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COHOMOLOGY FOR HERMITIAN LIE GROUPS
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Abstract. We investigate implications of Gromov’s theorem on boundedness of primary char-
acteristic classes for the continuous bounded cohomology of a semisimple Lie group G. We
deduce that the comparison map from continuous bounded cohomology to continuous coho-
mology is surjective for a large class of semisimple Lie groups including all Hermitian groups.
Our proof is based on a geometric implementation of the canonical map from the cohomol-
ogy of the classifying space of G to the continuous group cohomology of G. We obtain this
implementation by establishing a variant of Kobayashi-Ono-Hirzebruch duality.
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1. Introduction

This article is concerned with the boundedness problem in continuous cohomology of Lie
groups. Given a Lie group G and a class α in the continuous cohomology H•c (G;R) of G with
real coefficients, one may investigate whether α can be represented by a bounded cocycle. This
question may be reformulated in more invariant terms by asking whether α is contained in the
image of the comparison map H•cb(G;R)→ H•c (G;R) from continuous bounded cohomology to
continuous cohomology [26, Def. 9.2.1]. If this is the case, then the class α is called bounded.
Dupont [15, Remark 3] asked whether, for a connected semisimple Lie group G without compact
factors, every continuous cohomology class is bounded in this sense. Despite ongoing efforts
for 30 years this question is still open and considered one of the major problems in the theory
of continuous bounded cohomology of Lie groups [11, Conjecture 16.1], [27, Conjecture A].

The methods employed so far in order to establish boundedness of specific cohomology classes
basically fall into two classes. Explicit methods use estimates for explicit cocycles (e.g. those
obtained by integration of invariant simplices in the corresponding symmetric space) to obtain
boundedness. For example, for simple Lie groups of real rank one boundedness of arbitrary
continuous cohomology classes is obtained by estimating integrals over ideal simplices, see
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Gromov [17]. Dupont refined this method and proved boundedness of the Kähler class of a
semisimple Lie group of Hermitian type in arbitrary rank [15]. Note that, despite being explicit,
these methods usually do not provide sharp estimates on the L∞-seminorms of the cohomology
classes in question; this requires further effort, see [13] for Kähler classes and [7] for the case of
SL2(R) × SL2(R). For a more recent example of an explicit method see Lafont and Schmidt
[23]. In this article we shall apply an indirect method for establishing boundedness that does
not yield any bounds on cocycles at all but has the advantage that it works for a large class of
groups. This method uses Gromov’s theorem on boundedness of primary characteristic classes
of flat bundles [17, 6] in combination with standard transfer arguments in continuous bounded
cohomology [26]. We will explain this method in Section 2.2 below; for now we will show how
it may be applied in our case.

To this end, let G be a connected semisimple Lie group without compact factors and with
finite center. Then G admits a co-compact lattice Γ, see Borel–Harish-Chandra [3]. The inclu-
sion ιΓ : Γ ↪→ G induces restriction maps ι∗Γ : H•c (G;R)→ H•(Γ;R) in continuous cohomology
and (BιΓ)∗ : H•(BG;R) → H•(BΓ;R) on the level of classifying spaces. Note that there is a
canonical isomorphism H•(Γ;R) ∼= H•(BΓ;R).

Theorem 1 (Gromov). Let G be a connected semisimple Lie group without compact factors
and with finite center, Γ a co-compact lattice in G, and α ∈ H•c (G;R) a continuous cohomology
class. If ι∗Γα ∈ H•(Γ;R) is contained in the image of (BιΓ)∗ : H•(BG) → H•(BΓ;R) ∼=
H•(Γ;R), then α is bounded.

It is somewhat folklore that Theorem 1 can be used to show boundedness of certain classes for
which explicit methods have failed to establish boundedness so far. However, to our knowledge
this approach to boundedness has never been exploited systematically. In the present article
we aim to close this gap in the literature. More specifically, for every connected semisimple Lie
group without compact factors we explicitly describe those classes in continuous cohomology
whose boundedness is a consequence of Theorem 1.

Our main device is a certain universal map σG : H•(BG;R)→ H•c (G;R) that may be char-
acterized as follows.

Proposition 1.1 (Bott). For every Lie group G there exists a map σG : H•(BG;R)→ H•c (G;R)
such that for all discrete subgroups Γ of G the diagram

H•(BG;R)

(BιΓ)∗

��

σG // H•c (G;R)

ι∗Γ
��

H•(BΓ;R)
∼= // H•(Γ;R)

commutes. If G admits a co-compact lattice, then σG is unique. In fact, it is uniquely de-
termined by the property that it makes the above diagram commute for a single co-compact
lattice Γ.

The existence of a natural map σH : H•(BH;R)→ H•c (H;R) was actually stated by Bott [5]
for all sufficiently nice topological groups H. However, the details of his proof never appeared.
Fortunately, we only need this result for (not-necessarily connected) Lie groups, and in this
case there is a well-known proof based on sheaf cohomology over simplicial spaces. Lacking a
good reference we include this proof in Appendix A.

Combining Proposition 1.1 with Theorem 1, we obtain the following boundedness result.

Corollary 1.2. The image of the universal map σG : H•(BG;R) → H•c (G;R) consists of
bounded classes.
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Note that the classes in the image of σG are exactly those classes to which Gromov’s theorem
applies. We thus have to determine the image of σG explicitly. In order to state our results,
we fix the following notation. Let K be a maximal compact subgroup of G. Then (G,K)
is a symmetric pair and there exists a dual symmetric pair (Gu,K) with Gu compact (see
Section 2.1 for details). Then Xu := Gu/K is a compact symmetric space, which comes with a
canonical K-bundle pGu : Gu → Xu. Moreover, there is an isomorphism H•c (G;R) ∼= H•(Xu;R)
(a variant of the van Est isomorphism, see Section 2.1).

