2.3) that C1 is not contracted by f2. Hence f2(C1) is a curve on P1 × P1 and
will have positive intersection with at least one of the divisors P1×P1 or P1×Q1,
where P1, Q1 ∈ P1.

We will describe X as a covering space of P1 × P1 × P1 by means of the
morphism

f = (f1, π1 ◦ f2) : X
(f1,f2)−−−−→ (P1 × P1)× (P1 × P1)y(p1,π1◦p2)

(P1 × P1)× P1

(94)

where pi : (P1 × P1)× (P1 × P1) −→ P1 × P1 and πi : P1 × P1 −→ P1 denote the
canonical projections onto the i-th factor. We need a couple of lemmas.

Lemma 5.2. The morphism f is finite and surjective.

Proof. First, we prove that f is finite. Let us assume to the contrary. Then
there exists an irreducible reduced curve C2 on X which is contained in a fibre
of f . Hence π1 ◦ f2 maps C2 to some point P2 on P1, and we deduce from this
(f ∗2 (P2 × P1) · C2)X = 0. Moreover, C2 is contracted by f1, and so is the curve
C1 introduced above. Thus, by (2.3), both classes [C1] and [C2] lie on R1 \ {0}.
Hence C1 is numerically equivalent to some positive multiple of C2 and we get(

f ∗2
(
P2 × P1

)
· C1

)
X

= 0.

On the other hand, since ((P1 × P1) · f2(C1))P1×P1 > 0 by the above, we obtain
by the projection formula [De, 1.10](

f ∗2
(
P2 × P1

)
· C1

)
X

= ((P2 × P1) · f2(C1))P1×P1

= ((P1 × P1) · f2(C1))P1×P1

> 0,
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which is a contradiction. Hence f must be finite. In particular, its image is a
closed subvariety of P1 × P1 × P1 of dimension 3, so f is surjective.

We are now going to characterize f more closely. First, we take a look at the
discriminant loci ∆fi

of the conic bundles f1, f2 : X −→ P1 × P1. By (B.3 (3)),
we can write

∆f1 = OP1×P1(a2, a1) and ∆f2 = OP1×P1(a4, a3),

with coefficients ai ∈ Z. The somewhat mysterious ordering of these coefficients
is necessary to obtain the result of lemma 5.5 below. Since ∆fi

is effective, ai ≥ 0
for all i. If R1 is of type C1 we can say even more:

Lemma 5.3. If R1 is of type C1 then a1, a2 > 0.

Proof. To prove this, assume without loss of generality that a1 = 0. Since ∆f1

is nonzero by (2.11), we have a2 > 0. By (B.3 (2)), ∆f1 = OP1×P1(a2, 0) is a
curve on P1 × P1 with only ordinary double points. It follows that ∆f1 is the
disjoint union of a2 copies of P1. But this contradicts (B.3 (6)), for f1 is a Mori
contraction satisfying ρ(X) = 3 = ρ(P1 × P1) + 1.

According to diagram (94) above, we introduce the following divisors: On
P1 × P1, let L1 = OP1×P1(1, 0), L2 = OP1×P1(0, 1) and L3 = OP1×P1(1, 0). On
P1 × P1 × P1 × P1, we define divisors

M1 = p∗1 L1, M2 = p∗1 L2 and M3 = p∗2 L3.

Their pull backs to X will be denoted by

Hi = f ∗ Mi.

Next, we determine the degree of f . Note that the fibres of f1 are all numer-
ically equivalent to (2/µ1) `1, by (2.12). Moreover, H3 is a reduced surface in X.
Writing a = (H3 · `1), we therefore obtain, by diagram (94) above,

deg(f) = 2
µ1

(H3 · `1) = 2
µ1

a. (95)

In particular, a > 0. By (2.15), there is an exact sequence

0 −→ Pic(P1 × P1)
f∗1−→ Pic(X)

( ·`1)−→ Z −→ 0.