Theorem 2. Under the isomorphism H•c (G;R) ∼= H•(Xu;R) the image of the universal map
σG is mapped to the algebra of real-valued characteristic classes of the canonical K-bundle
pGu : Gu → Xu.

By the work of Cartan [10] and Borel [1] the cohomologyH•(Xu;R) of the compact symmetric
space Xu is well-known. This allows us to make Theorem 2 more explicit. In particular, we
may describe those groups for which Gromov’s theorem yields boundedness of all continuous
cohomology classes. Recall that a connected semisimple Lie group without compact factors
is called Hermitian if the corresponding symmetric space X = G/K admits a G-invariant
complex structure. Then, from the classification of real semisimple Lie groups as stated in [18,
Table V], we obtain the following result.

Theorem 3. Let G be a connected semisimple Lie group G without compact factors and with
finite center. Assume that all simple factors of G are either

(i) Hermitian;
(ii) locally isomorphic to SO0(p, q) with pq even, or to Sp(p, q) with p, q ≥ 1;

(iii) exceptional with Lie algebra one of the following: e6(2), e7(7), e7(−5), e8(8), e8(−24), f4(4),
f4(−20) or g2(2).

Then the comparison map H•cb(G;R)→ H•c (G;R) is surjective.

Note that the above list exhausts the vast majority of connected real simple Lie groups that
are not complex. In fact, the only real non-complex, non-compact simple factors not covered
by Theorem 3 are those locally isomorphic to SLn(R) for n ≥ 3, SU∗(2n) for n ≥ 2, SO0(p, q)
for p and q both odd, and the exceptional ones with Lie algebras e6(6) and e6(−26). Furthermore,
Theorem 3 does not apply to complex semisimple Lie groups either. However, in all these cases
our methods still yield partial results, see Section 5.

This article is organized as follows. In Section 2 we fix the notation and collect the necessary
background material on continuous (bounded) cohomology of Lie groups. We also explain how
to derive Theorem 1 from the original version of Gromov’s theorem. Sections 3 and 4 are
devoted to the proof of Theorem 2. In Lemma 4.1 we provide a reformulation of this result in
terms of commutativity of a certain diagram. We will establish commutativity in two steps. In
Section 3 we employ differential-geometric tools to establish a cohomological duality principle
that generalizes the classical proportionality principle of Hirzebruch [19] and is reminiscent of a
result due to Kobayashi and Ono [22]. This duality is then applied in Section 4 in order to prove
commutativity of the diagram from Lemma 4.1. For this purpose it is crucial to describe various
canonical maps related to the cohomology of Lie groups as explicitly as possible. Once Lemma
4.1 (and thereby Theorem 2) is established, it is straightforward to compute the range of the
universal map σG in all cases using classical work of Cartan [10] and Borel [1] in combination
with the classification of semisimple real Lie groups [18]. This is carried out in Section 5. We
close with a proof of Bott’s theorem in Appendix A.
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2. Preliminaries and notation

Given a topological space X we shall denote by H•(X;R) its singular cohomology with real
coefficients. If X is a manifold, then the singular cohomology of X with real coefficients is
canonically isomorphic to the de Rham cohomology of X and we will not distinguish notation-
ally between these two cohomologies.

2.1. Continuous cohomology of Lie groups and its geometric models. For an arbi-
trary Hausdorff locally compact group G, the continuous cohomology H•c (G;R) of G with real
coefficients is defined as the cohomology of the complex (C•c (G;R), d), where

Cnc (G;R) := C(Gn+1,R)G, df(g0, . . . , gn) :=
n∑
i=0

(−1)if(g0, . . . , ĝi, . . . , gn).

Here C(·,R) stands for real-valued continuous functions and (−)G denotes the functor of G-
invariants. The complex (C•c (G;R), d) is called the homogeneous bar complex for H•c (G;R). It
is isomorphic to the inhomogeneous bar complex (C(Gn,R), ∂), where

∂f(g1, . . . , gn) := f(g2, . . . , gn) +
n−1∑
j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gn) + (−1)nf(g1, . . . , gn−1).

If the group G = Γ is discrete, the continuity requirement on the cochains becomes vacuous
and we will drop the subscript c from the notation. Note that in this case H•(Γ;R) is just
the ordinary group cohomology of Γ. In particular, H•(Γ;R) is canonically isomorphic to the
singular cohomology H•(BΓ;R) of any given classifying space BΓ for Γ. We emphasize that
this fails for non-discrete topological groups. However, in favourable cases it is still possible
to give a geometric meaning to classes in H•c (G;R). We will carry this out in the case where
G is a connected semisimple Lie group without compact factors and with finite center. We
shall then denote by K a maximal compact subgroup of G and by X := G/K the associated
symmetric space.

Probably the most straightforward geometric interpretation of classes in H•c (G;R) is given
in terms of harmonic forms on a compact locally symmetric manifold M covered by X . Indeed,
by Selberg’s refinement [30] of the Borel–Harish-Chandra lemma [3] there exists a co-compact,
torsion-free lattice Γ inG. We now fix such a lattice and denote byM := Γ\X the corresponding
locally symmetric space. Note that, since Γ is torsion-free, M is smooth. We denote by
ιΓ : Γ ↪→ G the inclusion and by ι∗Γ : H•c (G;R)→ H•(Γ;R) the corresponding restriction map.
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Lemma 2.1. The restriction map ι∗Γ is injective.

Proof. A left inverse of ι∗Γ is given by the transfer map, which on the level of cochains is defined
by

Tn : C(Gn+1)Γ → C(Gn+1)G, f 7→ f̄ ,

where f̄ is given in terms of the G-invariant probability measure µ on G/Γ by

f̄(g0, . . . , gn) =

∫
G/Γ

f(g0ġ, . . . , gnġ)dµ(ġ).

�

Since the symmetric space X is contractible, the locally symmetric space M = Γ\X provides
a smooth model for BΓ. In particular, H•(Γ;R) ∼= H•(M ;R). Thus, fixing a Riemannian
metric on M we can use Hodge theory to interprete classes in H•c (G;R) as harmonic differential
forms on M .

A different geometric interpretation of classes in H•c (G;R) can be given using duality of
symmetric spaces. To formulate this duality it is convenient to assume that G is linear, hence
embeds into its universal complexification GC. Note that this is not a restriction, since replac-
ing G by a finite quotient will neither affect the continuous cohomology nor boundedness of
cohomology classes. Thus assume G to be linear and denote by g and k the Lie algebras of
G and K respectively. Then we have a Cartan decomposition g = k ⊕ p, where p denotes the
Killing orthogonal complement of k in g. We further denote by gu := k⊕ ip ⊂ gC the dual Lie
algebra of g. Then the compact dual group Gu of G is defined as the analytic subgroup of GC

associated with the Lie algebra gu. It turns out that (Gu,K) is a compact symmetric pair,
whence we can define the compact dual symmetric space of X = G/K to be Xu := Gu/K. We
can now provide a topological interpretation of H•c (G;R) by defining an isomorphism

ΨG : H•(Xu;R) ∼= H•c (G;R). (2.1)

This isomorphism is defined by composing the van Est isomorphism [4, Prop. 5.4]

ιvE : Ω•(X )G → H•c (G;R)

with an isomorphism

ΦG : H•(Xu;R) ∼= Ω•(X )G (2.2)

that will be introduced below.
The van Est isomorphism identifies an invariant differential form on X with the cohomology

class of the cocycle obtained by integrating this form over suitable simplices as described in
[16]. All we have to know about this isomorphism for our purposes is the following naturality
property. Recall that by a classical lemma of Cartan (see e.g. [18, p. 227]) every invariant form
on a symmetric space is closed; thus if Γ is a cocompact, torsion-free lattice in G with associated
locally symmetric space M := Γ\X , then the inclusion map Ω•(X )G → Ω•(X )Γ = Ω•(M)
induces a map

π! : Ω•(X )G → H•(M ;R). (2.3)

Then the van Est isomorphism makes the diagram

Ω•(X )G

ιvE
��

π! // H•(M ;R)

∼=
��

H•c (G;R)
ι∗Γ // H•(Γ;R)

(2.4)
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commute.
Let us now define the isomorphism (2.2). By a classical result of Chevalley-Eilenberg [12]

the inclusion of Gu-invariant forms induces an isomorphism

H•(Ω•(Xu)Gu , d) ∼= H•(Xu;R).

But by Cartan’s lemma, Gu-invariant forms on Xu are closed, hence the differential is trivial
and every class α in H•(Xu;R) can be represented by a unique invariant form ω(α). Then
restriction to the basepoint ou = eK yields an isomorphism

H•(Xu;R) ∼= Ω•(Xu)Gu ∼=
(∧

•(i p)∗
)K

, α 7→ ω(α)ou . (2.5)

Combining this with the flip isomorphism

ι∗ :
(∧

•(i p)∗
)K ∼=−−−−→

(∧
•p∗
)K

, (ι∗ α)(X1, . . . , Xn) := α(iX1, . . . , iXn),

(X1, . . . , Xn ∈ p) (2.6)

we obtain the desired isomorphism (2.2) as

ΦG : H•(Xu;R) ∼=
(∧

•p∗
)K ∼= Ω•(X )G, (2.7)

where the last isomorphism is given by G-invariant extension.
For later reference we remark at this point that commutativity of the diagram (2.4) may be

rephrased in terms of the isomorphism ΨG and the homomorphism

ΦΓ := π! ◦ ΦG : H•(Xu;R)→ H•(M ;R), (2.8)

in the following way.

Lemma 2.2. The diagram

H•(Xu;R)
ΦΓ //

ΨG
��

H•(M ;R)

∼=
��

H•c (G;R)
ι∗Γ // H•(Γ;R).

commutes.

This clarifies in particular the relation between the above two geometric interpretations of
classes in H•c (G;R).

A third way to obtain a geometric interpretation for at least some classes in H•c (G;R) was
already given by Bott’s theorem (see Proposition 1.1) in Section 1. Note that the uniqueness
assertion in that proposition is an immediate consequence of Lemma 2.1. The existence of σG
will be proved in Appendix A.

2.2. Continuous bounded cohomology of Lie groups and Gromov’s theorem. For
any Hausdorff locally compact group G the continuous bounded cohomology H•cb(G;R) of G
is defined as the cohomology of the complex (C•cb(G;R), d) of continuous bounded functions,
where

Cncb(G,R) := Cb(G
n+1,R)G, df(g0, . . . , gn) =

n∑
i=0

(−1)if(g0, . . . , ĝi, . . . , gn).

In the present generality it was first studied by Burger and Monod [9]. For a discrete group
Γ the groups H•b (Γ;R) := H•cb(Γ;R) are just the bounded cohomology groups of Trauber
(unpublished), which later were popularized through the work of Gromov [17]. Originally
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introduced as a computational tool for the computation of bounded cohomology of lattices,
continuous bounded cohomology of Lie groups has rapidly evolved into a subject in its own
right (see [27] for an overview of the literature before 2006 and [8] for some recent applications).
Note that the inclusion of complexes

(C•cb(G;R), d) ↪→ (C•c (G;R), d)

induces a comparison map
c•G : H•cb(G;R)→ H•c (G;R),

which is natural in G.
In order to motivate our work, we mention a result of Burger and Monod [9] which states

that for any connected Lie group G with amenable radical Ram(G) there is an isomorphism

H•cb(G;R) ∼= H•cb(G/Ram(G);R).