Thus the computation

((a (−KX)− µ1 H3) · `1) = a (−KX · `1)− µ1 (H3 · `1) = a µ1 − µ1 a = 0

shows that a (−KX)−µ1 H3 is contained in f ∗1 Pic(P1×P1). Hence, by definition
of H1 and H2, we can write

a (−KX) ∼ c1 H1 + c2 H2 + µ1 H3. (96)

The following two lemmas will help us to compute the constants a, c1 and c2.
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Lemma 5.4. The coefficients a, c1 and c2 satisfy the following:

1. a µ1 (8− a3) = 4 c1 c2

2. a (8− a1) = 4 c2

3. a (8− a2) = 4 c1

In particular, 0 ≤ ai ≤ 7 for i = 1, 2, 3. Moreover, if R1 is of type C2 then
a1 = a2 = 0; if R2 is of type C2 then a3 = 0.

Proof. 1. By (96), a (−KX) ∼ c1 H1 + c2 H2 + µ1 H3. Since H2
i = f ∗ M2

i = 0 for
all i, we get

a2 (−KX)2 ≡ 2 c1 c2 H1 ·H2 + 2 c1 µ1 H1 ·H3 + 2 c2 µ1 H2 ·H3. (97)

By (B.3), (f2)∗(K
2
X) ≡ −4 KP1×P1 − ∆f2 . Recall that ∆f2 = OP1×P1(a4, a3).

Hence, by the projection formula [De, 1.10],(
(−KX)2 ·H3

)
=

(
(−KX)2 · f ∗2 L3

)
= ((−4 KP1×P1 −∆f2) · L3)P1×P1

= ((−4 c1(O(−2,−2))− c1(O(a4, a3)) · c1(O(1, 0)))P1×P1

= 8− a3.

Since −KX is ample, this must be positive, i.e., a3 ≤ 7. Since ∆f2 is effective,
a3 ≥ 0.

Since L1 ·L2 is a point on P1×P1, H1 ·H2 = f ∗1 L1 ·L2 is numerically equivalent
to a fibre of f1. Hence, by (2.12), H1 ·H2 ≡ (2/µ1) `1, and we obtain

(H1 ·H2 ·H3) = 2
µ1

(H3 · `1) = 2
µ1

a.

Intersecting (97) with H3, we therefore get a2 (8 − a3) = 2 c1 c2 (2/µ1) a, which
proves 1. If R2 is of type C2, then ∆f2 = 0 by (2.11), so a3 = 0.

Assertions 2. and 3. are proved analogously.

Lemma 5.5. For i = 1, 2, 3, the divisor Hi satisfies

(c2(X) ·Hi) = 4 + ai.

Proof. Without loss of generality, we may consider only H1. It is an effective
divisor on X, so formula (2.2 (6)) yields

(c2(X) ·H1) = 6 χ(OH1) + 6 χ(OH1(H1))− 2 (H3
1 )− ((−KX)2 ·H1). (98)

By definition, H1 = f ∗ p∗1 L1 = f ∗1 L1. Hence we obtain, by (2.5) and Kodaira’s
vanishing theorem [We, VI, 2.4]:
χ(OH1) = 1 − χ(P1 × P1,OP1×P1(−L1)) = 1 − χ(P1 × P1,OP1×P1(−1, 0)) = 1 −
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h0(P1 × P1,OP1×P1(−1, 0)) = 1− 0 = 1.
χ(OH1(H1)) = χ(P1 × P1,OP1×P1(L1)) − 1 = χ(P1 × P1,OP1×P1(1, 0)) − 1 =
h0(P1 × P1,OP1×P1(1, 0))− 1 =

(
1+1
1

)
− 1 = 2− 1 = 1 by [Ha77, II, 7.8.3].

Since L3
1 = 0, H3

1 = f ∗1 L3
1 = 0.

We have already seen in the proof of lemma (5.4) above that ((−KX)2 · H1) =
8− a1.

Plugging these results into (98) above, we obtain

(c2(X) ·H1) = 6 + 6− 0− 8 + a1 = 4 + a1.

We now come to the actual classification. Since R1 and R2 are of type C1 or
C2, the possible types of extremal rays of X are as follows.

Case (C1 −C1 or C2). In this case, µ1 = 1 by (2.11). First, we determine the
degree of f . Using (5.5) and (2.2 (2)), relation (96) above yields

24 a = c1 (4 + a1) + c2 (4 + a2) + µ1 (4 + a3). (99)

We can rearrange the equations from (5.4) to get

a (4 + a1) = 4 (3 a− c2),

a (4 + a2) = 4 (3 a− c1),

a (4 + a3) = 4 (3 a− c1 c2).