In this way the computation of continuous bounded cohomology of connected Lie groups is
reduced to the case of semisimple groups with finite center and without compact factors.
Concerning such groups the following is conjectured [11, Conjecture 16.1], [27, Conjecture A].

Conjecture. If G is a connected semisimple Lie group without compact factors and with finite
center, then the comparison map H•cb(G;R)→ H•c (G;R) is an isomorphism.

In degree 2 this conjecture was established by Burger and Monod in [9]; beyond that case it
is widely open. Note that the surjectivity part of this conjecture is precisely Dupont’s question
mentioned in Section 1. This explains in particular why attempts to compute the continuous
bounded cohomology of Lie groups have revived the interest in this question. In fact, this
article arose from our attempts to understand Conjecture 2.2.

Let us now state Gromov’s theorem in its original version. Let G denote a connected semisim-
ple Lie group without compact factors and with finite center, and denote by B∗G the Milnor
model [24] of the classifying space of G. The important point about this model is that it is
functorial in G, and we could equally well work with any other functorial model. If Gδ denotes
the discrete group underlying G, then the cohomology classes in H•(B∗G

δ;R) are precisely the
universal characteristic classes of flat G-bundles, while the elements of H•(BG;R) are univer-
sal characteristic classes of arbitrary G-bundles. By functoriality, the identity map Gδ → G
induces a map B∗ιδ : B∗G

δ → B∗G, whence a map

H•(B∗G;R)
(B∗ιGδ )∗

−−−−−−→ H•(B∗G
δ;R) ∼= H•(Gδ;R)

in cohomology. Its image consists precisely of those characteristic classes of flatG-bundles which
can be extended to characteristic classes of arbitrary G-bundles; these classes are known as pri-
mary characteristic classes of flat G-bundles. Via the isomorphims H•(B∗G

δ;R) ∼= H•(Gδ;R)
we may consider primary characteristic classes as elements of H•(Gδ;R). In particular, we
have a well-defined notion of boundedness for such classes. Now Gromov’s original theorem
takes the following form [17] (see [6] for a stronger version).

Theorem 2.3 (Gromov). Every primary characteristic class is bounded.

In order to deduce Theorem 1 from Theorem 2.3 we will need a bounded analog of Lemma
2.1, as follows. If H is a subgroup of G of finite co-volume, then there exists a bounded transfer
map

T •b : H•cb(H;R)→ H•cb(G;R)

that provides a left inverse to the restriction map H•cb(G;R)→ H•cb(H;R), and on the level of
cochains is given by the same formula as the usual transfer map defined in the proof of Lemma
2.1 above (see also [26, Proposition 8.6.2]).
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Proof of Theorem 1. Let Γ be a torsion-free co-compact lattice in G. The inclusion ιΓ : Γ ↪→ G
factors as ιΓ = ιδ◦ιδΓ, where ιδΓ : Γ→ Gδ and ιδ : Gδ → G are the natural maps. By functoriality
of B∗ it follows from the commuting diagram

H•c (G;R)

ι∗δ
��

H•(B∗G;R)

(B∗ιδ)
∗

��
H•(Gδ;R)

(ιδΓ)∗

��

H•(B∗G
δ;R)

(B∗ιδΓ)∗

��

∼=oo

H•(Γ;R) H•(B∗Γ;R)
∼=oo

that the image of (B∗ιΓ)∗ consists precisely of the restriction of primary characteristic classes.
In particular, using naturality of the comparison map we see that the image of (B∗ιΓ)∗ consists
of bounded classes. Now Theorem 1 follows from the commutative diagram

H•c (G;R)

ι∗Γ
��

H•(B∗G;R)

(B∗ιΓ)∗

��
H•b (Γ;R)

c•Γ //

T •b
��

H•(Γ;R)

T •

��

H•(B∗G
δ;R)

∼=oo

H•cb(G;R)
c•G // H•c (G;R)

�

3. Cohomological duality for symmetric spaces

3.1. Preliminaries. Since the cohomology of non-compact symmetric spaces is always trivial
while that of compact symmetric spaces is always non-trivial, there is no obvious way to detect
duality of symmetric spaces on the level of cohomology. However, as pointed out by Hirzebruch
[19], one obtains a meaningful notion of cohomological duality if one compares the cohomology
of a compact symmetric space Xu to the cohomology of a compact locally symmetric space M
that is covered by its non-compact dual symmetric space X . In the sequel we will fix such a
locally symmetric space M = Γ\X and use the notation introduced in the last section.

Our goal in this section is to compare real-valued characteristic classes of the canonical
K-bundles Gu → Xu = Gu/K and Γ\G → M , where the latter bundle is induced by the
projection G → X . Let fGu : Gu → BK and fΓ\G : Γ\G → BK be the classifying maps of
these bundles. For every c ∈ H•(BK;R) we then denote by c(Gu) := f∗Guc and c(Γ\G) := f∗Γ\Gc

the corresponding real-valued characteristic classes.
We shall apply Chern-Weil theory in order to compare these classes [14, 21]. Let us briefly

recall the basic facts. For every principal K-bundle P → X over a closed manifold X and
every connection 1-form A ∈ Ω1(P, k) on P , we denote by FA ∈ Ω2(P, k) its curvature 2-form.
It is given by FA = dA + 1

2 [A ∧ A]; moreover it is horizontal and thus descends to a 2-form

FA ∈ Ω2
(
X,P (k)

)
on X with values in the adjoint bundle P (k) := P ×K k. Recall that K acts

on the space Sk(k∗) of symmetric k-multilinear functions on k via the diagonal adjoint action.
We denote by Ik(k∗) ⊂ Sk(k∗) the subset of K-invariants. Given a K-invariant symmetric
function f ∈ Ik(k∗) and a connection 1-form A ∈ Ω1(P, k), we obtain a well-defined closed
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2k-form
f(FA, . . . , FA) ∈ Ω2k(X)

on X which then defines a class in the de Rham cohomology H2k(X;R). The Chern-Weil
theorem then asserts the following [14, Thm. 8.1].

Lemma 3.1. Let K be a compact Lie group.

(i) There are no characteristic classes of principal K-bundles in odd degree, i.e. we have
H2k+1(BK;R) = {0} for all k ≥ 0.

(ii) For every characteristic class c ∈ H2k(BK;R) there exists a unique f ∈ Ik(k∗) such
that the following holds. For every principal K-bundle P → X over a compact manifold
X and every connection 1-form A ∈ Ω1(P, k) we have

c(P ) = [f(FA, . . . , FA)] ∈ H2k(X;R).

3.2. An explicit version of Kobayashi-Ono-Hirzebruch duality. The goal of this section
is to establish the following result.

Proposition 3.2 (Kobayashi-Ono). Let k ≥ 0, and let c ∈ H2k(BK;R) be a characteristic
class. Then the corresponding characteristic classes of the canonical K-bundles Gu → Xu and
Γ\G→M are related by

ΦΓ

(
c(Gu)

)
= (−1)k · c(Γ\G),

where ΦΓ : H2k(Xu;R)→ H2k(M ;R) is the homomorphism (2.8).

After finishing a first version of this article, we learned from M. Bucher-Karlsson that the
existence of a map Φ : H2k(Xu;R) → H2k(M ;R) with the property that Φ

(
c(Gu)

)
= (−1)k ·

c(Γ\G) follows from more general results of Kobayashi and Ono [22]. However, for our purposes
it is crucial to have an explicit description of this map on the level of cocycles, i.e., we need
to be able to identify Φ with ΦΓ. In order to keep the present article self-contained at this
important point we decided to include a proof of Proposition 3.2 that is taylored to our needs.
We would also like to point out that the main idea underlying this type of duality results
already appears in the proof of Hirzebruch’s proportionality principle [19].

Proof. We will prove the claimed relation by unraveling the definition of the homomorphism
ΦΓ given in Section 2.1, using the results from Chern-Weil theory discussed in the previous
subsection.

First of all, we introduce appropriate connection 1-forms on the bundles Γ\G → M and
Gu → Xu. Let us denote by θG ∈ Ω1(G; g) and θGu ∈ Ω1(Gu; gu) the Maurer-Cartan forms on
G and Gu, respectively, and denote by

πk : g = k⊕ p→ k, πuk : gu = k⊕ i p→ k

the canonical projections. Then

Ã := πk ◦ θG ∈ Ω1(G; k)

defines a connection 1-form on the bundle G→ X . This form is invariant under the action of
the auxiliary lattice Γ in G and hence descends to a connection 1-form A ∈ Ω1(Γ\G; k) on the
bundle Γ\G→M . Likewise,

Au := πuk ◦ θGu ∈ Ω1(Gu; k)

defines a connection 1-form on the bundle Gu → Xu.
Now let c ∈ H2k(BK;R) be a characteristic class and denote by f ∈ Ik(k∗) the corresponding

k-multilinear invariant function on k as in Lemma 3.1. Then the characteristic class

c(Gu) ∈ H2k(Xu;R)
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is represented as a class in de Rham cohomology by the closed form

f(FAu , . . . , FAu) ∈ Ω2k(Xu).

Since the Maurer-Cartan form θGu ∈ Ω1(Gu; k) is Gu-invariant, the connection 1-form Au ∈
Ω1(Gu; k) and hence also the form f(FAu , . . . , FAu) ∈ Ω2k(Xu) on Xu are both Gu-invariant.
Thus the class [f(FAu , . . . , FAu)] is mapped under (2.5) to the K-invariant 2k-linear form

(
f(FAu , . . . , FAu)

)
ou
∈
(∧

2k(i p)∗
)K

on i p. In order to determine the image of this form under the isomorphism (2.6) we use the
following claim.

Claim. ι∗
((
f(FAu , . . . , FAu)

)
ou

)
= (−1)k ·

(
f(FÃ, . . . , FÃ)

)
o
.

We will prove the claim by a direct calculation. First, we note that for iX1, . . . , iX2k ∈ i p ∼=
TouXu we have

(f(FAu , . . . , FAu)
)
ou

(iX1, . . . , iX2k)

=
1

(2k)!

∑
σ∈S2k

(−1)σf
(
(FAu)e(iXσ(1), iXσ(2)), . . . , (FAu)e(iXσ(2k−1), iXσ(2k))

)
,

where e ∈ Gu is the unit element, and the summation is taken over all permutations σ of
(1, 2, . . . , 2k). On the left-hand side of this identity we consider FAu as a form on Xu whereas
on the right-hand side we regard it as a form on Gu. Likewise, for X1, . . . , X2k ∈ p ∼= ToX we
have

(f(FÃ, . . . , FÃ))o(X1, . . . , X2k)

=
1

(2k)!