Combining this with (99) we obtain

24 a2 = 4 c1 (3 a− c2) + 4 c2 (3 a− c1) + 4 (3 a− c1 c2)

= 12 (a (c1 + c2 + 1)− c1 c2) ,

whence

2 a2 + c1 c2 = a (c1 + c2 + 1). (100)

By (5.4), c1, c2 ≥ 1, so c1 + c2 ≤ c1 c2 + 1. Hence we get

2 a2 + c1 c2 ≤ a c1 c2 + 2a, so

2 a (a− 1) ≤ c1 c2 (a− 1).

We claim that a = 1. For otherwise a > 1, and we obtain from this 8 a ≤ 4 c1 c2.
By (5.4 (1)), 4 c1 c2 ≤ a (8 − a3) and a3 ≥ 0, so we conclude that a3 = 0. But
then, again by (5.4 (1)),

c1 c2 = 2 a (101)
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and we obtain from (100)
2 a + 1 = c1 + c2.

Combining these equations we get c1 + c2 = c1 c2 + 1. Without loss of generality,
this implies c1 = 1. Then (101) yields c2 = 2 a, so we conclude from (5.4 (2)) that
a1 = 0. But this contradicts (5.3) above, so we must have a = 1. Thus, by (95),
f has degree 2, i.e., it is a double covering of P1 × P1 × P1.

Hence it is cyclic and, by [BPV, I, 17.1 (iii)], its branch locus B is the divisor
on P1 × P1 × P1 determined by

KX ∼ f ∗
(
KP1×P1×P1 + 1

2
B

)
. (102)

Since Pic(P1 × P1 × P1) is generated by M1, M2 and M3 we can write

B ∼ b1 M1 + b2 M2 + b2 M2

with coefficients b1, b2, b3 ∈ Z. Moreover,

KP1×P1×P1 ∼ −2 M1 − 2 M2 − 2 M3.

Then (102) above takes the form

KX ∼ f ∗
(
−2 M1 − 2 M2 − 2 M2 + b1

2
M1 + b2

2
M2 + b3

2
M3

)
∼

(
b1
2
− 2

)
f ∗M1 +

(
b2
2
− 2

)
f ∗M2 +

(
b2
2
− 2

)
f ∗M2

∼
(

b1
2
− 2

)
H1 +

(
b2
2
− 2

)
H2 +

(
b2
2
− 2

)
H2.

On the other hand, since a1, a2 > 0 by (5.3), equations (5.4 (2) and (3)) then
imply that 4 ci < 8, so we obtain c1 = c2 = 1. Hence, by (96),

KX ∼ −H1 −H2 −H2.

Comparing coefficients yields b1 = b2 = b3 = 2. Thus the double covering f is
branched along a divisor on P1 × P1 × P1 of tridegree (2, 2, 2).

As in the proof of (5.4), we calculate

(−KX)3 = 6 (H1 ·H2 ·H3) = 6 · 2
µ1

a = 12.

This is type no. 1 in table A.2.

Case (C2 −C1 or C2). In this case, µ1 = 2 and a1 = a2 = 0 by (2.11).
Combining the equations from (5.4), we get

a2 (8− a1) (8− a2) = 4 a µ1 (8− a3)

which in our case here becomes 82 a2 = 8 a (8 − a3) ≤ 82 a. Since a is positive,
this implies a = 1. Hence, by (95), f has degree 1, so it is bijective. By (B.5), it
is therefore an isomorphism, i.e., X is isomorphic to P1 × P1 × P1.
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Moreover, by (5.4 (2) and (3)), c1 = c2 = 2. Thus we obtain from (96)

−KX ∼ 2 H1 + 2 H2 + 2 H3.

As in the proof of (5.4), we calculate

(−KX)3 = 8 · 6 (H1 ·H2 ·H3) = 48 · 2
µ1

a = 48.

This is type no. 3 in table A.2.

78



A Tables

The following tables are a summary of our results in chapters 4 and 5.