∑
σ∈S2k

(−1)σf
(
(FÃ)e(Xσ(1), Xσ(2)), . . . , (FÃ)e(Xσ(2k−1), Xσ(2k))

)
,

where e ∈ G is the unit element of G. Again, on the left-hand side of this identity FÃ is
regarded as a form on X whereas on the right-hand side it is considered as a form on G. Since
f is k-linear we see from these formulas and the definition of the isomorphism (2.6) that it will
be enough to establish the relation

(
FAu

)
e
(iX, iY ) = −

(
FÃ
)
e
(X,Y )

for X,Y ∈ p. To this end, we recall that the Maurer-Cartan form on Gu satisfies the identities

(θGu)ou(iX) = iX, X ∈ p and dθGu +
1

2

[
θGu ∧ θGu

]
= 0.
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Then we obtain(
FAu

)
e
(iX, iY ) =

((
dAGu

)
e

+
1

2

[
AGu ∧AGu

]
e

)
(iX, iY )

=

(
πuk ◦

(
dθGu

)
e

+
1

2

[
πuk ◦ dθGu ∧ πuk ◦ dθGu

]
e

)
(iX, iY )

=
1

2

(
−πuk ◦

[
θGu ∧ θGu

]
e

+
[
πuk ◦ dθGu ∧ πuk ◦ dθGu

]
e

)
(iX, iY )

= −1

2

[
θGu ∧ θGu

]
e
(iX, iY )

= −1

2

([
(θGu)e(iX), (θGu)e(iY )

]
−
[
(θGu)e(iY ), (θGu)e(iX)

])
= −[iX, iY ]

= [X,Y ].

A similar computation shows that (
FÃ
)
e
(X,Y ) = −[X,Y ].

This proves the claim.
Continuing with the proof of the proposition, we note that since the Maurer-Cartan form

θG ∈ Ω1(G; k) is G-invariant, it follows that the connection 1-form Ã ∈ Ω1(G; k) and hence
also the form f(FÃ, . . . , FÃ) ∈ Ω2k(X ) on X are both G-invariant. Hence the 2k-linear form(
f(FÃ, . . . , FÃ)

)
o

on p is mapped under the second isomorphism in (2.7) to the form

f(FÃ, . . . , FÃ) ∈ Ω2k(X )G.

This form is in particular Γ-invariant, so it now finally follows from Lemma 3.1 that it gets
mapped under (2.8) to the characteristic class c(Γ\G). �

3.3. A proportionality principle. In his seminal article [19], Hirzebruch proved a duality
principle for characteristic numbers of certain locally symmetric spaces. Generalizations of
this proportionality principle were obtained by Kamber and Tondeur [20]. In this section we
explain how Proposition 3.2 may be used to reproduce some of these results.

For any closed oriented manifold X of dimension m, we denote by

〈 · , [X]〉 : Hm(X;R)→ R
the pairing of classes of top degree in the singular cohomology of X with the fundamental class
[X] ∈ Hm(X;R) in the singular homology of X. Then we have the following proportionality
principle.

Corollary 3.3. Set m := dim(M) = dim(Xu), and fix an orientation of Xu and M . Then
there exists a real number a(Γ) 6= 0 such that for any collection c1, . . . , cr ∈ H•(BK;R) of
characteristic classes satisfying

deg(c1) + · · ·+ deg(cr) = m

we have 〈
c1(Gu) ∪ · · · ∪ cr(Gu), [Xu]

〉
= a(Γ) ·

〈
c1(Γ\G) ∪ · · · ∪ cr(Γ\G), [M ]

〉
.

Proof. By Lemma 3.1 (i) we may without loss of generality assume m to be even. Since
Hm(Xu;R) ∼= R there exists a real number a′ such that the linear functionals〈

· , [Xu]
〉
,
〈
ΦΓ( · ), [M ]

〉
: Hm(Xu;R)→ R
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are related by 〈
· , [Xu]

〉
= a′ ·

〈
ΦΓ( · ), [M ]

〉
.

Then Proposition 3.2 yields〈
c1(Gu) ∪ · · · ∪ cr(Gu), [Xu]

〉
= a′ ·

〈
ΦΓ

(
c1(Gu) ∪ · · · ∪ cr(Gu)

)
, [M ]

)〉
= (−1)m/2 · a′ ·

〈
c1(Γ\G) ∪ · · · ∪ cr(Γ\G), [M ]

〉
.

This shows in particular that a′ 6= 0. Now define a(Γ) := (−1)m/2 · a′. �

4. A geometric implementation of the universal map

The goal of this section is to prove Theorem 2. To this end it will be convenient to reformulate
the assertion of this theorem in terms of commutativity of a certain diagram. We will describe
this reformulation in Section 4.1, and prove commutativity of this diagram in Section 4.2.

4.1. Definition of the geometric map and reformulation of Theorem 2. Our main
tool in the proof of Theorem 2 is a certain geometric map TG : H•(B∗G;R) → H•c (G;R)
which we shall now define. Recall from Section 2.2 that B∗G denotes a functorial model of the
classifying space of G, which for definiteness we may choose to be the Milnor model. We will
keep the notation introduced in Section 3. In particular, for any subgroup H of G we denote
by ιH : H → G the corresponding inclusion.

Since K is a maximal compact subgroup of G, the inclusion ιK : K → G is a homotopy
equivalence by the polar decomposition of G. Now if EG→ BG is a universal G-bundle, then
BK := EG/K is a classifying space for K; the polar decomposition of G then shows that BK
deformation retracts onto BG. This implies in particular that ιK induces an isomorphism

(B∗ιK)∗ : H•(B∗G;R)→ H•(B∗K;R).