Table A.1. Primitive Fano threefolds X with b2(X) = 2 are classified as follows.

no. (−KX)3 type of X type of page
R1 and R2

1 6 a double covering of P2 × P1 whose
branch locus is a divisor of bidegree
(2, 4)

(C1 −D1) 60

2 12 a double covering of W6 (see no. 6)
whose branch locus is a member of
| − KW6|, or a nonsingular divisor
on P2 × P2 of bidegree (2, 2)

(C1 − C1) 57

3 14 a double covering of V7 (see no. 8)
whose branch locus is a member of
| −KV7|

(C1 − E3 or E4) 43

4 24 a double covering of P2 × P1 whose
branch locus is a divisor of bidegree
(2, 2)

(C1 −D2) 61

5 30 a nonsingular divisor on P2 × P2 of
bidegree (1, 2)

(C1 − C2) 58

6 48 W6, a nonsingular divisor on P2×P2

of bidegree (1, 1)
(C2 − C2) 58

7 54 P2 × P1 (C2 −D3) 61
8 56 V7 = P(OP2 ⊕OP2(1)) (C2 − E2) 51
9 62 P(OP2 ⊕OP2(2)) (C2 − E5) 51

Table A.2. Primitive Fano threefolds X with b2(X) = 3 are classified as follows.

no. (−KX)3 type of X type of page
R1 and R2

1 12 a double covering of P1 × P1 × P1

whose branch locus is a divisor of
tridegree (2, 2, 2)

(C1 − C1 or C2) 76

2 14 a nonsingular member of |OP (2) ⊗
π∗OP1×P1(2, 3)| on the P2-bundle

(C1 − E1) 64

P = P(OP1×P1 ⊕OP1×P1(−1,−1)⊕2)
π−→ P1 × P1

3 48 P1 × P1 × P1 (C2 − C1 or C2) 77
4 52 P(OP1×P1 ⊕OP1×P1(1, 1)) (C2 − E1) 71
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B Supplementary results

This appendix collects basic general results mainly concerning projective space
bundles, conic bundles and blow-ups of threefolds along curves.

Let Y be a nonsingular variety of dimension n and E a locally free sheaf of
rank r on Y . Following [Ha77, II, § 7], there exists an associated projective space
bundle

π : X = P (E) −→ Y

where X is a nonsingular variety of dimension n + r − 1, equipped with a tau-
tological line bundle OX(1). Let ξ ∈ A1(X) denote the class of the divisor
corresponding to OX(1).

Lemma B.1. Assume that E is of rank r = 2. Then any fibre F of the P1-bundle
X satisfies (ξ · F )X = 1.

Proof. By construction, OX(1) restricts to OP1(1) on each fibre F ∼= P1 of π :
X −→ Y ([Ha77, II, § 7]). We get (ξ · F )X = degF (OX(ξ)|F ) = degP1(OP1(1)) =
1.

Proposition B.2. Let π : X = P(E) −→ Y be the projective space bundle
associated to some locally free sheaf E of rank r on a nonsingular variety Y of
dimension n.

1. The canonical sheaf of X is given by

ωX
∼= OX(−r)⊗ π∗ (ωY ⊗ det E) .

2. If Y is of dimension n = 2 and E of rank r = 2, then

(−KX)3 = 2 c1(E)2 − 8 c2(E) + 6 (KY )2.

3. If Y is of dimension n = 1 and E of rank r = 2, then

c1(OX(1))2 = degY (E).

4. If Y is of dimension n = 2, E of rank r = 3 and D a nonsingular divisor
on X such that OX(D) ∼= OX(2)⊗ π∗F for some invertible sheaf F on Y ,
then

(−KD)3 = 2 c1(E)2 − 2 c2(E) + 4 c1(E) · c1(F) + 6 c1(E) ·KY

+ 9 c1(F) ·KY + 6 K2
Y + 3 c1(F)2.
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Proof. 1. By [Ha77, II, 8.11], there is an exact sequence

0 −→ π∗ΩY −→ ΩX −→ ΩX/Y −→ 0

on X, but without the zero on the left. However, since the projection π is locally
trivial, it is a submersion and thus the pull back π∗ on the level of one-forms is
injective. Hence the sequence is exact on the left as well. In our situation, the
sheaves in this sequence are locally free of rank n, n + r − 1, r − 1 respectively
([Ha77, II, 8.13 and 8.15]). Taking exterior powers therefore yields, by [Ha77,
II, Ex. 5.16 (d,e)],

ωX
∼=

∧n+r−1 ΩX

∼=
∧n π∗ΩY ⊗

∧r−1 ΩX/Y

∼= π∗ (
∧n ΩY )⊗

∧r−1 ΩX/Y

∼= π∗ωY ⊗ ωX/Y .

Plugging in ωX/Y
∼= OX(−r)⊗π∗ det E , which is proved in [Ha77, III, Ex. 8.4 (b)],

the assertion follows.
2. We are now going to apply the formula just proved to compute (−KX)3,

using intersection theory as in [Ha77, A]. For our convenience, let us write L =
ωY ⊗ det E . Then

(−KX)3 = (2 ξ − c1(π
∗L))3

= 8 ξ3 − 12 ξ2 · π∗ c1(L) + 6 ξ · π∗ c1(L)2 − π∗ c1(L)3. (103)

Here the last summand is zero since c1(L)3 ∈ A3(Y ) and A3(Y ) = 0 because Y
is of dimension 2. To compute the powers of ξ, we proceed as follows: By [Ha77,
A, § 3], the divisor ξ satisfies the relation

π∗ c0(E) · ξ2 − π∗ c1(E) · ξ + π∗ c2(E) = 0

in A2(X), where ci(E) ∈ Ai(Y ). Since c0(E) = 1, this becomes

ξ2 = π∗ c1(E) · ξ − π∗ c2(E). (104)

Using this, we obtain

ξ3 = π∗ c1(E) · ξ2 − π∗ c2(E) · ξ
= (π∗ c1(E))2 · ξ − π∗ c1(E) · π∗ c2(E)− π∗ c2(E) · ξ
= π∗(c1(E)2 − c2(E)) · ξ − π∗(c1(E) · c2(E))

= π∗(c1(E)2 − c2(E)) · ξ (105)
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since c1(E) · c2(E) ∈ A3(Y ) = 0. Plugging (104) and (105) into (103), we get

(−KX)3 = 8
[
π∗(c1(E)2 − c2(E)) · ξ

]
− 12 [π∗ c1(E) · ξ − π∗ c2(E)] · π∗ c1(L)

+ 6 ξ · π∗ c1(L)2

= 8 π∗(c1(E)2 − c2(E)) · ξ
− 12 π∗(c1(E) · c1(L)) · ξ − 12 π∗(c2(E) · c1(L))

+ 6 π∗ c1(L)2 · ξ

Here, c2(E) · c1(L) ∈ A3(Y ) = 0. Now, by (B.1) above, for any cycle Z ∈ A2(Y ),

π∗Z · ξ = deg Z

where the degree is the natural group homomorphism A2(Y ) −→ Z. For our
convenience we will suppress this degree homomorphism and simply write Z
instead of deg Z. Then we obtain

(−KX)3 = 8 (c1(E)2 − c2(E))− 12 c1(E) · c1(L) + 6 c1(L)2.

The Chern class formalism of [Ha77, A, 3.C4 and 3.C5], applied to L = ωY ⊗det E ,
yields

c1(L) = c1(ωY ) + c1(det E)

= KY + c1(E).

Hence we get

(−KX)3 = 8 (c1(E)2 − c2(E))− 12 c1(E) · [KY + c1(E)]

+ 6 [KY + c1(E)]2

= 8 c1(E)2 − 8 c2(E)− 12 c1(E) ·KY

− 12 c1(E)2 + 6 (KY )2 + 12 KY · c1(E) + 6 c1(E)2

= 2 c1(E)2 − 8 c2(E) + 6 (KY )2.

3. We keep the notation of 2. From (104) we get

ξ2 = π∗ c1(E) · ξ − π∗ c2(E) = π∗ c1(E) · ξ (106)

since c2(E) ∈ A2(Y ) and A2(Y ) = 0 since Y has dimension 1. But this is just
c1(OX(1))2 = degY (E).