The main ingredient in the construction of TG is the classifying map fGu : Xu → B∗K of the
canonical K-bundle pGu : Gu → Xu. This map gives rise to a map

f∗Gu : H•(B∗K;R)→ H•(Xu;R)

whose image is given by the algebra of real-valued characteristic classes of the bundle pGu .
Recall the isomorphism ΨG : H•(Xu;R)→ H•c (G;R) from Section 2.1. We define the geometric
map by

TG := ΨG ◦ f∗Gu ◦ (B∗ιK)∗ : H•(B∗G;R)→ H•c (G;R). (4.1)

Next we observe that Theorem 2 states that the geometric map TG and the universal map σG
have the same image. We will prove here the stronger statement that these two maps actually
agree up to a sign. In odd degrees this follows trivially from H2k+1(B∗K;R) = {0} (see Lemma
3.1); in even degrees we claim that

σG = (−1)k · TG : H2k(B∗G;R)→ H2k
c (G;R). (4.2)

In view of the uniqueness assertion of Proposition 1.1, in order to prove Theorem 2 it will
therefore suffice to prove the following lemma.
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Lemma 4.1. The diagram

H2k(B∗G;R)

(B∗ιΓ)∗

��

(−1)k·TG // H2k
c (G;R)

ι∗Γ
��

H2k(B∗Γ;R)
∼= // H2k(Γ;R)

commutes.

4.2. Proof of Lemma 4.1. Firstly, by Proposition 3.2 the triangle

H2k(B∗K;R)
(−1)k·f∗Gu

ww

f∗
Γ\G

''
H2k(Xu;R)

ΦΓ // H2k(M ;R)

(4.3)

commutes. Secondly, we may attach to this diagram the commuting square obtained in Lemma
2.2, obtaining a commutative diagram

H2k(B∗K;R)
(−1)k·f∗Gu //

f∗
Γ\G
��

H2k(Xu;R)
ΨG //

ΦΓ

uu

H2k
c (G;R)

ι∗Γ
��

H2k(M ;R)
∼= // H2k(Γ;R).

(4.4)

Observe that Lemma 4.1 will be proven once we show commutativity of the diagram

H2k(B∗G;R)

(B∗ιΓ)∗

��

(B∗ιK)∗ // H2k(B∗K;R)

f∗
Γ\G
��

H2k(B∗Γ;R)
f∗X // H2k(M ;R).

(4.5)

Indeed, attaching diagram (4.5) to diagram (4.4) from the left, we obtain the commutative
diagram

H2k(B∗G;R)
(B∗ιK)∗//

(B∗ιΓ)∗

��

H2k(B∗K;R)
(−1)k·f∗Gu // H2k(Xu;R)

ΨG // H2k
c (G;R)

ι∗Γ
��

H2k(B∗Γ;R)
∼= // H2k(Γ;R)

By (4.1) the upper row coincides with (−1)k · TG, so we have arrived at the commutative
diagram in Lemma 4.1. Thus it remains to prove the following lemma.

Lemma 4.2. The diagram (4.5) commutes.

Proof. It suffices to prove that the square

B∗K
B∗ιK // B∗G

M

fΓ\G

OO

fX // B∗Γ

B∗ιΓ

OO
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commutes up to homotopy. So we have to show that there is a homotopy

B∗ιK ◦ fΓ\G ' B∗ιΓ ◦ fX
between maps from M to B∗G. Since homotopy classes of maps from M to B∗G are in one-
to-one correspondence with isomorphism classes of G-bundles over M this is equivalent to the
existence of an isomorphism of G-bundles

(B∗ιK ◦ fΓ\G)∗EG ∼= (B∗ιΓ ◦ fX )∗EG (4.6)

over M . Now we see from the pullback diagrams

(Γ\G)×K G //

��

E∗K ×K G //

��

E∗G

��
M

fΓ\G // B∗K
B∗ιK // B∗G

and

Γ\(X ×G) //

��

E∗Γ×ΓG //

��

E∗G

��
M

fX // B∗Γ
B∗ιΓ // B∗G

that

(B∗ιK ◦ fΓ\G)∗EG ∼= (Γ\G)×K G and (B∗ιΓ ◦ fX )∗EG ∼= Γ\(X ×G)

as G-bundles over M . Note that in the second diagram the quotient Γ\(X ×G) is taken with
respect to the diagonal action induced by the standard left actions of Γ on X = G/K and G.
Thus (4.6) is a consequence of the following claim.

Claim. The bundles (Γ\G)×K G and Γ\(X ×G) are isomorphic as G-bundles over M .

To prove the claim we write down the isomorphism explicitly. Let us use the notation

π1 : P1 := (Γ\G)×K G→M, [Γg1, g2] 7→ Γg1K

and

π2 : P2 := Γ\((G/K)×G)→M, [g1K, g2] 7→ Γg1K

for the two bundles. Then the map

ϕ : G×G→ G×G, (g1, g2) 7→ (g1, g1g2).

descends to a morphism of G-bundles P1 → P2. Similarly, the inverse

ϕ−1 : G×G→ G×G, (g1, g2) 7→ (g1, g
−1
1 g2)

descends to a morphism P2 → P1. This proves the claim and finishes the proof of the lemma. �

This completes the proof of Lemma 4.1 and thereby the proof of Theorem 2.

5. Applications

Let (Gu,K) be a compact symmetric pair. Then the real cohomology of the compact sym-
metric space Xu = Gu/K was described by H. Cartan [10] (see also [1] for a different approach,
which generalizes to the integral cohomology).
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Theorem 4 (H. Cartan). Let (Gu,K) be a compact symmetric pair and Xu = Gu/K. Then
there exist graded subalgebras H•ev, H

•
odd ⊂ H•(Xu;R) with the following properties.

(i) H•(Xu;R) = H•ev ⊗H•odd as graded algebras.
(ii) H•ev is the algebra of real characteristic classes of the canonical K-bundle pGu : Gu →
Xu; it is concentrated in even degree.

(iii) Under the map p∗Gu : H•(Xu;R) → H•(Gu;R) the subalgebra H•odd is mapped isomor-
phically onto p∗Gu(H•(Xu;R)); the latter, and hence also H•odd, is generated by odd
degree classes.