4. By the adjunction formula,

(−KD)3
D = ((−KX −D)|D)3

D = (−KX −D)3
X ·D. (107)
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By 1. above,
KX ∼ −3 ξ + π∗ c1(ωY ⊗ det E),

and, by our assumption,
D ∼ 2 ξ + π∗ c1(F).

Now we plug this into (107). Writing a = −1, b = 2 and G = ωY ⊗ det E ⊗ F to
make equations more tractable, we obtain

(−KD)3 = − (a ξ + π∗ c1(ωY ⊗ det E ⊗ F))3 · (b ξ + π∗ c1(F))

= − (a ξ + π∗ c1(G))3 · (b ξ + π∗ c1(F))

= −
(
a3 ξ3 + 3 a2ξ2 · π∗ c1(G) + 3 aξ · π∗ c1(G)2 + π∗ c1(G)3

)
· (b ξ + π∗ c1(F))

= −a3b ξ4 +
(
3a2b π∗ c1(G) + a3 π∗ c1(F)

)
· ξ3

−
(
3ab π∗ c1(G)2 + 3a2 π∗ (c1(G) · c1(F))

)
· ξ2

− 3a π∗
(
c1(G)2 · c1(F)

)
· ξ

= −a3b ξ4 −
(
3a2b π∗ c1(G) + a3 π∗ c1(F)

)
· ξ3

−
(
3ab π∗ c1(G)2 + 3a2 π∗ (c1(G) · c1(F))

)
· ξ2. (108)

Here we used c1(G)3, c1(G)2 · c1(F) ∈ A3(Y ) = 0. To compute the powers of ξ,
we proceed similarly as in 2. above: By [Ha77, A, § 3], the divisor ξ satisfies the
relation

π∗ c0(E) · ξ3 − π∗ c1(E) · ξ2 + π∗ c2(E) · ξ − π∗ c3(E) = 0

in A3(X), where ci(E) ∈ Ai(Y ). Since c0(E) = 1 and c3(E) ∈ A3(Y ) = 0, this
becomes

ξ3 = π∗ c1(E) · ξ2 − π∗ c2(E) · ξ. (109)

Using this, we obtain

ξ4 = π∗ c1(E) · ξ3 − π∗ c2(E) · ξ2

= π∗ c1(E)2 · ξ2 − π∗ (c1(E) · c2(E)) · ξ − π∗ c2(E) · ξ2

= π∗
(
c1(E)2 − c2(E)

)
· ξ2 − π∗ (c1(E) · c2(E)) · ξ

= π∗
(
c1(E)2 − c2(E)

)
· ξ2 (110)

since c1(E) · c2(E) ∈ A3(Y ) = 0. Plugging (109) and (110) into (108), we get

(−KD)3 = −a3b
[
π∗

(
c1(E)2 − c2(E)

)
· ξ2

]
−

(
3a2b π∗ c1(G) + a3 π∗ c1(F)

)
·
[
π∗ c1(E) · ξ2 − π∗ c2(E) · ξ

]
−

(
3ab π∗ c1(G)2 + 3a2 π∗ (c1(G) · c1(F))

)
· ξ2

= −
[
a3b π∗ c1(E)2 − a3b c2(E)

+ 3a2b π∗ (c1(G) · c1(E)) + a3 π∗ (c1(F) · c1(E))

+ 3ab π∗ c1(G)2 + 3a2 π∗ (c1(G) · c1(F))
]
· ξ2

−
[
3a2b π∗ c1(G) + a3 π∗ c1(F)

]
· π∗ c2(E) · ξ. (111)
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Here, the second summand is zero since both c1(G) · c2(E) and c1(F) · c2(E) lie in
A3(Y ) = 0.

Now since OX(1) restricts to OF (1) on every fibre F ∼= P2 of the P2-bundle
X, we have

(ξ2 · F )X = (ξ|F )2
F = c1(OP2(1))2 = 1.

This shows that for any cycle Z ∈ A2(Y ),

π∗Z · ξ = deg Z

where the degree is the natural group homomorphism A2(Y ) −→ Z. For our
convenience we will suppress this degree homomorphism and simply write Z
instead of deg Z. Then (111) implies

(−KD)3 = −a3b c1(E)2 + a3b c2(E)− 3a2b c1(G) · c1(E)− a3 c1(F) · c1(E)

− 3ab c1(G)2 − 3a2 c1(G) · c1(F).

As in 2. above, Chern class formalism applied to G = ωY ⊗ det E ⊗ F yields

c1(G) = KY + c1(F) + c1(E).

Hence we obtain

(−KD)3 = −a3b c1(E)2 + a3b c2(E)− 3a2b [KY + c1(F) + c1(E)] · c1(E)

− a3 c1(F) · c1(E)− 3ab [KY + c1(F) + c1(E)]2

− 3a2 [KY + c1(F) + c1(E)] · c1(F)

= −(a3b + 3a2b + 3ab) c1(E)2 + a3b c2(E)

− (a3 + 3a2b + 6ab + 3a2) c1(E) · c1(F)

− (3a2b + 6ab) c1(E) ·KY − (6ab + 3a2) c1(F) ·KY

− 3ab K2
Y − (3ab + 3a2) c1(F)2.

Resubstituting a = −1 and b = 2, we finally obtain

(−KD)3 = 2 c1(E)2 − 2 c2(E) + 4 c1(E) · c1(F) + 6 c1(E) ·KY

+ 9 c1(F) ·KY + 6 K2
Y + 3 c1(F)2.

A morphism f : X −→ S from a nonsingular threefold X onto a nonsingular
projective surface S is a conic bundle if every fibre of f is isomorphic to a conic,
i.e., a scheme of zeroes of a nonzero homogeneous form of degree 2 on P2. The
set

∆f = {s ∈ S | f−1(s) is singular}
is called the discriminant locus of f .
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Proposition B.3. Let f : X −→ S be a conic bundle as in the definition above.

1. f is a flat morphism.

2. The sheaf f∗ ω−1
X is locally free of rank 3, and the natural map

X −→ P(f∗ ω−1
X )

corresponding to the exact sequence f ∗f∗
(
ω−1

X

)
−→ ω−1

X −→ 0 is an embed-
ding.

3. If ∆f is not empty then it is a curve with only ordinary double points.

4. The fibres Xs, s ∈ S, of f satisfy the following:

If s ∈ S −∆f then Xs is isomorphic to P1.

If s is a regular point of ∆f then Xs is reducible and decomposes as
l1+l2, where each li is isomorphic to P1 and l1 and l2 intersect transver-
sally in one point.

If s is a double point of ∆f then Xs is non-reduced and isomorphic to
a double line on P2.

5. −4 KS ≡ f∗(K
2
X) + ∆f

6. If ρ(X) = ρ(S) + 1 then ∆f has no nonsingular rational connected compo-
nent.

7. Let C be an irreducible reduced curve on S. If f−1(C) is reducible then ∆f

contains C as a connected component. Moreover, f−1
1 (C) = Z1 ∪ Z2 with

irreducible reduced components Z1 and Z2.

Proof. 1. and 2. This is proved in [Be, I, Prop. 1.2 (i) and (ii)].
3. and 4. This is proved in [Be, I, Prop. 1.2 (iii)]. Namely, it is shown:

If s ∈ S − ∆f , then Xs is isomorphic to a nonsingular conic in P2. Hence, by
[Ha77, V, 1.5.1 and IV, 1.3.5], it is isomorphic to P1.
If s is a regular point of ∆f , then Xs is isomorphic to the scheme of zeroes of
X2

0 + X2
1 on P2. Hence it is reducible and decomposes as l1 ∪ l2, where each li is

isomorphic to P1 and l1 and l2 intersect transversally in one point.
If s is a singular point of ∆f , then Xs is isomorphic to the scheme of zeroes of
X2

0 on P2. Hence it is a double line on P2 and non-reduced.
5. This formula is proved in [Mi, 4.11].
6. Assume to the contrary. Let C be a nonsingular rational connected com-

ponent of ∆f . As it is explained in [Mi, 4.2], it follows from [Be, I, Prop. 1.5]
that f−1(C) is reducible with two components. On the other hand, since ρ(X) =
ρ(S) + 1, f−1(C) is irreducible, by [Mi, 4.5]. This is a contradiction.
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We collect some properties of the blowing-up of a nonsingular threefold along
a nonsingular curve.