The decomposition in (i) induces via the isomorphism H•(Xu;R) ∼= H•c (G;R) a correspond-
ing decomposition

H•c (G;R) = H•ev(G)⊗H•odd(G), (5.1)

Then Theorem 2 takes the following form.

Corollary 5.1. The primary chacteristic classes of flat G-bundles are precisely the classes in
the image of H•ev(G) under the natural restriction map ι∗δ : H•c (G;R)→ H•(Gδ;R).

Combining this with Theorem 1 we obtain the following main result.

Theorem 5. Every class in H•ev(G) is bounded.

For every semisimple Lie group G the algebra H•ev(G) is known [25], hence Theorem 5
yields an explicit boundedness result for each such G. Of particular interest is the case where
H•c (G;R) = H•ev(G), since in this case Theorem 5 gives a positive answer to Dupont’s question.
We recall the following result of Cartan [10].

Proposition 5.2 (H. Cartan). Let G be a semisimple Lie group without compact factors and
with finite center. Then H•c (G;R) = H•ev(G) if and only if

rkR(Gu) = rkR(K). (5.2)

Note that condition (5.2) is satisfied if and only if it is satisfied by every simple factor. We
may therefore assume from now on that G is simple. If G happens to be a complex simple Lie
group, then g = k ⊗ C and thus gu = k ⊕ k. This implies Gu = K ×K, hence condition (5.2)
can never be satisfied. The non-complex, non-compact simple real Lie groups together with
their dual compact symmetric pairs are listed in [18, Table V]. We may then read off from this
list those pairs that satisfy condition (5.2).

Proposition 5.3. Let G be a non-complex, non-compact simple real Lie group with finite
center. Then exactly one of the following three cases holds.

(i) G is Hermitian.
(ii) G is not Hermitian, but locally isomorphic to SO0(p, q) with pq even or Sp(p, q) with

p, q ≥ 1 or exceptional with Lie algebra one of the following: e6(2), e7(7), e7(−5), e8(8),
e8(−24), f4(4), f4(−20) or g2(2).

(iii) G is locally isomorphic to SLn(R) for n ≥ 3, SU∗(2n) for n ≥ 2, SO0(p, q) for p and
q both odd or exceptional with Lie algebras e6(6) or e6(−26).

In cases (i) and (ii) condition (5.2) is satisfied. In case (iii) condition (5.2) is not satisfied.

In view of the preceeding remarks, Theorem 3 now follows from Theorem 5, Proposition 5.2
and Proposition 5.3.
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Appendix A. On a theorem of Bott

The purpose of this appendix is to provide a short proof of the following result of Bott (which
is precisely the existence part of Proposition 1.1).

Proposition A.1 (Bott). Let G be Lie group. Then there exists a map σG : H•(BG;R) →
H•c (G;R) such that for every discrete subgroup Γ of G with inclusion map ιΓ : Γ → G the
diagram

H•(BG;R)

(BιΓ)∗

��

σG // H•c (G;R)

ι∗Γ
��

H•(BΓ;R)
∼= // H•(Γ;R)

commutes.

Bott suggested to use the theory of spaces with two topologies (see [28]) for a proof of
Proposition A.1. Here we present a short proof using simplicial sheaf cohomology [14, 31].
The advantage of this proof is that it carries over to the case of Lie groupoids, and in fact we
learned that the argument given below is folklore in the groupoid community.

Every Hausdorff topological group G may be considered as a topological category (with one
object) and we denote by G• the nerve of this category (see e.g. [14, p. 76], where this nerve is
denoted NG(•)). By definition G• is a simplicial space, i.e., a simplicial object in the category
of topological spaces. If we assume that G is a (possibly disconnected, not necessarily second
countable) Lie group G, then the fat geometric realization B∗G := ‖G•‖ of G• is a functorial
model for the classifying space of G (see e.g. [14, pp. 77-78]), which is closely related to Segal’s
model [29]. On each of the spaces Gn we now consider the sheaf R of locally constant real
valued functions and the sheaf C0 of continuous real valued functions. Since these sheaves are
compatible with the face and degeneracy maps, we obtain sheaves R and C0 over the simplicial
space G• (see [31, Sec. 3] for the notion of a sheaf over a simplicial space). We can thus form
the corresponding sheaf cohomology groups. Then we have the following lemma.

Lemma A.2. (i) H•(G•;R) ∼= H•(B∗G;R).
(ii) H•(G•;C

0) ∼= H•c (G;R).
(iii) Under these isomorphisms the inclusion of simplicial sheaves i : R ↪→ C0 induces a

natural R-algebra homomorphism

i∗ : H•(B∗G;R)→ H•c (G;R),

which for discrete G coincides with the canonical isomorphism.

Proof. (i) The sheaf R admits a flabby resolution

R→ C0 d−→ C1 → . . .

by the sheaves Cq of singular real q-cochains (i.e., for Un ⊂ Gn the group Cq(Un) consists
of singular real q-cochains in Un). Hence H•(G•;R) is the cohomology of the total complex
associated to the double complex {Cq(Gn)}. Then (i) is a consequence of [14, Prop. 5.15].
(ii) The sheaves C0 on Gn are flabby, hence acyclic, and thus the double complex computing
H•(G•;C

0) collapses to the inhomogeneous bar complex for H•c (G;R).
(iii) Naturality follows from naturality of the nerve construction. For discrete G the sheaves R
and C0 coincide, hence the map becomes tautological. �
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Now Proposition A.1 is an immediate consequence of assertion (iii) of Lemma A.2. However,
it seems impossible to obtain the geometric implementation TG of σG (see Section 4) from the
above sheaf theoretic definition without appealing to the universal property.
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