Proposition B.4. Let f : X −→ Y be the blowing-up of a nonsingular threefold
Y along a nonsingular curve C on Y , with exceptional divisor D. Then the
following holds:

1. −KX ∼ f ∗ (−KY )−D.

2. The induced morphism f |D : D −→ C is isomorphic to the P1-bundle
P(N ∗

C/Y) over C, and OD(−D) ∼= OP(N ∗
C/Y )(1).

3. (D3)X = degC (N ∗
C/Y ).

4. ((−KX)2 ·D)X = (−KY · C)Y + 2− 2 g(C).

Proof. 1. This is immediate from [Ha77, II, Ex.8.5 (b)] since C is of codimension
2 in Y .

2. This follows from [Ha77, II, 8.24 (b,c)], using OD(−D) ∼= OX(−D)⊗OD
∼=

ID ⊗OX/ID
∼= ID/I2

D.
3. By 2. above, (D3)X = (D|D ·D|D)D = ((−D|D) · (−D|D))D = c1(OD(1))2.

Since D ∼= P(N ∗
C/Y ), c1(OD(1))2 = degC (N ∗

C/Y ), by (B.2 (3)).

4. We apply the formalism of the proof of (B.2 (3)) to the P1-bundle π = f |D :
D = P(N ∗

C/Y ) −→ C. In particular, we write ξ = OD(1). Then

((−KX)2 ·D)X = ((−KX |D)2)D

By the adjunction formula, (B.2 (1)) and 2. above,

OD(−KX) ∼= OD(−KD)⊗OD(D)

∼= OD(2)⊗ π∗
(
ωC ⊗ detN ∗

C/Y

)−1 ⊗OD(−1)
∼= OD(1)⊗ π∗ L,

where we write L = ω−1
C ⊗ detNC/Y for our convenience. Then we get(

(−KX)2 ·D
)

X
= (ξ + c1(π

∗L))2

= ξ2 + 2 ξ · π∗ c1(L) + π∗ c1(L)2

= ξ2 + 2 π∗ c1(L) · ξ

since c1(L)2 ∈ A2(C), and A2(C) = 0 because C is a curve. As we have seen in
the proof of (B.2 (3)),

ξ2 = π∗ c1

(
N ∗

C/Y

)
· ξ.

Hence we get

((−KX)2 ·D)X = π∗ c1(N ∗
C/Y ) · ξ + 2 π∗ c1(L) · ξ

= π∗
(
c1(N ∗

C/Y ) + 2 c1(L)
)
· ξ.
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By (B.1) above, for any cycle Z ∈ A2(Y ),

π∗Z · ξ = deg Z

where the degree is the natural group homomorphism A2(Y ) −→ Z. For our
convenience we will suppress this degree homomorphism and simply write Z
instead of deg Z. By [Ha77, A, 3.C3,C4,C5],

c1(L) = c1(ω
−1
C ) + c1(detNC/Y )

= c1

(
NC/Y ⊗ ω−1

C

)
= c1

(
NC/Y

)
− c1(ωC).

By the adjunction formula, NC/Y ⊗ ω−1
C

∼= OC(C) ⊗ ω−1
C

∼= OC(−KY ). So we
obtain

((−KX)2 ·D)X = c1(N ∗
C/Y ) + 2 c1(L)

= c1(N ∗
C/Y ) + c1(NC/Y )− c1(ωC) + c1(OC(−KY ))

= c1(OC(−KY ))− c1(ωC)

= degC(−KY )− degC(KC)

= (−KY · C) + 2− 2 g(C).

Here we used [Ha77, IV, 1.3.3].

Lemma B.5. Let f : X −→ Y be a morphism from a nonsingular variety X to
a normal variety Y . If f is bijective then it is an isomorphism.

Proof. By generic smoothness [Ha77, III, 10.7] there is a nonempty nonsingular
open subset V ⊆ Y such that f |f−1(V ) : f−1(V ) −→ V is smooth. By the inverse
function theorem ([GH, 0.2, p.19]), f |f−1(V ) is an isomorphism, i.e., f : X −→ Y
is birational. Then f∗OX

∼= OY by Zariski’s main theorem [Ha77, III, 11.4], so f
is an isomorphism.
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